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Abstract

Neural oscillations can enhance feature recognition [1], modulate interactions between neurons 

[2], and improve learning and memory [3]. Numerical studies have shown that coherent spiking 

can give rise to windows in time during which information transfer can be enhanced in neuronal 

networks [4–6]. Unanswered questions are: 1) What is the transfer mechanism? And 2) how well 

can a transfer be executed? Here, we present a pulse-based mechanism by which a graded current 

amplitude may be exactly propagated from one neuronal population to another. The mechanism 

relies on the downstream gating of mean synaptic current amplitude from one population of 

neurons to another via a pulse. Because transfer is pulse-based, information may be dynamically 

routed through a neural circuit with fixed connectivity. We demonstrate the transfer mechanism in 

a realistic network of spiking neurons and show that it is robust to noise in the form of pulse 

timing inaccuracies, random synaptic strengths and finite size effects. We also show that the 

mechanism is structurally robust in that it may be implemented using biologically realistic pulses. 

The transfer mechanism may be used as a building block for fast, complex information processing 

in neural circuits. We show that the mechanism naturally leads to a framework wherein neural 

information coding and processing can be considered as a product of linear maps under the active 

control of a pulse generator. Distinct control and processing components combine to form the 

basis for the binding, propagation, and processing of dynamically routed information within neural 

pathways. Using our framework, we construct example neural circuits to 1) maintain a short-term 

memory, 2) compute time-windowed Fourier transforms, and 3) perform spatial rotations. We 

postulate that such circuits, with automatic and stereotyped control and processing of information, 

are the neural correlates of Crick and Koch’s zombie modes.
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INTRODUCTION

Accumulating experimental evidence implicates coherent activity as an important element of 

cognition. Since their discovery [7], gamma band oscillations have been demonstrated to 

exist in hippocampus [8–10], visual cortex [2, 7, 11], auditory cortex [12], somatosensory 

cortex [13], parietal cortex [14–16], various nodes of the frontal cortex [15, 17, 18], 

amygdala and striatum [19]. Gamma oscillations sharpen orientation [1] and contrast [20] 

tuning in V1, and speed and direction tuning in MT [21]. Attention has been shown to 

enhance gamma oscillation synchronization in V4, while decreasing low-frequency 

synchronization [22, 23] and to increase synchronization between V4 and FEF [17], LIP and 

FEF [15], V1 and V4 [24], and MT and LIP [25]; Interactions between sender and receiver 

neurons are improved when consistent gamma-phase relationships exist between two 

communicating sites [2].

Theta-band oscillations have been shown to be associated with visual spatial memory [26, 

27], where neurons encoding the locations of visual stimuli and an animal’s own position 

have been identified [26, 28]. Additionally, loss of theta gives rise to spatial memory deficits 

[29] and pharmacologically enhanced theta improves learning and memory [3].

These experimental investigations of coherence in and between distinct brain regions have 

informed the modern understanding of information coding in neural systems [30, 31]. 

Understanding information coding is crucial to understanding how neural circuits and 

systems bind sensory signals into internal mental representations of the environment, 

process internal representations to make decisions, and translate decisions into motor 

activity.

Classically, coding mechanisms have been shown to be related to neural firing rate [32], 

population activity [33–35], and spike timing [36]. Firing rate [32] and population codes 

[37–41] are two different ways for a neural system to average spike number to represent 

graded stimulus information, with population codes capable of faster and more accurate 

processing since averaging is performed across many fast responding neurons. Thus 

population and temporal codes are capable of making use of the sometimes millisecond 

accuracy [36, 42, 43] of spike timing to represent signal dynamics.

Although classical mechanisms serve as their underpinnings, new mechanisms have been 

proposed for short-term memory [5, 44, 45], information transfer via spike coincidence [4, 

46, 47] and information gating [6, 47–50] that rely on gamma- and theta-band oscillations. 

For example, the Lisman-Idiart interleaved-memory (IM) model [5], and Fries’s 

communication-through-coherence (CTC) model [47] both make use of the fact that 

synchronous input can provide windows in time during which spikes may be more easily 

transferred through a neural circuit. Thus, neurons firing coherently can transfer their 

activity quickly downstream. Additionally, synchronous firing has been used in Abeles’s 

synfire network [4, 46, 51–54] giving rise to volleys of propagating spikes.

The precise mechanism and the extent to which the brain can make use of coherent activity 

to transfer information have remained unclear. Previous theoretical and experimental studies 

have largely focused on feedforward, synfire chains [51, 53, 55–58]. These studies have 
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shown that it is possible to transfer volleys of action potentials stably from layer to layer, but 

that the waveform tends to an attractor with fixed amplitude. Therefore, in these models, 

although a volley can propagate, graded information, in the form of a rate amplitude cannot. 

Other numerical work has shown that it is possible to transfer firing rates through layered 

networks when background current noise is sufficient to effectively keep the network at 

threshold [59]. The disadvantage of this method is that there is no mechanism to control the 

flow of firing rate information other than increasing or decreasing background noise. 

Recently, it has been shown that external gating, similar, in principle, to that used in the IM 

model and to the gating that we introduce below, can stabilize the propagation of fixed 

amplitude pulses and act as an external factor to control pulse propagation [49, 50].

In the Methods section, we show that information contained in the amplitude of a synaptic 

current may be exactly transferred from one neuronal population to another, as long as well-

timed current pulses are injected into the populations. This mechanism is distinct from the 

synfire chains mentioned above that can only transfer action potential volleys of fixed 

amplitude, in contrast to [59], by using current pulses to gate information through a circuit, 

it provides a neuronal-population-based means of propagating graded information through a 

neural circuit.

We derive our pulse-based transfer mechanism using mean-field equations for a current-

based neural circuit (see circuit diagram in Fig. 1a) and demonstrate it in an integrate-and-

fire neuronal network. Graded current amplitudes are transferred between upstream and 

downstream populations: A gating pulse excites the upstream population into the firing 

regime thereby generating a synaptic current in the downstream population. For didactic 

purposes, we first present results that rely on a square gating pulse with an ongoing 

inhibition keeping the downstream population silent until the feedforward synaptic current is 

integrated. We then show how more biologically realistic pulses with shapes filtered on 

synaptic time-scales may be used for transfer. We argue that our mechanism represents 

crucial principles underlying what it means to transfer information. We then generalize the 

mechanism to the case of transfer from one vector of populations to a second vector of 

populations and show that this naturally leads to a framework for generating linear maps 

under the active control of a pulse generator.

In the Results section, we demonstrate pulse-gated transfer solutions in both mean-field and 

integrate-and-fire neuronal networks. We demonstrate the robustness of the mechanism to 

noise in pulse timing, synaptic strength and finite-size effects and show how biologically 

realistic pulses may be used for gating. We then go on to present three examples of circuits 

that make use of the framework for generating actively controlled linear maps.

In the Discussion section, we consider some of the implications of our mechanism and 

information coding framework, and future work.

METHODS

What are the crucial principles underlying information transfer between populations of 

neurons? First, a carrier of information must be identified, such as synaptic current, firing 
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rate, spike timing, etc. Once the carrier has been identified, we must determine the type of 

information, i.e. is the information analog or digital? Finally, we must identify what 

properties the information must exhibit for us to say that information has been transferred. In 

the mechanism that we present below, we use synaptic current as the information carrier. 

Information is graded and represented in a current amplitude and thus is best considered 

analog. The property that identifies information transfer is that the information exhibit a 

discrete, time-translational symmetry. That is, the waveform representing a graded current 

or firing rate amplitude in a downstream neuronal population must be the same as that in an 

upstream population, but shifted in time.

As noted in the Introduction, mechanisms exist for propagating constant activity that have 

demonstrated time-translational symmetries in both strong [51] and sparsely coupled [57] 

regimes. Here, we address a mechanism for propagation of graded activity.

An additional consideration for biologically realistic information transfer is that it be 

dynamically routable. That is, that neural pathways may be switched on the millisecond time 

scale. This is achieved in our mechanism via pulse gating.

Circuit Model

Our neuronal network model consists of a set of j = 1, …, M populations, each with i = 1, 

…, N, of current-based, integrate-and-fire (I&F) point neurons. Individual neurons have 

membrane potentials, υi,j, described by

(1a)

and feedforward synaptic current

(1b)

with total currents

(1c)

and VLeak is the leakage potential. The excitatory gating pulse on neurons in population j is

(2)

where θ(t) is the Heaviside step function: θ(t) = 0, t < 0 and θ(t) = 1, t > 0. The ongoing 

inhibitory current is .

Here, τ is a current relaxation timescale depending on the type of neuromodulator (typical 

time constants are τAMPA ~ 3 – 11 ms or τNMDA ~ 60 – 150 ms). Individual spike times, 

, with k denoting spike number, are determined by the time when the voltage υi,j 

reaches the threshold voltage, VThres, at which time the voltage is reset to VReset. We use 

units in which only time retains dimension (in seconds) [60]: the leakage conductance is 
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gLeak = 50/sec. We set VReset = VLeak = 0 and normalize the membrane potential by the 

difference between the threshold and reset potentials, VThres − VReset = 1. For the simulations 

reported here, we use  and . Synaptic background activity is 

modeled by introducing noise in the excitatory pulse amplitude via ε, where ε ~ N(0, σ2), 

with σ = 1/sec. The probability that neuron i in population j synapses on neuron k in 

population j + 1 is Pik = p. In our simulations, pN = 80.

This network is effectively a synfire chain with prescribed pulse input [4, 51, 53, 61, 62].

Mean-field Equations

Averaging (coarse-graining) spikes over time and over neurons in population j (see, e.g. 

Shelley and McLaughlin [60]) produces a mean firing rate equation given by

(3)

where gTotal = gLeak, and

The feedforward synaptic current, Ij+1, is described by

(4a)

The downstream population receives excitatory input, mj, with synaptic coupling, S, from 

the upstream population. As in the I&F simulation, we set, VReset = 0, and non-

dimensionalize the voltage using VThres − VReset = 1, so that

(4b)

This relation, the so-called f-I curve, can be approximated by

(5)

near I ≈ I0, where m′ (I0) ≈ 1 (here the prime denotes differentiation), and letting g0 = m′ 

(I0) I0 − m(I0) be the effective threshold in the linearized f-I curve.

Exact Transfer

We consider transfer between an upstream population and a downstream population, 

denoted by j = u and j + 1 = d.

For the downstream population, for t < 0, Id = 0. This may be arranged as an initial condition 

or by picking a sufficiently large , with
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(6)

At t = 0, the excitatory gating pulse is turned on for the upstream population for a period T, 

so that for 0 < t < T, the synaptic current of the downstream population obeys

(7)

Therefore, we set the amplitude of the excitatory gating pulse to be  to cancel 

the threshold. Making the ansatz Iu (t) = Ae−t/τ, we integrate

to obtain the expression

(8a)

During this time, ongoing inhibition is acting on the downstream population to keep it from 

spiking, i.e., we have

(8b)

For T < t < 2T, the downstream population is gated by an excitatory pulse, while the 

upstream population is silenced by ongoing inhibition. The downstream synaptic current 

obeys

(9a)

with

(9b)

so that we have

(9c)

and

(9d)

For exact transfer, we need Id (t − T) = Iu (t), therefore we write
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(10)

So we have exact transfer with

(11)

To recap, we have the solution, with Sexact,

(12a)

and

(12b)

A Synfire-Based Gating Mechanism

In our exact solution, gating pulses have biologically unrealistic instantaneous onset and 

offset. Therefore, it becomes important to understand how robust graded propagation can be 

for gating pulses of realistic shape, and is there a natural mechanism for their generation? To 

test the structural robustness of graded propagation with a known pulse-generating 

mechanism, we implemented an I&F neuronal network model with two sets of populations, 

one set had synaptic strengths such that it formed stereotypical pulses with fixed mean 

spiking profile and mean current waveform [51, 53]. The second set used these pulses, 

instead of square gating pulses, for current propagation. We call this neural circuit a Synfire-

Gated Synfire Chain (SGSC).

Individual I&F neurons in the SGSC have membrane potentials described by

(13a)

(13b)

(13c)

where i = 1, …, Nσ, j = 1, …, M and σ, σ′ = 1, 2 with 1 for the graded chain and 2 for the 

gating chain; individual spike times, , with k denoting spike number, are determined by 

Sornborger et al. Page 7

J Comput Neurosci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the time when  reaches VThres. The gating chain receives a noise current, , generated 

from Poisson spike times, , with strength f2 = 0.05 and rate ν2 = 400 Hz, i.e. a noise 

current averaging 20/sec that is subthreshold (given by gleak = 50/sec). The current  is 

the synaptic current of the σ population produced by spikes of the σ′ population. In the 

simulations reported in Results, τ = 5 msec and the synaptic coupling strengths are {S11, S12, 

S21, S22} = {2.28, 0.37, 0, 2.72}. The probabilities that a neuron in population σ′ synapses 

on a neuron in population σ are given by {p11, p12, p21, p22} = {0.02, 0.01, 0, 0.8}. The two 

chains have population size {N1, N2} = {1000, 100}. There was a synaptic delay of 4 ms 

between each successive layer in the gating chain.

Information Processing Using Graded Transfer Mechanisms

Because for our mechanism current amplitude transfer is in the linear regime, downstream 

computations may be considered as linear maps (matrix operations) on a vector of neuronal 

population amplitudes. For instance, consider an upstream vector of neuronal populations 

with currents, Iu, connected via a connectivity matrix K to a downstream vector of neuronal 

populations, Id:

(14)

With feedforward connectivity, given by the matrix K, the current amplitude, Id, from the 

mean-field model obeys

(15)

where pu(t) denotes a vector gating pulse on layer j. This results in the solution Id(t − T) = 

PKIu(t), where P is a diagonal matrix with the gating pulse vector, p, of 0s and 1s on the 

diagonal indicating which neurons were pulsed during the transfer.

For instance, if the matrix of synaptic weights, K, were square and orthogonal, the 

transformation would represent an orthogonal change of basis in the vector space ℝn, where 

n is the number of populations in the vector. Convergent and divergent connectivities would 

be represented by non-square matrices.

This type of information processing is distinct from concatenated linear maps in the sense 

that information may be dynamically routed via suitable gating. Thus, we can envision 

information manipulation by sets of non-abelian operators, i.e., with non-commuting matrix 

generators, that may be flexibly coupled. We can also envision re-entrant circuits or 

introducing pulse-gated nonlinearities into our circuit to implement regulated feedback.

Information Coding Framework

Our discussion has identified three components of a unified framework for information 

coding:

1. information content - graded current, I
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2. information processing - synaptic weights, K

3. information control - pulses, p

Note that the pulsing control, p, serves as a gating mechanism for routing neural information 

into (or out of) a processing circuit. We, therefore, refer to amplitude packets, I, that are 

guided through a neural circuit by a set of stereotyped pulses as “bound” information.

Consider one population coupled to multiple downstream populations. Separate downstream 

processing circuits may be multiplexed by pulsing one of the set of downstream circuits. 

Similarly, copying circuit output to two (or more) distinct downstream populations may be 

performed by pulsing two populations that are identically coupled to one upstream 

population.

In order to make decisions, non-linear logic circuits would be required. Many of these are 

available in the literature [61, 63]. Simple logic gates should be straight-forward to construct 

within our framework by allowing interaction between information control and content 

circuits. For instance, to construct an AND gate, use gating pulses to feed two sub-threshold 

outputs into a third population, if the inputs are (0, 0), (0, 1) or (1, 0), none of the combined 

pulses exceed threshold and no output is produced. However, the input (1, 1) would give rise 

to an output pulse. Other logic gates, including the NOT may be constructed, giving a 

Turing complete set of logic gates. Thus, these logic elements could be used for plastic 

control of functional connectivity, i.e. the potential for rapidly turning circuit elements on or 

off, enabling information to be dynamically processed.

RESULTS

Exact Transfer

In Fig. 1, we demonstrate our current amplitude transfer mechanism in both mean-field and 

spiking models. The neural circuit for one upstream and one downstream layer is shown in 

Fig. 1a. Fig. 1b and e show the exact, mean-field transfer solution for T = τ = 4 ms and T = 

2τ = 8 ms. Fig. 1c and f show corresponding transfer between populations of N = 100 

current-based, I&F neurons. Fig. 1d and g show mean currents computed from simulations 

of I&F networks with N = 100. Mean amplitude transfer for these populations is very nearly 

identical to the exact solution and, as may be seen, graded amplitudes are transferred across 

many synapses and are still very accurately preserved. Fig. 1h shows the exact mean-field 

transfer solution between populations gated for T/τ = 0.8 and T/τ = 1.2 with τ = 5 ms. Fig. 1i 

shows the corresponding transfer between populations of N = 100 I&F neurons. Fig. 1j 

shows how integration period, T, may be changed within a sequence of successive transfers 

within an I&F network with a value of Sexact that supports two different timescales.

This mechanism has a number of features that are represented in the analytic solution, Eqns. 

(11)–(12), and in Fig. 1: 1) Exact transfer is possible for any T and τ. This means that 

transfer may be enacted on a wide range of time scales. This range is set roughly by the 

value of Sexact. Roughly, 0.1 < T/τ < 4 gives S small enough that firing rates are not 

excessive in the corresponding I&F simulations. 2) τ sets the “reoccupation time” of the 

upstream population. After one population has transferred its amplitude to another, the 
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current amplitude must fall sufficiently close to zero for a subsequent exact transfer. 

Therefore, synapses mediated by AMPA (NMDA) may allow repeated exact transfers. 3) 

Pulse-gating controls information flow, not information content. As an example, one 

upstream population may be synaptically connected to two (or more) downstream 

populations. A graded input current amplitude may then be selectively transferred 

downstream depending on whether one, the other, or both downstream populations are 

pulsed appropriately. This allows the functional connectivity of neural circuits to be plastic 

and rapidly controllable by pulse generators. 4) Sexact has an absolute minimum at T/τ = 1, 

and, except at the minimum, there are always two values of T/τ that give the same value of 

S. This means, for instance, that an amplitude transferred via a short pulse may subsequently 

be transferred by a long pulse and vice versa (see Fig. 1h,i,j). Thus, not only may 

downstream information be multiplexed using pulse-based control, but the time scale of the 

mechanism may also be varied from transfer to transfer.

The means by which the mechanism can fail are also readily apparent: 1) The gating pulses 

might not be accurately timed. 2) Synaptic strengths might not be correct for exact transfer. 

3) The amplitude of the excitatory pulse  might not precisely cancel the effective 

threshold . 4) The mean-field approximation might break down due to too few 

neurons in the neuronal populations.

Robustness to Variability in Pulse Timing, Synaptic Strength and Finite Size Effects

In Fig. 2, we investigate mean current variability for the transfer mechanism in the spiking 

model due to the modes of failure discussed above for T/τ = 1 with τ = 4 ms. Fig. 2a shows 

the distribution of mean current amplitudes averaged over populations of N = 1000 neurons, 

calculated from 1000 realizations. Fig. 2b shows the distribution with just N = 100. Clearly, 

more neurons per population gives less variability in the distribution. The signal-to-noise 

ratio (SNR) decreases as the square-root of the number of neurons per population, as would 

be expected. Thus, for circuits needing high accuracy, neuronal recruitment would increase 

the SNR. Fig. 2c shows the distribution for N = 100 with 10% jitter in pulse start and end 

times. Fig. 2d shows the distribution for N = 100 with 2% jitter in synaptic coupling, S. Note 

that near T/τ = 1, Sexact varies slowly, thus the effect of both timing and synaptic coupling 

jitter on the stability of the transfer is minimal. Pulse timing, synaptic strengths, synaptic 

recruitment, and pulse amplitudes are regulated by neural systems. So mechanisms are 

already known that could allow networks to be optimized for graded current amplitude 

transfer.

A Synfire-Gated Synfire Chain

We examine our pulse-gating mechanism in a biologically realistic circuit. Instead of using 

square gating pulses with unrealistic on- and offset times, we show that we can use the 

synaptic current generated by a well-studied synfire chain model [51] to gate the synaptic 

current transfer. In the graded transfer chain, the downstream (d) population receives 

excitatory synaptic currents from both the upstream (u) population current and from the 

corresponding synfire (s) population (see Fig. 3a). Note that the synaptic currents generated 

by the synfire chain play the role of the gating pulse, allowing the upstream population to 
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transfer its current to the downstream population in a graded fashion. In Fig. 3b, we show 

that our circuit can indeed transfer a stereotypical synaptic current pulse in a graded fashion 

(3 current amplitudes shown) in an I&F simulation with M = 12 layers. By itself, the gating 

synfire population is dynamically an attractor, with firing rates of fixed waveform in each 

layer [51], producing a stereotypical gating current that is repeated across all layers (Fig. 

3d). Fig. 3c shows spike times in the populations transferring graded currents and Fig. 3e 

shows spike times in the gating populations.

These results (exact transfer in an analytically tractable mean-field model, the corresponding 

I&F neuronal network simulations, and the more biologically realistic SGSC model) 

demonstrate the structural robustness of our graded transfer mechanism. In these cases, a 

key essential theoretical mechanism was the time window of integration provided by a 

gating synaptic current (either put in by hand or generated intrinsically by a subpopulation 

of the neuronal circuit in the SGSC case). We note that, in neural circuits in vivo, time 

windows provided by gating pulses can be set and controlled by many mechanisms, for 

instance, time-scales of excitatory and inhibitory postsynaptic currents, absolute and relative 

refractoriness of individual neurons, time-scales in a high-conductance network state [64, 

65] and coherence of the network dynamics. Indeed, different parts of the brain may use 

different combinations of neuronal and network mechanisms to implement graded current 

transfer.

A High-Fidelity Memory Circuit

As a first complete example of how graded information may be processed in circuits using 

pulse-gating, we demonstrate a memory circuit using the mean-field model. Our circuit 

generalizes the IM model by allowing for graded memory and arbitrary multiplexing of 

memory to other neural circuits. Because it is a population model, it is more robust to 

perturbations than the IM model, which transfers spikes between individual neurons. It is 

different from the IM model in that our circuit retains only one graded amplitude, not many 

(although this could be arranged) [5]. However, our model retains the multiple timescales 

that generate theta and gamma oscillations from pulse gating inherent to the IM model [5]. 

Additionally, other graded memory models based on input integration [45, 66] make use of 

relatively large time constants that are larger even than NMDA timescales, whereas ours 

makes use of an arbitrary synaptic timescale, τ, which may be modified to make use of any 

natural timescale in the underlying neuronal populations, including AMPA or NMDA. Our 

model is based on exact, analytical expressions, and because of this, the memory is infinitely 

long-lived at the mean-field level (until finite-size effects and other sources of variability are 

taken into account).

The circuit has four components, a population for binding a graded amplitude into the circuit 

(‘read in’), a cyclical memory, a ‘read out’ population meant to emulate the transfer of the 

graded amplitude to another circuit, and an input population. The memory is a set of n 

populations coupled one to the other in a circular chain with one of the populations 

(population 1) receiving gated input from the read in population. Memory populations 

receive coherent, phase shifted (by phase T) pulses that transfer the amplitude around the 

chain. In this circuit, n must be large enough that when population n transfers its amplitude 
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back to population 1, population 1’s amplitude has relaxed back to (approximately) zero. 

The read out is a single population identically coupled to every other population in the 

circular chain. This population is repeatedly pulsed allowing the graded amplitude in the 

circular chain to be repeatedly read out.

In Fig. 4, we show an example of the memory circuit described here with n = 6. The gating 

pulses sequentially propagate the graded current amplitude around the circuit. The read out 

population is coupled to every other population in the memory. Thus, in this example, the 

oscillation frequency of the read out population is three times that of the memory 

populations, i.e. theta-band frequencies in the memory populations would give rise to 

gamma-band frequencies in the read out.

This memory circuit, and other circuits that we present below, has the property that the 

binding of information is instantiated by the pulse sequence and is independent of the 

information carried in graded amplitudes and also independent of synaptic processing. 

Because of the independence of the control apparatus from information content and 

processing, this neural circuit is an automatic processing pathway whose functional 

connectivity (both internal and input/output) may be rapidly switched on or off and coupled 

to or decoupled from other circuits. We propose that such dynamically routable circuits, 

including both processing and control components, are the neural correlates of automatic 

cognitive processes that have been termed zombie modes [67].

A Moving Window Fourier Transform

The memory circuit above used one-to-one coupling. It was simple in that information was 

copied, but not processed. Our second example demonstrates how more complex 

information processing may be accomplished within a zombie mode. With a simple circuit 

that performs a Hadamard transform (a Fourier transform using square-wave-shaped Walsh 

functions as a basis), we show how streaming information may be bound into a memory, 

then processed via synaptic couplings between populations in the circuit.

A set of read in populations are synaptically coupled to the input. A set of memory chains 

are coupled to the read in. The final population in each memory chain is coupled via a 

connectivity matrix that implements a Hadamard transform. Gating pulses cause successive 

read in and storing in memory of the input until the Hadamard transform is performed once 

the memory contains all successive inputs in a given time window simultaneously. Because 

the output of the Hadamard transform may be negative, two populations of Hadamard 

outputs are implemented, one containing positive coefficients, and another containing 

absolute values of negative coefficients.

In Fig. 5, we show a zombie mode where four samples are bound into the circuit from an 

input, which changes continuously in time. Memory populations hold the first sample over 

four transfers, the second sample over three transfers, etc. Once all samples have been bound 

within the circuit, the Hadamard transform is performed with a pulse on the entire set of 

Hadamard read out populations. While this process is occurring, a second sweep of the 

algorithm begins and a second Hadamard transform is computed.
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The connectivity matrix for the positive coefficients of the Hadamard transform was given 

by

and the absolute values of the negative coefficients used the transform −H.

A Re-entrant Spatial Rotation Circuit

Our final example makes use of plastic internal connectivity to perform an arbitrary set of 

rotations of a vector on the sphere. Three fixed angle rotations about the x, y and z axes are 

arranged such that the output from each rotation may be copied to the input of any of the 

rotations. Because the destination is determined by the pattern of gating pulses, this circuit is 

more general than a zombie mode with a fixed gating pattern because it is not automatic: 

manipulation of the rotations would be expected to occur from a separate routing control 

circuit (here, implemented by hand).

In Fig. 6, initial spatial coordinates of (1, 1, 1) were input to the circuit. The pulse sequence 

rotated the input first about the x-axis, then sequentially about y, z, x, z, y, y, z, x axes. Views 

from two angles illustrate the rotations that were performed by the circuit.

This circuit demonstrates the flexibility of the information coding network that we have 

introduced. It shows a complex circuit capable of rapid computation with dynamic routing, 

but with a fixed connectivity matrix. Additionally, it is an example of how a set of non-

commuting generators may be used to form elements of a non-abelian group within our 

framework.

DISCUSSION

The existence of graded transfer mechanisms, such as the one that we have found, points 

toward a natural modular organization wherein each neural circuit would be expected to 

have 1) sparsely coupled populations of neurons that encode information content, 2) pattern 

generators that provide accurately timed pulses to control information flow, and 3) 

regulatory mechanisms for maintaining optimal transfer.

A huge literature now exists implicating oscillations as an important mechanism for 

information coding. Our mechanism provides a fundamental building block with which 

graded information content may be encoded and transferred in current amplitudes, 

dynamically routed with coordinated pulses, and transformed and processed via synaptic 

weights. From this perspective, coherent oscillations may be an indication that a neural 

circuit is performing complex computations pulse by pulse.

Our mechanism for graded current transfer has allowed us to construct a conceptual 

framework for the active manipulation of information in neural circuits. The most important 
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aspect of this type of information coding is that it separates control of the flow of 

information from information processing and the information itself. This type of segregation 

has been made use of previously [5, 44, 49, 50] in mechanisms for gating the propagation of 

fixed amplitude waveforms. Here, by generalizing the mechanism to the propagation of 

graded information, active linear maps take prominence as a key processing structure in 

information coding.

The four functions that must be served by a neural code are [31, 68]: stimulus 

representation, interpretation, transformation and transmission. Our framework serves three 

of these functions, and we believe is capable of being extended to the fourth. From last to 

first: the exact transfer mechanisms that we have identified serve the transmission function; 

synaptic couplings provide the capability of transforming information; the pulse dependent, 

selective read out of information in part serves the interpretation function. In the examples 

that we showed above changes in pulse sequences were introduced by hand, but we argued 

in the Methods section that interaction of pulse chains should be able to achieve fully 

general decision making. Finally, read in populations, as we demonstrated in our examples, 

may be used to convert stimulus information into a bound information representation.

The current transfer mechanism is sufficiently flexible that the pulses used for gating may be 

of different durations depending on the pulse length, T, and the time constant, τ, of the 

neuronal population involved.

The separation of control populations from those representing information content 

distinguishes our framework from mechanisms such as CTC, where communication between 

neuronal populations depends on the co-incidence of integration windows in phase-coherent 

oscillations. In the CTC mechanism, information containing spikes must coincide to be 

propagated. In our framework, information containing spikes must coincide with gating 

pulses that enable communication. In this sense, it is ‘communication through coherence 

with a control mechanism’.

The separation of control and processing has further implications, one of which is that, as 

noted above, while a given zombie mode is processing incoming information, one does not 

expect the pulse sequence to change dependent on the information content. This has been 

seen in experiment, and presented as an argument against CTC in the visual cortex [69], but 

is consistent with our framework.

The basic unit of computation in our framework is a pulse gated transfer. Given this, we 

suggest that each individual pulse within an oscillatory set of pulses represents the transfer 

and processing of a discrete information packet. For example, in a sensory circuit that needs 

to quickly and repeatedly process a streaming external stimulus, short pulses could be 

repeated in a stereotyped, oscillatory manner using high-frequency gamma oscillations to 

rapidly move bound sensory information through the processing pathway. Circuits that are 

used occasionally or asynchronously might not involve oscillations at all, just a precise 

sequence of pulses that gate a specific information set through a circuit. A possible example 

of such an asynchronous circuit is bat echo-location, an active sensing mechanism, where 

coherent oscillations have not been seen [70].
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An important point to note is that, given a zombie mode that implements an algorithm for 

processing streaming input, one can straightforwardly predict the rhythms that the algorithm 

should produce (for instance in our examples, calculate power spectra of the current 

amplitudes.). This feature of zombie modes can provide falsifiable hypotheses for putative 

computations that the brain uses to process information.

Since, with our transfer mechanism, information routing is enacted via precisely timed 

pulses, neural pattern generators would be expected to be information control centers. 

Cortical pattern generators, such as those proposed by Yuste [71] or hubs proposed by 

Jahnke, et al. [49], because of their proximity to cortical circuits, could logically be the 

substrate for zombie mode control pulses. They would be expected to generate sequential, 

stereotyped pulses to dynamically route information flow through a neural circuit, as has 

been found in rat somatosensory cortex [72]. Global routing of information via attentional 

processes, on the other hand, would be expected to be performed from brain regions with 

broad access to the cortex, such as regions in the basal ganglia or thalamus.

Recent evidence shows that parvalbumin-positive basket cells (PVBCs) can gate the 

conversion of current to spikes in the amygdala [73]. Also, PVBCs and oriens lacunosum 

moleculare (OLM) cells have been implicated in precision spiking related to gamma- and 

theta-oscillations [43] and shown to be involved in memory-related structural-plasticity [74]. 

Therefore, zombie mode pattern generators would likely be based on a substrate of these 

neuron types.
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FIG. 1. 
Exact current transfer - Mean-field and I&F: a) Circuit diagram for the current transfer 

mechanism. Excitatory pulse gating the upstream (u) population and ongoing inhibition 

acting on the downstream (d) population. The upstream population excites the downstream 

population and transfers its current. b, e) Dynamics of a single current amplitude transfer 

with T/τ = 1 and T/τ = 2 with τ = 4 ms. Dashed red traces represent the growth and 

exponential decay of three different current amplitudes, Iu(t), in the upstream population. 

Dashed blue traces represent excitatory firing rates of the upstream population. Solid red 

traces represent the integration and subsequent decay of the downstream current, Id(t). 

Dashed magenta traces represent the excitatory gating pulse current to the upstream 

population. Magenta traces are displaced from zero for clarity. c, f) Dynamics of two N = 

100 neuron populations of current-based, I&F neurons showing current amplitude transfer 

averaged over 20 trials. d, g) Mean current amplitudes of twelve current-based, I&F 

neuronal populations (N = 100 neurons/population, averaged over 20 trials) successively 

transferring their currents. Below each of these panels is a plot of one realization of the spike 

times for all neurons in each respective population. h) Dynamics of a single current 

amplitude transfer between two gating periods, with T/τ = 0.8 and T/τ = 1.2. i) Dynamics of 

two N = 100 neuron populations showing current amplitude transfer with the same gating 

periods as in i). j) Five graded current amplitude transfers between six populations with T/τ 
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= 0.8, followed by a transfer to T/τ = 1.2, followed by five equally graded transfers with T/τ 

= 1.2.
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FIG. 2. 
Sources of variability in the current transfer mechanism: Distributions of mean current 

amplitudes from current-based, I&F neuronal simulations. a) N = 1000. b) N = 100. c) N = 

100 with the start and end times of each pulse jittered uniformly by 10% of the pulse width. 

d) N = 100 with synaptic coupling, S, jittered uniformly by 2%. Gray scale: White denotes 0 

probability, Black denotes probability maximum. All distributions sum to unity along the 

vertical axis. Red curves in all panels denote the mean.
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FIG. 3. 
A Synfire-Gate Synfire Chain (SGSC). a) Neural circuit for an SGSC. b) Mean synaptic 

current amplitudes (N = 1000 neurons) in a graded synfire chain receiving gating pulses 

from a synfire chain with coupling set such that it generates constant amplitude pulses 

(gating synfire chain). c) Action potentials from one realization of the graded synfire chain. 

d) Mean synaptic current amplitude (N = 100 neurons) from spikes of a gating chain. e) 

Action potentials from one realization of the gating chain. The mean currents are averaged 

over 50 realizations.
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FIG. 4. 
Memory circuit maintaining a single graded current amplitude. (Left) Connectivity Matrix. 

White denotes 0 entries and black denotes 1s. The connectivity matrix is subdivided into 

four sets of rows. “Input” designates filtered input from an outside source. The first row 

connects the “Read In” population to the input. The Read In population transduces the 

filtered input into a graded current packet that then propagates through the memory circuit. 

The “Cyclic Memory” contains cyclically connected, feedforward populations around which 

the graded packet is propagated. The “Read Out” population is postsynaptic to every other 

population in the Cyclic Memory and may be used to transfer graded packets at high 

frequencies to another circuit. (Middle) Gating Pulses. White denotes 0, black denotes g0, 

the firing threshold. T/τ = 8. This sequence of gating pulses is used to bind and propagate 

the graded memory. Time runs from top to bottom. We show three complete cycles of 

propagation. The initial pulse on the Read In population binds the filtered input. The 

subsequent pulses within the cyclic memory rotate the packet through the memory 

populations. The pulses in the Read Out population copy the memory to a distinct 

population, which could be in another circuit. (Right) Current Amplitudes. White denotes 0, 

black denotes the maximum for this particular current packet. The input is transduced into 

the Read In population after time 0 (upper left of panel). The memory is subsequently 

propagated through the circuit and copied from every other population to the Read Out.
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FIG. 5. 
4 × 4 Hadamard transform on a window of input values moving in time. (Left) Connectivity 

Matrix. White denotes −1/2, light gray denotes 0, dark gray denotes 1/2, and black denotes 

1. The connectivity matrix is subdivided into three sets of rows. “Memory” designates Read 

In and (non-cyclic) Memory populations. “Hadamard” designates populations for the 

calculation of Hadamard coefficients. Because the packet amplitudes can only be positive, 

the Hadamard transform is divided into two parallel operations, one that results in positive 

coefficients and one that results in absolute values of negative coefficients. “Input” 

designates filtered input from an outside source. (Middle) Gating Pulses. White denotes 0, 

black denotes g0. T/τ = 2. Time runs from top to bottom. We show the computation for two 

successive windows, each of length 4T. The pulses transduce the input into four memory 

chains of length 4T, 3T, 2T and T. Thus, four temporally sequential inputs are bound in four 

of the memory populations beginning at times t = 4, 8T. Hadamard transforms are performed 

beginning at t = 5, 9T. Note that the second read in starts one packet length before the 

Hadamard transform so that the temporal windows are adjacent. (Right) Current 

Amplitudes. White denotes 0, black denotes the maximum current amplitude. Purple 

outlines denote Read In, red denote Memory and blue denote Hadamard transform 

populations. The left four Hadamard outputs are positive coefficients. The right four are 

absolute values of negative coefficients. The sinusoidal input waveform is shown to the 

right.
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FIG. 6. 
Spatial rotation of three-dimensional coordinates. (Left, Top) A diagram of the circuit. 

Diamonds represent spatial rotation about the given axis, x, y, or z, by angle 2π/10. Rx takes 

coordinates 1, 2 and 3 as input and outputs 4, 5 and 6. Ry takes 7, 8 and 9 as inputs and 

outputs 10, 11 and 12. And Rz takes 13, 14 and 15 as input and outputs 16, 17 and 18. 

Outputs may be routed to any of Rx, Ry or Rz giving a reentrant circuit. (Left, Bottom) 

Connectivity Matrix. Light gray denotes −sin (2π/10), gray denotes 0, dark gray denotes sin 

(2π/10), black denotes 1, with some black squares representing cos (2π/10) indistinguishable 
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from 1. Input may be read into 1, 2 and 3 only. Outputs of the rotations may be read into any 

of (1, 2, 3), (7, 8, 9) or (13, 14, 15) and subsequent rotations performed on these amplitudes. 

(Middle) Gating Pulses. White denotes 0, black denotes g0. T/τ = 3. Time runs from top to 

bottom. We show read in, then routing of the coordinates through Rx, Ry, Rz, Rx, Rz, Ry, Ry, 

Rz, and Rx, successively. (Right) Current Amplitudes. Initially uniform coordinates (x, y, z) = 

(1, 1, 1), are successively rotated about the various axes. (Bottom) Two views of the 

coordinates connected by geodesics as they are rotated.
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