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Abstract Neural mass models are successful in modeling
brain rhythms as observed in macroscopic measurements
such as the electroencephalogram (EEG). While the synap-
tic current is explicitly modeled in current models, the single
cell electrophysiology is not taken into account. To allow for
investigations of the effects of channel pathologies, chan-
nel blockers and ion concentrations on macroscopic activity,
we formulate neural mass equations explicitly incorporat-
ing the single cell dynamics by using a bottom-up approach.
The mean and variance of the firing rate and synaptic input
distributions are modeled. The firing rate curve (F(I)-curve)
is used as link between the single cell and macroscopic
dynamics. We show that this model accurately reproduces
the behavior of two populations of synaptically connected
Hodgkin-Huxley neurons, also in non-steady state.

Keywords Mean field · Neural mass · Recurring
network · Firing rate curve · Pathology · Hodgkin-Huxley ·
Variance · Channel blockers

1 Introduction

Neural mass models (NMM) are very successful in describ-
ing brain rhythms as measured with electroencephalogram
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(EEG) (Bhattacharya et al. 2011; Victor et al. 2011; van Put-
ten M.J. and Zandt B.J. 2013), electrocorticogram (ECoG)
(Hocepied et al. 2013), magnetoencephalogram (MEG)
(Moran et al. 2013) and functional magnetic resonance
imaging (fMRI) (Grefkes and Fink 2011). The main advan-
tage of these models is that they can be mathematically
analyzed due to their low dimensionality and that they
are computationally inexpensive. In short, a NMM pro-
duces the average activity (firing rates) of populations of
neurons. A NMM for cortex typically includes two popu-
lations, one modeling the excitatory pyramidal cells, and
one the inhibitory interneurons (Wilson and Cowan 1972).
If desired, NMM’s can be extended with a spatial compo-
nent (neural field) to model the propagation of rhythms and
activations.

Neural mass models can also be used to investigate
how (patho)physiological changes in the brain affect EEG
rhythms. For example, they were recently used to show how
the effects of anesthetics/sedatives (Hindriks and Putten
2012; Victor et al. 2011; Hutt 2013) and selective synaptic
damage (Tjepkema-Cloostermans et al. 2013) result in the
patterns observed in EEG’s from patients under sedation and
with ischemic damage, respectively.

The models contain explicit expressions for the synap-
tic response functions (see Fig. 1). Therefore, it is clear
how to incorporate factors that alter the synaptic responses.
For instance, propofol prolongs this response, which can
be incorporated in a NMM by increasing the synaptic time
constants (Hindriks and Putten 2012). However, an explicit
relation between the sigmoidal function that converts the
mean membrane potential to an output firing rate and the
dynamics of single cells is missing. Therefore, it is not
trivial how to correctly adapt the sigmoid to model the
EEG of patients with conditions that alter the dynamics
of the individual neuron, like those induced by voltage-
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Fig. 1 Diagram of a neural mass model describing one population
with one input. The input to a population fin, i.e. the presynaptic firing
rate, drives the dynamics of the state of the population, represented
by the population potential V. The response of V to fin represents the
dynamics of the synapses and the membrane potential of the dendrites
and soma. This state is subsequently converted into the output firing
rate fout by a sigmoidal function S(V )

gated channel blockers, channel mutations or changes in
ion concentrations. Such factors play an important role in
the (patho)physiology of patients with ischemia, traumatic
brain injury, epilepsy and migraine (Dreier 2011; Bazhenov
et al. 2008; Meisler and Kearney 2005; Somjen 2001).

In this paper we aim to provide a straight-forward
bottom-up description that relates a NMM to the dynam-
ics of the single cells and their connectivity. From this
description, we construct a new neural mass model. In par-
ticular, we investigate the relation of the sigmoid to the
single cell dynamics and their connectivity, by describing
the dynamics of a network of excitatory and inhibitory
conductance based cells (see Fig. 2). We confirm that our
newly proposed neural mass model accurately reproduces
the dynamics observed in a network of spiking neurons.

To take the influence of the connectivity in the network
into account, we study the distributions of firing rates and
input currents of the neurons. The dynamic evolution of
these distributions is then expressed up to second order,
i.e. mean and variance. The distribution of input currents
yields, together with the F(I)-curves, the distribution of
firing rates within the population. Changes in electrophysi-
ological parameters of the cells typically shift and/or stretch

Fig. 2 The approach we use for modeling neural dynamics. A net-
work of spiking neurons is taken as starting point (left). It consists of
two populations of synaptically coupled Hodgkin-Huxley (HH) neu-
rons. The new model we will construct, a neural mass model (right),
describes the average dynamics of each population

these F(I)-curves. The well-known Hodgkin-Huxley (HH)
model is used as single cell model because it is the simplest
model which is fully expressed in physiological parameters.
Our approach is general, though, and allows for relating a
neural mass model to networks of other single cell spiking
models as well.

First, we discuss the interpretation of the variables which
commonly appear in a neural mass model and some critical
issues with the classical derivation of the sigmoidal func-
tion. Then we describe our NMM that includes the single
cell dynamics, its implementation in Matlab, and validate
this new model with a network of spiking cells.

1.1 Neural mass modeling

We discuss the typical parameters and variables of a neural
mass model, and their interpretation. The model from (Liley
et al. 2002) is used as example.

The variable representing the state of a population is the
population potential V (denoted h in (Liley et al. 2002)).
The EEG signal is assumed to be proportional to V. It is
interpreted as the average membrane potential of the cells’
somas. V is obtained by low-pass filtering the input spike
rate to the population with a set of differential equations.
Their impulse response is the postsynaptic potential (PSP)
of a neuron, i.e. the response of the post-synaptic conduc-
tance and subsequently the post-synaptic membrane voltage
to a presynaptic spike:

Isyn,x = H ∗ fx (1)

τ
dV

dt
= Vrest − V + ∑

xψIsyn,x, (2)

where x denotes the populations from which input is
received (i.e. excitatory and inhibitory population), H ∗ fx

is the synaptic impulse response convoluted with the presy-
naptic firing rate, τ is the membrane time constant, Vrest

is the resting potential and ψ is the synaptic effectiveness.
This effectiveness depends weakly on V. Isyn,x, with x = e,i,
are the synaptic activations of the synapses originating from
the two populations. Liley et al. chose alpha synapses in
their model, for which the convolution with H corresponds
to a second order differential equation.

Subsequently, V is converted to an output firing rate of
the population through a sigmoidal function S(V ). A sym-
metric sigmoid is derived under the assumption that a cell
is either active (firing) or not, and a cell is assumed active
when its membrane potential is above its spiking thresh-
old. Furthermore it is assumed that either all cells receive
the same input, but have different voltage thresholds, or the
variation in spiking threshold is relatively small, while the
variation in input or noise causes cells to have different
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Fig. 3 Visualization of calculating the sigmoidal voltage-to-spike-rate
function (c), from either an assumed Gaussian distribution of the spik-
ing thresholds (a) or the induced membrane voltages of the neurons
(b). The hatched area is the part of the population that has a membrane

voltage above threshold and is considered to be spiking. The double
headed arrow denotes that the average membrane voltage can vary in
time

membrane potentials. These two interpretations are visual-
ized in Fig. 3. When Gaussian distributions are assumed,
either assumption results in a sigmoid that is the integral of
a Gaussian curve (Wilson and Cowan 1972). For simplicity,
the sigmoid resulting from this integral is often replaced by
a similarly shaped function, as done by (Wilson and Cowan
1972):

S(V ) = fmax
∫ V

−∞
1

σ
√

2π
exp −

{
(V ′−μ)2

2σ 2

}
dV ′

= fmax

(
1
2 + 1

2 erf(V −μ√
2σ

)
)

≈ fmax

1+exp (
√

2(μ−V )/σ)
,

(3)

where μ is the threshold voltage, σ is the width of the
voltage distribution and fmax is the firing rate of a single
neuron when active, i.e. the maximum mean firing rate of
the population.

These derivations assume a constant firing rate of the
cells when above threshold (so-called McCulloch-Pitts neu-
rons), contrary to the fact that neurons have an increasing
firing rate for increasing input currents. Furthermore, a con-
stant width of the dispersion of the states of the neurons
is assumed, although this width may depend greatly on
the synaptic input (Marreiros et al. 2008). Still, the models
using this sigmoid are successful, because they are operated
on only a small part of the f = S(V ) curve, with parameters
that are fitted to reproduce experimental data. Therefore, an
exact determination of the entire sigmoidal firing rate curve
from a physiological basis is often not necessary to obtain
realistic results. This means that the sigmoidal curve is de
facto phenomenological, despite the fact that its parameters
suggest to be physiological.

Another issue is that the interpretation of “the membrane
voltage of a cell” is not clear in the derivations above, espe-
cially not for spiking cells. Two interpretations are (Holt
1997): 1, the hypothetical membrane potential of the somas,
if they had been passive (linear). The somas with a poten-
tial above threshold are actually spiking. 2, the postsynaptic
membrane voltage of the dendritic cable. In this case, the

dendritic membrane voltage induces an input current into
the soma that, when large enough, generates action poten-
tials. It can be shown that the reaction time of the population
is too slow when using the first interpretation of passive
somas (Holt 1997). Therefore we will adhere to the second
interpretation. This means that V − Vrest is interpreted as
a measure for the input current a cell receives, following
Ohm’s law.

For a more in-depth discussion of the derivation of neu-
ral mass models, we recommend the excellent review from
Deco et al. (Deco et al. 2008).

2 Constructing a new neural mass model

We aim to construct a neural mass model as depicted in
Fig. 2, with an excitatory and an inhibitory population,
synaptically connected to themselves and eachother with
the excitatory population receiving external input. In this
section, we will derive the average behavior of a population
of neurons from the properties of a network of synaptically
connected cells, by describing the statistics of the synaptic
inputs and the firing rates.

The sigmoidal function describing the response of the
population will be derived by smoothing the F(I)-curve of
the single cells with the distribution of the input current
over the cells. Therefore, we will calculate not only the
mean input and output, but also their variances. Note that
throughout this work the terms mean and variance denote
the instantaneous distribution over the cells in a population,
i.e. the ensemble, not a distribution over time.

Figure 4 shows schematically our macroscopic model for
the excitatory population and the synapses that project onto
these cells. The schematic for the inhibitory population is
similar, but without external input λ(t). The excitatory pop-
ulation (e) receives excitatory input from itself and from an
external source (η), and inhibitory input from the inhibitory
population (i). The mean f̄ (t) and variance σf (t) of the fir-
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Fig. 4 Schematic of the
excitatory population in the
neural mass model. The
population receives input from
the excitatory and inhibitory
populations, as well as excitatory
external input λ, with firing
rates with mean f̄ and variance
σf . These are convoluted with
their synaptic responses to yield
the conductances of the single
synapses (mean ḡ and variance
σg). These are the state variables
in the model. From these the
input currents are calculated
(mean Ī and variance σI ).
Together with the single cell
F(I)-curve, they produce the
output firing rates

Hee

Hie

Hηe

Hee

Hie

Hηe

+
fe

fi

λ

σfe

σfi

λ

Ie

σgee

network
connectivity
and spiking
statistics

Input current

Fi
rin

g 
ra

te

I

σI σfe

F(I)-curve
single cell model

Excitatory population

fe

gee

gie

Gηe

σIe
σgie

σGηe

Nsyn,ee

Nsyn,ie
Gie

Gee

Eampa th-V

Egaba th-V

Egaba th-V

2

ing rates of the three input sources are convoluted with the
corresponding impulse response H. This yields the mean
ḡ(t) and variance σg(t) of the corresponding synaptic con-
ductances. These are the dynamical state variables in our
model. These in turn are combined into the mean Ī (t) and
variance σI (t) of the input currents into the cells, from
which the mean and variance of the output firing rates are
calculated. We will derive the model step by step, starting
with the output.

In deriving our model, we make several assumptions on
the general behavior and connectivity of the neurons. First,
as common for neural mass models (Deco et al. 2008), we
assume that exact spike timings are not important for the
network dynamics and there is no synchronization of spike
timings within the population. Therefore, the activity of
neurons is described as their firing rate.

Furthermore, we consider the inhomogeneity of the out-
put of the cells within a population, i.e. of their firing
rates. We assume the main contribution to this inhomo-
geneity comes from the differences in synaptic inputs the
cells receive (Manwani and Koch 1999), with a small addi-
tional contribution from the inhomogeneities in the single
cell properties. We do not take the effects of noise from
e.g. stochastic opening of ion channels into account. The
synaptic connectivity is considered to be inhomogeneous,
rather than all-to-all. For the sake of discussing our model,
the neurons are assumed to be sparsely connected, although
this is not strictly necessary. The connectivity is assumed to
be essentially unstructured, such that for each postsynaptic
neuron the set of presynaptic firing rates can be consid-
ered to be independently drawn subsets of the firing rates of
all presynaptic neurons. From these assumptions it follows
that there are no distinguishable subsets of neurons within
a population and the total synaptic inputs of the individual
neurons are more or less synchronous.

Finally, the number of postsynaptic neurons in a popula-
tion is assumed to be large enough to describe the input cur-
rents and resulting firing rates as a continuous distribution.

2.1 The firing rate of a population: the sigmoid function

In this section we derive a sigmoidal function from the dis-
tribution of input currents over the cells. We assume these to
be normally distributed and neglect higher order moments
of the distribution:

I (t) ∼ N(Ī (t), σ 2
I (t)). (4)

Hence, the mean Ī (t) and variance σ 2
I (t) fully characterize

the distribution function φ(I ; t) as:

φy(I ; t) := φ(I ; Īy(t), σIy (t))

= 1

σIy (t)
√

2π
exp

⎛

⎝−1

2

(
(I − Īy(t))

σIy (t)

)2
⎞

⎠. (5)

Throughout this paper, the subscript x denotes the presy-
naptic population or source (e,i,η) and y the postsynaptic
population (e,i).

The mean f̄ (t) and variance σ 2
f (t) of the output firing

rates can be calculated from the input current distribution
and the F(I)-curve, as depicted in Fig. 5a:

f̄y(t) =
∫

Fy(I) φ(I ; Īy(t), σIy (t)) dI (6)

σ 2
fy

(t) =
∫

(Fy(I ) − f̄y(t))
2 φ(I ; Īy(t), σIy (t)) dI . (7)

In order for this to be valid, the F(I)-curve must yield
a good approximation for the instantaneous firing rate of
neurons receiving fluctuating input currents. This is the case
when these fluctuations are on a time scale, as determined
by the synaptic integration time, that is much slower than the
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Fig. 5 The functions involved
in calculating the firing rate
distribution. (a) The distribution
of the input currents and the
F(I)-curve and (b) the resulting
sigmoidal function, depending
on σI
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interspike interval. We will empirically show in the Results
that this assumption can be relaxed to the time scales being
similar. Furthermore, the F(I)-curve must be well-defined,
which assumes the neurons show simple behavior, i.e. do
not show resonances, bistability or bursting. Note that the
firing rates are not required to be normally distributed.

To obtain a sigmoid function in familiar form,
Equation (6) is equivalently described as the F(I)-curve
smoothed by convolution with a Gaussian of width σI (t):

f̄y(t) = Sy(Īy(t); σ 2
Iy

(t)). (8)

The resulting sigmoid function S now depends on σI (t), as
shown in Fig. 5b.

We have now derived a sigmoid function based on the
firing rate curve of the cells in the population, as was our
main aim. The F(I)-curve can be calculated numerically or
analytically from the single cell model. The output firing
rate distribution (f̄y(t) and σ 2

fy
) is a function of Ī (t) and

σI (t). These will be calculated from the input firing rates in
the next sections.

2.2 Distribution of the synaptic conductance

Presynaptic activity causes the synapses to release neuro-
transmitter. This in turn opens ion channels on the post-
synaptic membrane, increasing the conductance of these
channels, which generates a synaptic current. The distribu-
tion of the input current will be calculated from the synaptic
conductances.

We assume that cells in the network are randomly con-
nected with synapses. These connections possibly have
different strengths (weights). Cells receive synaptic connec-
tions from different populations and we refer to the group
of all synapses from source x to population y as the synaptic
population xy. Our model contains five synaptic popula-
tions, specifically ee, ie, ηe, ei, and ii (see Figs. 2 and 4). The
conductances of the single synapses and their summation
by the postsynaptic neurons are calculated in Appendix A.
The derived expressions used in the neural mass model are
summarized in this section.

The mean and variance of the conductance of the indi-
vidual synapses gxy are obtained from the presynaptic
firing rates fx (Appendix A), by assuming a linear synaptic
response:

ḡxy = Hxy ∗ f̄x(t) (9)

σgxy = Hxy ∗ σfx (t). (10)

H is the synaptic impulse response, i.e. PSP, of a single
synapse and the asterisk denotes a convolution.

Although the form of Equation (10) is simple, the deriva-
tion is not trivial. In its derivation the presynaptic cells are
assumed to fire periodically. In contrast, for the external
input we assume Poisson (shot noise) statistics. Assuming
all postsynaptic cells receive external input at the same rate
λ, the mean and variance of the externally induced synaptic
conductance are calculated as (Amit and Brunel 1997):

Ḡη = Hηe ∗ λ (11)

σ 2
Gη = H 2

ηe ∗ λ. (12)

For each single neuron in population y, we define the
total conductance Gxy as the sum of the contributions of the
individual synapses from source x. The distribution of Gxy

is determined (Appendix A) from the connection matrix.
The mean Ḡxy is expressed as:

Ḡxy(t) = N̄syn,xy Hxy ∗ f̄x(t) , (13)

where Nsyn is the mean (weighted) number of synaptic
connections a neuron receives.

The variance σG(t) is expressed as (Appendix A):

σ 2
Gxy(t) = var(Nsyn,xy) ḡxy(t)

2 + N ′
syn,xy σ 2

gxy(t). (14)

The first term is the variance due to differences in the num-
ber of synaptic connections received by the cells, the second
term is the variance due to the variance in firing rates of
the presynaptic neurons. N ′

syn is the expected (weighted)
number of connections a postsynaptic neuron does not share
with a random other cell of its population. This number is
zero for an all-to-all connected network and approximately
equal to Nsyn for a very sparsely connected network.
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2.3 Distribution of the input current

With the expressions for the total synaptic conductances the
distribution of the input current can be calculated. The total
input current Ie into a single cell in the excitatory population
is calculated from the conductance of the three sources of
input (see Fig. 4) as:

Ie(t) = (Eampa − Vth)Gee(t) + (Egaba − Vth)Gie(t) +
+(Eampa − Vth)Gηe(t) + 	I. (15)

The expressions for the inhibitory population are similar.
	I is an effective synaptic input, added to simulate het-
erogeneity of the single cell parameters. Eampa/gaba is the
reversal potential of the excitatory/inhibitory synapses, Gxy

the total synaptic conductance induced by population x on
a neuron in population y and η the conductance induced by
external input. Vth is the threshold potential of the neuron.
Usually, the membrane voltage itself, rather than the thresh-
old voltage, is used to calculate the input current. However,
Vth yields a good approximation to determine the spike rate,
as detailed in Appendix B. This approximation neglects the
shunting effect of the synaptic conductances. Subthreshold
input currents are calculated incorrectly, but this is inconse-
quential, since the spike rate will be determined correctly as
zero.

Assuming the distribution of the total conductances from
the different sources are independent, the mean and variance
of the input current are calculated as:

Īe(t) = (Eampa − Vth) Ḡee(t) + (Egaba − Vth) Ḡie(t)+
+ (Eampa − Vth) Ḡηe(t), (16)

σ 2
Ie(t) = (Eampa − Vth)

2 σ 2
Gee

(t) + (Egaba − Vth)
2 σ 2

Gie
(t)+

+ (Eampa − Vth)
2 σ 2

Gηe
(t) + σ 2

	I . (17)

These expressions close our set of equations, which can
now in principle be analyzed and simulated. First how-
ever, more computationally efficient expressions for the
convolutions Eqs. (10-12) will be given in the next section.

2.4 Differential equations for the synaptic dynamics

For computational efficiency as well as analytical tractabil-
ity, a synaptic impulse response H is chosen such that the
convolutions can be described with ordinary differential
equations. Common choices are the exponential and the
alpha synapse (De Schutter 2010), with impulse responses
(PSP’s) of

Hexp = g0 e−t/τ (18)

and

Hα = e g0
t

τ
e−t/τ , (19)

respectively. Here g0 is the peak amplitude of the PSP and
τ the synaptic time constant. The corresponding differential
equations are:

dg

dt
= − g

τ
+ g0 f (t) (20)

and

d2g

dt2
= − 2

τ
dg
dt

− g

τ 2 + e
τ
g0 f (t). (21)

The convolution with H 2 (Eq. (12)) can be written as:

dσ 2

dt
+ 2

σ 2

τ
= g2

0 f (t) (22)

and

d3σ 2

dt3
+ 6

τ

d2σ 2

dt2
+ 12

τ 2

dσ 2

dt
+ 8

τ

3

σ 2 = 2
e2 g2

0
τ 2 λ(t), (23)

for the exponential and alpha synapse respectively.
We used the alpha synapses in our implementation.

However, to reduce the dimensionality and improve com-
putational efficiency when calculating the variances, H
and H 2 were approximated with exponential functions. To
obtain equal steady state values and approximately equal
rise times, we chose approximations that have equal areas,
and equal second moments around t = 0. This gives values
of g0 = e/2 g0,α and τ = 2 τα for H and g0 = e/

√
(6) gα

and τ = 3 τα for H 2.

3 Implementation and simulations

First, we describe the implementation of a network of spik-
ing neurons, used as a standard for validation, and then the
implementation of our neural mass model. 1

3.1 Network of spiking neurons

The Norns - Neural Network Studio was used to build and
simulate the network of spiking cells. Norns is designed for
easy analysis of networks of spiking neuron models 2

The single cells were modeled with a Hodgkin-Huxley
(HH) model with voltage gated Na+- and K+-channels and
leak currents (Eqs. 1-3 of (Zandt et al. 2011)). The cells
were synaptically connected with alpha synapses. These
were chosen since they are a second order system, which
has been shown to generate more realistic frequency spectra
than exponential synapses (Liley et al. 2002). Differen-
tial equations for the HH model and the alpha synapse
Equation (21) were added as new cell and synapse types to

1The simulation code is available from modelDB (Hines et al. 2004),
accession nr. 155130 and Researchgate www.researchgate.net/profile/
Bas-Jan Zandt
2Available from ModelDB, accession nr. 154739.
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the Norns package. An action potential (spike) was defined
as the membrane voltage crossing 0 mV from below.

A network was built consisting of two populations of
100 cells each (see Fig. 2). For simplicity, the same param-
eters were chosen for all cells. Then, heterogeneity of the
population was obtained with an additional sodium leak
conductance, normally distributed over the cells. This con-
veniently allows us to model this heterogeneity as an extra
synaptic input.

Synaptic currents were included next to the leak and volt-
age gated currents. They are expressed as usual as I =
gsyn (Esyn −V ), where V is the neuron’s membrane voltage.
Synaptic connections, represented in connection matrices
Wxy , were randomly made between the cells with a prob-
ability p, all having equal strength (w = 1). Different
strengths of the synaptic populations (e→e, e→i, etc.) were
obtained by choosing different PSP amplitudes g0.

The excitatory cells were given external input via excita-
tory synapses, that received Poisson distributed spikes with
rate λ. To show how the populations react to a change in
input, a double step in input was given:

λ =
⎧
⎨

⎩

0 s−1 t < 0 s
600 s−1 0 s ≤ t < 0.5 s
400 s−1 0.5 s ≤ t

(24)

The synaptic currents that are induced by this input are
depicted in Fig. 6.

3.2 The new neural mass model

First, the F(I)-curve was calculated by simulating a single
HH cell, as described in the previous section, for a range of
constant conductivities of the excitatory synapses in the sim-
ulation. F was determined from the interspike interval (ISI).
The reported I is calculated as I = g(Eampa − Vth). Alter-
natively, a current could have been injected directly into the
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Fig. 6 Synaptic currents induced by (Poisson distributed) external
input in our simulation. Depicted are the expected current (solid black
line), and a typical realization for a single synapse (dashed blue line)
and the mean of 100 synapses (dotted red line)

cells. The former method leads to more accurate results,
since it takes the shunting effect of the excitatory synaptic
conductance into account. For simplicity, the neurons in the
two populations were given the same parameter values and
hence have the same F(I)-curve. The threshold voltage of the
HH model was determined numerically, typically -55 mV.
To be able to show the effects of gradually increasing the
extracellular potassium concentration, multiple F(I)-curves
were calculated for different potassium concentrations, with
a resolution of 1 mM. These curves were linearly interpo-
lated during the simulation. For simplicity, we assumed the
threshold voltage to remain constant, since this was found
not to change significantly.

The values for the parameters representing the number
of synapses were calculated from the generated connection
matrices Wxy used in the network model. For a binomial dis-
tribution with p = 0.5 and N = 100, this yields on average
N̄syn = 50, var(Nsyn) = 25 and N ′ = 25 for all synaptic
populations, i.e. the cells receive 50±√

25 synapses of each
type, and two cells share on average 50-25 synaptic connec-
tions of each type. Note that var(N) = N ′

syn is a property of
the binomial distribution.

The differential equations of the neural mass model (see
method section) were implemented in Matlab. The differ-
ential equations were solved with a forward Euler time
stepping algorithm, using a time step of 0.1 ms. The sec-
ond order differential equation for the alpha synapse was
used to calculate ḡ for each of the five synaptic populations.
To reduce the dimensionality, σg was calculated using an
exponential approximation (see Section 2.4). Because the
variance of g has only a secondary effect on the dynam-
ics, the errors on the firing rates and synaptic conductances
introduced by this approximation are small.

A noisy input signal for the NMM was generated by bin-
ning the random external input spike times of the simulation
of the network model (	t = 1 ms), allowing to compare the
two models with the same input.

3.3 Parameters

To validate the new neural mass model, we simulated three
different networks. Our standard parameter set defines a net-
work of type 1 spiking neurons in which there is relatively
weak feedback between the populations. We further tested
our approach by increasing the feedback, i.e. the strength of
the i→e synapses, and by simulating a network with type
2 spiking cells. This choice allows us to assess and discuss
the performance of our model for both fluctuations around
a steady state and limit cycle behavior, as well discuss
the necessity of taking the variance of the firing rate into
account. Furthermore, to demonstrate that changes in single
cell dynamics can easily be incorporated, a steadily increas-
ing extracellular potassium concentration is modeled. Such
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an increased concentration typically occurs in epilepsy and
spreading depression.

In summary, four cases are modeled:

1. a network of type 1 spiking neurons
2. the same network with strong feedback between the

populations (g0ηe = 5.4 and g0ie = 8 μS/cm2)
3. a network of type 2 spiking neurons
4. a network of type 1 cells with variable Ek

For the single HH cells, conductances and time constants
were chosen as in (Zandt et al. 2011). Nernst potentials
were chosen in the physiological range as Ek = -95 mV,
Ena = 53 mV, Ecl = -82 mV. A type 1 neuron was cre-
ated from the standard HH parameters by increasing the
membrane capacitance Cm to 10 μF/cm2, while the orig-
inal value of Cm = 1.0μF/cm2 was used to model type
2 spiking behavior. Heterogeneity of the cells was mod-
eled by an extra sodium conductance that was normally
distributed, with a width corresponding to an input cur-
rent of σ	I = 0.5μA/cm2, approximately a third of the
threshold current. Time constants were chosen based on the
membrane time constants obtained in (Liley et al. 2002).
These were halved, since the alpha function is wider than
an exponential function, in order to obtain similar synaptic
integration times. Table 1 shows the synaptic parameters.
Values for the synaptic strengths were chosen such that the
steady state firing rates of both populations were approxi-
mately equal in the range between 4 and 100 Hz. A mean
firing rate was obtained around approximately 30 Hz by tun-
ing the strength of the external input. The synaptic strengths
of the fourth network were chosen empirically to show limit
cycle behavior upon varying the potassium concentration.

4 Data analysis of the network simulations

Spike times and synaptic conductances for each cell were
recorded from the network model. From the synaptic con-
ductances, synaptic currents were calculated from the terms
in Equations (16) and (17). For some simulations the fre-

quency spectrum of the synaptic current was obtained with
the fast Fourier transform (FFT) of an 8 second long seg-
ment with constant input rate. The mean firing rate in the
network model was determined for both populations by bin-
ning the spikes in intervals of 5 ms. The standard deviation
of the firing rates were calculated from the instantaneous
frequencies of the individual cells, determined by their inter-
spike intervals. This simple method yields artifacts when
the population spike rate changes rapidly. Sections with
artifacts were bleached in the figures.

One of the main assumptions in the derivation of our
NMM was that the firing rate of the cells in the network
is determined by their instantaneous input current. To test
whether this approximation was accurate, for each cell in
the network the spike rate was calculated both from the
recorded interspike intervals as well as from the recorded
synaptic conductances, according to Equation (16).

Besides the spike timings of the external input, none of
the recorded quantities were given as input to the NMM.

5 Results

We will now first validate our NMM by comparing it with
simulations of a spiking network and check whether the
firing rates of the single cells in the network indeed instan-
taneously depend on their synaptic input, as assumed in the
derivation of the NMM. We then show how our neural mass
model can be used to model changes in electrophysiolog-
ical single cell parameters with an example of a network
where the extracellular potassium concentration is gradually
increased, as may occur in some pathological conditions.

5.1 Validation

Figure 7 compares the responses of our NMM with those of
the spiking network model. The upper panels compare the
mean conductance of the e→i synapses, which reflect the
activity of the excitatory population. The lower panels show
the calculated firing rate curves, together with an indication

Table 1 Synaptic parameters
for the modeled networks. Synaptic population η →e e→e e→i i→e i→i

Connection probability p 0.5 0.5 0.5 0.5

Time constant τ (ms) 45 45 34 45 34

Reversal potential Esyn (mV) 50 50 50 −82 −82

Synaptic strengths

1. Network w. type 1 cells g0 (μS/cm2) 1.4 0.06 0.45 0.11 0.15

2. Strong feedback g0 (μS/cm2) 5.4 0.06 0.45 8.0 0.15

3. Network w. type 2 cells g0 (μS/cm2) 0.8 0.06 0.45 0.8 1.5

4. Type 1, variable Ek g0 (μS/cm2) 1.4 0.30 0.45 1.65 0.15
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Fig. 7 Comparison of our NMM with a spiking network model, for
the three different networks. Upper panels show the dynamics of the
conductance of a single synaptic population (e→i). These dynamics
are representative for the other conductances. The reaction to a double
step in input rate of the network model (thick, black line) is compared
to that of our NMM (thin red line). To show the effect of neglecting
the second moment of the input current distribution, the response of
our model with the standard deviations set to zero is shown as well

(dotted, gray line). The bottom panels show the F(I)-curve of the neu-
rons in the modeled networks. The Gaussian curves depict the typical
width and position of the input distribution during the second half
of the simulations (height is not scaled). Note that in the upper-right
diagram a large discrepancy is observed between the network model
and the 1st order approximation. The newly derived 2nd order model
matches the data much better

of the instantaneous distribution of the input received by
the excitatory neurons. More detailed results of the simula-
tions, showing the conductances of all synaptic populations
(mean and variance), as well as the firing rates of both
neuronal populations (mean and variance) are presented in
Appendix C. Figure 7 furthermore shows the effects of
neglecting the second moment of the distribution. Namely,
the dashed line shows the dynamics for a simulation where
the variances were ignored, i.e. σI = 0.

In general, the behavior of the network model is well
reproduced by the NMM. In all three simulations, the mod-
els are presented with a double step in external input rate.
First, the conductance of the externally activated synapses
rises (Fig. 6), which is followed by the firing rate of the
excitatory population. This subsequently activates the exci-
tatory synapses, followed by the inhibitory population. At
t = 0.5s, the input rate is stepped down, which is subse-
quently followed by the synaptic conductances and firing
rates.

The left panels show the simulations of type 1 cells with
relatively weak feedback. In this network, the dynamics
of the excitatory population are mainly determined by the
external input and the dynamics of the inhibitory population
are mainly determined by the firing rate of the excitatory

cells. The dynamics are very well reproduced. Also, the
variances of the firing rates and synaptic conductances are
accurately reproduced (Appendix B). The F(I)-curve of the
type 1 neurons is relatively straight for frequencies above
10 Hz. Hence the sigmoidal function Equation (8)is almost
equal to the F(I)-curve regardless of the variance in the input
current. Neglecting the second moment of the input cur-
rent distribution does hardly influence the dynamics of the
populations.

We further tested our NMM by simulating the same net-
work with strong feedback (center panels). Increasing the
strength of the i → e synapses, first leads to the appearance
of a resonance peak in the spectrum, i.e. spindles in the time
domain (not shown). This is followed by the appearance of
a limit cycle. The center panels show the dynamics where
g0,i,e has been increased from 0.1 to 8 μS/cm2. The input
strength g0,η is increased from 1.4 to 5.4 μS/cm2 to com-
pensate for the inhibition. The NMM underestimates the
amplitude of the oscillations, also in the resonating regime
(not shown) and the time courses of the synaptic currents
are more sinusoidal than those in the network model. How-
ever, the approximate frequency of the limit cycle, as well
as the relative phases and amplitudes of the firing rates and
synaptic currents of the two populations (Appendix C) are
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well reproduced. Again, the neurons are operated on a part
of the curve that is relatively flat, and neglecting the second
moment of the input current distribution does not qualita-
tively affect the dynamics of the populations. In this case,
we actually observe a slightly better numerical agreement
when neglecting the second moment.

Finally, we tested whether our new NMM can also repro-
duce the behavior of a network of type 2 firing neurons
(right panels). In this network, the width of the input cur-
rent distribution has a larger influence on the dynamics, due
to the step in the F(I)-curve. Here, neglecting the second
moment of the input current distribution leads to signifi-
cantly different behavior. Advantageous for our approach
is that the single cell dynamics have a negligibly small
region of bistability. The oscillations of the synaptic cur-
rents (and firing rates, Appendix C) in the new NMM are
less pronounced than in the spiking network, but the general
behavior is very well reproduced. The mean of the firing
rate is slightly underestimated, what in turn causes the stan-
dard deviation of the synaptic currents and firing rates to
be underestimated. Considering that the network operates
close to the thresholds of the neurons, where the standard
deviation of the firing rates is very sensitive to the synaptic
current distribution, the new NMM performs well.

5.1.1 Frequency spectrum

We investigated the frequency spectrum of the dynamics of
the first simulation in more detail. Figure 8 shows a close-
up of the dynamics of one of the synaptic currents and its
frequency spectrum. The new NMM reproduces the low
frequency part (< 20 Hz) of the firing rate signal very
accurately.

The synaptic currents in the spiking network model show
small oscillations in the frequency band around the modal
firing rates of the populations. These oscillations are caused
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Fig. 8 Panel a shows a close up of the mean synaptic current (Fig. 7,
upper left panel). The new NMM predicts the DC value accurately
within 1 % error. Also, the low frequency oscillations observed in the
network model are accurately reproduced. Panel b shows the corre-
sponding frequency spectrum. The spectrum is accurately reproduced
below 18 Hz. A broad peak is observed around 30 Hz, the mean firing
rate, in the dynamics of the network model. As expected, this is not
reproduced by the new NMM

by some of the neurons firing in phase. As expected, the
NMM does not produce these oscillations, since neural mass
models assume that phase effects are averaged out.

5.1.2 Relation of input and firing rate of the single cells

Now we will check how well the instantaneous input deter-
mines the firing rate of the single cells, as described by
Equation (15). The actual firing rates observed in the spik-
ing network model are compared to those predicted from the
synaptic input the individual cells receive in Fig. 9. Panel a
compares these for two randomly chosen (excitatory) cells
in our first simulation. The firing rate is predicted accu-
rately from the instantaneous synaptic conductances, even
though the synaptic input fluctuates on a time scale simi-
lar to the firing rate rather than much slower. Panel b shows
the mean of these rates for the entire populations. Even
though the synaptic input predicts the firing rate for the sin-
gle cells accurately, the firing rate of the population shows
fluctuations around the predicted curve. This shows that the
firing of the cells is to some extent synchronized. Even more
pronounced synchronization is found during large ampli-
tude limit cycles, shown in panel c. The firing rates of
the populations in the network model exhibit a damped
oscillation around the rates predicted from the input cur-
rents, especially clear for the inhibitory population. Panel
d shows that the firing rates of both populations are sys-
tematically underestimated in the simulation of the network
with type 2 cells. We found this was caused by the shunting
effect of the inhibitory conductance, which was neglected
in our NMM.

5.2 Dynamical transitions induced by extracellular
potassium

The extracellular potassium concentration [K]e is tightly
regulated in the brain, in order to maintain physiological
neuronal functioning. Pathological increases in this concen-
tration increase the excitability of neurons and can hence
alter network dynamics. This may play an important role in
spreading depression and epileptic seizures (Somjen 2004;
Fröhlich et al. 2008). We demonstrate that our approach can
easily be used to model the effects of such changes in single
cell electrophysiology.

As example, we simulated a gradually increasing extra-
cellular potassium concentration. In this simulation, [K]e
was gradually increased from 4 to 16 mM. This corresponds
to an increase of the potassium reversal potential Ek from
approximately −95 to −60 mV (Fig. 10-b). Figure 10-c
shows the F(I)-curves for various values of Ek . Increas-
ing extracellular potassium levels increases the neuronal
excitability, i.e. the firing rates increase and the threshold
current decreases. When Ek becomes larger than −75 mV,
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Fig. 9 Firing rates assumed from the synaptic input versus observed
firing rates. Panel a shows the firing rates of two randomly chosen
excitatory cells of type 1 with weak feedback. The full lines represent
the firing rates calculated from the F(I)-curve and I(t) of the individ-
ual neurons. The dots are the spike rates determined from the recorded
interspike interval. Panels b, c and d compare for the three networks the
average firing rates for all neurons determined from the binned spike

times (thin black line) and the rates calculated from the input currents
(thick blue line). Clearly visible are the fluctuations of the population
rate around the calculated rate (b), oscillations around the calculated
rate during large amplitude limit cycles (c, note the different time
scale) and a general underestimation of the firing rate by 10 − 20 %
for the simulation with type 2 cells (d)

the threshold current even becomes negative, i.e. the neu-
rons generate action potentials unless they are inhibited.

Figure 10-a shows the resulting dynamics of the two
populations (mean firing rates). Increasing [K]e to 6 mM
(t ≈ 4s) makes both the excitatory and inhibitory cells
more excitable. The net effect here is an increased firing rate
of the inhibitory population, which slightly suppresses the

excitatory activity. Further increasing [K]e increases the
activity of the inhibitory cells even more. When [K]e is
increased above 8 mM, (t ≈ 8s), the system becomes unsta-
ble and a limit cycle appears. This cycle grows in amplitude
when [K]e is increased further. The firing rates of both pop-
ulations oscillate with large amplitudes and the cells in the
excitatory population show synchronized bursts of firing.
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Fig. 10 Population dynamics during steadily increased extracellular
potassium concentrations. Panel a shows the mean of the firing rates
of both populations during the process. The resulting dynamics of
our NMM (blue dashed lines) are compared to those of the spiking

network model (full lines with dots). Panel b shows the concentra-
tion [K]e and corresponding Nernst potential Ek as a function of time.
Panel c shows how the F(I)-curve correspondingly changes
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When the inhibitory cells become even more active due to
the high Ek , the activity of the excitatory cells is completely
suppressed (t ≈ 18s). Again, our neural mass model excel-
lently reproduces the dynamics and transitions of the firing
rates in the spiking network model. Also quantitatively, the
amplitude and frequency of the fluctuations and limit cycles
are reproduced very well. The accuracy gets lower as the
inhibitory input to the populations becomes stronger, typ-
ically after t = 12s. As discussed previously, this results
from neglecting shunting by the inhibitory conductance in
our NMM.

This result shows that changes and transitions of network
dynamics induced by varying parameters of the single cells
can be quantitatively reproduced and investigated with our
neural mass model.

6 Discussion

Neural mass models are designed for modeling macroscopic
electrical activity of the brain. Cortical neural dynamics,
as in part reflected by the EEG, are modulated by various
conditions, ranging from anesthesia, the use of central act-
ing drugs and hypoxia/ischemia. Modes of action include
interactions with ligand-gated and voltage-gated ion chan-
nels, energy dependent ion pumps, and synaptic failure. In
existing neural mass models only the synaptic response is
explicitly modeled, which allows only for investigating neu-
ral dynamics during altered synaptic functioning. To extend
these investigations to altered electrophysiological condi-
tions, here we introduced a neural mass model explicitly
including single cell dynamics, with a sigmoid function
derived from the single cell F(I)-curve.

Using the F(I)-curve as link between single cell and
macroscopic dynamics has several distinct advantages. It
can easily be calculated numerically from a physiologi-
cal plausible model, without reduction or analysis of the
dynamics. The curve is a familiar function for most and the
influence of pathologies on its shape can be understood intu-
itively. It carries information on excitability, sensitivity and
maximum firing rates. Furthermore, depolarization block
of the cells, important for example during certain types of
epilepsy (Ziburkus et al. 2006), is naturally included in the
F(I)-curve.

The usual techniques can be used to analyze the dynam-
ics of the model for changes in the F(I)-curve. For example,
the dependency of the steady state firing rates on EK can be
calculated from an analysis of the nullclines of the system,
and linearizing the NMM around a fixed point and calculat-
ing the transfer function between the input and the synaptic
conductance yields the power spectrum.

The approach presented for constructing the sigmoidal
function in our NMM can be used to adapt existing neural

mass models as well, for example the Jansen en Rit model
(Jansen and Rit 1995) or the Robinson model (Robinson
et al. 2001). This allows to investigate the effects of altered
single cell dynamics on the EEG signals predicted by these
models.

The new model was validated by quantitatively compar-
ing it with a network of spiking neurons, representing neural
tissue with pyramidal cells and interneurons. This spiking
network model consisted of both excitatory and inhibitory
Hodgkin-Huxley neurons. The newly derived NMM was
shown to describe the synaptic activations and the popula-
tion firing rates accurately. We also illustrated the use of our
neural mass model for simulating pathological conditions
by modeling increased extracellular potassium.

We will now first discuss this example in some more
detail, followed by some restrictions on our approach. Then
we discuss possibilities for extensions of our model such
as including unreliability of synaptic transmission. Fur-
thermore, we discuss phase synchronization and how this
affects the frequency spectrum of macroscopic measure-
ments. Finally we will deliberate on similar investigations
by others, and how these complement this work.

6.1 Modeling pathophysiology

Our NMM allows for quantitatively investigating the influ-
ence of parameters of the single cell model on the network
activity. This is not possible in traditional NMM’s. To illus-
trate the possibilities of our NMM, we simulated network
dynamics for an increasing extracellular potassium concen-
tration. In reality, the dynamics of extracellular potassium
in the brain are coupled to, and largely determined by, the
neuronal activity. However, the potassium dynamics are typ-
ically on a slower time scale (seconds) than the dynamics
of the neural activity, which allows us to separate them, and
investigate the neural dynamics as a function of [K]e.

Our simulations show that upon increasing [K]e, eventu-
ally the system’s equilibrium point loses stability, giving rise
to large amplitude, limit cycle activity of the populations.
In the network model, synchronized bursts of the excita-
tory neurons are observed during these oscillations (not
shown). We speculate that local disturbance of potassium
homeostasis and resulting limit cycle activity of localized
populations may play a role in the generation of epileptic
microseizures found at the onset of electrographic seizures
(Schevon et al. 2008; Stead et al. 2010). Interestingly, in
the case we simulated, the limit cycle activity is induced by
increased inhibition of the excitatory population and could
be prevented by either stimulating the excitatory neurons or
inhibiting the inhibitory population. Naturally, the resulting
dynamics depend on the various parameters of the system,
and the strengths of the synaptic connections in particular.
Due to its relatively low dimensionality, our NMM allows
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for bifurcation analysis, allowing to investigate these depen-
dencies in detail. This falls outside the scope of this paper,
however.

Other changes resulting from pathology or drug inter-
actions can be investigated with our NMM as well. For
example, altering conductances or rate constants of the volt-
age gated channels in the single cell model would mimic
channel mutations or channel blockers.

6.2 Valid parameter ranges

The main assumption for neural mass modeling in general is
that a neuron’s input current consists of contributions from
many action potentials, i.e. Nsyn,xy fx τxy 
 1. This is the
case for typical physiological parameters in cortex, e.g. N =
2000, f = 4 Hz and τ = 50 ms, for which a cell receives 400
action potentials during a synaptic integration time.

A second assumption made in our derivation is that the
synaptic input currents instantaneously determine the fir-
ing rate. We have shown this is the case when the synapses
fluctuate on a time scale slower than or similar to the
spike rate, i.e. τxy � 1/fy . Hence, dynamics involving
low spike rates or very short somatic PSP’s are not mod-
eled accurately. By assuming the F(I)-curve characterizes
the instantaneous firing rate, action potentials resulting from
subthreshold fluctuations were neglected. Further work is
needed to determine if low firing rates can be modeled by
incorporating the finite firing rates for fluctuating or noisy
subthreshold input into the F(I)-curve, as for example done
in (Galtier and Touboul 2013). This would be necessary
depending on which brain area is modeled. While cortical
neurons typically have low average firing rates, rates are
higher in other brain structures.

To test our model, we have chosen synaptic time con-
stants of 45 and 34 ms for the response by excitatory
and inhibitory cells respectively. This number may seem
high when compared with the synaptic time constants
used by e.g. Liley et al. (3 and 15 s for excitatory and
inhibitory synapses, respectively). However, Liley et al.
filter the synaptic responses with an additional linear equa-
tion representing the membrane, for which they obtain
time constants of 90 and 65 ms to reproduce experi-
mental EEG’s. We have based our choice of the time
constants on these numbers to obtain similar synaptic inte-
gration times. Alternatively, we could have used a ball-
and-stick single neuron model rather than a point model.
In that case, a faster time constant could have been chosen
for the synaptic response, that is subsequently filtered with a
slower response of the dendrite. Similarly, a bi-exponential
function could be used with a faster time constant for the
rise time.

We have shown that our NMM still fairly accurately
reproduces the dynamics of the spiking network, even

when some of the assumptions made in deriving the model
are hardly valid. For example, the time constants of the
synapses do not need to be much longer than the inter-
spike intervals, and also with considerable shunting by the
inhibitory synaptic conductance the qualitative dynamics
are still reproduced. When using the NMM for analyzing
network activity in parameter ranges where the assumptions
may not be valid, we recommend to validate the dynamics
predicted by the model with a network of spiking neurons.

6.3 Modeling additional effects

The inhomogeneity of the single cell parameters was chosen
such that it could be described as an additional input current,
i.e. a shift in the F(I)-curve for each neuron. In the case of
heterogeneous properties of the neurons that do more than
shift the F(I)-curve, two curves can be determined from the
single cell description. The average F(I)-curve of the popu-
lation, as well as the σ 2

fp(I)-curve, the variance of the firing
rate over the population for the same I. This term can be
added to variance of the firing rate Equation (6).

We have assumed reliable synapses, that release a quan-
tum of neurotransmitter with every action potential. Actual
synapses are known to be quite unreliable, and typically fail
to activate > 50 % upon receiving an action potential (Allen
and Stevens 1994). We did not investigate unreliability, but
this can be included in the model as an additional term in
the variance.

Furthermore, we assumed that the inhibitory conductance
can effectively be subtracted from the excitatory conduc-
tance Equation (16). However, when the inhibitory synaptic
current is large compared to the net input current, we found
that it also shunts the gated currents, reducing the spike rate.
This notably affected the simulation with the type 2 cells,
that received a relatively large amount of inhibitory input.
Firing rates based on the net synaptic input were underesti-
mated by 10 − 20 %. To include the shunting effect of the
inhibitory input as well, equation 16 could be adapted with
an extra non-linear term.

Finally, we assumed the neurons in our population have a
simple F(I)-curve, and do not exhibit, for example, bistabil-
ity or bursting. Mathematical techniques are being investi-
gated to include bursting (Pa et al. 2008; Visser and Van Gils
2014) or bistability (Galtier and Touboul 2013) into neural
mass models. These techniques can be applied to our model
as well.

6.4 Phase synchronization

Because the output of a neuron consists of a train of action
potentials, the postsynaptic conductance it induces fluc-
tuates even when firing at a constant rate. In first order
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approximation, these fluctuations are sinusoidal oscilla-
tions. One of the assumptions in neural mass modeling is
that the spike timings of neurons within a population are
unsynchronized and therefore these oscillations are assumed
to cancel out when considering a large number of synapses.
When, contrary to this assumption, there is synchronization
of the spike timings, oscillations do appear in the total post-
synaptic synaptic currents in the frequency range around
the modal firing frequency of the presynaptic population.
These oscillations subsequently appear in the spectra of
macroscopic measurements such as the EEG. Therefore, we
discuss these oscillations observed in the network model
and how the dynamics of the neural mass model in this
frequency range deviate.

The first cause for these oscillations is no synchroniza-
tion, but rather a finite size effect. Randomly distributed
phases of a finite number of firing neurons do not com-
pletely cancel, which results in oscillations in the total
synaptic inputs of smaller networks. However, the relative
amplitude of these oscillations declines as 1/

√
N . This is

negligible for a large number of cells N in a population. This
effect is a limitation of the (small) network model used for
validation, rather than of the NMM.

Furthermore, two different mechanisms cause synchro-
nization. The first mechanism, exemplified in Fig. 9-c, is a
sudden increase in the input current of a population (Wil-
son and Cowan 1972). A population density approach using
the time-since-last-spike can accurately model this phe-
nomenon for current based models (Chizhov and Graham
2007). Furthermore, the output lags, for sudden changes in
input current. The approach of Ostojic and Brunel using a
frequency dependent lag (Ostojic and Brunel 2011), can be
used to investigate this. This lag and synchronization are
transient phenomena (Wilson and Cowan 1972), and there-
fore not of interest when predicting the frequency spectra of
ongoing neural activity.

The second mechanism is the tendency of neurons to
synchronize with modulations in their input. A popula-
tion’s firing rate hence amplifies modulations in the input
at frequencies similar to the modal firing rate. Shriki
et. al (Shriki et al. 2003) have shown this effect can
be modeled by filtering the input current with a (phe-
nomenological) second order resonance filter before cal-
culating the firing rate. This amplification is expected to
be larger for two coupled populations than for the single
population described by them. The tendency to synchro-
nize also occurs in our simulations of the network model.
We did not investigate how this synchronization scales with
Nsyn and var(Nsyn), because it was not possible in our
implementation to uncouple the relevant parameters for this
mechanism (number of cells and synaptic connections, fluc-
tuations in external input and width of synaptic current
distributions).

In summary, our neural mass model does per defini-
tion not show any effects of phase synchronization within a
population. These have been shown to occur, also in large
populations of neurons, and result in oscillations at frequen-
cies near the modal firing rates. This should be kept in
mind when interpreting the dynamics of any neural mass
model. In our simulations, synchronization did not affect
the dynamics at lower frequencies. When the frequency
bands around the modal firing rates are of interest, several
available techniques that can be used to investigate phase
synchronization were discussed.

6.5 Complementary work

When our NMM is operated in a regime where the F(I)-
curves are relatively straight, the variance of the synaptic
input has little influence on the average firing rate and our
model can be greatly simplified. In that case, the F(I)-curve
can directly be used as sigmoid, without keeping track of
the variances, reducing our approach to that of Shriki et
al. (Shriki et al. 2003) who consider only the average input
in their analysis of the network activity.

Hutt (Hutt 2012) derived a sigmoidal function in a simi-
lar manner as Wilson and Cowan (Wilson and Cowan 1972),
but included the firing rate curve, rather than assuming
all-or-none firing neurons. However, he considered the vari-
ances of the state of the neurons to be given, while we
derived these from the statistics of the recurrent synaptic
input.

Deco et al. (Deco et al. 2008) discuss a more profound
method for deriving a NMM, starting from ensemble den-
sity models. This method, however, assumes the population
dynamics can be described with a diffusion approxima-
tion. This is not the case in our networks, because the cells
receive heterogeneous input and hence the state of the ton-
ically firing cells is strongly correlated with their input. To
model low firing rates, we recommend to adapt such an
approach as described by Deco et al. by taking this hetero-
geneity into account. This allows modeling of pathological
populations with relatively low firing rates, for which the
NMM we presented is not valid.

The approach of Faugeras et al. (Faugeras et al. 2009)
describes the dynamics of a network of synaptically con-
nected neurons. They show existence and uniqueness of the
solution to a mean-field equation. It considers the same
system as we do, i.e. synaptically connected cells that fire
instantaneously depending on their input, but is not con-
cerned with the derivation of a specific sigmoid function.
Further work describes the effects of noise in such a sys-
tem (Touboul et al. 2012). Our derivation of the sigmoid
could be combined with their more elaborate approach to
the statistics of the network. This would allow for a rig-
orous investigation of the parameter regimes in which the
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dynamics of the network model converge to those of the
neural mass equations, i.e. where the mean and variance
alone provide an adequate description of the firing rate
dynamics. This is not always the case, for example in net-
works that exhibit avalanches or synchronized firing. Other
work from this group (Baladron et al. 2012) describes net-
works of Fitzhugh-Nagumo and Hodgkin-Huxley neurons.
The obtained (McKean-Vlasov-)Fokker-Planck equations
describing the state density of the populations are very accu-
rate, but unfortunately also very expensive computationally.
In very recent work, (Galtier and Touboul 2013) describe an
approach for modeling networks of spiking neuron models,
and also specifically address the HH neuron. Similar to us,
they use a hybrid approach, in which the response of the sin-
gle cell model is calculated numerically. Instead of action
potentials and firing rates, they consider the time-averaged
membrane potential of the cells, and assume synapses that
react linearly to this voltage. To obtain the sigmoid function
from a smoothed single cell response, we considered the
variance of (slowly varying) synaptic inputs over the pop-
ulation and neglected noise. In contrast, they reduced this
variance to zero, but considered the input to be stochastic
noise. As discussed in section 6.2, this noise drives sub-
sthreshold oscillations, resulting in non-zero firing rates at
subthreshold input. These need to be considered, in addi-
tion to the variance, when modeling low population firing
rates. However, it should be kept in mind that these input
fluctuations or noise are largely induced by synaptic activ-
ity (Manwani and Koch 1999), and suitable expressions for
the noise need to be obtained.

7 Conclusion

We have presented a new neural mass model that is fully
derived from physiological expressions. It was shown how
a sigmoidal function can be calculated from the F(I)-curves
of the single cells and the variances of the firing rates.
Additionally, we presented expressions for the dynamics
of the variances of the neuronal firing rates and synaptic
conductances.

We showed this model excellently reproduces the dynam-
ics observed in a network of heterogeneously coupled exci-
tatory and inhibitory HH-neurons. The time courses of the
means and standard deviations of both the firing rates and
the synaptic conductances are all described accurately. Fur-
thermore, it was discussed that the model is valid as long as
the synaptic conductances fluctuate on a time scale similar
to or slower than the neurons’ spike rates, and the modal fir-
ing rates are higher than the frequencies of the dynamics of
interest.

Besides yielding the variance of the firing rates and input
currents in the populations, our approach allows for inves-

tigating how alterations of the single cell dynamics affect
the macroscopic activity. The firing rate curve of the single
cell serves as link between the two. For pathologically and
pharmacologically induced changes this curve can be calcu-
lated directly with a biophysical single cell model, without
the need for analytically reducing the model to a simpler
form first. We demonstrated this for an increased extracellu-
lar potassium concentrations. A wide range of alterations of
the single cell dynamics, for example by channel blockers,
can be modeled in the same way.
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Appendix A: Distribution of the synaptic input
dynamics and distribution of the synaptic
input in a network of spiking cells

A network with excitatory and inhibitory neurons, con-
tains four sets of synaptic connections (e→e, e→i, i→e
and i→i). We describe the total synaptic conductance Gn

induced by one of these sets on a postsynaptic neuron n (see
Fig. 11). First, the distribution of G is derived from a synap-
tic connection matrix. We denote the number of cells in the
presynaptic population with M, and that in the postsynap-
tic one with N. This yields a maximum of N × M synapses
in the set. The presence and strength of the synaptic con-
nections is described with an N × M matrix W. Wn,m = 1
denotes a synaptic connection from cell m to n of average
weight, while 0 stands for no connection. This system is
equal to that analyzed by Faugeras et al. (Faugeras et al.
2009), however we do not constrain our analysis to a normal
distribution of Wn,m.

We assume the states of the synapses originating from
the same presynaptic cell m are all equal, except for their
weight. They are therefore described with the same variable
gm(t). The conductance of the synapse gm(t) is described
as the convolution of the impulse response H with the spike
rate fm(t) of cell m:

gm(t) = H ∗ fm(t) . (25)

The total synaptic conductance Gn of cell n induced by
one presynaptic population, is calculated as the linear sum
of all synapses, using the connection matrix:

Gn(t) =
∑

m
Wn,m gm(t). (26)
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Fig. 11 Sketch of the synaptic variables. One synaptic population is
shown, with presynaptic single cell firing rates fm, synaptic conduc-
tances gm and summed synaptic conductances Gn

Assuming the firing rates and synaptic strengths are uncor-
related, and defining the weighted number of connections
neuron n receives as

Nsyn,n :=
∑

m
Wn,m , (27)

the mean of the total synaptic conductance Ḡ is readily
calculated:

Ḡ(t) = N̄syn ḡ(t) = N̄syn H ∗ f̄ (t) , (28)

using bars to denote the mean values.
This derivation may seem an unnecessarily elaborate way

of obtaining the familiar Eq. (28), but it sets the stage for
deriving the variance of G.

To calculate the variance of Gn Eq. (26) over the N post-
synaptic cells , the terms Wn,m and gm are written as their
mean plus a deviation:

W̄n := 1
M

∑
mWn,m (29)

	Wn,m := Wn,m − W̄n (30)

and similar for g. With these expressions, the variance of Gn

Eq. (26) is calculated:

σ 2
G : = varn(Gn) = varn

(∑
mWn,m gm

)
(31)

= varn
(∑

m(W̄n + 	Wn,m)(ḡ + 	gm)
)

(32)

= varn
(
ḡ
∑

m	Wn,m + W̄
∑

m	gm +
+MW̄nḡ + ∑

m	Wn,m	gm

)
. (33)

The subscript n denotes the variance is calculated over n.
The first two terms are zero, since the sums over the deltas
are per definition zero. Hence,

σ 2
G = varn

(
MW̄nḡ + ∑

m	Wn,m	gm

)
(34)

Assuming the synaptic weights and synaptic activations are
uncorrelated and using the standard rules for the variance of
products and sums:

σ 2
G = var(MW̄n) ḡ2 + (

∑
mvarn(Wn,m) ) varm(gm), (35)

noting that MW̄ = Nsyn (equation 27), varm(gm) ≡ σ 2
g and

defining

N ′
syn :=

∑

m
varn(	Wn,m), (36)

this is results in:

σ 2
G = var(Nsyn) ḡ2 + N ′

syn σ 2
g . (37)

The first term is the variance due to differences in the
weighted number of synaptic connections Nsyn received by
the cells. The second term is the variance due to differ-
ent synaptic activations caused by differences in presynaptic
spike rates. N ′

syn can be interpreted as the average number
of connections a postsynaptic neuron does not share with
a random other cell of its population. For example, in the
case where all cells are connected with probability p it is
equal to Mp − Mp2, where Mp is equal to the average
number of connections per neuron, and Mp2 the average
number of connections shared with another neuron. Note
that these expressions do not require the number of synapses
to approach infinity.

Now the task to describe the mean and variance of g(t)

is left. To calculate σg over the individual synapses, we
need to make some assumptions on the distribution of the
spikes in the input. Amit and Brunel calculated this variance
in the steady state, assuming Poisson (shot noise) statistics
(Amit and Brunel 1997). We will show a similar approach
can be used for dynamic input and describe statistics for
periodically generated action potentials, i.e. with regular
intervals. These describe the firing rates observed in our
spiking network model better.

There is a fundamental difference between calculating
the distribution of the conductance induced by a Poisson
process or by a periodical process. The conductance of a
synapse receiving action potentials generated by a Poisson
process with a known rate, is a stochastic signal. In contrast,
the conductance of a synapse receiving action potentials
periodically at a known rate is deterministic (assuming the
synaptic integration smooths the input sufficiently, such that
the phase of the input is irrelevant). Therefore, the variance
of the synaptic conductances is induced by the variance of
the firing rates themselves, rather than by the realization of
the spike generation process. We calculate this variance now
for time dependent firing rates.
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The firing rates f (t) are considered to be distributed
over the presynaptic neurons, with mean f̄ (t) and stan-
dard deviation σf (t). We consider the inputs to be smooth
continuous functions (rates) rather than delta pulse trains,
as is common in neural mass modeling. The mean of the
synaptic activation is trivial to calculate from Equation (25):

ḡ ≡< g >=< H ∗ f >= H ∗ f̄ (38)

where the brackets denote the expectancy.
To calculate the variance of g, we use hats to denote the

deviation from the expectancy of f and g, i.e.

ĝ := g − ḡ, (39)

and explicitly write the convolutions as integrals:

σ 2
g ≡ < ĝ2 >=< (H ∗ f̂ (t))2 > (40)

= <

(∫ ∞

0
f̂ (t − u)H(u)du

)2

> (41)

=
∫ ∞

0

∫ ∞

0
< f̂ (t−u)f̂ (t−u′)>H(u)H(u′)dudu′ (42)

The expectancy is replaced by the (auto)correlation coef-
ficient Cac:

Cac(x1, x2) := <x1x2>
σx1σx2

(43)

σ 2
g = ∫ ∞

0

∫ ∞
0 Cac(f̂ (t − u), f̂ (t − u′)) ×

×σf (t − u)σf (t − u′)H(u)H(u′)dudu′ (44)

In our simulations of spiking networks it was observed
that f̂ is highly correlated with itself over periods much
longer than the duration of H, i.e. cells tend to fire faster
or slower than the population average over longer periods
of time. In that case Cac ≈ 1 and the right hand side of
Equation (44) is equal to the squared convolution with the
variance (c.f. Equations (40-42)),

σg(t) ≈ H ∗ σf (t), (45)

which is used for our simulations.
For cases where f̂ does fluctuate faster (typically when

var(Nsyn) is low), Equation (44) can be simplified in
another way. It is reasonable to assume the autocorre-
lation coefficient depends only on the time difference
u − u′, while furthermore σf fluctuates slowly compared
to the synaptic time constant. In that case, the auto-
correlation coefficient can be effectively replaced with a
correction constant C between 0 and 1. The expression
for σg becomes:

σg(t) = C H ∗ σf (t), (46)

where

C =
∫ ∞

0

∫ ∞
0 exp(Cac(u−u′))σf (t−u)σf (t−u′)H(u)H(u′)dudu′

(
∫ ∞

0 H(u)du)2 . (47)

However, deriving a closed expression for the autocorre-
lation coefficient Cac(u − u′) in a recurring network is
complicated and outside the scope of this work.

Fig. 12 Comparison of our new
NMM with a detailed network
model. The reaction to a double
step in input rate of the network
model (full lines and dots) is
compared to that of the NMM
(blue dashed lines). The mean
and standard deviation of three
synaptic currents are displayed,
as well as those of the firing
rates of the excitatory and
inhibitory populations
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Fig. 13 Simulations of a
network with strong feedback.
The reaction to a double step in
input rate of the new NMM
(blue dashed lines) is compared
to that of the network model
(full lines and dots). The mean
and standard deviation of three
synaptic currents are displayed,
as well as the firing rates of the
excitatory and inhibitory
populations. The standard
deviations of the firing rates of
the network model are not
shown since they are dominated
by artifacts
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Fig. 14 The dynamics of two
populations of type 2 spiking
neurons. The reaction to a
double step in input rate of the
NMM (blue dashed lines) is
compared to that of the network
model (full lines). The mean and
standard deviation of three
synaptic currents are displayed,
as well as those of the firing
rates of the excitatory and
inhibitory populations
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Appendix B: Approximating a synaptic conductance
with a constant current

We show how a synaptically induced (excitatory) current
can be approximated with a constant input. This approach
can be easily extended to include a second (inhibitory)
conductance as well. First, we write the dynamics of
a Hodgkin-Huxley (HH) model with the added synaptic
conductance as:

C
dV

dt
= IHH(t) + gsyn(Esyn − V (t)) (48)

= IHH(t) + gsyn(Esyn − V ∗)
︸ ︷︷ ︸

constant current

+ gsyn(V
∗ − V (t))

︸ ︷︷ ︸
shunt

(49)

≈ IHH(t) + gsyn(Esyn − V ∗) (50)

Here IHH is the sum of all gated and leak currents in the HH
model, gsyn is the synaptic conductance and Esyn the rever-
sal potential of the synapse. The synaptic current was split
in a constant current and a leak current or shunt. This dis-
tinction is artificial and therefore V ∗ is an arbitrary voltage,
which we are free to choose. Our aim is to choose it such,
that neglecting the shunting term changes the firing rate
minimally. For example, when the (type 1) HH neuron is
firing action potentials, the region around the threshold volt-
age Vth is traversed relatively slowly, due to the ghost of the
saddle-node bifurcation (Izhikevich 2007). The time taken
to traverse this region largely determines the firing rate.
Therefore, for continuously firing HH neurons, an accurate
approximation for the firing rate is obtained when V ∗ is set
to Vth, such that the shunting term is small in that region.

Choosing an optimal V ∗ minimizes the error in the
approximation, but does not guarantee that it is accurate.
In order for the approximation to be accurate, the synap-
tic conductance should be small compared to the total (leak
and gated) conductance. For our single cell models, the
approximation was empirically validated.

Note that the optimal value for V ∗ depends on the spe-
cific single cell model used. However, we found that also the
firing rate of our type 2 neuron was approximated reason-
ably when V ∗ was set to Vth, with an accuracy depending
on the relative magnitude of the inhibitory conductance.

Appendix C: Detailed results

We show the results of the simulated networks, as described
in the main body of the paper, in more detail. Results are
shown for networks of type 1 neurons with weak feedback
(Fig. 12), with strong feedback (Fig. 13) and type 2 neu-
rons (Fig. 14). The NMM model describes the dynamics of
the network of neurons very well, both for the synaptic con-
ductances (mean and variance) and the firing rates (mean

and variance). The fluctuations in the standard deviations
are caused by the small size of the modeled network. These
are stochastic in nature and hence are not reproduced by the
NMM.
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