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Abstract

Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of 

problems in neuroscience. Analytical techniques from optimal control theory can identify such 

stimuli; however, solutions to the optimization problem using indirect variational approaches can 

be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-

based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state 

while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-

Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: 1) enables 

automated exploration of a wide solution space, using stochastically generated initial waveforms 

that converge to multiple locally optimal solutions; and 2) finds optimal stimulus waveforms that 

achieve a physiological outcome condition, without a priori knowledge of the optimal terminal 

condition of all state variables. Analysis of biological systems using stochastically-seeded gradient 

methods can reveal salient dynamical mechanisms underlying the optimal control of system 

behavior. The gradient algorithm may also have practical applications in future work, for example, 

finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage 

and diminishes off-target effects and damage to neighboring tissue.
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1 Introduction

There has been recent interest in establishing methods that utilize external electrical 

stimulation for controlling pathological neuronal activities in neurological disorders, for 

example, Parkinsonian tremor (Lozano 2010) and epileptic seizures (Loddenkemper & Pan 

2001). Determining the minimal effective stimulus for such control is a key practical 

question because energetic optimization of the stimulus will decrease power usage and 
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prolong battery life, as well as diminish off-target effects and damage to neighboring 

regions.

Finding optimal stimulus waveforms to control biological systems poses interesting 

computational challenges. Traditionally, optimization of signals has been conducted 

analytically using calculus of variations (Gelfand & Fomin 2000), in which an optimal 

functional is derived and solved as a boundary-value problem, using the shooting method 

(Osborne 1969) or the Newton-Raphson method (Ypma 1995). These techniques, which 

have been applied to neuronal models (Forger, Paydarfar, & Clay 2011; Forger & Paydarfar 

2004), requires an initial guess that seeds an algorithm used to solve the boundary-value 

problem. Finding an initial guess that converges to a solution can be difficult in 

mathematical models with steep nonlinearities of multiple state variables. Another important 

limitation for solving optimal functionals as a boundary value problem is the need for a 

priori knowledge of the optimal endpoint of all state variables. Optimization problems are 

often defined by a single outcome measure (e.g., achieving a voltage threshold for an action 

potential) and the optimal endpoint for all state variables may be unknown. Finding a global 

optimum therefore would require solving the boundary value problem multiple times for all 

possible endpoints that include the desired outcome measure (Forger, Paydarfar, & Clay 

2011).

Gradient-based optimization methods (Bryson & Ho 1975; Kelley 1962) offer an alternative 

computational approach for variational analysis that retains the complete model description 

and circumvents the need for solving a boundary-value problem. Gradient-based algorithms 

solve the optimization problem directly without first deriving a functional with defined 

boundary conditions. Recent success using this approach has been achieved for solving 

complex control problems in mechanics (Aghababa, Amrollahi, & Borjkhani 2012; Golfetto 

& Fernandes 2012; Raivo 2000), epidemiology (Gupta & Rink 1973), game theory (Doležal 

1978), kinetics (Lee 1964) and immunology (Joshi 2002; Kepler & Perelson 1993; 

Kirschner, Lenhart, & Serbin 1997).

To our knowledge, gradient algorithms have not been applied to problems in computational 

neuroscience, and here we ask if such an approach might be useful for identifying minimal 

effective stimuli for controlling neuronal activity. As an initial analysis, we focus on 

waveforms that induce a single action potential in a classical monostable neuron (Hodgkin 

& Huxley 1952) or induce or suppress repetitive firing in a bistable neuron (FitzHugh 1961; 

Nagumo, Arimoto, & Yoshizawa 1962). Furthermore, we develop and apply a stochastic 

seeding approach to the gradient algorithm in order to explore more fully the solution space 

to determine globally optimal solutions as opposed to just locally optimal solutions. Our 

results provide insight into how optimal control of neuronal activity is strongly influenced 

by temporal constraints of the stimulus waveform and the terminal conditions that define the 

outcome measure.

The paper proceeds as follows. In Section 2, we outline the gradient-based algorithm as well 

as its implementation for both the Hodgkin-Huxley and the Fitzhugh-Nagumo models. 

Online Resources 1 and 2 provide a detailed mathematical basis for the algorithm. Section 3 

describes the results, highlighting the importance of broad exploration of the solution space 
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using stochastically generated seeds. Section 4 discusses the advantages and limitations of 

the gradient algorithm and compares it to other previously used techniques.

2 Methods

2.1 First-Order Gradient Algorithm

The derivation and theoretical framework of the first-order gradient optimization problem is 

detailed in Online Resource 1. Here we provide a step-by-step outline of how the algorithm 

is implemented. To summarize, this algorithm begins with an initial estimate of the optimal 

stimulus and iteratively chooses a better stimulus based on the first-order gradient, or slope, 

of the system’s response. This is done by calculating how the changes in the stimulus will 

affect the performance index as well as the error in terminal conditions. To calculate the 

error in terminal conditions, the algorithm runs the system’s response to the stimulus and 

compares the actual state at the terminal point with the desired terminal state.

As we will show, this algorithm is very robust to the initial estimate of the optimal stimulus, 

enabling us to use randomly generated stimuli to search across a larger solution space. We 

describe the gradient algorithm below, which is based on the formalisms developed by 

Bryson and Ho (1975).

Given a nonlinear system of equations:

where x(t) describes an n-dimensional system and u(t) describes an m-dimensional external 

stimulus to the system, and the system’s initial conditions x0, we seek an optimal stimulus, 

u(t), that minimizes the scalar performance index, J, such that:

where L[x(t),u(t), t] is a performance metric. The performance metric can be any function of 

both the system and the stimulus. In our examples, we will be using L2-norm as the 

performance metric to calculate the energy of the stimulus. In examining exogenous 

stimulation, this metric is relevant to the power used by the stimulus. This means that our 

performance metric is:

This metric can be replaced with any other mathematical expression meaningful to any other 

optimization parameter. For instance, in endogenous stimulation, one may be more 

interested in ATP consumption as opposed to the L2-norm. The performance metric could be 

rewritten to accommodate this.
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Finally, the algorithm is constrained by q terminal conditions of the form:

The algorithm proceeds as follows:

1. Estimate the stimulus variable, u(t). We used a uniform random number generator 

to specify the initial stimulus values for each time step from t0 to tf.

2. Integrate the state variables ẋ (t) forward with the given initial conditions and the 

stimulus generated in Step 1.

3. Determine the influence functions p(t) and R(t) by backward integration of

using the values from the state calculated from Step 2. Here, p(t) is an n-by-1 

dimensional matrix, while R(t) is an n-by-q dimensional matrix. In these 

calculations, p(t) represents the strength of influence changes to the stimulus will 

have on the performance index, while R(t) represents the strength of influence 

changes to the stimulus will have on the error in terminal conditions.

These two influence functions describe how changes in the stimulus will affect the 

performance index and the distance from the expected terminal conditions.

4. Simultaneously with Step 3, compute

Q and g are intermediate variables used to simplify the equations in step 5. Here, Q 

is a q-by-q dimensional matrix while g is a q-by-1 dimensional matrix. The variable 

k is a scaling factor that describes how large of a step size should be taken. We 

discuss how to choose this value at the end of the algorithm.

5. Using the results from the state variables in Step 2, calculate
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Here, v, an n-by-1 dimensional matrix, becomes a multiplier that balances the two 

different influence functions p(t) and R(t). As v becomes larger, the algorithm puts 

more weight in the effect of the influence factor R(t) as compared to the influence 

factor p(t).

The variable δx is proportional to the distance between the actual terminal state due 

to the estimated stimulus and the desired terminal conditions that have been 

defined. The variable ε is another scaling factor that describes how large the step 

size is. The larger the scaling factor, the larger the step will be in the direction of 

the gradient towards the optimal solution.

6. Repeat steps 1 to 5 with an improved estimate of the stimulus variable using

This entire process continues for either a predefined number of iterations, or until 

the standard deviation of δJ and δu over a set number of iterations has fallen below 

a specified threshold, indicating that the algorithm has converged to a solution.

It is interesting to note that this algorithm weighs and manages the weights of both the 

performance index as well as how closely the estimated stimulus fulfills the terminal 

conditions. As seen in Step 5, the further away the terminal states of the system due to the 

estimated stimulus is from the terminal conditions, the larger v becomes. Thus more weight 

is put on the effect of the stimulus with regards to fulfillment of the terminal conditions, R(t) 

as opposed to the effect of the stimulus on improving the performance index, p(t).

Some trial and error may be needed with regards to how to choose scaling factors for both k 

and ε. The predicted decrease in the performance index, δJ, can be compared to actual 

decrease in performance index. If the difference is large, the scaling factor can be decreased. 

If the difference is small between predicted versus actual, the scaling factor can be 

increased.

All of the simulation and algorithmic work was carried out in Matlab (The MathWorks Inc., 

Natick, MA, USA). Our code is publically accessible on the Internet at PhysioNet (http://

physionet.org).

2.2 Hodgkin-Huxley Model

One of the classic computational models regarding excitable systems is the Hodgkin-Huxley 

neuron model (Hodgkin & Huxley 1952). The model is a four dimensional system that 
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captures the ionic mechanisms underlying the generation of an action potential. The 

Hodgkin-Huxley model is defined as follows:

where V is the membrane voltage (mV), m, n, and h represent dimensionless quantities 

associated with sodium channel activation, potassium channel activation, and sodium 

channel inactivation respectively, and u represents the exogenous stimulation we are looking 

to input into the system (µA/cm2). The parameter ı is based on the ambient temperature, 

which we have set to 1.5. The parameter C is the capacitance of the membrane, which we set 

at (1 µF/cm2). The Hodgkin-Huxley model that we have defined here is monostable; the 

membrane is quiescent, firing an action potential only when it is elicited by the input 

stimulus.

By setting each of the differentials as well as the stimulus to 0, we are able to find the 

resting state of the Hodgkin-Huxley model. We found this resting state to be V = 0.0026 

mV, m = 0.0529, n = 0.3177 and h = 0.596.

Using the gradient algorithm, we can determine what the optimal stimulus should be in order 

to cause an action potential from the resting state using the least amount of energy as 

determined by the performance index mentioned earlier, L2-norm, which we measured in 

µJ/cm2. The standard model measures current per unit area of membrane (1 cm2).
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We generated our initial estimate by choosing random values at intervals of 0.1 

milliseconds. Each random value was chosen from a uniform distribution from −1 µA/cm2 

to 1 µA/cm2. These initial estimates were multiplied by a scaling factor to allow for different 

stimulus strengths. To increase the chance that we find the global optimal, we ran the 

algorithm 10 times with a different randomly generated stimulus.

We define the terminal condition as the voltage above which an action potential is 

guaranteed:

The gradient algorithm allows us the flexibility to define the terminal conditions for only 

one of the four state variables. This is useful because it allows us to broaden the search for 

stimuli that achieve the outcome (an action potential) without artificially restricting 

ourselves to solutions that may not be optimal. For our purposes, we only require the 

stimulus to trigger an action potential irrespective of the values of m, n, and h. Placing 

constraints on those values could restrict the search to a solution that is not optimal.

Another consideration for setting the terminal condition is whether the first order gradient 

converges to desired end-point. For example, if we set the terminal condition of V to be near 

the peak of the action potential (e.g. V(tf) = 95 mV), the algorithm has a very difficult time 

converging to a solution that ends at the peak of the action potential. This is due to the 

extreme nonlinearity of the state variables in that particular region of the action potential. A 

small change in the stimulus results in either a better performance index or a lower error in 

terminal conditions. Because we are using a first-order gradient algorithm, we would often 

end up either over- or under-stepping the stimulus, thereby causing a failure in convergence. 

We found that by setting the terminal condition to be lower, we were both able to guarantee 

the desired outcome (an action potential) and convergence of the gradient algorithm towards 

a solution.

2.3 Implementing the gradient algorithm for the Hodgkin-Huxley Model

Detailed derivations of equations for the gradient algorithm are included in Online Resource 

2. We set the algorithm to run for 100 iterations, with k = 0.1 and ε = 0.5. To generate the 

initial stimulus, a uniform distribution random number generator with a range of −1 to 1 was 

used to generate the stimulus amplitudes at every 0.1 ms interval for a total of 25 

milliseconds. Because of the stiffness of the Hodgkin-Huxley equations, we used 

MATLAB’s differential equation solver, ode113 (MathWorks; Natick, MA).

2.4 FitzHugh-Nagumo Model

While the transition from quiescence to a single action potential is interesting, many 

biological systems exist in states that are oscillatory in nature. In a recent study, Paydarfar, 

Forger and Clay (2006) showed that small oscillatory stimuli can be used to induce a state 

transition in a bistable system. While, we could theoretically model the Hodgkin-Huxley 

model as a bistable system by adding a sufficiently large exogenous depolarizing persistent 

current, previous studies have shown that the squid axon, which is the basis for the Hodgkin 
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Huxley model, fails to exhibit repetitive firing under the condition of a persistent 

depolarizing current clamp (Clay, Paydarfar, & Forger 2008). Furthermore, our preliminary 

analysis suggested that the first-order gradient algorithm does not readily converge because 

of the sensitivity of the Hodgkin-Huxley system, specifically the terminal point, even to 

small changes in the stimulus. To change the stimulus by a small amount would cause the 

system to overshoot the terminal condition, causing the gradient algorithm to attempt to 

reverse the problem, but overshooting the terminal condition again in the opposite direction.

We found the FitzHugh-Nagumo system to be much more lenient as a bistable model. The 

FitzHugh-Nagumo model is a two dimensional system that has been used to describe 

excitability in neurons and has served as a model system for bistable behavior (Alon 2006; 

FitzHugh 1961; Forger & Paydarfar 2004; Glass 2001; Nagumo et al. 1962; Paydarfar & 

Buerkel 1995; Winfree 2001).

The FitzHugh-Nagumo model (FitzHugh 1961; Nagumo et al. 1962) is defined as follows:

This model is unitless, but one can show that the FitzHugh-Nagumo model is a two-

dimensional reduction of the Hodgkin-Huxley equations (FitzHugh 1961). With regards to 

neuronal excitability, x1 is analogous to Hodgkin-Huxley’s V and m, while x2 is analogous to 

Hodgkin-Huxley’s h and n states (FitzHugh 1961). The variable u is analogous to current 

stimulation, which can be in the form of an endogenous persistent current or an exogenous 

input stimulus. In order for the system to exhibit bistability (quiescence and repetitively 

firing), we have chosen parameters as previously defined (Paydarfar & Buerkel 1995), a = 

0.7, b = 0.8, c = 3.0, and r = 0.342. In this particular configuration, the system gravitates, 

when there is no stimulation, towards one of two states: quiescence or repetitive firing. The 

repetitive firing state is an oscillatory limit cycle, while the quiescent state is a fixed point. 

The minimum value of x1 is the equivalent of the peak of an action potential in the 

FitzHugh-Nagumo model. We wanted to determine the optimal stimulus to both induce and 

suppress repetitive firing in a bistable system. Thus, we used the gradient algorithm to 

calculate the optimal stimulus when transitioning from the fixed point to the oscillatory limit 

cycle, and vice versa.

In order to systematically explore the entire limit cycle in the repetitive firing state, we 

captured a set of 68 points (RF1, RF2 … RF68) dispersed around the limit cycle. We 

determined this set of 68 points by allowing the system to reach steady state in MATLAB 

and recording the values of x1 and x2 as returned by the Runga-Kutta differential equation 

solver, ode45. To find the optimal stimulus from quiescence to the repetitive firing state, we 

set up 68 computational experiments, each starting where xo is equal to quiescent point and 
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ending at xf = RFn where n lies between 1 and 68. Similarly to find the optimal stimulus 

from the repetitive firing state to quiescence state, we set up 68 computational experiments, 

each starting with xo = RFn where n lies between 1 and 68, and ending at xf equal to the 

quiescent point. In order to define the phase around the limit cycle, we normalize the time at 

which each of the 68 points occur so that RF1 occurs at phase ϕ = 0 and RF68 occurs at 

phase ϕ = 1. Figure 1 shows a graph of all the 68 points, with some of the phases marked 

off. We ran each computational experiment 10 times to again increase the probability of 

finding the global optimal for each phase.

2.5 Implementing the gradient algorithm for the FitzHugh-Nagumo model from quiescence 
to repetitive firing

A detailed derivation of the equations for the gradient algorithm is included in Online 

Resource 2. We set our scaling factors to be k = 0.5 and ε = 0.5. To generate the initial 

stimulus, a uniform distribution random number generator with a range of −1 to 1 was used 

to generate the stimulus amplitudes at every 0.1 ms interval for a total of 30 milliseconds. 

Because we were dealing with a bistable system, we wanted to ensure that the system did 

not revert back to the quiescent state. As such, we observed the system’s response for a total 

of 100 milliseconds, 70 milliseconds after the stimulus had completed. We verified in each 

of our results that the range of x1 values remained larger than 3.5 units which was the range 

of the repetitive firing steady state in the last 20 milliseconds of our 100 millisecond system 

response. Because the FitzHugh-Nagumo model was less stiff, we were able to use 

MATLAB’s ode45 differential equation solver. In this application of finding transitions 

from quiescence to repetitive firing, we are examining the phase at which the stimulus 

terminates on the limit cycle.

We found that depending on which of the 68 points we were using as the terminal condition, 

the gradient algorithm would take a variable number of iterations to converge to a solution. 

Thus, instead of specifying a threshold, we terminated the algorithm when the standard 

deviation of the last 20 iterations of δJ was less than 0.0001 and δu was less than 0.1. For the 

sake of time, we terminated the gradient algorithm after 1000 iterations if it had not yet 

converged.

2.6 Implementing the gradient algorithm for the FitzHugh-Nagumo model from repetitive 
firing to quiescence

A detailed derivation of the equations for the gradient algorithm is included in Online 

Resource 2. We set our scaling factors to be k = 0.5 and ε = 0.5. To generate the initial 

stimulus, a uniform distribution random number generator with a range of −1 to 1 was used 

to generate the stimulus amplitudes at every 0.1 ms interval for a total of 8 milliseconds. In 

order to develop results comparable to previous literature (Forger & Paydarfar 2004), we’ve 

chosen a stimulus duration of 8 milliseconds, which is less than the limit cycle period (12.84 

ms). In this application of finding transitions from repetitive firing to quiescence, we are 

examining the phase at which the stimulus begins from the limit cycle.

Because we were dealing with a bistable system, we wanted to ensure that the system did 

not revert back to the repetitive firing state. As such, we observed the system’s response for 
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a total of 100 milliseconds, 92 milliseconds after the stimulus had completed. We verified in 

each of our results that the range of x1 values remained smaller than 3.5 units which was the 

range of the repetitive firing steady state in the last 20 milliseconds of our 100 millisecond 

system response. Again, because the FitzHugh- Nagumo model was less stiff, we were able 

to use MATLAB’s ode45 differential equation solver.

Like we did for determining convergence when finding the optimal stimulation from 

quiescence to repetitive firing, we terminated the algorithm when the standard deviation of 

the last 20 iterations of δJ was less than 0.0001 and δu was less than 0.1, with a maximum 

number of iterations set at 1000.

3 Results

In order to achieve a better understanding of how the gradient algorithm performs, its 

advantages and its limitations, we applied it to three distinct scenarios: the triggering of a 

single action potential in a monostable system, the initiation of repetitive firing in a bistable 

system and the suppression of repetitive firing in a bistable system. We proceeded with two 

of the most classic neuronal model systems: the Hodgkin-Huxley model as our monostable 

system and the FitzHugh-Nagumo system as the bistable system. While the FitzHugh-

Nagumo system has been used mainly in neuronal systems, it also has broader applications 

in other biological systems (Aliev & Panfilov 1996; Kawato & Suzuki 1980).

3.1 Hodgkin-Huxley Model of Neuronal Excitation

As we can see from Figure 2, the gradient algorithm begins with a randomly generated 

stimulus, and within a few generations, the rough shape of the optimal stimulus is seen. 

Within 30 iterations, the optimal stimulus is revealed, with little further improvement in L2-

norm following subsequent iterations. One interesting observation we noted is that the first 

iteration often produces a stimulus with a poorer performance index. This is due to the fact 

that because we are randomly generating the stimulus, it most likely fails to meet the 

terminal condition. Thus, the algorithm first changes the stimulus to be closer to meeting the 

terminal condition, before it begins improving the performance index.

Figure 3 shows the stimulus waveform of gradient algorithm at 100 iterations and the action 

potential it caused. Note that the membrane potential V in Figure 3 is offset from the HH 

model by −60 mV, which is also consistent with modern usage of the Hodgkin-Huxley 

model. The original model arbitrarily set the resting potential at 0 mV, while neurons 

actually rest in a hyperpolarized state. The result of the gradient algorithm had an L2-norm 

of 15.5 µJ/cm2. As a point of comparison, we used a constant amplitude 25-ms stimulus and 

reduced the amplitude down until it just barely created an action potential. We found that 

using an amplitude of 2.255 µA/cm2, the neuron would fire an action potential at 11 ms. We 

then reduced the duration of the stimulus until it no longer fired an action potential, and 

found that when the amplitude was 2.255 µA/cm2 and the duration was 9.7 ms, the neuron 

would just barely fire an action potential. The L2-norm of this barely supra-threshold 

rectangular pulse was 49 µJ/cm2. Thus, the waveform generated using this technique showed 

a large reduction of energy necessary for causing the neuron to fire a single action potential.
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As we sought to gain a better understanding of the algorithm’s application, we examined the 

effect that stimulus duration would affect the optimal stimulus’ L2-norm. We changed tf, but 

kept the rest of the system parameters the constant. This meant that not only did the stimulus 

decrease in duration, the action potential occurred sooner as well. Figure 4 shows the plot 

illustrating how the stimulus duration affected the optimal stimulus’ L2-norm. As we can see 

from the plot, when the stimulus duration was increased, smaller L2-norms could be 

achieved, up until a certain point. Beyond 25 milliseconds, the improvements in L2-norm are 

minimal.

Figure 5 shows the shape of the optimal waveforms under the different conditions of when 

the system crosses the specified threshold. It is interesting to note that when an action 

potential is desired earlier (less than 7 ms), the optimal waveform is monophasic; whereas 

action potential timings that are later (more than 7 ms) are optimally achieved with biphasic 

waveforms. In a recent study, Clay, Forger and Paydarfar (2012) explained that the 

hyperpolarization phase of the optimal stimuli is useful for removing a small amount of 

sodium inactivation, thus allowing for a less energetic depolarizing phase to still elicit an 

action potential. This figure shows that this is indeed true, but only when the desired time to 

action potential is long enough. If the time to action potential is shorter, the 

hyperpolarization phase is reduced, and it disappears all together if the time to action 

potential is too short. From a design perspective, this may suggest that in neuronal systems 

that require rapid elicitation of an action potential, excitatory postsynaptic currents would be 

much more prevalent than in neuronal systems that are more amenable to delayed elicitation 

of action potentials.

We examined the robustness of the gradient algorithm to randomly generated initial 

estimates of the optimal stimulus. As such, we created a set of randomly generated seeds 

with varying amplitudes (at 0.1 ms resolution), and tracked for each iteration both the L2-

norm and the distance the calculated endpoint was from the desired terminal state. Figure 6 

shows a plot of L2-norm trajectory over the first 30 iterations. While each trajectory started 

at different places, they all ended at solutions with the roughly the same L2-norm. There is 

some variation in the error due to terminal conditions, but the system is extremely sensitive, 

and so any small changes in the stimulus will result in small variations in the distance of the 

end point to the terminal conditions.

3.2 The FitzHugh-Nagumo Model: Quiescence to Repetitive Firing

The L2-norm values for all 10 runs of each of the 68 computational studies are shown in 

Figure 7. For each of these runs, the system starts at the quiescent fixed point and terminates 

at a specified phase, ϕ, as defined previously. The gradient algorithm failed to converge 

within the set limit of 1000 iterations for some of the runs, and we have marked them 

accordingly. This plot reveals a clustering of low L2-norm values around ϕ = 0.58, a lack of 

convergence in the range 0.05 < ϕ < 0.5, and a multiplicity of solutions where ϕ > 0.9 or ϕ < 

0.05.

To begin, we notice that the optimal transition from the quiescent state to the repetitive 

firing state is when the terminal condition is around ϕ = 0.58. In fact, there is a small range, 

0.55 < ϕ < 0.65 where the gradient algorithm produces consistently low L2-norm values. 
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This shows a particular trajectory with the most ideal “entrance” into the repetitive firing 

state from the quiescent state. At these phases, there appears to be only one extrema in the 

solution space.

Secondly, there is a large range of phases, in which the gradient algorithm is unable to 

converge to a solution with the predetermined number of iterations. We increased the 

number of iterations to 5000, but the gradient algorithm still failed to converge to a solution 

in the range 0.05 < ϕ < 0.4, which corresponds to rapid changes in the state variables during 

the action potential. Because we are using a first-order gradient algorithm, as the algorithm 

gets closer to those solutions, small changes in the stimulus can cause the algorithm to 

overshoot its estimation of the optimal, leading to loss of convergence. We believe that a 

solution exists because the terminal condition is on a steady state limit cycle. If we took the 

solution when ϕ = 0.58 and padded the end with zeroes, we should be able to find a stimulus 

that takes us to a phase angle between 0.05 and 0.4. This suggests that perhaps the set of 

initial estimates that allow for convergence to a local optima solution, also known as the 

region of convergence, is small compared to the region of convergence we have seen for the 

mono-stable Hodgkin-Huxley or the bistable FitzHugh-Nagumo when the terminal condition 

is within the range of 0.55 < ϕ < 0.65.

Finally, we notice multiple local optima found when the terminal condition on the limit 

cycle is close to the peak of x1 (ϕ < 0.05, and ϕ > 0.9). Figure 8 shows an example of two 

stimulus waveforms that resulted in a transition from quiescence to repetitive firing using 

the exact same starting and ending points. As illustrated here, this multiplicity occurs 

because the terminal condition is on an oscillatory limit cycle. In this example, two distinct 

optimal stimuli result because there can be a multiplicity of subthreshold oscillations before 

the trajectory jumps to the stable limit cycle. In this example, the algorithm converged to 

two optimal stimulus waveforms that caused either one or three subthreshold oscillations 

before inducing a jump to the limit cycle. The stimulus inducing a jump after one 

subthreshold oscillation has shorter duration and larger amplitude, compared to the optimal 

stimulus that transitions more gradually. This finding matched one of the results we found in 

the Hodgkin-Huxley model: If we want to transition states quicker, more energy is required.

To provide a comparison, we again calculated the optimal rectangular pulse to switch the 

FitzHugh-Nagumo model from quiescence to repetitive firing and found that the best 

stimulus had an amplitude of 0.11 and a duration of 21.102 resulting in an L2-norm of 0.26. 

The results from the gradient algorithm ranged from 0.0038 at the best and 0.0097 at its 

worst. Here we can see a substantial improvement over standard rectangular pulse stimulus.

Like our results in the Hodgkin-Huxley model, Figure 9 shows the paths toward optimality 

resulting from different initial randomly generated seeds. Although the different seeds have 

a broad range of L2 norms and distances to the terminal condition, almost all of them 

converge to one of the two clusters. We found that of the solutions that converged, 78% of 

the randomly generated seeds converged to the larger L2-norm solution and 22% converged 

to the smaller L2-norm solution. We note in Figure 9 that there are some points that drop L2-

norm very sharply with successive iterations, almost as if attracted to the lower local 

optimum, but then bounce back up, settling into the upper local optimum. This phenomenon 
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is due to the fact that a single iteration may cause the L2-norm to drop by a lot, but it may 

increase the error in the terminal conditions. In the next iteration, the gradient algorithm 

corrects the error in the terminal condition, leading to the bounce back in the L2-norm value.

3.3 The FitzHugh-Nagumo Model: Repetitive Firing to Quiescence

Figure 10 shows the L2-norms of 10 runs each of the 68 computational studies from each of 

the points along the repetitive firing limit cycle to the quiescent point. In all cases the 

stimulus duration was set at 8 ms. From the figure, we can see that there is again an optimal 

window where ϕ is between 0.4 and 0.6 at which to begin transitioning from the repetitive 

firing limit cycle to the quiescent fixed point. This corresponds to the location closest to the 

quiescent fixed point. Around this window, the best L2-norm values sit around 0.012. In 

comparison, the most optimal constant stimulus waveform has an L2-norm of 0.064, for a 

duration of 7.87 ms and an amplitude of 0.09 given at ϕ=0.72. It is interesting to note that 

when using a constant stimulus waveform, the discrete stimulus fails to suppress repetitive 

firing across a large range of phase angles. In contrast, the gradient method enables 

discovery of novel waveforms that induce a transition from a broad range of phases around 

the limit cycle to the quiescent state.

We had discussed how multiplicity occurred in the earlier example of stimuli that induce the 

FitzHugh-Nagumo neuron to transition from the quiescent state to the repetitive firing state, 

due to the cyclical nature of the system. Here, we can see that even when the stimulus 

duration is smaller than one cycle, we can find multiplicity with the FitzHugh-Nagumo 

system. We chose the example where ϕ = 0.678. Figure 11 shows the convergence of a set 

of randomly generated initial conditions towards the two different stimuli. Figure 12 shows 

two stimuli that start from the same point on the repetitive firing limit cycle and end up at 

the quiescent point.

One interesting implication about this particular result is that there is potential for applying 

the gradient algorithm to phase shifting an oscillatory system. What we can see here in 

Figure 12 is that one of the solutions transitions almost immediately into the quiescent point, 

while the other makes a loop around the limit cycle before entering into the quiescent point. 

This is interesting because the normal period of one cycle is 12.84 ms. We captured an 

instance where the stimulus in 8 ms has traveled around the entire limit cycle. We could 

theoretically set up the gradient algorithm to travel from one point on the limit cycle to a 

different point of the limit cycle, requiring this phase shift to take place within a fraction of 

the period of the limit cycle. In this way, the gradient algorithm can be used to find optimal 

phase shifting stimuli (Dean, Forger, & Klerman 2009; Forger & Paydarfar 2004; Serkh & 

Forger 2014).

4 Discussion

Optimal control theory is rooted in calculus of variations, developed by Bernoulli, de 

l’Hôpital, and Euler (Gelfand & Fomin 2000). However, the real-world applications of 

calculus of variations did not start until more recently in the 1950s. Because problems in 

optimal control generally are nonlinear, they do not have simple solutions that can be 

analytically determined. Thus, a range of numerical methods were developed. These 
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numerical methods fall into roughly one of two broad categories: indirect methods and direct 

methods (Betts 1998; Rao 2010).

Indirect methods use Pontryagin’s maximum principle to determine a set of first-order 

conditions that define the optimal solution. This set of first-order conditions combines the 

original state variables with an extra set of adjoint variables, one for each of the original 

states, that measures the influence of the state variables to each other. A boundary value 

problem (BVP) solver like the shooting method or Newton-Raphson method is then used to 

solve numerically this new system of equations. The advantage of the indirect method is that 

once a solution is found from the BVP solvers, it is easily verified against the first-order 

conditions captured by calculus of variations.

One of the disadvantages of the indirect method is that the region of convergence around the 

variables may be smaller with the addition of the adjoint variables. Thus, there is a higher 

chance of starting a BVP solver at a state that ultimately diverges from the optimal solution. 

With most numerical algorithms, a good initial guess can avoid starting at locations that 

diverge from the optimal solution. However, one usually requires some background 

information or understanding of the equations to be able to provide a good initial seed from 

which most BVP solvers will work. If a bad seed is chosen, the BVP solver will diverge 

away from the solution. With the adjoint variables, developing the initial seed becomes even 

more difficult as they do not have any physical interpretation by which to understand how 

they relate to the other variables, and thus it is difficult to even develop an initial estimate 

for these variables by which to seed the algorithm. To this point, most researchers have 

attempted to simplify the Hodgkin-Huxley model in order to circumvent these two 

disadvantages. Researchers have used a phase reduction model of the neuron (Danzl, Nabi, 

& Moehlis 2010; Moehlis, Shea-Brown, & Rabitz 2006; Nabi & Moehlis 2012), 

parameterized the stimulus (Tahayori & Dokos 2012), or used simpler “integrate-and-fire” 

models (Jezernik & Morari 2005; Offner 1946). To our knowledge only Forger et al (2011) 

have applied the indirect method to solve the original Hodgkin-Huxley model in its 

complete form.

The direct method, first proposed by Kelley (1962) and further developed by Bryson and Ho 

(1975), does not create a surrogate system of equations, but instead uses the original system 

of equations to iteratively move towards a more optimal solution. This method does not add 

any new parameters and thus avoids the need to calculate another set of variables and first-

order derivatives. Furthermore, by not adding a new set of parameters to the systems of 

equations, it allows for a larger region of convergence from the initial estimate; indeed we 

have shown that randomly generated stimulus waveforms can be used to find optimal 

solutions for induction of an action potential in the monostable Hodgkin-Huxley equations, 

as well as induction or suppression of repetitive firing in the bistable FitzHugh-Nagumo 

equations. We were able to show with both models that the solutions converged even though 

they started from very different seeds. Because of this, a priori knowledge is not needed to 

find locally optimal solutions. In order to explore the solution space further and find a global 

optimal solution, we have developed this algorithm to include a stochastically seeding 

component. By running the algorithms with different randomly generated seeds, the 
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algorithm allows for more of the solution space to be explored, thus allowing one to have 

greater confidence that the best solution found is indeed the global optimal.

One of the advantages of using this gradient algorithm is its ability to find optimal solutions 

even when terminal conditions are not defined for all of the state variables. As we noted in 

finding the optimal stimulus necessary to trigger a single action potential, the gradient 

algorithm did not require us to have the terminal condition defined for all four state 

variables. We were able to construct the algorithm such that it found the optimal stimulus 

necessary to achieve a membrane voltage above the threshold for an action potential. 

Considering that our specific goal was to find the optimal stimulus necessary to elicit an 

action potential, this allowed us to find the optimal without adding any extra restrictions on 

the terminal conditions. By adding more terminal conditions than we need, we are actually 

restricting our search for a global optimum and including certain assumptions into the 

algorithm that may lead to sub-optimal solutions.

Our computational study using the gradient algorithm has shown the importance of precisely 

defining the optimality problem, lest we actually find an optimal solution to a different 

problem. In our study, we wanted a globally optimal solution, and so we left the terminal 

condition to only include the voltage threshold. In the study of Forger et al (2011), specific 

states were obtained using a priori knowledge of squid axons that were related to different 

biological mechanisms leading to action potentials. By applying this knowledge, they were 

able to find two unique optimal solutions specific to the two unique mechanisms. Although 

we imposed no restrictions on the physiological mechanism for eliciting action potentials in 

this study, we did find that constraints on the timing of a spike resulted in qualitatively 

different optimal waveforms (Figure 5).

While the gradient algorithm has been advantageous for our applications, it has also shown 

some of its limitations. Because we were using a first-order system, there were terminal 

conditions to which the algorithm was unable to converge, due to the highly nonlinear 

sensitivity of the system to the stimulus in certain regions. We have found that in these 

situations, the first-order gradient will overshoot the optimal solution and cause the 

algorithm to iterate through a worse solution. From here, the algorithm reiterates to improve 

the solution again towards the optimal, but repeatedly fails near the terminal condition by 

overshooting again. We note that this pattern occurs most often in rapidly changing regions 

in our systems (e.g. near the peak of the action potential). In areas that are less sensitive to 

changes in the stimulus, the gradient algorithm performs very well.

It is possible to use the second-order gradient in the algorithm as well in order to prevent 

overshooting. However, the second-order gradient algorithm is much more sensitive to the 

initial estimate, and thus has a difficult time even beginning to iterate towards an optimal 

solution (Bryson & Ho 1975) as the region of convergence is much smaller. One alternative 

proposal is to combine both the first-order and the second-order gradient algorithms in order 

to maximize the first-order’s ability to converge quickly at the beginning, with the second-

order’s ability to converge more accurately at the end (Golfetto & Fernandes 2012).
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We have shown how stochastically seeded gradient algorithm can be applied to finding 

energetically optimal stimuli for transitioning various biological systems from one state to 

another, whether it is from a quiescent state to a single action potential, a quiescent state to 

repetitive firing, or from repetitive firing back to quiescence. In this study, we have 

showcased this algorithm and its use in gaining insight into the Hodgkin-Huxley system and 

the FitzHugh-Nagumo system when evaluating optimization based on L2-norm. Future work 

may focus on applying the same techniques to neurons that exhibit a much wider repertoire 

of behaviors (Barnett, O’Brien, & Cymbalyuk 2013; Butera, Rinzel, & Smith 1999; 

Izhikevich 2000, 2007; Rinzel & Ermentrout 1998), which have been classified extensively 

using bifurcation theory. These techniques can also be applied to more complicated models 

like those that describe the impact of deep brain stimulation to treat Parkinsonian tremors 

(Chen, Wang, Wei, Deng, & Che 2011; Feng, Greenwald, & Rabitz 2007; Hauptmann, 

Popovych, & Tass 2005; Howalski, Silva, Poppi, Godoy, & Augusto 2007; Rubin & Terman 

2004; Schiff 2010) and epileptic seizures (Durand & Warman 1994; Iasemidis 2003; Lian, 

Bikson, Sciortino, Stacey, & Durand 2003; Sunderam, Gluckman, Reato, & Bikson 2010; 

Tass 2003).

Furthermore, while applying this algorithm to finding optimal external electrical stimulation, 

we postulate that the stochastically seeded gradient algorithm can also aid in gaining insight 

into what design principles may be in play in endogenous neuronal stimulation. There has 

been a wealth of research recently focusing on understanding fundamental design principles 

that govern neuronal excitation, for instance in elucidating how sensory percepts are 

encoded (Koelling & Nykamp 2012; Machens, Gollisch, Kolesnikova, & Herz 2005; 

Watson, Barlow, & Robson 1983), as well as to populations of neurons within functioning 

networks to better understand how information is transmitted from neuron to neuron (Alle, 

Roth, & Geiger 2009; Attwell & Laughlin 2001; Sengupta, Stemmler, Laughlin, & Niven 

2010; Torrealdea, D’Anjou, Grana, Sarasola, & D’Anjou 2006). If one hypothesized that 

metabolic energy, or ATP consumption, was what the endogenous stimulation optimized, 

one could construct an equation relating the number of ATPs consumed to the generation of 

the action potential itself, incorporate that into the optimization metric in the algorithm, and 

then determine a theoretical result that could be verified or refuted through experimental 

techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Daniel Forger and Kirill Serkh for discussions on boundary value problems and also introducing us to the 
gradient algorithm. We thank John Clay for discussions regarding the ionic basis for excitability in squid axons, and 
Premananda Indic for discussions and guidance regarding gradient analysis. We also thank anonymous reviewers 
for their suggestions and feedback. This work was supported by NIH R01 GM104987 and the Wyss Institute of 
Biologically Inspired Engineering. The funders had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Chang and Paydarfar Page 16

J Comput Neurosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

Aghababa MP, Amrollahi MH, Borjkhani M. Application of GA, PSO, and ACO algorithms to path 
planning of autonomous underwater vehicles. Journal of Marine Science and Application. 2012; 
11(3):378–386.

Aliev RR, Panfilov AV. A simple two-variable model of cardiac excitation. Chaos, Solitons & 
Fractals. 1996; 7(3):293–301.

Alle H, Roth A, Geiger JRP. Energy-efficient action potentials in hippocampal mossy fibers. Science. 
2009; 325:1405–1408. [PubMed: 19745156] 

Alon, U. An Introduction to Systems Biology - Design Principles of Biological Circuits. Boca Raton, 
FL: CRC Press, Taylor & Francis Group, LLC; 2006. 

Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. Journal of 
Cerebral Blood Flow and Metabolism. 2001; 21(10):1133–1145. [PubMed: 11598490] 

Barnett W, O’Brien G, Cymbalyuk G. Bistability of silence and seizure-like bursting. Journal of 
neuroscience methods. 2013; 220(2):179–189. [PubMed: 23999174] 

Betts JJT. Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance, Control 
and Dynamics. 1998; 21(2):193–207.

Bryson, AE.; Ho, Y-C. Applied Optimal Control (Revised Pr.). Hemisphere Publishing Corporation; 
1975. 

Butera RJ, Rinzel J, Smith JC. Models of respiratory rhythm generation in the pre-Bötzinger complex. 
I. Bursting pacemaker neurons. Journal of neurophysiology. 1999; 82(1):382–397. [PubMed: 
10400966] 

Chen, Y.; Wang, J.; Wei, X.; Deng, B.; Che, Y. Particle swarm optimization of periodic deep brain 
stimulation waveforms; Proceedings of the 30th Chinese Control Conference; 2011. p. 754-757.

Clay JR, Forger D, Paydarfar D. Ionic mechanism underlying optimal stimuli for neuronal excitation: 
role of Na+ channel inactivation. PloS one. 2012; 7(9):e45983. [PubMed: 23049913] 

Clay JR, Paydarfar D, Forger DB. A simple modification of the Hodgkin and Huxley equations 
explains type 3 excitability in squid giant axons. Journal of the Royal Society Interface. 2008; 
5:1421–1428.

Danzl P, Nabi A, Moehlis J. Charge-balanced spike timing control for phase models of spiking 
neurons. Discrete and Continuous Dynamical Systems. 2010; 28(4):1413–1435.

Dean DA, Forger DB, Klerman EB. Taking the lag out of jet lag through model-based schedule design. 
PLoS Computational Biology. 2009; 5(6):e1000418. [PubMed: 19543382] 

Doležal J. A gradient-type algorithm for the numerical solution of two-player zero-sum differential 
game problems. Kybernetika. 1978; 14(6):429–446.

Durand DM, Warman EN. Desynchronization of epileptiform activity by extracellular current pulses in 
rat hippocampal slices. Journal of Physiology. 1994; 480(3):527–537. [PubMed: 7869266] 

Feng X, Greenwald B, Rabitz H. Toward closed-loop optimization of deep brain stimulation for 
Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural 
Engineering. 2007; 4(2):L14–L21. [PubMed: 17409470] 

FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical 
Journal. 1961; 1:445–466. [PubMed: 19431309] 

Forger DB, Paydarfar D. Starting, stopping, and resetting biological oscillators: in search of optimum 
perturbations. Journal of Theoretical Biology. 2004; 230:521–532. [PubMed: 15363673] 

Forger DB, Paydarfar D, Clay JR. Optimal stimulus shapes for neuronal excitation. PLoS 
Computational Biology. 2011; 7(7):e1002089. [PubMed: 21760759] 

Gelfand, IM.; Fomin, SV. Calculus of Variations. Courier Dover Publications; 2000. 

Glass L. Synchronization and rhythmic processes in physiology. Nature. 2001; 410(6825):277–284. 
[PubMed: 11258383] 

Golfetto WA, Fernandes S, da S. A review of gradient algorithms for numerical computation of 
optimal trajectories. Journal of Aerospace Technology and Management. 2012; 4(2):131–143.

Gupta N, Rink R. Optimum control of epidemics. Mathematical Biosciences. 1973; 18:383–396.

Chang and Paydarfar Page 17

J Comput Neurosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hauptmann C, Popovych O, Tass PA. Effectively desynchronizing deep brain stimulation based on a 
coordinated delayed feedback stimulation via several sites: a computational study. Biological 
cybernetics. 2005; 93(6):463–470. [PubMed: 16240125] 

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to 
conduction and excitation in nerve. Journal of Physiology. 1952; 117(4):500–544. [PubMed: 
12991237] 

Howalski CH, Silva GAda, Poppi RJ, Godoy HT, Augusto F. Neuro-genetic multioptimization of the 
determination of polychlorinated biphenyl congeners in human milk by headspace solid phase 
microextraction coupled to gas chromatography with electron capture detection. Analytica 
Chimica Acta. 2007; 585:66–75. [PubMed: 17386648] 

Iasemidis LD. Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering. 
2003; 50(5):549–558. [PubMed: 12769431] 

Izhikevich EM. Neural excitability, spiking and bursting. International Journal of Bifurcation and 
Chaos. 2000; 10(6):1171–1266.

Izhikevich, EM. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. 
Sejnowski, TJ.; Poggio, TA., editors. Cambridge: Massachusetts: MIT Press; 2007. 

Jezernik S, Morari M. Energy-optimal electrical excitation of nerve fibers. IEEE Transactions on 
Biomedical Engineering. 2005; 52(4):740–743. [PubMed: 15825876] 

Joshi HR. Optimal control of an HIV immunology model. Optimal Control Applications and Methods. 
2002; 23(4):199–213.

Kawato M, Suzuki R. Two coupled neural oscillators as a model of the circadian pacemaker. Journal 
of theoretical biology. 1980; 86(3):547–575. [PubMed: 7218825] 

Kelley, HJ. Methods of Gradients. In: Leitmann, G., editor. Optimization Techniques. 5th ed.. New 
York, New York: Academic Press, Inc.; 1962. p. 206-254.

Kepler TB, Perelson aS. Somatic hypermutation in B cells: an optimal control treatment. Journal of 
Theoretical Biology. 1993; 164(1):37–64. [PubMed: 8264243] 

Kirschner D, Lenhart S, Serbin S. Optimal control of the chemotherapy of HIV. Journal of 
Mathematical Biology. 1997; 35(7):775–792. [PubMed: 9269736] 

Koelling ME, Nykamp DQ. Searching for optimal stimuli: ascending a neuron’s response function. 
Journal of Computational Neuroscience. 2012; 33(3):449–473. [PubMed: 22580579] 

Lee ES. Optimization by a gradient technique. Industrial & Engineering Chemistry Fundamentals. 
1964; 3(4):373–380.

Lian J, Bikson M, Sciortino C, Stacey WC, Durand DM. Local suppression of epileptiform activity by 
electrical stimulation in rat hippocampus in vitro. Journal of Physiology. 2003; 547(2):427–434. 
[PubMed: 12562909] 

Loddenkemper T, Pan A. Deep brain stimulation in epilepsy. Journal of Clinical Neurophysiology. 
2001; 116(6):217–234.

Lozano AM. Deep brain stimulation for Parkinson’s disease. Journal of Neurosurgery. 2010; 112(3):
199–203. [PubMed: 19480543] 

Machens CK, Gollisch T, Kolesnikova O, Herz AVM. Testing the efficiency of sensory coding with 
optimal stimulus ensembles. Neuron. 2005; 47(3):447–456. [PubMed: 16055067] 

Moehlis J, Shea-Brown E, Rabitz H. Optimal inputs for phase models of spiking neurons. Journal of 
Computational and Nonlinear Dynamics. 2006; 1(4):358–367.

Nabi A, Moehlis J. Time optimal control of spiking neurons. Journal of Mathematical Biology. 2012; 
64(6):981–1004. [PubMed: 21660560] 

Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. 
Proceedings of the IRE. 1962:2061–2070.

Offner F. Stimulation with minimum power. Journal of Neurophysiology. 1946; 9(5):387–390. 
[PubMed: 20997621] 

Osborne MR. On Shooting Methods for Boundary Value Problems. Journal of Mathematical Analysis 
and Applications. 1969; 27:417–433.

Paydarfar D, Buerkel DD. Dysrhythmias of the respiratory oscillator. Chaos. 1995; 5(1):18–29. 
[PubMed: 12780150] 

Chang and Paydarfar Page 18

J Comput Neurosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Paydarfar D, Forger DB, Clay JR. Noisy inputs and the induction of on-off switching behavior in a 
neuronal pacemaker. Journal of Neurophysiology. 2006; 96(6):3338–3348. [PubMed: 16956993] 

Raivo, T. Computational Methods for Dynamic Optimization and Pursuit-Evasion Games. Helsinki 
University of Technology; 2000. 

Rao A. A survey of numerical methods for optimal control. Advances in the Astronautical Sciences. 
2010; 135:497–528.

Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. Methods in Neuronal 
Modeling (2nd ed.). 1998:251–292.

Rubin JE, Terman D. High frequency stimulation of the subthalamic nucleus eliminates pathological 
thalamic rhythmicity in a computational model. Journal of Computational Neuroscience. 2004; 
16(3):211–235. [PubMed: 15114047] 

Schiff SJ. Towards model-based control of Parkinson’s disease. Philosophical Transactions of the 
Royal Society A. 2010; 368:2269–2308.

Sengupta B, Stemmler M, Laughlin SB, Niven JE. Action potential energy efficiency varies among 
neuron types in vertebrates and invertebrates. PLoS Computational Biology. 2010; 6(7):e1000840. 
[PubMed: 20617202] 

Serkh K, Forger DB. Optimal schedules of light exposure for rapidly correcting circadian 
misalignment. PLoS computational biology. 2014; 10(4):e1003523. [PubMed: 24722195] 

Sunderam S, Gluckman B, Reato D, Bikson M. Toward rational design of electrical stimulation 
strategies for epilepsy control. Epilepsy & Behavior. 2010; 17(1):6–22. [PubMed: 19926525] 

Tahayori, B.; Dokos, S. Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron; 
34th Annual International Conference of the IEEE EBS; 2012. p. 4627-4630.

Tass PA. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated 
reset of neural subpopulations. Biological Cybernetics. 2003; 89(2):81–88. [PubMed: 12905037] 

Torrealdea FF, D’Anjou A, Graña M, Sarasola C, D’Anjou A. Energy aspects of the synchronization 
of model neurons. Physical Review E. 2006; 74(1):011905.

Watson A, Barlow H, Robson J. What does the eye see best? Nature. 1983; 302(5907):419–422. 
[PubMed: 6835375] 

Winfree, AT. The Geometry of Biological Time. 2nd ed.. Marsden, JE.; Sirovich, L.; Wiggins, S., 
editors. New York, NY: Springer-Verlag; 2001. 

Ypma TJ. Historical Development of the Newton-Raphson Method. SIAM Review. 1995; 37(4):531–
551.

Chang and Paydarfar Page 19

J Comput Neurosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Plot of the 68 points chosen to represent the limit cycle in the FitzHugh-Nagumo model. The 

phase values are normalized by time so that 0 and 1 are both at the “peak of the action 

potential” which occurs when x1 is at its minimal value. A few other representative phase 

values are shown to show the time progression around the limit cycle
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Fig. 2. 
Gradient algorithm shapes random stimuli towards an optimal waveform. Here we show the 

progression of solutions as the gradient algorithm begins with a white-noise stimulus and 

finds the most energetically efficient solution over 100 iterations. The top panel shows the 

L2-norm trajectory over 100 iterations. The six panels show the evolving waveform at the 

1st, 5th, 10th, 20th, and 30th iteration of the algorithm. There is very little improvement 

between the 30th and the 100th iteration as seen in the L2-norm trajectory (top panel). By 

convention, positive current is depolarizing
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Fig. 3. 
The optimal stimulus derived from the gradient algorithm (top) triggers a single action 

potential in the Hodgkin-Huxley model (bottom)
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Fig. 4. 
Longer stimulus duration provides for more energetically efficient stimulus. Once the 

stimulus duration extends past a certain point, there is no further improvement in energy 

efficiency
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Fig. 5. 
The optimal waveforms change from a monophasic stimulus to a biphasic stimulus as the 

amount of time to action potential increases
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Fig. 6. 
Gradient algorithm is robust to the initial stimulus. The stimulus energy trajectories of 100 

different seeds with different amplitudes are shown

Chang and Paydarfar Page 25

J Comput Neurosci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7. 
Only certain phase regions converged when transitioning from quiescence to repetitive 

firing. The points that converged are marked in black, while those that failed are marked in 

red. For a definition of the phase, see Methods 2.4 and 2.5
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Fig. 8. 
Gradient algorithm finds multiple optimal solutions that induce a transition from quiescence 

to repetitive firing. The initial condition (quiescent fixed point) and the terminal condition (ϕ 

= 0) of the gradient algorithm are the same for both trials. The only difference is the initial 

randomly generated stimulus that is given to the gradient algorithm. The top panel shows the 

two optimal stimuli (green and blue), while the bottom panel shows the response from the x1 

variable in the FitzHugh-Nagumo model to the stimuli (matched green and blue). For a 

definition of the phase, see Methods 2.4 and 2.5
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Fig. 9. 
Trajectories of stimulus energy through 200 iterations of gradient algorithm show 

convergence to two waveforms. We ran 100 different randomly generated seeds with 

different scaling factors. The green and blue colors match the respective green and blue 

waveforms seen in Figure 8
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Fig. 10. 
Gradient algorithm reveals multiplicity in transitioning from repetitive firing to quiescence 

across different phases. The top panel shows the stimulus energy of the different optimized 

stimuli (8 ms duration) that induce transitions from different phases of repetitive firing to the 

quiescent fixed point. Specific examples of different solutions are shown in the bottom pane, 

labeled a through d. Note that b and c are solutions with the same starting phases. For a 

definition of the phase, see Methods 2.4 and 2.6
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Fig. 11. 
Random stimuli converge towards two different optimal stimuli that induce a transition from 

repetitive firing to quiescence. The trajectories of stimulus energy through 100 iterations of 

gradient algorithm are shown here. All of these stimuli start from the same starting phase (ϕ 

= 0.678). For a definition of the phase, see Methods 2.4 and 2.6
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Fig. 12. 
Gradient algorithm reveals different mechanisms of suppressing repetitive firing. The top 

panel shows the stimuli, the middle panel the x1 response to the stimuli. The bottom panel 

shows the entire state space response to both stimuli. As we can see, one stimulus (green) 

suppresses the system quickly, while the other stimulus (blue dashed) causes the system to 

run more quickly around the oscillatory state before entering into the quiescent state. The 

black line in the figure is marked to show the first course of the system without any 
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stimulation. This marks the limit cycle of the repetitive firing state. For a definition of the 

phase, see Methods 2.4 and 2.6
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