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Abstract

Efficacy of deep brain stimulation (DBS) for motor signs of Parkinson’s disease (PD) depends in 

part on post-operative programming of stimulus parameters. There is a need for a systematic 

approach to tuning parameters based on patient physiology. We used a physiologically realistic 

computational model of the basal ganglia network to investigate the emergence of a 34 Hz 

oscillation in the PD state and its optimal suppression with DBS. Discrete time transfer functions 

were fit to post-stimulus time histograms (PSTHs) collected in open-loop, by simulating the 

pharmacological block of synaptic connections, to describe the behavior of the basal ganglia 

nuclei. These functions were then connected to create a mean-field model of the closed-loop 

system, which was analyzed to determine the origin of the emergent 34 Hz pathological 

oscillation. This analysis determined that the oscillation could emerge from the coupling between 

the globus pallidus external (GPe) and subthalamic nucleus (STN). When coupled, the two 

resonate with each other in the PD state but not in the healthy state. By characterizing how this 

oscillation is affected by subthreshold DBS pulses, we hypothesize that it is possible to predict 

stimulus frequencies capable of suppressing this oscillation. To characterize the response to the 

stimulus, we developed a new method for estimating phase response curves (PRCs) from 

population data. Using the population PRC we were able to predict frequencies that enhance and 

suppress the 34 Hz pathological oscillation. This provides a systematic approach to tuning DBS 

frequencies and could enable closed-loop tuning of stimulation parameters.
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1. Introduction

Deep brain stimulation (DBS) is used to treat motor signs of medication-refractory 

Parkinson’s disease (PD). Currently, stimulation parameters are tuned post-operatively by a 
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clinician using a trial-and-error process (Green and Aziz, 2014; Volkmann et al., 2002). 

There is a need for a systematic approach for tuning DBS parameters based on patient 

physiology. Depending on how pathological oscillations emerge, we hypothesize that it is 

possible to determine DBS parameters which are optimized for disrupting oscillations. In 

this paper we first study the origins of these oscillations using a simplified systems-level 

model of basal ganglia nuclei. Then, we present a systematic method for tuning DBS 

frequency and test it in a network model of PD. While these theories are tested in a 

computational model, the analysis can be applied to local field recordings measured in non-

human primates or humans.

In the first part of this paper the goal is to demonstrate how a systems-level mean field 

model of the basal ganglia can be used to determine how pathological oscillations emerge 

(Section 2). In the second part, we will measure PRCs from the population oscillation with 

the goal to predict subject-specific optimal stimulus frequencies to maximize suppression of 

the oscillation (Section 3). These methods will be tested using a physiologically realistic 

computational model of the basal ganglia network developed by Hahn and McIntyre (Hahn 

and McIntyre, 2010).

2. Origins of Pathological Oscillations

The basal ganglia network is responsible for preparing and initiating movement (Alexander 

et al., 1986; DeLong et al., 1992). In PD, this network is altered due to the loss of 

dopaminergic input from the substantia nigra (Bernheimer et al., 1973). This leads to 

changes in the firing rates and the emergence of increased oscillatory activity, particularly in 

the beta frequency range (13-35 Hz) (Brown, 2006; Hammond et al., 2007). Beta 

oscillations are seen in the three nuclei modeled in the Hahn and McIntyre model: the GPe, 

GPi, and STN (Brown, 2006). It is hypothesized that beta oscillations are responsible for 

anti-kinetic motor signs of PD (Bhidayasiri and Truong, 2008), and that DBS works by 

disrupting these oscillations (Bronte-Stewart et al., 2009; Kuhn et al., 2008; McConnell et 

al., 2012; Meissner et al., 2005).

Pathological oscillations seen in PD could arise in various ways: 1) as periodic drive from an 

external source, such as the cortex, which is patterned onto the basal ganglia network; 2) as 

a synchronous population of neurons in the basal ganglia firing periodically at the beta 

frequency; or 3) as an emergent property of the basal ganglia network. Recordings of 

neurons in STN, GPe, and GPi show bursting behavior in the beta frequency range under PD 

conditions, but the neurons do not show highly precise spike synchrony, suggesting that it is 

unlikely the oscillations are due to synchronous firing of a single population of neurons 

(Hashimoto et al., 2003; Mallet et al., 2008). There is evidence both supporting and refuting 

the hypotheses that the oscillation arises from the cortex or that the oscillation is generated 

within the basal ganglia (Bevan and Wilson, 1999; Brown and Williams, 2005; 

Courtemanche et al., 2003; Dejean et al., 2009; Goldberg et al., 2004; Gradinaru et al., 2009; 

Hammond et al., 2007; Holgado et al., 2010; Kuhn et al., 2005; McCarthy et al., 2011; 

Moran et al., 2011; Nevado-Holgado et al., 2014; Pasillas-Lépine, 2013; Plenz and Kital, 

1999; Sharott et al., 2005; Terman et al., 2002).
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In this paper, we will test the hypothesis that pathological oscillations in PD emerge in the 

GPe-STN feedback loop within the basal ganglia network. We will use a computational 

model to show how this loop can be the origin of this emergent pathological oscillation.

The GPe-STN loop is composed of excitatory glutamatergic projections from STN to GPe, 

and inhibitory GABAergic projections from GPe back onto STN (Albin et al., 1989). This 

loop makes the system conducive to generating oscillations (Bevan et al., 2002; Marreiros et 

al., 2012). Many physiologically realistic computational models of the basal ganglia exist to 

model parkinsonian oscillations (Gillies and Willshaw, 2007; Hahn and McIntyre, 2010; 

Leblois et al., 2006; Terman et al., 2002). However, even when these models can reproduce 

oscillations, the complexity of the models makes it difficult to understand how the 

oscillations emerge. In this paper we use a simplified mean-field model fit to the data from a 

complex network model to understand how changes caused by dopamine depletion result in 

the propensity of the network to oscillate.

2.1. Physiologically Realistic Computational Model of Basal Ganglia Oscillations: Hahn 
and McIntyre Model

In this work we used a physiologically realistic computational model of DBS to the 

subthalamic nucleus (STN) developed by Hahn and McIntyre (Hahn and McIntyre, 2010). 

The model simulates individual neurons within the basal ganglia and produces a set of spike 

times from these neurons. The model can be downloaded at http://senselab.med.yale.edu/

modeldb. The model contains 500 single-compartment conductance-based neurons: 100 

STN neurons, 100 globus pallidus internal (GPi), and 300 globus pallidus external (GPe) 

neurons. Input spike trains from the cortex and striatum are also included. The neurons are 

synaptically coupled in a physiologically realistic way, illustrated in Figure 1. Data from 

non-human primates given MPTP, a drug commonly used to induce parkinsonian symptoms 

in primates (Jenner, 2003, 2008; Langston et al., 1983), were used to fit the model. 

Parameters were changed until the output of each nucleus matched experimental data to 

simulate a healthy state. DBS was simulated by activating STN efferent paths as well as 

applying a direct subthreshold current to the soma of STN cells. All simulations were run 

using NEURON (Hines and Carnevale, 1997, 2001). While there are other network models 

of the basal ganglia and PD (Holgado et al., 2010; van Albada et al., 2009; van Albada and 

Robinson, 2009), we chose the Hahn and McIntyre model for the physiologically realistic 

modeling of the neurons and their connectivity. Furthermore, the model’s output can be 

directly compared to physiological recordings and thus can be used to design future non-

human primate experiments.

We made a few changes to the original model. In the Hahn and McIntyre model, the cortex 

provided a periodic drive at 16 Hz. However, this results in a very strong oscillation in the 

basal ganglia network that did not look physiological. We added a standard deviation of 5 

msec to the period of this input which widened the distribution of the cortical drive and 

significantly decreased the harmonics of the 16 Hz signal.

First, we must characterize the emergent pathological oscillation seen in the Hahn and 

McIntyre model. To do this, spectral analysis of the spike times of GPe neurons was used to 

compare the oscillation across healthy, PD, and DBS On conditions.
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2.1.1. Generating Power Spectra—To detect pathological oscillations from the spike 

times of the neurons in the basal ganglia network model we generated a power spectrum and 

looked for peaks in the spectrum. There are multiple ways to calculate the power spectrum 

from spike time data. One approach is to calculate the power spectrum by Fourier 

transforming the autocorrelation spike density. However, in this approach, the instantaneous 

phase of the oscillation at a particular time cannot be calculated. Another approach to 

estimate the power spectrum is to use a truncated point process Fourier transform of the 

spikes. The spike train can be represented as the sum of delta functions 

, where ki represents the time of the ith spike in the network. The 

Fourier transform of the spike train can be calculated as , where 

 and ω = 2πf and f is the frequency at which the spike train is Fourier transformed. 

However, because s(t) is zero, except at the spike times, this can also be calculated as 

. The truncated Fourier transform was calculated over a range of 0-100 

Hz. From the Fourier transform it is then possible to estimate the instantaneous phase and 

amplitude of the population oscillation at any given time from the spikes of the individual 

neurons, described below.

2.1.2. Pathological Beta Oscillations—Spectral analysis of the spike times of the GPe 

neurons revealed an emergent oscillation at 34 Hz in the Hahn and McIntyre model (Figure 

2). This 34 Hz oscillation is not seen in the healthy state and is reduced when 136 Hz DBS-

like stimulation is applied to the STN (Figure 2). Synaptic drive from the cortex was 

patterned onto the STN at 16Hz, raising the concern that the 34Hz oscillation was simply a 

harmonic. However, the 16 Hz stimulation remained consistent throughout all conditions, 

while the 34 Hz oscillation did not. Changing the frequency of the cortical input, for 

example from 16 Hz to 10 Hz, shifted the 16 Hz peak but did not shift the 34 Hz peak (data 

not shown). Completely removing the 16Hz drive caused 34 Hz oscillation to disappear, 

presumably because the excitability of the STN neurons decreased. This fits with the 

hypothesis that both internal and external drive is needed to generate the pathological state, 

and provides support for the hypothesis that oscillations are not seen in vitro due to a lack of 

cortical input (Bevan and Wilson, 1999). Also, increasing variability of the timing of the 

stimulus (stimulus interval of 62.5+/−5 msec) increased the signal-to-noise ratio of the 34 

Hz oscillation.

Neurons in the model have a bursting and non-bursting phase. We classified neurons as 

bursting if they had a firing rate above a selected threshold. To do this, we convolved the 

spike times with a Gaussian kernel 4 ms wide and all spikes above a threshold of 4 were 

classified as bursting. We observed a periodicity to the firing in the non-bursting phase in 

the rastergram (Figure 1B), which was not present in the bursting phase. The power 

spectrum was calculated using all spikes as well as using only non-bursting spikes. The 34 

Hz oscillation remained in the power spectrum of the non-bursting spikes (Figure 2), 

indicating that the oscillatory activity is generated by the neurons during the non-bursting 

phase.
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2.2. Mean-Field Models

In order to determine the origin of the pathological oscillation in the Hahn and McIntyre 

model, we fit a discrete time mean-field model to which models population activity. The 

model is fit to impulse responses measured in one area in response to stimulation of a 

presynaptic area. By analyzing this systems-level model we were able to determine which 

nuclei were necessary for the emergence of the pathological oscillation

Mean-field models were first adapted to describe the cortex by Wilson and Cowan (Wilson 

and Cowan, 1972). These models are conducive to mathematical analysis because they 

reduce the dimensionality of the problem. The systems level analysis of the equations can be 

used to determine the necessary conditions for the system to oscillate. In these models the 

average firing rate of a population, for example a population of neurons within a nucleus, is 

modeled as a set of differential equations. These equations determine the population firing 

rate given the history of the population’s firing rate and its synaptic input. These population 

models can then be connected with different time delays and strengths. The models can then 

be analyzed to determine how changes in parameters affect systems-level behaviors, such as 

the amplitude and frequency of oscillations.

Mean-field models have previously been used to understand the origins of oscillations 

within the basal ganglia network. However, in order to analyze previous models the time 

delays were assumed equal and the system had to be linearized around a specific point 

(Holgado et al., 2010; van Albada et al., 2009; van Albada and Robinson, 2009). Accurate 

delays are important in determining the behavior of a closed-loop system and the origin of 

oscillations. It is possible to calculate the stability of the system with delays (Pasillas-

Lépine, 2013). However, using a discrete model the analysis of the system can be done 

analytically and much more simply and allows for the visualization of all the poles. Here we 

use discrete time models with various time delays to understand their effects on the 

oscillatory behavior.

2.2.1. Mean-Field Modeling of the Hahn and McIntyre Model—We hypothesize 

that the 34 Hz pathological oscillation seen in the Hahn and McIntyre model emerges from 

an interaction between STN and GPe, a systems-level oscillation. A mean field model of 

STN and GPe was made by fitting a function to the spike timing of the neurons. Models of 

the different basal ganglia nuclei were generated by measuring the stimulus triggered 

histogram of the post synaptic population’s response to a stimulus applied to the pre-

synaptic population. This was done in open-loop, where all connections except the one 

connecting the pre-synaptic population to the post-synaptic populations were cut to avoid 

any interactions between the two populations or a separate population. This can easily be 

done in a computational model, but is difficult to do in humans or an animal model. The 

open-loop models for both nuclei are then combined to make a closed-loop systems-level 

model.

Origins of oscillations in closed-loop systems can be determined using the Laplace 

transform of the stimulus response models for each area. However, time delays between 

nuclei are an important aspect of the system and analysis of continuous systems with time 

delays is difficult; in contrast, analyzing discrete time systems with delays is relatively easy 
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(Oppenheim et al., 1996). Therefore, we fit discrete time models to spiking data from the 

Hahn and McIntyre model measured in open-loop. Then, we used a discrete version of the 

Laplace transform, the Z-transform, to make a model of the closed-loop system.

Discrete time models were fit to peristimulus time histograms, PSTH[n], measured for each 

basal ganglia nucleus in open-loop. Before fitting a function to the PSTH, it was normalized 

to describe the proportional change from the mean firing rate: 

. Each NPSTH was generated by averaging 120 stimulus 

pulses applied at 2 Hz. Transfer functions were fit to the NPSTHs to describe the time course 

of the response of the post-synaptic population to the stimulus applied to the presynaptic 

population, as well as the delays between the two populations. Combinations of damped sine 

and cosine waves were used for the fits:

or

Where ω is the frequency of the oscillation, γ is the dampening time constant, A is the 

amplitude of the response, and d is the delay between the stimulus and the response. A 

robust fit was used to fit the models to the data to minimize absolute values of the error over 

16 msec using Matlab’s (Natick, MA) fminsearch function. Models were fit to the GPe and 

STN individually, in open-loop.

The PSTH of the STN in response to stimulation of the GPe was made in open-loop by 

cutting all connections except GPe to STN. The same approach was used to generate a 

PSTH of the GPe response to the stimulation of the STN. Transfer function fits to the 

normalized PSTH in the healthy and PD state are plotted in Figure 3 and the coefficients for 

each model are provided in Table 1.

2.2.2. Analyzing the Mean Field Model to Determine the Origin of the 
Oscillation—In the basal ganglia network the STN and GPe constitute an excitatory-

inhibitory feedback loop (Albin et al., 1989). To test if the pathological oscillation emerges 

from this loop, we analyzed the systems-level mean-field model of basal ganglia nuclei to 

determine how it resonates under normal and pathological conditions.

To analyze the emergence of oscillations in the closed-loop GPe-STN system, the transfer 

functions of each individual nucleus collected in open-loop were coupled together to create a 

systems-level model, illustrated in Figure 4. The closed-loop model describes the basal 

ganglia output given cortical inputs. The GPe-STN loop, QGPe,STN, can be determined as 

follows:
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Where STN(z) is the transfer function describing the connection from STN to GPe, and 

GPe(z) is the transfer function describing the connection from GPe to STN. This model is 

easily extensible to incorporate more nuclei. Delays between the nuclei are incorporated.

QGPe,STN(z) can then be analyzed to determine the stability and characteristics of oscillatory 

activity. There are two complimentary ways to represent the behavior of the model. One is 

the pole-zero plot, and the other is the power spectrum. The roots of the denominator (the 

characteristic equation), 1 + GPe(z) × STN(z) = 0, describe the stability, dampening rate, and 

frequency of the oscillation emerging from the system. These roots can be plotted on a pole-

zero plot to graphically represent the behavior of the system. The Bode plots can be 

generated by solving QGPe,STN(z) at particular frequencies and plotting the amplitudes of the 

resulting complex numbers to estimate the power spectrum of the system.

The pole-zero plot of QGPe,STN(z) plots the roots of the numerator, called the zeroes of the 

system, and of the denominator, called the poles. The roots can be complex, and the 

existence of an imaginary component indicates an oscillation in the system. The poles and 

zeroes of the z-transform can be plotted in the complex plane to create a pole-zero plot 

(Figure 5A). The poles of the PD state (green), , and healthy state (black), 

, are both plotted on the same graph for comparison. The two systems both 

contain complex poles, indicating that they oscillate. Both closed-loop systems are stable 

because all poles are within the unit circle, indicating that the system’s response to a 

bounded input decays with time. The poles closest to the edge of the unit circle have slower 

decays and therefore oscillate longer and dominate the behavior of the system. 

has poles closer to the edge of the circle than , therefore the model of the PD 

state has a stronger oscillation than that of the healthy state (Figure 5A inset). As poles move 

around the circle, away from the real axis, the frequencies of the oscillations increase. Poles 

of  are further from the real axis than , indicating that the PD 

model will oscillate with a higher frequency.

The power spectrum of QGPe,STN(z) is used to visualize how the system will amplify or 

dampen inputs (Figure 5B). The healthy system resonates at 30 Hz, while the parkinsonian 

system resonates at 34 Hz with a much higher magnitude. This oscillation frequency 

matches what we see in the Hahn and McIntyre model. Both the STN and GPe have some 

resonant properties in the healthy state and PD state, which can be seen in the impulse 

response curve in Figure 3 as well as the bode plot in Figure 5. However, the two nuclei 

resonate better with each other in the PD state than in the healthy state (Figure 5B), resulting 

in an oscillation of much higher magnitude in the closed-loop system.
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2.3. Comparing Outputs from the Mean-Field Model and Hahn and McIntyre Model

In order to validate our simplified mean-field model, we compared the outputs to that of the 

full network Hahn and McIntyre model. The simplified model should produce outputs 

similar to the Hahn and McIntyre model as well as make predictions about how the full 

network model will behave under altered conditions.

2.3.1. Comparing Power Spectral Features—To model the actual time response of 

the GPe-STN loop, we ran simulations looking at the output of  and 

 in response to simulated cortical input. Cortical input was simulated using a 

pulse train generated by a double stochastic process, where the firing rate is modulated by an 

oscillation with a mean of 16 Hz, the mean frequency was varied using an Ornstein-

Uhlenbeck process with a standard deviation of 1Hz (Figure 6 top). This cortical input was 

applied to the mean-field models and was similar to the cortical input used in the Hahn and 

McIntyre model. The time series of the output of the STN shows a peak at 34 Hz in the PD 

state, which is not present in the healthy state (Figure 6 bottom). The power spectrum from 

our simple closed-loop transfer function of the GPe-STN system was able to reproduce all 

the important spectral features of the full Hahn and McIntyre model (compare Figure 2 to 

Figure 6).

2.3.2. Making Predictions Using the Mean-Field Model—Next, we tested if our 

simplified model could predict changes in the behavior of the full Hahn and McIntyre model 

given a change in parameters. We first predicted how increasing the delay between GPe and 

STN from 4 to 7 msec would affect the amplitude and frequency of the oscillations. The 

simplified mean-field model of the GPe-STN loop,  predicted a decrease in the 

resonant frequency from 34 Hz to 30 Hz with little effect on the magnitude. The same shift 

was seen in the Hahn and McIntyre model when the synaptic delay was increased 

proportionally (Figure 7, left column). Then, we predicted how changing the coupling 

strength between GPe and STN affected the behavior. In the mean-field model, 

, the gain of GPe was increased; this resulted in an increase in the magnitude of 

the resonant frequency, but had little effect on frequency. The same result was seen in the 

Hahn and McIntyre model when synaptic strength STN onto GPe was increased (Figure 7, 

right column).

2.4. Discussion

The systems-level mean-field model of the GPe-STN loop developed here differs from 

previously developed simplified models in that it incorporates various time delays between 

nuclei. Previous mean-field models of the basal ganglia have been used to determine 

conditions under which pathological beta oscillations emerge (Holgado et al., 2010; Pasillas-

Lépine, 2013; van Albada et al., 2009; van Albada and Robinson, 2009). However, in order 

to determine how oscillations are generated in many of these models, delays between the 

nuclei are constrained to be equal. Changes in delays can affect the emergence of 

oscillations, making them an important aspect of the system. Delays have been incorporated 

into a mean-field model in the past to understand the effects various delays have on the 
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stability of the system (Pasillas-Lépine, 2013). The discrete time mean-field model proposed 

here allows for an analytical and simpler analysis of the closed-loop behavior with various 

time delays between the nuclei. The power spectrum from our simple closed-loop mean-

field model of the GPe-STN system displayed all important spectral features of the full 

Hahn and McIntyre model. Additionally, a discrete time approach enables us to predict the 

effects that changes in internuclear delays have on frequencies and amplitudes of the 

oscillation.

To verify that the simplified mean-field model accurately represented the full Hahn and 

McIntyre model, we tested whether changes to the mean-field model could predict outcomes 

from corresponding changes made in the Hahn and McIntyre model. To do this, changes in 

delays and gains were made to each model and the power spectra were compared. The 

mean-field model could accurately predict how changes in excitability and time delays 

altered the frequency and amplitude of the oscillations in the Hahn and McIntyre model. 

This indicates that simplified mean-field models may be an accurate representation of the 

realistic basal ganglia network and can be used to design optimal closed-loop therapies for 

suppressing oscillations.

In this paper, predictions of effective DBS frequencies were made using a single peak beta 

frequency. In patients, the peak beta frequency can be variable, which may impact the 

optimal frequency for disruption (Tsang et al., 2012). It should be tested if optimal DBS 

frequencies can be predicted across various peak beta frequencies. However, it is not clear if 

the Hahn and McIntyre model is an accurate model for parameters beyond which it was fit 

to the physiological data.

3. Stimulus Optimization

DBS efficacy depends on many factors including electrode placement (McClelland et al., 

2005), patient physiology (Liang et al., 2006), electrode design (Butson and McIntyre, 

2006), and post-operative parameter settings (Volkmann et al., 2002). High frequency DBS 

(>100 Hz) has been found to produce therapeutic benefit for motor signs of PD, while there 

is little efficacy at low frequencies (Alberts et al., 1969), highlighting the importance of 

frequency settings. The temporal pattern of stimulation also affects efficacy of DBS, with a 

periodic pattern being the most effective (Dorval et al., 2010; Dorval et al., 2008).

Currently, post-operative tuning of parameters depends on a clinician’s past experience 

along with trial-and-error (Volkmann et al., 2002). Patients can spend 18-41 hours in the 

clinic within the first year optimizing parameter settings (Hunka et al., 2005). There is a 

need for improved methods for determining optimal parameter settings. New DBS hardware 

has been developed that can simultaneously record and stimulate (Ryapolova-Webb et al., 

2014), enabling new stimulus optimization approaches. The therapeutic benefit of a 

stimulation frequency for DBS may depend on the peak beta frequency of each individual 

patient, for example certain patients show a reduction in motor signs with 50 Hz stimulation, 

while others do not (Chen et al., 2007; Limousin et al., 1995; Moro et al., 2002; Rizzone et 

al., 2001; Timmermann et al., 2004; Tsang et al., 2012). This highlights the need for the 
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tuning of DBS frequencies using patient-specific physiology. Our goal is to develop a 

method to optimize stimulus frequency parameters based on the patient’s physiology.

There are many hypotheses for how DBS works in PD: high frequency stimulation may alter 

the firing rates of neurons in target nuclei, leading to a decrease in the firing rate of pallidal 

neurons (McIntyre et al., 2004); or stimulation at a high enough rate may entrain pallidal 

neurons, disrupting information out of the network (Rubin and Terman, 2004). However, 

these hypotheses do not account for the fact that the pattern of stimulation, not just the rate, 

is important for effective treatment.

We have previously presented a hypothesis that DBS may work by chaotic 

desynchronization of a population oscillation (Wilson et al., 2011). It is well known in the 

physics literature that periodic forcing of an oscillating system can induce chaos (Glass and 

Mackey, 1988). The advantage of inducing a chaotic response in the basal ganglia is that 

neurons respond differently to the stimulus and these differences grow exponentially over 

time with stimulation until the system is no longer synchronized.

If DBS does suppress oscillations through chaotic desynchronization, then it may be 

possible to predict optimal stimulus frequencies to induce chaotic activity based on neuronal 

responses to stimulation. By measuring how a subthreshold stimulus changes the period of 

the population oscillation, represented by a phase response curve (PRC), stimulus 

frequencies that induce chaotic desynchronization can be predicted. PRCs have been used to 

characterize the response of the interspike interval of periodically firing single cells to 

stimulation (Lengyel et al., 2005; Netoff et al., 2005; Ota et al., 2009; Schultheiss et al., 

2010; Stiefel et al., 2008; Torben-Nielsen et al., 2010). Here we develop a method for 

estimating PRCs from population activity, which is necessary for characterizing how a 

network oscillation responds to a stimulus pulse. From the measured PRC we predict which 

DBS frequencies are capable of suppressing an emergent pathological oscillation in the 

Hahn and McIntyre model.

3.1. Predicting Optimal Stimulus Frequencies from the PRC

In order to predict DBS frequencies capable of disrupting the beta oscillation seen in the 

Hahn and McIntyre model, we used DBS-like stimuli applied to the STN and measured the 

phase response curve of these oscillations. From the PRC, we predicted stimulus frequencies 

that will enhance and disrupt beta oscillations. Predictions were compared results from full 

simulations where we measured the effect of DBS frequency on the power of the 

pathological oscillation in the Hahn and McIntyre model.

The feedback loop from GPe-STN, found to be the origin of the pathological oscillation, can 

be thought of as a periodic oscillator. Specific frequencies of stimulation can entrain or 

desynchronize an oscillator (Glass and Mackey, 1988). These frequencies can be predicted 

using a phase response curve (PRC) of the oscillation to the stimulus. Previously, we have 

used PRCs to predict a single neuron’s response to periodic stimulation; however the 

oscillation in the Hahn and McIntyre model emerges from populations of neurons in 

different nuclei. Here we develop a method to estimate PRCs from population data.
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To estimate PRCs from the GPe population in the Hahn and McIntyre model a stimulus was 

applied to the STN at a low frequency so the system could recover before the application of 

the next stimulus. Spike times in a window before and after stimulation were Fourier 

transformed at 34 Hz, the frequency of the pathological oscillation. The Fourier coefficients 

were then used to estimate the instantaneous amplitude and phase of the population activity 

at the time of the stimulus. The change in phase caused by the stimulus was estimated as the 

difference between the phase prior to and after the stimulus. To estimate the PRC, a curve 

was fit to the phase change as a function of the stimulus phase. Each point was weighted by 

the amplitude of the oscillation prior to the stimulus in making the fit (Figure 8). Standard 

deviations of the phase advance were also estimated

3.1.1. Fourier Fit of Population PRC—A phase response curve (PRC) describes how 

the phase of an oscillator is changed as a result of a stimulus applied. Here we will describe 

how the phase, oscillation amplitude, and phase change are estimated from the neuronal 

spike times (considered a point process), and how a PRC is fit to the resulting data.

3.1.2. Estimating the Phase and Phase Change from Spike Time Data—There 

are many approaches that can be taken to estimate instantaneous amplitude and phase of the 

population oscillation at the time of stimulation from spike time data. One is to generate a 

PSTH of the spikes across the population and calculate the Fourier coefficient at the 

oscillation frequency, illustrated at the top of Figure 8. The Fourier coefficient, the Fourier 

transform at a selected frequency, ω = β, can be calculated from the spike density histogram 

as follows: . The Fourier coefficient Cβ is a complex number which can be 

represented as Cβ = Ae−jφ, where  is the amplitude of the oscillation 

and  is the phase. However, the Fourier coefficient can be calculated 

directly from the spike times without time binning, providing a more accurate estimation of 

the phase and amplitude.

A Fourier coefficient is fit to a window immediately prior to the stimulus i,  and a 

window immediately after the stimulus , excluding any time containing stimulus 

artifacts. The amplitude and phase of the coefficients represent the amplitude and phase of 

the oscillation at the time of the stimulus.

3.1.3. Estimating the PRC from Population Activity—Given the phase of the 

oscillation estimated from the data preceding and following the stimulus, we can estimate 

the phase change .

The next step is to fit a function to the mean and standard deviation of the phase advance. 

This done by dividing the stimuli into phase bins and fitting a wrapped normal distribution 

to estimate the mean, μk, and standard deviation, σk, of the phase advance for each bin. The 

wrapped Gaussian is written as . To estimate the mean phase 
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difference, we made a weighted average of the phases, weighting the changes proportionally 

to the amplitude of the oscillation at the time of the stimulus 

. The mean phase is the angle of the averaged vector 

. The standard deviation of the distribution of phase changes is inversely 

proportional to the length of the average phase change vector,  where the * 

indicates the complex conjugate of . The variance of the distribution, corrected given 

the number of spikes seen at a particular phase bin Nbin can be calculated, 

. The estimated PRC is simply the mean phase, μk, change in 

phase bin k given the stimulation phase, PRC(φk) = μk.

To estimate the PRCs from the spike times from the Hahn and McIntyre model, all spikes in 

a window 94 msec (approximately three beta oscillations) before and after the stimulus were 

Fourier transformed at the oscillation frequency (34 Hz).

3.1.4. Transition Matrix and LE Calculation—From the PRC, we are able to 

determine whether the neuron will phase lock to a periodic stimulus by calculating the 

Lyapunov Exponent (LE). The LE of the system can be calculated given the PRC and the 

steady state distribution of phases given the stimulus frequency. If the LE is negative the 

oscillation will phase lock to the stimulation; if it is positive the stimulus will desynchronize 

the oscillation. To calculate the LE we need a transition matrix, which determines the 

expected distribution of spike times after a stimulus from the distribution at the time of the 

stimulus. From the transition matrix we can estimate the steady state distribution of neuronal 

phases at the time of stimuli.

A transition matrix can be generated to predict distribution of neuronal phases at the (ith+1) 

stimulus given the wrapped Gaussian distribution of phases at the ith stimulus.

Where  is the probability distribution of the phases given a mean phase φμ and 

variance  of the Gaussian distribution.

In order to fit the phase response curve to the distribution of phases, we use the mean of the 

phase advances, and are calculated as follows.

This curve fit to the mean representing the PRC is a simplification that ignores variability in 

the cell’s ISI (Wilson et al., 2011). In order to account for this, the variance must be 
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calculated. The mean and variance of the phase after stimulation can be calculated from the 

phase response curve immediately before the stimulation. In Figure 8, the mean of the phase 

advances is the blue line, and the standard deviation is shown using error bars.

Where μpost represents the mean phase after stimulation and μpre, the mean phase before 

stimulation. The variance added at each stimulus is scaled by the average expected number 

of stimuli per cycle, ISI/StimISI, where ISI is the interspike-interval of the spike times, and 

StimISI is the interval between stimuli. Over many stimuli, the distributions will converge to 

a steady-state probability distribution independent of the starting distribution. The steady-

state distribution is the eigenvector, λ(φ), corresponding to the largest eigenvalue of the 

transition matrix,  (Ermentrout et al., 2011).

The Lyapunov exponent (LE) is a measure of the rate of divergence between two neurons 

firing at almost the same time in response to the stimulus. It is calculated as the average 

slope of the PRC, weighting each phase by the probability of neurons firing at that phase 

(Wilson et al., 2011). The LE can be calculated as:

Where PRC’(Φ) is the slope of the PRC. The PRC used in estimating the LE was measured 

by stimulating the STN at a frequency of 2 Hz to limit interactions between stimulus pulses.

3.1.5. Predictions—Using the PRC estimated from the population, we predicted 

stimulation frequencies that would entrain the population oscillation seen in the Hahn and 

McIntyre model and those that would suppress it. This was done by calculating the 

Lyapunov Exponent (LE) of the oscillation response to the periodic stimulation. The LE was 

calculated for a range of stimulus frequencies (Figure 9 top). When the LE is above zero, we 

predict that the population oscillation will be disrupted. The most positive LE was estimated 

to be around 85 Hz. We also predict that stimulation at frequencies close to the natural 

frequency of the oscillation will entrain and enhance the oscillation.

Simulations were then run in the Hahn and McIntyre model applying DBS at various 

frequencies. At each frequency the power of the beta oscillation (32-38 Hz) was estimated as 

a ratio to the power in the alpha (12-16 Hz) frequency band. Because beta oscillations were 

strongest in the non-bursting phase of the spiking, the spikes from the bursting phase of 

neurons were removed for this analysis. Stimulation suppressed the beta oscillation when the 

ratio of beta/alpha power fell below that seen in the DBS off state. While 136 Hz stimulation 

suppressed the beta oscillation, the maximum suppression occurred at 75 Hz. The most 

effective stimulation frequency was close to that predicted using the LE measured from the 

PRC (85 Hz).
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3.2. Discussion: Suppression of Pathological Oscillations

The pathological oscillation seen in the Hahn and McIntyre model emerged in the non-

bursting firing and was suppressed using 136 Hz stimulation to the STN. We propose that 

the phase response curve (PRC) of the beta oscillation’s response to subthreshold DBS-like 

pulses is a physiological measure that can be used to predict optimal stimulus frequencies.

In this paper, we developed a novel method for determining the phase response curve from 

population data. Previously, PRCs have been applied to the spike timing of individual 

neurons (Lengyel et al., 2005; Netoff et al., 2005; Ota et al., 2009; Schultheiss et al., 2010; 

Stiefel et al., 2008; Torben-Nielsen et al., 2010). Here we developed methods for the 

estimation of PRCs from local field potentials, enabling the application to human data. To 

our knowledge, this is the first PRC method developed for application to neuronal 

populations.

Using the population PRC, we were able to predict DBS frequencies capable of suppressing 

the pathological beta oscillation seen in the Hahn and McIntyre model. Predictions of 

frequencies capable of suppressing the beta oscillation were compared to reductions in beta 

power measured in the Hahn and McIntyre model during DBS over a range of frequencies. 

We found that while 136 Hz DBS, the value used in the original paper and clinically, 

suppressed the beta oscillation, it was not the optimal frequency. The optimal stimulus 

frequency predicted by the PRC was close to that which maximally suppressed the beta 

oscillation in the model.

Predictions made using the PRC were close to, but not exactly, commensurate with the 

findings in the full Hahn and McIntyre model. This may be because our PRC did not 

account for interactions between stimulus pulses, and is therefore a first approximation. 

There are ways to improve predictions by accounting for these higher order effects in the 

measurement of the PRC (Cui et al., 2009). However, we have yet to incorporate them into 

the estimate of the Lyapunov exponent.

4. Discussion

In this paper we were able to determine where and why a pathological oscillation emerged in 

a computational model of the basal ganglia as well as accurately predict stimulation 

frequencies to suppress this oscillation with DBS. The discrete-time mean-field models may 

be fit using LFP data collected from non-human primates to describe the origins of 

pathological beta oscillations, which remain controversial. Understanding how these 

pathological oscillations are generated may help in the design of future therapies and 

provide insight into why strong beta oscillations are seen in some subjects but not others 

with the same pathology. The PRC-based parameter optimization may be used to reduce 

time and resources spent in the clinic as well as improve efficacy of the therapy.

4.1. Emergence of Pathological Oscillation

In this paper a mean-field model, consisting of discrete time models and their Z-transforms, 

was used to explain the emergence of a pathological oscillation in the Hahn and McIntyre 

model. Our approach involves fitting transfer functions to impulse responses in the STN and 
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GPe in open-loop, and connecting them with delays to understand the closed-loop GPe-STN 

system. The analysis of the closed-loop system indicated that the resonant frequencies of 

GPe and STN were better matched in the PD condition, enabling the population to oscillate 

stronger than in the healthy condition. Cortical drive was still needed for the emergence of 

the oscillation in the full Hahn and McIntyre model, however did not need to be oscillatory. 

Simplified mean-field models fit to experimental LFP recordings in response to stimulation, 

represented by the output of the Hahn and McIntyre model in this paper, could be used to 

help answer the debate about how pathological oscillations emerge in PD. The models can 

disambiguate between oscillations that emerge from the cortex and are patterned onto the 

basal ganglia nuclei from oscillations that arise within the basal ganglia network. The mean-

field model presented here only accounted for the GPe-STN loop; however, other nuclei can 

be added to make a more complete model if necessary. By fitting models to patient data, 

they may help explain differences seen across patients, such as why some patients have 

strong beta oscillations and others do not.

Beta oscillations are variable across patients. The method developed in this paper could help 

determine why some patients exhibit beta oscillations and others do not, or why the peak 

beta frequency is different across patients (Kühn et al., 2009; Tsang et al., 2012). It has been 

found that individual peak beta power frequency matters when determining optimal DBS 

frequencies to suppress motor signs (Tsang et al., 2012).

4.2. Suppression of Pathological Oscillation

The use of the PRC has the potential to aid clinicians in finding an optimal stimulus 

frequency and amplitude setting for each particular patient. PRC-based parameter 

optimization could help identify stimulus parameters outside of the standard parameter 

regime that may be more effective and/or robust. With the development of DBS devices 

which can simultaneously record and stimulate, the method could be used to optimize DBS 

frequencies for each individual patient based on his or her measured PRC. PRCs could be 

measured by applying a subthreshold stimulus pulse at 2 Hz for a couple minutes and then 

fitting a function to the resulting data. The fit PRC would then be used to select a DBS 

frequency in the neighborhood of the optimal solution. This stimulus frequency could then 

be applied and the PRC reassessed. By iteratively predicting and testing new stimulus 

frequencies, an optimal stimulus may be designed within a few minutes. This systematic 

approach could replace the current trial-and-error tuning process and aid clinicians in 

finding successful parameter windows. Automating the tuning process could reduce the time 

patients spend in the clinic and potentially improve the efficacy and robustness of the 

treatment.

Previous optimization methods have been proposed to improve post-operative programming 

of DBS parameters. Some involved using kinematic data collected from wearable sensing 

devices (Mera et al., 2011), optimizing stimulus waveforms using genetic algorithms in 

computational models (Feng et al., 2007), and using a model reference control to restore the 

power spectrum of the pathological condition to that measured in the healthy condition 

through DBS (Santaniello et al., 2011). Our work differs from these efforts in that it uses 

responses to subthreshold stimulation to provide an initial prediction about frequency 
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settings. Underlying this method is the explicit assumption that DBS works by inducing 

chaos in the basal ganglia network, thereby disrupting a pathological oscillation. If this 

approach is successful in optimizing DBS therapy, it will provide insight into the 

mechanisms of the origins of the oscillations and the effects of DBS.

The approach presented in this paper has several advantages over current methods for 

estimating optimal stimulus frequencies, even as a first approximation. The first is that it 

provides a formal process for estimating optimal parameter settings, which may help 

standardize therapies and reduce tuning time. The method could also be automated and used 

to update the patient’s stimulation parameters over time, if the patient’s response to the 

stimulus changes. Second, a clinician generally changes parameters and monitors a 

behavioral output, such as tremor. When the tremor disappears, the tuning process stops. 

However, the final settings may only be at the edge of a window of effective parameters. 

After the behavioral biomarker is suppressed, it is difficult to further improve the therapy. 

Our PRC-based parameter optimization approach may find parameters closer to the center of 

this effective window, and therefore may produce more reliable and robust patient 

outcomes.

Whether the suppression of pathological beta oscillations produces the desired reduction in 

motor signs of PD remains to be determined. The correlation between beta oscillations and 

motor signs of PD is controversial (Brown, 2006; Dorval and Grill, 2014; Eusebio and 

Brown, 2007; Hammond et al., 2007; Kuhn et al., 2006), particularly in the non-human 

primate model (Devergnas et al., 2014). In order to predict therapeutic DBS frequencies, the 

correct biomarker must be used. If beta oscillations are determined to be a poor biomarker of 

disease pathology, the PRC-based parameter optimization method can be applied to other 

pathological oscillatory activity in PD. Additionally, this method can be used to identify 

stimulus parameters for a number of other diseases such as epilepsy, schizophrenia, or sleep 

disorders that involve pathological oscillations and are being considered for DBS therapy.

This work provides a method for understanding the emergence of beta oscillations in 

parkinsonian patients, which may help explain variance seen among patients, as well as for 

developing a closed-loop approach to tuning DBS frequency. A closed-loop approach to 

parameter tuning may help conserve energy, account for changes in motor sign severity, and 

improve therapeutic outcome. With the development of electrodes that can simultaneously 

stimulate and record (Ryapolova-Webb et al., 2014), it may be possible to monitor the 

power beta frequency power and determine the optimal stimulus frequency based on PRCs.

4.3. Future Directions

To understand where pathological oscillations are coming from in vivo, simplified discrete 

time mean-field models could be fit directly to electrophysiology data acquired from 

humans or non-human primates. Open-loop experiments that would be necessary to replicate 

the open-loop paradigm used in this paper have been done with pharmacological block in 

non-human primates (Tachibana et al., 2008). However, open-loop measurements cannot at 

present be done ethically in humans. Potentially, multi-site stimulation and recordings may 

enable us to develop accurate models under closed-loop conditions in humans. Chronic LFP 
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recordings from the basal ganglia of PD patients should soon be available from studies using 

the Activa PC+S DBS neurostimulators (Ryapolova-Webb et al., 2014).

In this paper, we attempted to optimize temporally regular stimuli. However, various other 

stimulus paradigms have been proposed (Adamchic et al., 2014; Birdno et al., 2008; 

McConnell et al., 2012; Tass, 2003). In the future, we will test temporally irregular stimulus 

trains and closed-loop stimulation algorithms to stimulate at particular phases of the beta 

oscillation to determine their efficacy over fixed interval periodic stimulation currently used 

in therapy.

4.4. Conclusion

This work provides a method for understanding the emergence of beta oscillations in 

parkinsonian patients, which may help explain variance seen among patients, as well as for 

developing a closed-loop approach to tuning DBS frequency. With the development of 

electrodes that can simultaneously stimulate and record (Ryapolova-Webb et al., 2014), it 

may be possible to monitor the power beta frequency power and determine the optimal 

stimulus frequency based on PRCs.
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Figure 1. 
Computational model of the basal ganglia fit to non-human primate data developed by Hahn 

and McIntyre. A: Connectivity diagram of the Hodgkin-Huxley neurons making up the 

network. B: The output of the computational model is spike times. A rastergram of Globus 

Pallidus external neurons over a small window of time are shown here where the y-axis is 

neuron number, and the x-axis is time (seconds). Neurons exhibit a bursting (blue) and non-

bursting (red) phase classified by the spiking rate.
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Figure 2. 
An oscillation at 34 Hz arises in the Parkinsonian (PD) state in the non-bursting phase of 

spiking that is suppressed with DBS. Top: Power spectrum showing the emergence of a 34 

Hz oscillation. X-axis is frequency (Hz) and y-axis is power. The peak at 16 Hz is from the 

cortical input at that frequency. All characteristics are preserved when spikes in the bursting 

phase are removed (dashed line). Bottom: A 34 Hz oscillation is seen in the power spectrum 

of the PD state (green) that is not present in that of the healthy state (dashed). Application of 

136 Hz DBS (black) suppresses the 34 Hz oscillation. The 16 Hz peak due to the cortical 

input is not affected across conditions.
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Figure 3. 
Impulse response fits to stimulus triggered histograms accurately reproduce oscillations. 

Black: Stimulus triggered histograms. Dashed: Impulse response fits. Top: STN response to 

a stimulus pulse to GPe in open loop in the healthy (left) and PD (right) state. Bottom: GPe 

response to a stimulus pulse in STN in the healthy (left) and PD (right) state.
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Figure 4. 
Box diagram of the closed-loop systems-level model. The Subthalamic nucleus (STN) 

receives input from the cortex and sends excitatory projections to the Globus Pallidus 

External (GPe). The GPe sends inhibitory projections back to STN. The transfer function of 

the closed-loop system describes the output of the system given the input.
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Figure 5. 
A) The PZ plot shows the poles and zeroes of the transfer function of a dynamical system. 

Poles are represented with X’s and zeroes are represented with O’s. The closed system in the 

PD state oscillates at a slightly shifted frequency and is less damped than the healthy state 

system. A pole-zero map showing the poles and zeros of the closed-loop GPe-STN system 

in the healthy (black) and PD (green) state. The x-axis is the real axis and the y-axis is the 

imaginary axis. All poles are within the unit circle, indicating they are stable. The poles 

closest to the edge of the unit circle characterize the oscillation seen in each state. The PD 
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state will exhibit a less dampened oscillation, indicated by the pole being closer to the edge, 

at a slightly shifted frequency, indicated by the shift along the curved isodampening lines. 

B) The Parkinsonian closed loop STN-GPe system resonates better than the healthy system 

due STN and GPe resonating better with each other. Top: The PD system (green) resonates 

at 33 Hz while the healthy system resonates around 28 Hz at about half the magnitude. 

Bottom left: In the healthy state, STN (dotted purple) and GPe (dashed red) do not resonate 

as well with each other. Bottom right: STN (dotted purple) and GPe (dashed red) resonate 

better with each other in the PD state, resulting in better resonance in the closed system.
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Figure 6. 
Simulated cortical input used to drive the systems-level GPe-STN mean-field model 

produces spectral features similar to that seen in the Hahn and McIntyre model. Top: Input 

to the GPe-STN closed-loop transfer function. An Ornstein-Uhlenbeck process with a mean 

of 16 Hz was used to simulate cortical input applied in the Hahn and McIntyre model. 

Bottom: Power spectrum of the healthy GPe-STN system (black) and PD closed-loop GPe-

STN system (green).
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Figure 7. 
Changes in the closed-loop STN-GPe transfer function model predict changes seen in the 

Hahn & McIntyre model. Top left: By increasing the delay between GPe and STN from 4 

ms to 6 ms, the peak oscillation shifts from 34 Hz to 30 Hz. Bottom left: By similarly 

changing the delays in the transfer function systems-level model, the resonance shifts in a 

similar way. Top right: Changing the connection strength between GPe and STN by 

increasing the maximum conductance increases the power in the oscillation. Bottom right: 

By increasing the connection strength in the transfer function model, the resonance has a 

higher magnitude.
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Figure 8. 
A phase response curve can be estimated from population local-field potential data. Top: 

Spike density preceding (solid blue) and following (green) a single stimulus, fit separately 

with a 34 Hz sine wave (dashed lines). Spikes evoked by the stimulus in a narrow window 

of time (between vertical dotted lines) are removed from analysis. Bottom: Phase change 

plotted against phase at stimulus onset with intensity of the dot indicating the amplitude of 

beta at the time of the stimulus.
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Figure 9. 
Predicting DBS frequencies to disrupt population oscillations using the Lyapunov exponent. 

Top: Lyapunov exponent as a function of DBS frequency determined from the phase-

response curve. Values above the red line (above zero) are predicted to disrupt oscillations. 

Bottom: Ratio of beta:alpha power as a function of DBS frequency. Beta power: 32-36 Hz. 

Alpha power: 12-16 Hz. Red line is beta:alpha power with DBS off.
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Table 1

Values used in transfer function fits. STN was fit with a cosine and sine wave under parkinsonian and healthy 

conditions. GPe was fit with two cosine waves under each condition.

Frequency
(ω)

Amplitude
(A)

γ Delay
(d)

STN

Cosine 0.1824 −0.0297 0.9651 −3

Sine 0.2236 −0.0512 0.9510 −9

HSTN

Cosine 0.1555 −0.0282 0.9607 −3

Sine 0.1953 −0.0567 0.9499 −9

GPe

Cosine 1 0.2288 0.0445 0.9664 −7

Cosine 2 0.3357 0.1585 0.8310 −3

HGPe

Cosine 1 0.1775 0.0422 0.9604 −6

Cosine 2 0.2979 0.1516 0.8204 −3
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