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Abstract

We study the memory performance of a class of modular attractor neural net-
works, where modules are potentially fully-connected networks connected to each
other via diluted long-range connections. On this anatomical architecture we store
memory patterns of activity using a Willshaw-type learning rule. P patterns are split
in categories, such that patterns of the same category activate the same set of modules.
We first compute the maximal storage capacity of these networks. We then investi-
gate their error-correction properties through an exhaustive exploration of parameter
space, and identify regions where the networks behave as an associative memory de-
vice. The crucial parameters that control the retrieval abilities of the network are (1)
the ratio between the number of synaptic contacts of long- and short-range origins (2)
the number of categories in which a module is activated and (3) the amount of local
inhibition. We discuss the relationship between our model and networks of cortical
patches that have been observed in different cortical areas.

1 Introduction

Attractor neural networks have been used extensively to model memory phenomena in
the brain (e.g. Hopfield, 1982; Amit, 1989; Wang, 2001; Brunel, 2005). In these models
a memory is represented by a pattern of activity that is able to self-sustain, thanks to
recurrent connectivity, in the absence of any external stimulus. They naturally possess as-
sociative properties. For instance if an incomplete pattern of activity representing part of
a memory is presented to the network, it will use recurrent connectivity to reconstruct the
complete memory pattern. Moreover, attractor dynamics naturally account for the phe-
nomenon of persistent activity observed in electrophysiological recordings across differ-
ent cortical areas during working memory tasks (Fuster and Alexander, 1971; Miyashita,
1988; Funahashi et al., 1989; Miller et al., 1996; Romo et al., 1999).

Most modeling studies have focused on densely connected networks (where a large
fraction of the connections between neurons can be shaped by the stored memories),
which are appropriate for small cortical networks at the scale of a few hundred mi-
crons (Hellwig, 2000; Kalisman et al., 2005). Other studies have introduced a probability
of connection that depends on the distance between neurons (Roudi and Treves, 2004,
2006), which allows to take into account the fact that the connection probability decreases
with distance as has been shown for networks of larger sizes (Hellwig, 2000). When ob-
served at larger scale, cortical connectivity is not randomly distributed with a distance-
dependent parameter, but rather shows a non-trivial structure. For instance, Pucak et al.
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(1996) have shown that connectivity from/to patches of pre-frontal cortex of monkeys of a
few hundred microns send/receive connections from other discrete patches of cortex that
have the shape of stripes of sizes of a few hundred microns. One patch is connected to
about 15-20 other patches in the same or neighboring areas via grey matter connections,
and at least 15-20 other patches connected via white matter connections. Other experi-
mental studies have identified such a patchy connectivity in sensory cortices (DeFelipe
et al., 1986; Gilbert and Wiesel, 1989; Bosking et al., 1997). A few modeling studies have
investigated associative memory properties of networks that implement a dichotomy be-
tween dense local connectivity and sparse long-range connectivity (O’Kane and Treves,
1992; Mari and Treves, 1998; Kropff and Treves, 2005; Johansson and Lansner, 2007).

In the present work, we study modular networks whose modules are fully connected
networks (short-range connections) connected through long-range diluted connections.
In order to match available experimental data, we impose that the numbers of short-range
and long-range connections onto a neuron are of the same order (Braitenberg and Schütz,
1991; Stepanyants et al., 2009). We model these networks with binary neurons and binary
synapses, for which the storage properties of fully-connected networks have already been
extensively characterized (Willshaw et al., 1969; Knoblauch et al., 2010; Dubreuil et al.,
2014). For such models, the distribution of the total synaptic input onto neurons can be
expressed analytically, which allows to probe their associative memory properties. Dur-
ing a learning phase, the storage of patterns of activity is implemented using a Willshaw
learning rule, that potentiates a fraction of the pre-existing synapses. The patterns of
activity, or memories, that are stored reflect the modular architecture, in the sense that
each of the memory consists in the activation of only a subset of the modules. Moreover,
patterns are split in categories: two patterns in the same category share the same active
modules. This is consistent with MRI studies which show that visually perceived ob-
jects that are semantically close to each other are represented in a similar manner on the
cortical surface (Huth et al., 2012).

After defining our model, we describe the method that we use to quantify its stor-
age capacity. We then apply this method to compute the maximal storage capacity the
networks can reach when no associative properties are required. We then define three
canonical error-correction tasks to be performed by the network, delimit the parameter
regions where satisfactory associative properties are reached, and quantify the storage
capacity in these regions. Last, we discuss in more detail the link between our model and
cortical networks with patchy connectivity.

2 Network model and methods

We consider a network of M modules of N binary neurons connected through a binary
connectivity matrix. Below we describe the dynamics of the network, specify the charac-
teristics of the patterns of activity that are stored by the network, and describe the con-
nectivity matrix that underlie the storage of these patterns.

2



2.1 Dynamics

The activity of neuron i in module m (i = 1...N ;m = 1...M) is described by a binary
variable Si,m = 0, 1, that evolves in time according to

Si,m(t+ 1) = Θ [hi,m(t)− θfN ] , (1)

where

hi,m(t) = hli,m(t) + hei,m(t) =
N∑
j=1

Wm,m
ij Sj,m +

∑
n6=m

N∑
j=1

Wm,n
ij Sj,n (2)

is the total synaptic input on neuron (i,m), i.e. the sum of a local field hli,m(t) resulting
from the activity of neurons belonging to the same module and an external field hei,m(t)
resulting from the activity of neurons belonging to other modules. θ = O(1) is an acti-
vation threshold, Θ is the Heaviside function, Wm,m

ij is the efficacy of the synapse from
neuron j to neuron i (both belonging to the same module m), while Wm,n

ij is the the effi-
cacy of the synapse from neuron j in module n to neuron i in module m.

2.2 Structured sparse memories

The learning process is assumed to have led to the storage of P patterns of activity (net-
work states). A given network state, or pattern, is said to be stored if it is a fixed point
of the dynamics (1). The activity of neuron i in module m in pattern µ, Ξµ

i,m, is a binary
0,1 variable given by the product of two binary variables, a macroscopic term Ξµ

m and a
microscopic term ξµi,m

Ξµ
i,m = Ξµ

mξ
µ
i,m ∈ {0, 1} (3)

At the macroscopic scale, a fraction F (macroscopic coding level) of the modules are
active in each pattern,

M∑
m=1

Ξµ
m = FM (4)

At the microscopic scale, a fraction f (microscopic coding level) of the neurons are
active in any active module m

N∑
i=1

ξµi,m = fN (5)

Patterns are split in P categories, with p patterns in each category (P = pP). Patterns
belonging to the same category have the same set of active modules.
We further impose that each module m is involved in the same number

c = PF (6)

of categories, this leads to the constraint that PF should be an integer. Fixing this num-
ber for each module rather than letting it fluctuate from module to module, is the optimal
choice in terms of storage. In section 4.3 we discuss the effects on storage capacity of fluc-
tuations in numbers of active neurons/modules per pattern, and numbers of categories
encoded per module.
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2.3 Connectivity

The connection Wmn
ij from neuron (j, n) to neuron (i,m) is described by a binary vari-

able ∈ {0, 1}. The storage capacity of fully-connected networks of binary synapses has
been extensively characterized (Willshaw et al., 1969; Knoblauch et al., 2010; Dubreuil
et al., 2014). We can thus use these studies as a benchmark to which the storage capacity
of modular networks can be compared. The connectivity between these two neurons is
determined by two factors, learning and architectural constraints. As a result, Wmn

ij is a
product of two terms,

Wmn
ij = wmnij d

mn
ij with wmnij , d

mn
ij ∈ {0, 1} (7)

The learning term wmnij follows a Willshaw type learning rule (Willshaw et al., 1969):
the learning variables are initialized with wmnij = 0 and after a learning phase where pat-
terns are imposed on the network, they are switched to wmnij = 1 if there exists at least one
pattern µ such that Ξµ

i,m = Ξµ
j,n = 1.

The architectural constraint described by dmnij is an asymetric dilution term (dmnij is not
necessarily equal to dmnji ). We consider networks with potentially fully connected mod-
ules (dmmij = 1 for all i, j,m), that is every local synapse Wmm

ij can be potentiated during
the learning phase. This models the fact that local cortical circuits could be potentially
fully connected, in the sense that the axon of any neuron touches (i.e. passes <2µm by)
the dendritic tree of all nearby neurons (Kalisman et al., 2005; Hellwig, 2000). For the con-
nectivity between modules, we distinguish two cases. If two modules m and n are never
co-activated in a pattern, then long-range connections do not exist between these modules
(dmnij = 0 for all i, j). If there exists one category in which m and n are co-activated,

dmnij =

{
1 with probability D

N

0 with probability 1− D
N
.

(8)

This implies that neuron (i,m) receives on average D connections from module n. In
order to match available experimental data (Braitenberg and Schütz, 1991; Stepanyants
et al., 2009), the amount of dilution D

N
is chosen such that a given neuron in module m

receives a number of contacts from axons originating in remote modules (n 6= m) that is
of the same order than the number of contacts from axons originating in the local module
m. To quantify this, we introduce the parameter γ, defined as the ratio between the num-
ber of long-range contacts, and the number of short-range contacts. With the previously
introduced parameters,

γ =
rMD

N
, (9)

where r = 1 − (1 − F 2)P is the fraction of pairs of modules that have been co-activated
at least once during the learning phase. The numerator is then the number of contacts
that originate from long-range connections, while the denominator N is the number of
contacts that originate from short-range connections. The architecture of the model is
described schematically in Fig. 1A-B.
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Figure 1: Computing the number of patterns that can be stored in modular networks. After the
learning phase using the Willshaw learning rule, the network is set in one of the stored patterns
~Ξµ0 , which is said to be stored if it is a stable fixed point of the network dynamics. A. Connectivity
onto a foreground neuron for the memory µ0 (red circle). Connections shown in green create feed-
back loops between foreground neurons which stabilizes pattern ~Ξµ0 . Black connections from silent
neurons do not influence the stability of this network state, they have been potentiated during the
presentation of a pattern µ 6= µ0. B. Connectivity onto background neurons (red circles), one
that belong to a module active in pattern ~Ξµ0 and another one that belong to an inactive module.
Connections onto these neurons result from the presentation of other patterns µ 6= µ0 in which
these neurons are active. The blue and magenta connections from foreground neurons provide
excitation to this neuron, which can potentially destabilize ~Ξµ0 . C. The stability of a pattern can
be assessed by evaluating the probability distributions of the inputs on background neurons (blue
and magenta) and on foreground neurons (green). A tested pattern is stable if the probability that
inputs of all background neurons to be above the activation threshold θ, as well as the probability
that inputs of all foreground neurons to be below the activation threshold, are vanishingly small
in the large N , M limits. When more patterns are stored in the synaptic matrix (from P1 to
P2 > P1), the distribution of inputs on background neurons shifts its mean towards θ and gets
wider. Evaluating storage capacity consists in computing the largest P for which a tested pattern
is stable.
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2.4 Scaling of parameters

In the large N limit networks of binary synapses have non-vanishing storage capacity
if the microscopic coding level scales as f ∝ lnN

N
(Willshaw et al., 1969; Nadal, 1991;

Knoblauch et al., 2010; Dubreuil et al., 2014). To work in this regime we introduce the
parameter β

f = β
lnN

N
with β = O(1) (10)

In a previous study of modular attractor networks, Mari and Treves (1998) have shown
that if the macroscopic coding level F goes to zero when the number of modules becomes
large, the number of patterns stored in the network increases with M . We will also study
our networks in this regime. We will show that similar storage capacities are reached in
both cases FM → ∞ and FM = O(1). Furthermore, for the following calculations to be
valid, we assume that F is sufficiently small to have FM � N .

Finally, we have to specify how patterns are split in categories. An inspection of the
terms quantifying the fraction of synaptic contacts activated during the learning phase
allows us to anticipate which of the different regimes (p = O(1),P → ∞ ; p → ∞,P =
O(1) or p → ∞,P → ∞) leads to largest storage capacity. After the learning phase, the
fraction of short-range synaptic weights wmmij that have been switched to 1 during the
learning phase is 1 − (1 − f 2)FpP , and the fraction of long-range synaptic weights wmnij
(describing a pair of modules that have been co-activated at least once) that have been
switched to 1 during the learning phase is 1 − (1 − f 2)p(1+PF 2). Both fractions should
tend to a value ∈]0, 1[, otherwise storage will be suboptimal: if one of this fraction is 0,
a vast majority of the corresponding synapses are in their silent state, and therefore the
connectivity matrix contains a vanishing information about the set of stored patterns as
they do not participate in shaping the synaptic currents of specific patterns ; the same is
true when the fraction is 1. Inspection of the expressions above with the scalings f ∝ lnN

N

and F → 0 leads to the conclusion that the optimal situation is reached for P ∝ 1
F
→∞,

and p ∝ 1
f2
→ ∞, i.e. each module is involved in a finite number of categories (see

equation (6)), with a number of patterns in each category that can be measured by what
we define as the storage load α

α = pf 2 (11)

With PF = c = O(1) and F → 0 the expression of γ introduced in equation (9) is

γ = cFM
D

N
, (12)

which sets the amount of dilution of the long-range connections, since we keep γ of
order 1.

We thus focus on the regimes:

• N �M →∞;

• f = β lnN
N

and F → 0, with FM = O(1) or FM → +∞ and FM � N ;
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• pf 2 = α = O(1) and PF = c = O(1)

• γ = O(1) with D
N

= O( 1
FM

)

2.5 Analytical methods

Our method consists in computing the distribution of inputs to different types of neurons
of the network. From these distributions, we assess the stability of learned patterns and
compute the storage capacity. An intuitive picture is given in figure 1C.

After the learning phase, we choose one of the P presented patterns ~Ξµ0 , set the net-
work in a state corresponding to this pattern ~S = ~Ξµ0 , and test whether it is a fixed point
of the dynamics (1).

The stability of pattern ~Ξµ0 is assessed by computing the probability Pne that the fields
on all neurons are on the right side of the activation threshold θfN (see figure 1C for an
illustration). To do so, we have to distinguish between three types of neurons: foreground
neurons (neurons (i,m) such that Ξµ0

i,m = 1, figure 1A), background neurons that belong
to an active module ((i,m) such that Ξµ0

i,m = 0 but Ξµ0
m = 1, figure 1B) and background

neurons that belong to an inactive module ((i,m) such that Ξµ0
i,m = 0 and Ξµ0

m = 0). The
probability of ~Ξµ0 being a fixed point of (1) can be written

Pne =
(
1− P(hi,m ≤ fNθ |Ξµ0

i,m = 1)
)FMfN

×
(
1− P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 1)

)FM(1−f)N

×
(
1− P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 0)

)(1−F )MN (13)

In the limit of large networks and for a sparse microscopic coding level, these proba-
bilities take the form (see Appendix)

P(hi,m ≤ fNθ |Ξµ0
i,m = 1) = exp

[
−fNΦf + o(fN)

]
P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 1) = exp

[
−fNΦb + o(fN)

]
P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 0) = exp

[
−fNΦb′ + o(fN))

]
(14)

where the Φ’s are rate functions that describe the behavior of the tails of the relevant
probability distributions (Φf : foreground neurons ; Φb: background neurons in active
modules ; Φb′ : background neurons in silent modules). These rate functions depend on
network parameters, pattern parameters and the number of stored patterns P . Eqs. (14)
allow to rewrite Pne as

Pne = exp [− exp(Xs)− exp(Xn)− exp(Xn′)] (15)

with

Xs = −βΦf lnN + o(lnN) +O(lnFM)

Xn = −βΦb lnN + lnN + o(lnN) +O(lnFM)

Xn′ = −βΦb′ lnN + lnN + o(lnN) +O(ln(1− F )M) (16)
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For Pne to go to 1 in the large N limit, we need all X’s to go to −∞ in that limit. Given
FM � N , this will be satisfied provided that

Φf (θ) > 0 (17)

and

Φb(θ) >
1

β
. (18)

Inequality (17) is illustrated schematically in figure 1C: the activation threshold θ has
to be chosen such that inputs to the FMfN foreground neurons drawn from the green
distribution are above θ. Inequality (18) is also illustrated in figure 1C: the activation
threshold θ has to be chosen large enough, such that inputs to the FM(1 − f)N back-
ground neurons belonging to active modules drawn from the blue distribution are below
θ. There is no inequality involving the rate function related to errors in modules that are
silent because the probability to activate a neuron in these modules is much lower than
the one to activate neurons in active modules that receive local noise on top of external
noise, as can be seen from equation (67) in the Appendix, which implies that we always
have βΦb′ lnN � lnM for FM � N . This is schematically represented in figure 1C
by the fact that the average of magenta distributions of inputs (on background neurons
in inactive modules) are further away from the activation threshold θ than are the blue
distributions of inputs (on background neurons in active modules).

For a given set of parameters (β, c, γ, F ), one can thus find the maximal number of
patterns Pmax that can be imprinted in the synaptic matrix while keeping pattern ~Ξµ0 a
fixed point of the dynamics. To do so, we saturate the two above inequalities. Inequality
(17) is saturated by taking an activation threshold θ that goes to 〈hi,m |Ξµ0

i,m = 1〉 in the
large N limit. The threshold can be chosen in this way because the number of foreground
neurons scales as lnN (Dubreuil et al., 2014). Inequality (18) is saturated by choosing a
storage load α = αmax such that Φb ' 1

β
. Then from equations (6),(11),

Pmax =
αmax
β2

c

F

(
N

lnN

)2

(19)

We define the storage capacity of the network (see e.g. Nadal (1991); Knoblauch et al.
(2010)) as

I =
PmaxIpattern

Np

(20)

where

Ipattern = MFN (−f ln2 f − (1− f) ln2(1− f))

+
P

Pmax
M (−F ln2 F − (1− F ) ln2(1− F )) (21)

is the information content (entropy) of each pattern. The term on the first line is the con-
tribution from the microscopic structure, and the other term is the contribution from the
macroscopic structure. The factor P

Pmax
is due to the fact that there exists only P , not Pmax
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macroscopic patterns (i.e. categories). This expression is a generalization of the entropy
of the distribution of patterns N (−f ln2 f − (1− f) ln2(1− f)) used to define storage ca-
pacity in networks storing unstructured patterns. The denominator of (20),

Np = MN2 +M(M − 1)N2r
D

N
' MN2(1 + γ) (22)

is the number of modifiable synapses, i.e. the amount of physical substrate used to store
patterns. I can be thought of as the total amount of information stored in the network, in
bits per modifiable synapse (but see Discussion).

With parameters scaling as described in section 2.4, and using the definitions (5)-(6),
the storage capacity can be rewritten

I =
1

ln 2

αmaxc

β(1 + γ)
(23)

where αmax can be computed for a fixed set of parameters (c, β,γ,FM ) using the method
described in 3.1.

3 Results

We now apply the method described above to quantify the storage properties of these
modular networks for different values of the parameters. We first compute the maximal
storage capacity that can be reached by modular networks, and then study their error-
correction properties.

3.1 Maximal storage capacity

In this section, the network state is initialized in one of the stored pattern ~Ξµ0 and we
find the largest P such that this network state is stable under the dynamics given by eq.
(1). From this value of P we compute the storage capacity I . The stability of a pattern is
assessed by expressing the fields hfi,m and hbi,m on foreground and background neurons.
The averages of these fields are

〈hfi,m〉 = fN + FMfD = fN(1 +
γ

c
)

〈hbi,m〉 = fNg + FMfDG = fN(g +
γ

c
G) (24)

where
g = 1− (1− f 2)pPF '

f→0
1− exp(−αc) (25)

is the fraction of short-range synapses wmmij that have been switched to 1 during learning
and

G = 1− (1− f 2)p(1+PF 2) '
f,F→0

1− exp(−α) (26)
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Figure 2: Storage capacity of modular networks. A. Storage capacity in the regime FM → ∞
as a function of γ, the ratio between the numbers of synaptic contacts from long-range and short-
range origins. It is plotted for different values of c, the number of categories in which a module is
activated. B. Storage capacity as a function of c, the number of categories in which each module
is involved. C. Storage capacity as a function of FM = O(1), the number of active modules in
memory patterns. For each value of c dashed lines mark the capacity in the limit FM → +∞ for
γ = 1.

is the fraction of long-range connections wmnij , m 6= n, that have been switched to 1 during
learning for two modules m and n that have been co-activated at least once. In (26),
α is the storage load defined in (11). As can be seen from equations (25),(26), and as
illustrated on figure 1C, when the number of stored patterns is increased, the mean of the
distribution of hbi,m shifts towards the mean of the distribution of hfi,m and it becomes more
difficult to find an activation threshold separating these two inputs. In order to assess the
stability of pattern ~Ξµ0 , we express the distribution of the inputs via the rate functions
(65),(66) when FM � 1 and (68),(69) when FM = O(1), and apply the method described
in the ’Methods’ section. The storage capacity is then expressed for given values of c, β,
γ using equation (23) and choosing α that saturates inequality (18), while the activation
threshold is chosen as large as possible to saturate inequality (17). Given the expression
of the rate functions describing the field on selective neurons, we can choose θ → 〈hfi,m〉
for all neurons. Note that we have only discussed the fields on background neurons that
belong to active modules. For background neurons in silent modules their average field
is

〈hb′i,m〉 = FMfDG′ = fN
γ

c
G′ (27)

where
G′ = 1− (1− f 2)pPF 2 '

f,F→0
αcF (28)

is the fraction of long-range connections wmnij , m 6= n, that have been switched to 1 during
learning for two randomly chosen modules. As mentioned in the ’Methods’ section, these
neurons do not constraint storage capacity because the field they receive is small due to
the absence of local inputs and to the fact that G′ vanishes in the limit F → 0.

With the scaling introduced above, we find that I is non-zero, which means that the
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maximal number of patterns Pmax that can be stored scales as

Pmax ∝
1

F

(
N

lnN

)2

(29)

In figure 2A, we plot the value of the storage capacity (23) as a function of γ for dif-
ferent values of c, the number of categories in which a module is activated as defined in
equation (6), and the scaling FM → +∞. For each (γ, c) we choose the value of β that
maximizes I . In practice the optimization over β is performed in two steps: for a range of
values of the storage load α, the value of β that saturates inequality (18) is chosen using
the expression of Φ given in the Appendix ; and the pair (α, β) that maximizes I according
to (23) is kept. For small γ (most of the connections are short-range) I = 0.69, which cor-
responds to the storage capacity of a fully-connected Willshaw network (Willshaw et al.,
1969; Knoblauch et al., 2010; Dubreuil et al., 2014). For large values of γ (most of the
connections are long-range), I = 0.26, the storage capacity of a highly-diluted Willshaw
network as shown in the Appendix. In between these two limits, the storage capacity in-
terpolates between the limits of a fully connected network and a highly diluted network,
similar to a previous model of modular attractor network (O’Kane and Treves, 1992). The
same trend is observed when different numbers of categories are involved in each module
(i.e. different values of c). For c→ +∞, the curve shows a discontinuity in its derivative,
which is due to the fact that in this limit we have either g = O(1) and G → 0 (a vanish-
ingly small fraction of information stored on long-range synaptic connections), or g → 1
(a vanishingly small fraction of information stored on short-range synaptic connections)
and G = O(1). For low values of γ, storage capacity is optimized by using short-range
connections (g = O(1) and G → 0), while for large values of γ it is optimized by using
long-range connections (g → 1 and G = O(1)).
Figure 2B shows the storage capacity as a function of c, the number of categories in which
each module is active. Interestingly, storage capacity depends non-monotonically on c,
with an optimum at c = 10, 6, 4 for γ = 1

2
, 1, 2.

We have also studied the case FM = O(1) and found that on a broad range of values
of FM , the storage capacity is very similar to the case FM → ∞ as shown in figure 2C,
where γ = 1. A similar behavior is obtained for other values of γ. Note that with this
scaling, the maximal number of stored patterns is proportional to the number of modules
Pmax ∝M

(
N

lnN

)2.
3.2 Error-correction capabilities of the modular network

We have shown in the previous section, that networks with γ → 0 are optimal for storage
capacity. The extreme case γ = 0 corresponds to a network with exclusively local connec-
tions. An important drawback of such a network is there is no communication between
modules. This will be fine in the case where the network state is initialized in a state that
exactly correspond to a stored pattern, but can be problematic if the network initial state
differs from it. In the following section, we probe the error-correction properties of the
modular network by studying how its storage properties are affected when a given level
of error-correction is required, and how this depends on the values of γ and other param-
eters. Note that our analytical method can only tell us what happens after a single time
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step of the dynamics, and therefore require that error correction should be performed on
a single time step of the dynamics (1).

Below we consider three different kinds of errors to be corrected

• Microscopic pattern-completion where the initial state ~Sµ0 is obtained from a par-
ticular memory ~Ξµ0 by switching on or off a fraction of the neurons in all active
modules (see figure 3A).

• Disambiguation where the initial state ~Sµ0 is obtained from ~Ξµ0 by setting a fraction
of the active modules (m such that Ξµ0

m = 1) in a state that corresponds to other
patterns µ 6= µ0 (see figure 4A).

• Macroscopic pattern-completion where the initial state ~Sµ0 is obtained from ~Ξµ0 by
silencing a fraction of the active modules and activating a fraction of the silent mod-
ules (see figure 5A).

In all three cases errors are introduced while keeping the overall activity level un-
changed, i.e. the overall number of neurons active in ~Sµ0 is the same as in ~Ξµ0 . We quan-
tify the initial amount of errors by a parameter E, such that for a given value of E there
is the same number of false-positives (' MFNfE) and false-negatives (' MFNfE). A
precise definition of the initial states to be corrected is given in the following.

3.2.1 Microscopic pattern-completion

Here, we initialize the network in a state ~Sµ0 , which is obtained from ~Ξµ0 by randomly
flipping neurons in active modules. The state of a neuron (i,m) belonging to an active
module m (Ξµ0

m = 1) becomes

Sµ0i,m = Ξµ0
i,m

(
1−Xf

i,m

)
+
(
1− Ξµ0

i,m

)
Xb
i,m (30)

where

Xf
i,m =

{
1 with probability (1− f)E

0 with probability 1− (1− f)E
(31)

while

Xb
i,m =

{
1 with probability fE
0 with probability 1− fE

(32)

In order for the network state to flow towards ~Ξµ0 in a single time step of the dynamics
(1), we need an activation threshold that is above the input received by ‘false positive’
neurons (Sµ0i,m = 1 and Ξµ0

i,m = 0, neurons filled with black with no red circles in figure 3A),
and below the input received by ‘false negative’ neurons (Sµ0i,m = 0 and Ξµ0

i,m = 1, unfilled
neurons circled in red). Considering the averages of the inputs to false negatives and false
positives, the activation threshold has to satisfy

g +
γ

c
G <

θ

fN
< (1− E) + Eg +

γ

c
(1− E) +

γ

c
GE (33)
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Figure 3: Storage capacity with microscopic error-correction. A. The network is initialized at
t = 0 in a state ~Sµ0 which is obtained from the memory ~Ξµ0 by randomly flipping a fraction
E of the neurons state in active modules m (Ξµ0

m = 1). B. Storage capacity, as a function of γ
(E = 0.1), in networks that can retrieve patterns with E = 0.1. Errors are corrected by choosing
an appropriate activation threshold (see text for details). C. Same as B, but the storage capacity is
plotted as a function of E for γ = 2 and various values of c, the number of categories in which a
module is involved. D. Storage capacity as a function of γ for c = 5 and different values of E.
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where the four terms in the right hand side are the respective contribution of the cor-
rectly active neurons in the local module, the false-positive neurons in the local module,
the correctly active neurons in remote modules, the false positive activated neurons in re-
mote modules. Once errors are corrected, the larger the activation threshold we take, the
more patterns we can store before background neurons are destabilized. And as before,
we can take an activation threshold that tends in the large N limit towards the average of
the fields on false negative neurons: θ →

N→+∞
fN(1 − E + Eg + γ

c
(1 − E) + γ

c
G). Using

this activation threshold in the expression of the rate functions (65),(66) we can estimate
the storage capacity of the networks when microscopic error correction is required. The
result is shown in figure 3B where we plot the new storage capacity as a function of γ
for different values of c and E = 0.1 (the optimization over the parameter β is performed
as described in the previous section). In this case again, the optimal storage capacity is
reached for small values of γ (short-range connections dominate), because microscopic er-
rors correspond to small deviations around local attractors which do not require commu-
nication between modules to be corrected. Unsurprisingly, the storage capacity decreases
monotonically with E, as illustrated in figure 3C.

3.2.2 Disambiguation

Now the network is initialized in a state ~Sµ0 =
(
Sµ0i,m = Sµ0m s

µ0
i,m

)
i,m

such that Sµ0m = Ξµ0
m , but

a fractionE of the active modules are in a state that is not the correct one: sµ0i,m = ξµ 6=µ0i,m (see
figure 4A). In such a state, fields on false positive neurons have an average fN + fN γ

c
G,

where the first term describes local inputs and the second inputs from long range inputs.
And fields on false negative neurons have an average fNg + fN(γ

c
(1− E)) + fN(γ

c
EG),

where again the first term describes local inputs, the second term describes long-range
inputs from modules in a correct state and the third term describes long-range inputs from
modules in a wrong state. In order to perform disambiguation the activation threshold
has to be set between these average values:

1 +
γ

c
G <

θ

fN
< g +

γ

c
(1− E(1−G)) (34)

Note that fields on correct foreground neurons (with average 1 + γ
c
(1 − E ∗ (1 − G)))

and correct background neurons (with average g + γ
c
G) do not constrain the choice of

activation threshold to perform disambiguation as illustrated in figure 4B. Inspection of
(34) at low storage (g,G ' 0) tells us that in order to find an activation threshold that
performs disambiguation, the amount of long-range connections has to be large enough,

γ >
c

1− E
. (35)

When the storage load increases (α = pf 2 increases thus g,G = O(1) increase), at fixed
γ, c, the distance between the left-hand side and the right-hand side of (34) increases, and
in fact it becomes easier to find an activation threshold separating the inputs to false pos-
itive and negative, as illustrated in figure 4B where we highlight the range of α where it
is possible to find a relevant activation threshold. The figure shows that for these fixed
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Figure 4: Storage capacity with disambiguation. A. The network is initialized at t = 0 in a state
~Sµ0 which is obtained from the memory ~Ξµ0 by setting a fractionE of the active modules (a fraction
FE of all the modules) in a local pattern that corresponds to another memory in the same category
~Ξµ with µ 6= µ0. B. The possibility to find an activation threshold that correct for that kind of errors
depends on the amount of stored patterns α = pf 2 that controls the variables g andG representing
the amount of local and external noise. We plot the average fields onto neurons while the network
state is ~Sµ0 . If the fields on correct positive and false-negative neurons are higher than the fields on
correct negative and false-positive neurons, it is possible to find θ such that the network performs
disambiguation. C- Quantification of storage capacity of networks that perform disambiguation as
a function of γ, for E = 0.1. To get the full lines, we find the values of (βmax, αmax) (for each value
of γ) for which the storage capacity is maximal. Then at fixed βmax, we find the value αmin for
which ∆θ becomes negative (see B), inserting (βmax, αmin) into the formula for storage capacity
(23) we get the dotted lines. Thus the region of the plane between the full lines and the dotted
lines delimits for which storage load the networks perform disambiguation. D- Same as C but the
storage capacity is plotted as a function of E for γ = 2.
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values of β, γ, c, when γ < c
1−E it is only from a minimal non zero value αmin that the net-

work can perform disambiguation. The storage capacity of networks performing disam-
biguation is shown by the full lines in figure 4C, while the dotted lines show the storage
capacity associated with the minimal amount of patterns (given by αmin) that need to be
stored in order to find a value of θ that performs disambiguation. When γ is sufficiently
large, i.e. (35) is satisfied, αmin = 0. We show results for different values of c, the number
of categories in which a module is involved. When the modules are active in a single
category, g = G and ∆θ > 0 can be satisfied if and only if (35) is satisfied, while when
c > 1, g increases faster than G with α, and ∆θ > 0 if and only if

γ >
c

1− E
exp (−α(c− 1)). (36)

Thus the constraint (35) on γ can be relaxed, but the price to pay is that the network per-
forms disambiguation only if a sufficient amount of patterns are stored in the network,
and that the activation threshold g + γ

c
(1− E(1−G)) should increase as more memories

are stored. With disambiguation, the storage capacity increases monotonically with γ (fig-
ure 4C), which is the opposite of the behavior in the microscopic-error correction case. To
explain why in the disambiguation case, storage capacity increases with γ, it is instructive
to consider the case E � 1. Then the activation threshold that we choose to perform dis-
ambiguation is θdis = g + γ

c
, which we can compare to the activation threshold we choose

when no error correction properties are required, θ0 = 1 + γ
c

(i.e. the average field on
foreground neurons when the network is in the stored pattern). Increasing γ allows θdis
to get closer to the maximal activation threshold θ0.

In figure 4D, we show the storage capacity as a function of E for γ = 2. Note the
abrupt drop in storage capacity for c = 1 when E reaches the point where (35) is violated.

3.2.3 Macroscopic pattern-completion

We now consider the situation in which the initial macroscopic state of the network ~Sµ0 is
not consistent with ~Ξµ0 (see figure 5A):

Si,m = Smsi,m with Sm = (1−Xf
m)Ξµ0

m +Xb
m(1− Ξµ0

m ) (37)

where

Xf
m =

{
1 with probability (1− F )E

0 with probability 1− (1− F )E
(38)

and

Xb
m =

{
1 with probabilityFE
0 with probability 1− FE

(39)

The microscopic activity is given by

si,m =

{
ξ
µ(m)6=µ0
i,m if Ξµ0

m = 1 andXf
m = 1

ξµ0i,m otherwise
(40)
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Figure 5: Storage capacity with macroscopic pattern completion. A. The network is initialized at
t = 0 in a state ~Sµ0 which is obtained by turning on or off the activity of a fraction FE (E = 0.1)
of the modules. Wrongly active modules are set in a state that corresponds to another memory
µ 6= µ0. B. Storage capacity as a function of γ. In order to perform pattern completion, γ has
to satisfy (43). C. Storage capacity with local inhibition. The constraint on γ can be relaxed by
adding local inhibition (see (44)), the new constraint is given by (46). For η ≥ 1, macroscopic
pattern completion do not set any constraint on γ.

This differs from disambiguation where the state of modules is always correct (Sm =
Ξµ0
m ), here a fraction (1 − F )E of the FM foreground modules are silent, and a fraction

FE of the (1−F )M silent modules are active in a state supported by local connections as
shown in figure 5A. Note the dependence of µ onm in (40) which implies that erroneously
active modules do not interact with each other through long-range connections. In order
to correct for this kind of error, the activation threshold has to separate fields on false
positive and false negative neurons, which leads to the inequality

1 +
γ

c
G′(1− E) <

θ

fN
<
γ

c
(1− E) +

γ

c
G′E (41)

where G′ is the fraction of co-activated synapses between two neurons taken in randomly
chosen modules (as opposed to modules that are co-activated in a given category), de-
fined in (28). G′ goes to 0 in the regime we are considering, which leads to the constraint
on the activation threshold

1 <
θ

fN
<
γ

c
(1− E) (42)

In order to find such a threshold, we should be in a parameter regime such that

γ >
c

1− E
(43)

This is the same constraint as the one obtained for the disambiguation task at low storage
load (see eq. (35)), which corresponds to the fact that currents coming from long-range
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connections alone has to be able to activate silent neurons that are foreground neurons
for the pattern to be retrieved (see empty red circles in figures 4-5A)

We have computed the storage capacity that can be reached by taking θ → γ
c
(1 − E).

Results are reported in figure 5B. From this plot, memory performance increases with γ,
and the amount of long-range connections required to perform macroscopic pattern com-
pletion increases linearly with c the number of categories in which a module is involved.
This is because when c increases, more pairs of modules are co-activated and the total
amount of long-range connections, fixed by the constraint (9), is spread on more pairs of
modules rendering the effect of long-range inputs less efficient. Note the similarity with
the disambiguation task described in section 3.2.2.

3.2.4 Macroscopic pattern-completion with local inhibition

The amount of long-range connections required to perform macroscopic pattern comple-
tion can be decreased by using local inhibition. The introduction of inhibition is com-
pensated by lowering the fixed activation threshold θ. Having a smaller fixed activation
threshold, makes false-negative modules (m such that Sµ0m = 0 and Ξµ0

m = 1) more sensitive
to long-range inputs compare to the case where there is a large fixed threshold without
local inhibition. Formally, the input to neurons becomes

hi,m =
N∑
j=1

Wm,m
ij Sj,m − η

N∑
j=1

Sj,m +
∑
n6=m

N∑
j=1

Wm,n
ij Sj,n, (44)

and the constraint on θ to perform macroscopic pattern completion becomes

1− η < θ

fN
<
γ

c
(1− E) (45)

In figure 5C, we show, for c = 1 and E = 0.1, how the storage capacity evolves as a func-
tion of γ. The minimal amount of long-range connections required to perform macro-
scopic pattern completion can be dramatically reduced by increasing the strength of the
local inhibition. The constraint on parameters is now

γ > (1− η)
c

1− E
(46)

Storage capacity can decrease or increase with γ, depending on η, this reflects the two
competing effects of the decrease of storage capacity with γ (cf figure 2A) in the absence of
error correction properties, and the need to use long-range connections to perform error
correction. For low inhibition, capacity increases with γ; for high inhibition, the opposite
occurs. There is an intermediate range of values of η for which there exists an optimal
value of γ (see the case η = 0.8 in Fig. 5C). The best performance are reached when the
inhibition is taken as η = 1 + γ

c
E, the value for which, once the pattern is retrieved, the

effective threshold is close to the field on foreground neurons: θ + η
∑N

j=1 Sj,m → 1 + γ
c
.

For larger inhibition the field on foreground neurons is not strong enough to overcome
inhibition and no patterns can be retrieved.
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Note that for errors considered in the previous sections, replacing part of the threshold
by inhibition does not improve pattern completion abilities. This is because both inputs
on false-positive and false-negative neurons are affected the same way by inhibition since
both of these types of neurons belong to modules with fN active neurons. Formally
a term −η is added to both sides of inequalities (33) and (34), which therefore remain
unchanged.

3.2.5 Storage capacity of networks performing all forms of error correction

In the previous sections, the storage capacity was optimized with respect to the parameter
β for each error-correction task separately. To synthesize the results of the three previous
sections, here we set β to its value that optimizes I for all the three different tasks. Results
are summarized in figure 6, where we plot the capacity (full lines) that can be reached
while a network with inhibition performs microscopic pattern completion, disambigua-
tion and macroscopic pattern completion, with the same error correction level E for all
three types of error correction. In this figure we also show dotted lines (as in 4C,D) below
which the storage load is not high enough to find an activation threshold satisfying (34)
and therefore the network is unable to perform disambiguation. On panel A, we show
how the maximal storage capacity behaves as a function of γ for E = 0.1 and η = 1 (the
value of β being chosen to maximize storage capacity). Storage capacity increases with γ,
as well as the range of storage load on which the model performs well (see dotted lines).
The larger the value of c, the better performance is for values of γ < c

1−E . Although note
that for values of γ < c

1−E , networks have to be loaded with a sufficient number of mem-
ories to perform well. If one considers values of γ > 1

1−E , the value of maximal storage
capacity is similar for all values of c.

In panel B, we study the dependence on E for γ = 2 and η = 1, as expected storage
capacity decreases with the amount of errors to be corrected. We then inspect the effect
of changing the amount of local inhibition η, which has been introduced to relax the con-
straint (43) on γ to perform macroscopic pattern completion. This is shown for E = 0.1
and γ = 2 (panel C) and γ = 1 (panel D). The more c increases, the closer η has to be to 1
for the network to have a finite storage capacity. For instance for c = 10, it is only between
η = 0.8 and the maximal value 1 + γ

c
E that storage capacity is non-zero. This is because

the ability to perform macroscopic pattern completion requires γ > (1− η) c
1−E .

In summary, the overall performance of the network is mainly constrained by the dis-
ambiguation task that imposes γ > 1

1−E for c = 1. For c ≥ 2, there are no strong constraints
on γ (although the networks have larger storage capacity at larger γ) but disambiguation
is possible only in a limited range of storage loads (dotted lines). For the particular value
η = 1 used in figure 6A, the storage capacity of the network performing the three error-
correction tasks is the storage capacity obtained when only disambiguation is required
(compare figures 6A and 4C). The requirements of macroscopic pattern completion do
not put a strong constraint on the values of γ, provided that local inhibition can be tuned
such that γ > (1− η) c

1−E . Microscopic pattern completion does not particularly constrain
the parameters of the network: even though storage capacity decreases with γ when only
microscopic pattern-completion is required, it is the disambiguation task that imposes the
increase of storage capacity with γ. However, if the amount of errors to be corrected for

19



0 0.5 1
0

0.05

0.1

0.15
γ = 2 ; η = 1

E

γ = 2 ; E = 0.1

η

1 2 3 4 5
0

0.05

0.1

0.15

E = 0.1 ; η = 1

γ

st
o

ra
g
e 

ca
p
ac

it
y

A

C

B

D

c = 1
 = 2
 = 5
 = 10

c

c
c

0 0.5 1 1.5 2 2.5 3
0

0.04

0.08

0.12

0.04

0.08

0.12

0.16
c = 2 ;

 

 

Emicro = E = 0.1

Emicro = 0.25

Emicro = 0.50

Emicro = 0.75

Emicro = 0.90

E = 0.1 ; 

1 2 3 4 5γ
0

η = 1
st

o
ra

g
e 

ca
p
ac

it
y

st
o

ra
g

e 
ca

p
ac

it
y

st
o

ra
g

e 
ca

p
ac

it
y

Figure 6: Storage capacity of networks performing all forms of error-correction. A. Full lines show
storage capacity as a function of γ, and dotted lines delimit the range of storage loads (parameter
α) in which the network is able to perform disambiguation. B. Storage capacity as a function of
E, the parameter quantifying the amount of error to correct, on the x-axis. C Storage capacity as
a function of η, the parameter quantifying the amount of local inhibition for γ = 2 and E = 0.1.
Different curves correspond to different values of c in panels A to C. D Storage capacity when the
amount of errors in the microscopic error-correction task Emicro becomes larger than the amount
of errors in the disambiguation and macroscopic error-correction tasks.
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the microscopic pattern-completion task becomes sufficiently larger than the amounts for
the disambiguation and macroscopic pattern-completion tasks, the optimal storage ca-
pacity can be reached at an intermediate value of γ. This can be seen in figure 6D where
we plot the storage capacity as a function of γ for an amount of error E = 0.1 for the
disambiguation and macroscopic pattern completion tasks, and an amount Emicro > E of
errors for the microscopic error-correction task (η = 1, c = 2).

4 Discussion

4.1 Summary of results

In this article we have explored the parameter space of a class of multi-modular attrac-
tor neural networks and quantified their memory performance in this space. In order
to perform this detailed characterization, we have considered large networks where the
number of modules and the number of neurons per module is large (M,N → +∞), with
the constraint N � M . We have first focused on the maximal storage capacity of these
networks, i.e. the maximal number of patterns that can be stored without requiring error-
correction properties. Our ’Willshaw type’ networks can behave as an efficient memory
storage device in the sense that their storage capacity is of order 1. In the limits of sparse
patterns of activity we have considered, F → 0 (sparseness at the level of module acti-
vation) and f ∝ lnN

N
(sparseness at the level of single neuron activation), this amounts to

state that the number of stored patterns scales as Pmax ∝ 1
F

(
N

lnN

)2. We have shown that
in the case where F ∝ 1

M
, storage capacity also remains finite (see figure 2C), meaning

that the number of stored patterns can be proportional to the number of modules in the
network. In order to quantify how modules are interconnected, we have introduced a
parameter γ, the ratio between the numbers of synaptic contacts of long-range and short-
range origins a neuron receives. We have found that when this parameter γ is varied from
small to large values, the storage capacity of modular networks varies between the one
of a fully connected network and the one of a highly diluted network, which corresponds
to the fact that when γ → 0 patterns of activity are stored exclusively on short-range con-
nections that are part of fully connected networks, and when γ → +∞ patterns of activity
are stored exclusively on long-range connections that are highly diluted.

One particularity of our model resides in the structure of the set of stored patterns,
namely that P stored patterns are split in P ∝ 1

F
categories. Two patterns belonging

to the same category have the same FM active modules. From the point of view of a
single module, we have imposed it is activated in c = int [PF ] categories. Interestingly,
for each value of γ there exists a value of c that optimizes storage capacity (e.g. c = 6 at
γ = 1, see figure 2B). In a model without categories (for each pattern the identity of active
modules is chosen randomly and independently of the other stored patterns), storage ca-
pacity or error correction properties of the networks are similar to the one described here
(Dubreuil, 2014), one difference is that the modular sparseness F can not be taken to scale
as low as 1

M
, and the number of stored patterns can not scale linearly with the number of

modules in the network. Such a pattern structure is a first step towards modeling the fact
that semantically similar objects elicit similar cortical patterns of activity when observed
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at the scale of v 1mm (Huth et al., 2012). It would be interesting to study different pat-
tern structures, as e.g. a structure in which similarity across patterns varies continuously
rather than in a discrete manner.

We have also quantified the storage capacity of modular networks with error-correction
(or associative) properties. We have considered three canonical types of errors, namely
microscopic pattern completion, disambiguation and macroscopic pattern completion
(see figures 3A, 4A and 5A). We have seen that if the network is required to perform
well on all these error-correction tasks on a full-range of storage loads, the constraint
γ > c

1−E needs to be satisfied where E quantifies the fraction of errors to be corrected.
In qualitative terms, it implies to have more long-range contacts than short-range ones,
as c

1−E > 1. We have also seen that for values of γ smaller than c
1−E , if c ≥ 2, and if the

amount of local inhibition is high enough to satisfy γ > (1−η) c
1−E the networks can reach

a reasonable storage capacity. The ability to correct for the three kinds of errors in this
regime of low γ is paid by the existence of a region of storage load where the networks
can not perform disambiguation (represented by dotted lines in the figures), moreover in
the region of storage load where it can, the activation threshold has to be adjusted accord-
ing to the storage load. Note that the ability to perform disambiguation and macroscopic
pattern completion strongly depends on the ratio γ

c
, which scales the strength of the recur-

rent input from long range origin when the network is in one of the stored patterns (see
(24) for instance). The inverse dependence on c comes from the fact that if c increases, the
number of pairs of modules that get connected during the learning phase increases, and
the amount of long-range connections between two given modules is effectively reduced.

The storage capacity of modular networks remain below the storage capacities of net-
works with no structure: a fully-connected Willshaw network has a capacity of 0.69 (Will-
shaw et al., 1969; Knoblauch et al., 2010; Dubreuil et al., 2014), while modular networks
studied here have a lower capacity. Thus, in terms of storage capacity, it would be more
efficient to store patterns of activity in multiple distinct unstructured networks. However,
such networks would be unable to perform error correction at the macroscopic level.

4.2 Comparison with previous models

Modular networks have also been studied by other authors. O’Kane and Treves (1992)
have studied a model with threshold linear units and synaptic weights that can take a
continuum of values. They also found an storage capacity of order 1. Similarly to our
study, they found that when γ is varied from 0 to large values, the storage capacity varies
from the one of a fully-connected networks to the one of a highly diluted networks. In
their study they found that together with stored patterns, other states (’memory-glass
states’), are minima of the energy function describing their network. These states cor-
respond to modules sustaining one of their local pattern, with the global combination
of modules activity inconsistent with the stored patterns. In our model such states are
destabilized when the activation threshold is high enough, such that only states that are
correct combination of local activities are stable. We believe that these states could also
be destabilized in their model, by taking into account an appropriate activation thresh-
old. In a subsequent study, Mari and Treves (1998) introduced a parameter controlling
the macroscopic sparseness and showed that it allowed to store a number of patterns that
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increases with the number of modules in the network. In this model, they also intro-
duced a bias in the statistics of the patterns to store, such that pairs of modules between
which long-range connections exist tend to be co-activated in a number of global patterns
that is larger than expected by chance. This improved the model previously studied by
O’Kane and Treves (1992) by reducing the size of the region of storage load in which
stored patterns are stable together with memory-glass states. Our model, where patterns
are organized in categories, has a similar feature since two connected modules (that are
co-activated in at least one category) are likely to be involved in more patterns of activity
than a pair of modules taken at random. However as our model does not exhibit mem-
ory glass-state, such a feature is not crucial for its performance and in fact a model with
non-categorized patterns can have similar behavior both in terms of storage capacity and
associative properties (Dubreuil, 2014).

In a following study, Mari (2004) focused on the dynamics of pattern retrieval and
proposed an oscillatory mechanism that allowed to get rid of these memory-glass states.
It should be mentioned that in all these models (Mari, 2004; O’Kane and Treves, 1992)
the same local pattern is used in µ several global patterns, while in our case one local
pattern is used in only one global pattern. They have found (O’Kane and Treves, 1992)
that the number of patterns stored in the network increases linearly with µ, while the
storage capacity decreases with µ.

Johansson and Lansner (2007) explored the storage capacity of a modular attractor net-
work with three levels of spatial organization (neurons, mini-columns, hyper-columns)
while in our model we have only two levels of spatial organization (neurons and mod-
ules). They focused on finite-size networks and studied the storage capacity using a sig-
nal to noise ratio analysis. Doing so they were able to derive constraints on the number
of neurons composing a mini-column and on the number of mini-columns composing
an hyper-column for the network to have a reasonable storage capacity. In this work,
long-range connectivity is not patchy in the sense that connections from two pre-synaptic
neurons in the same column do not necessarily end up in the same ensemble of modules.
In a subsequent work Meli and Lansner (2013) added the constraint of patchy connectiv-
ity and found similar storage capacities. This result also holds for our model, it is shown
elsewhere that a similar storage capacity can be obtained in a model with non-patchy
diluted long-range connections (Dubreuil, 2014).

While it is difficult to give quantitative comparisons of the storage capacity of our
model with others given the specificities of each model and the differences in analysis, we
arrive at the similar conclusion than Mari and Treves (1998); Mari (2004); Johansson and
Lansner (2007) that modular attractor networks have reasonable storage performance. An
interesting feature of our model is the absence of spurious states which spares us from
introducing additional mechanisms to destabilize these states. The main novelty of our
study is the detailed study of the error-correction abilities of the modular network, which
allowed us to quantitatively discuss the important parameters (ratio of long/short range
connections, local inhibition, number of categories) that allow large storage capacities
together with associative properties.

We have defined the storage capacity (20) as the total number of stored patterns, mul-
tiplied by the entropy of the distribution of patterns, divided by the amount of ressources
used for storage. This measure can be interpreted as the information stored in the system
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in bits/synapse. It is a generalization, for modular networks, of the capacity measure
used in studies of fully-connected associative memories with binary neurons (see e.g.
Nadal (1991); Knoblauch et al. (2010)). However, identifying this measure as an ‘informa-
tion’ leads to the following paradox: In the standard Willshaw autoassociative network,
the storage capacity is 0.69. However, since the connectivity matrix is symmetric, there
are only N(N − 1)/2 independent binary elements that can be used to store the patterns.
If the storage capacity is identified as information stored per independent binary plastic
element, this leads to a stored information of 1.39 bits per independent binary storage
device, which violates the bound from information theory that states that it should be
impossible to store more than 1 bit of information per binary storage element. For this
reason we have refrained from using the word ‘information’ which was used in previous
studies (Nadal, 1991; Knoblauch et al., 2010).

4.3 Extension to more realistic models

Our model and analysis could be modified to include more realistic features. For instance
studies of storage capacity of modular networks have been carried in the limit where M
the number of modules and N the number of neurons are infinite, or in finite networks of
small sizes. In a previous study, we have quantified finite-size effects in fully connected
networks (Dubreuil et al., 2014). The leading order corrections due to finite size effects
scale as ln(lnN)

lnN
and lead to a decrease in storage capacity of a factor around 3 for fixed size

patterns as the one considered here (in each pattern exactly FMfN neurons are active).
For modular networks, the first order correction term is proportional to ln(lnN)

lnN
+ ln(FM)

lnN
,

which decays extremely slowly as N and FM become large (it is ∼ 0.6 for N = 105 and
FM = 100). We thus expect a drop in capacity of the same order as the one observed
for fully connected networks. Besides this drop in capacity, we expect that for finite size
networks, the regions of parameters in which networks perform error-correction remain
the same. Indeed, error correction is possible if the stability of patterns is achieved by a
sufficient amount of long-range inputs compared to short-range inputs, and the ratio of
these two quantities is quantified by γ

c
which is independent of network size.

All the patterns we store have the same number of active neurons spread in the same
number of modules, one could imagine storing an ensemble of patterns where the num-
bers of active neurons/modules fluctuate from pattern to pattern. For such patterns to
be fixed points of the dynamics, the activation threshold has to be lowered to ensure the
stability of patterns with a small number of active neurons. In finite networks, lower-
ing the threshold decreases the number of patterns that can be stored (Dubreuil et al.,
2014). Another quantity which is susceptible to fluctuate is c, the number of categories
encoded per module. If we would let c fluctuate, the storage capacity would be limited
by modules that encode the largest number of categories since these modules are more
densely connected, which increases the chance to activate background neurons. Such lim-
itation would be attenuated for large values of γ where storage is supported mainly by
long-range connections.

The learning rule used in this work requires that patterns are learned off-line, and
does not allow the networks to have palimpsest properties, i.e. the ability to continuously
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learn new patterns (at the expense of erasing old ones). A popular learning rule to learn
patterns on-line in networks of binary neurons and binary synapses is the one proposed
by Amit and Fusi (1994). For this rule plasticity is activity dependent on a stochastic
manner, and the presentation of a pattern leads not only to the activation of synapses
between pairs of ’active-active’ neurons (LTP), but also to the inactivation of synapses
between pairs of ’silent-active’ neurons (LTD). If LTP and LTD are well balanced, the
network is able to continuously learn new patterns by erasing old ones. Extending our
calculations to such a rule should be straightforward, similar to what has been already
done for local unstructured networks (Dubreuil et al., 2014).

Our networks are composed of binary neurons. A major challenge is to understand
whether networks made of more realistic neurons could have similar performance. Net-
works of fully-connected spiking neurons in the balanced regime can not stabilize pat-
terns of activity with coding levels smaller than f ∝ 1√

N
, because the signal on fore-

ground neurons would be wiped out by the activity of background ones (Brunel, 2003;
van Vreeswijk and Sompolinsky, 2003). For modular networks, we expect a similar con-
straint, f ∝ 1√

N
since each neuron receives inputs from a number of neurons that scales

with N (because of the dilution of long-range connections). Coding levels obeying this
scaling seem too large to have reasonable storage capacity with the binary synapses used
in our model, as it would require f ∝ lnN

N
(Willshaw et al., 1969). However in our previous

study on fully-connected networks, we have seen that for finite networks of realistic sizes
(e.g. N ' 104), the coding levels optimizing storage capacity are not far from f = 1√

N
. We

thus expect that modular network of spiking neurons with binary synapses could also
have reasonable storage capacities.

4.4 Relationship to experimental data

In attractor network models, patterns of activity are imprinted in the synaptic matrix of
the network, and are retrieved under the form of a neural state of persistent activity. These
basic mechanisms are in principle implementable in cortical circuits, as cortical synapses
have been shown to be plastic in an activity dependent manner (Markram et al., 1997;
Sjöström et al., 2001) and are thus susceptible to sustain long-term storage of patterns of
activity. Furthermore, the phenomenon of persistent activity has been observed in many
cortical areas during working memory tasks such as delay-match to sample tasks (see e.g.
Fuster (1995)).

A fully-connected module in our model can be considered as approximating a cortical
patch as the one observed in visual and pre-frontal cortices that we described in more
details in the introduction (DeFelipe et al., 1986; Gilbert and Wiesel, 1989; Bosking et al.,
1997; Pucak et al., 1996) - full connectivity is only an approximation in the sense that corti-
cal patches have a size of the order of 1mm2, and it is known that for such large networks,
the probability that two neurons touch each other depends on the distance between them
(Holmgren et al., 2003; Perin et al., 2011). In our model, modules are connected to each
other via diluted long-range connections, whose amount is controlled by a parameter γ. γ
is the ratio between the number of contacts whose pre-synaptic neurons are outside of the
module to which the post-synaptic neurons belongs to and the number of contacts within
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this module. Anatomical studies indicate that this ratio is of order one: Braitenberg and
Schütz (1991) estimated, in rodents, that short and long-range connections come in ap-
proximately similar numbers, while Stepanyants et al. (2009) estimated γ ' 3. Besides
being as numerous as short-range connections, long-range connections are patchy in our
model, in the sense that the long-range connectivity originating from one module target
only a subset of all the other modules. This is in agreement with the above mentioned
studies of cortical patches (DeFelipe et al., 1986; Gilbert and Wiesel, 1989; Bosking et al.,
1997; Pucak et al., 1996).

Another assumption regarding connectivity in our model is the choice of binary synapses.
Whether real synapses are best described by binary variables, discrete variables with a
large number of states or continuous variables, is still unresolved (Petersen et al., 1998;
Montgomery and Madison, 2004; O’Connor et al., 2005; Enoki et al., 2009; Loewenstein
et al., 2011).

In our model, the structure of the patterns of activity strictly corresponds to the anatom-
ical structure of the networks, i.e. in a given pattern each module is either totally silent or
fN neurons are active. fMRI experiments allow to study how neural representations of
objects are distributed. Huth et al. (2012) found that visual presentations of objects elicit,
in human observers, a pattern of activity spanning the entire cortex. In prefrontal cortex,
these patterns consist of changes in activity of small pieces of cortex of a size of the order
of a millimeter squared. In our model we assume that patches selective to a given object
correspond to networks of connected cortical patches as the ones described by Pucak et al.
(1996). This is not such a bold assumption as it has been shown that neurons belonging
to connected patches in visual cortex tend to have similar selectivity (Bosking et al., 1997;
Buzas et al., 2001).

Moreover, stored memories are split in categories, such that patterns of activity coding
for memories belonging to the same category involve the same set of active modules. This
is a first step to account for the observation that objects that are semantically close to each
other are represented similarly on the cortical surface, while the neural representations
of semantically far apart objects are dissimilar (Huth et al., 2012). In our model, from
one category to another, the set of active modules are drawn independently. Experimen-
tal data rather suggests a smooth transition, in terms of neural representations, between
categories that are semantically close to each others (Huth et al., 2012). This could be
modeled by taking patterns with multiple levels of hierarchy, and it would be interest-
ing to investigate how such patterns can be stored in networks with realistic connectivity
constraints.

Our results show that the performance of a modular network as an auto-associative
memory device is strongly determined by the parameters c, γ and η. In principle if these
parameters could be estimated for a given cortical network, then it should be possible to
determine whether it is well suited to store objects it represents via attractor dynamics.
Although this seems a difficult task for a randomly taken set of cortical patches, this could
be done for specific sets of patches, like the well identified network of face patches (Tsao
et al., 2003).
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5 Appendix

Estimating the storage capacity requires to compute the distributions of the inputs on
foreground and background neurons. Because neural activity and synapses are binary,
these inputs are sums of binary random variables. We first present general results about
such sums, that will be used later to compute the distributions of inputs to neurons.

We consider a random variable h

h =
K∑
k=1

Xk (47)

where the Xk are independent binary random variables described by a parameter q:

Xk =

{
1 with probability q
0 with probability 1− q

(48)

The sum h is then distributed according to a binomial distribution

P (h = S) =

(
K

S

)
qS (1− q)K−S (49)

Note that to get this binomial distribution, we have to assume the Xk’s are independent.
In our case, this means that two synapses on the same neuron Wm,n

ij1
and Wm,n

ij2
are treated

as independent variables. This is a reasonable assumption to make as we have

P(Wm,m
ij1

= 1) = 1− (1− f 2)pc (50)

and

P(Wm,m
ij1

= 1|Wm,m
ij2

= 1) = 1− (1− f 2)pc−1(1− f) '
f→0,pc→∞

P(Wm,m
ij1

= 1) (51)

and similarly for long-range connections P(Wm,n
ij1

= 1|Wm,n
ij2

= 1) '
f→0,pc→∞

P(Wm,n
ij1

=

1).
We will consider cases in which K and S are large. We can then use Stirling formula to
express the binomial coefficients and write

P (h = S) = exp

(
−KΦ

(
S

K
, q

)
+ o(K)

)
(52)

with

Φ = Φfc

(
S

K
, q

)
=
S

K
ln

(
S/K

q

)
+

(
1− S

K

)
ln

(
1− S/K

1− q

)
(53)

We use the superscript fc as this expression will be mainly used to describe fully
connected sub-networks. For diluted enough networks, we will have q, S

K
� 1, it is then

useful to introduce
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Φ = Φdc

(
S

K
, q

)
=
S

K
ln

(
S/K

q

)
− S

K
+ q (54)

In our networks, when testing the stability of a given pattern ~Ξµ0 it is useful to separate
the total input into a local part and an external part. The local part is described by a
couple (K, q), where K = fN is the number of neurons active in a given local network,
and q = 1 or g depending on whether we are considering the input onto a foreground
or a background neuron. The external part can also be described by a couple (K, q) with
K = F (M − 1)fN or K = F (M − 1)(1 − f)N and q = D

N
or D

N
G for foreground or

background neurons.
The distribution of the total input on a neuron can be written

P(hi,m = S) =
∑

Sl,Se/Sl+Se=S

Pl(Sl)Pe(Se) (55)

To compute it, we first need to express the distribution of the inputs generated by the
local module and the distribution of the inputs generated by the other modules. In the
asymptotic limits we consider, this sum will be dominated by the most probable term of
the sum, we will thus need to find the couple (Sl, Se) that maximizes Pl(Sl)Pe(Se).

5.1 Distribution of inputs and probability of no-error in multi-modular
network

5.1.1 Case FM → +∞

We apply the method sketched above, first to compute the distribution of inputs on fore-
ground neurons, and then on background neurons.

Foreground neurons - The distribution of local inputs is a delta function Pl(Sl) =
δ(Sl − fN) as exactly fN neurons are active in each module in each pattern, and because
of the fact that each module is a fully-connected network. The external component is the
sum of the activity in each of the other FM − 1 ' FM active modules when their states
coincides with the pattern ~Ξµ0 we are trying to retrieve. Given the above results on sum
of binary variables, it writes

Pe(Se) =

(
FMfN

Se

)(
D

N

)Se
(

1− D

N

)FMfN−Se

= exp
[
−fNΦdc

(
se,

γ

c

)]
(56)

with se = Se

fN
.

The total input on foreground neurons is then

P(hi,m = S = fN + Se|Ξµ0
i,m = 1) = exp

[
−fNΦdc

(
Se
fN

,
γ

c

)
+ o(fN)

]
(57)
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Background neurons in active modules - The local input now fluctuates because in-
puts are mediated by synapses that have been potentiated during the presentation of
randomly drawn patterns ~Ξµ6=µ0 . It is distributed according to

Pl(Sl) =

(
fN

Sl

)
gSl(1− g)fN−Sl

= exp

[
−fNΦfc

(
Sl
fN

, g

)
+ o(fN)

]
(58)

where g is defined in eq. (25). Similarly, the external part of the input is distributed
according to

Pe(Se) =

(
FMfN

Se

)(
D

N
G

)Se
(

1− D

N
G

)FMfN−Se

= exp

[
−fNΦdc

(
Se
fN

,
γ

c
G

)
+ o(fN)

]
(59)

The distribution of the total input is now written

P(hi,m = S|Ξµ0
i,m = 0,Ξµ0

m = 1) =∑
Sl,Se/Sl+Se=S

exp

[
−fN

(
Φfc

(
Sl
fN

, g

)
+ Φdc

(
Se
fN

,
γ

c
G

))
+ o(fN)

]
= exp

[
−fN

(
Φfc (s∗l , g) + Φdc

(
s∗e,

γ

c
G
))

+ o(fN)
]

(60)

where s∗l =
S∗l
fN

and s∗e = S∗e
fN

= s− s∗l (where s = S
fN

) are given by the condition

∂
(
Φfc(s1, g) + Φdc(s− sl, γFG)

)
∂sl

(s∗l ) = 0 (61)

Solving this equations yields

s∗l =
1

2

(
1 + s+

(1− g)γ
c
G

g

)
− 1

2

√(
1 + s+

(1− g)γ
c
G

g

)2

− 4s

s∗e = −1

2

(
1− s+

(1− g)γ
c
G

g

)
+

1

2

√(
1− s+

(1− g)γ
c
G

g

)2

+ 4
(1− g)γ

c
G

g
s

(62)

Background neurons in silent modules - There is only long-range inputs in this case
and the fraction of activated long-range synapses G′ ' αcF is given by (28),

P(hi,m = S|Ξµ0
i,m = 0,Ξµ0

m = 0) =

(
FMfN

S

)(
D

N
G′
)Se

(
1− D

N
G′
)FMfN−S

= exp

[
−fNΦdc

(
S

fN
,
γ

c
G′
)

+ o(fN)

]
(63)
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Probability of no errors - We have derived the expressions for the distribution of inputs
to both foreground and background neurons. In order to compute the probability that
there is no error Pne in the retrieval of pattern ~Ξµ0 , we have to estimate the probability
that the inputs are above or below threshold, as written in the main text in equations (14).
To do so we first note that

P(hi,m ≥ θfN |Ξµ0
i,m) = P(hi,m = θfN |Ξµ0

i,m)
∑
s≥θ

P(hi,m = sfN |Ξµ0
i,m)

P(hi,m = θfN |Ξµ0
i,m)

(64)

where the ’
∑

’ term will not contribute to the final expression of Pne in the large N
limit, as has been shown in Dubreuil et al. (2014). In practice we thus replace the prob-
ability to be above threshold by the probability to be at threshold. We can apply the
same reasoning for the probability to be above the activation threshold for background
neurons. We now have all the elements to express Φf , Φb and Φb′ in formulas (14):

Φf = Φdc
(
θ − 1,

γ

c

)
(65)

Φb = Φfc (s∗l (θ), g) + Φdc
(
s∗e(θ),

γ

c
G
)

(66)

and

Φb′ = Φdc
(
θ,
γ

c
G′
)

'
F→0

θ log(1/F ) (67)

5.1.2 Case FM = O(1)

In this case the microscopic dilution term D
N

is finite and we have to use Φfc instead of Φdc

to describe the external inputs. Following the same reasoning as above, the rate functions
are

Φf = (θ − 1) ln

(
θ − 1

FM D
N

)
+ (FM − (θ − 1)) ln

(
1− (θ − 1)/FM

1−D/N

)
(68)

and

Φb = Φfc (s∗l (θ), g) + s∗e(θ) ln

(
s∗e(θ)

FM D
N
G

)
+ (FM − s∗e(θ)) ln

(
1− s∗e(θ)/FM

1− D
N
G

)
(69)

with s∗l and s∗e given by
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s∗l =
λ(FM − s) + 1 + s

2(1− λ)
− 1

2

√(
λ(FM − s) + 1 + s

1− λ

)2

− 4
s

1− λ

s∗e =
−λ(FM + s) + s− 1

2(1− λ)
+

1

2

√(
−λ(FM + s) + s− 1

(1− λ)

)2

+ 4
λFMs

1− λ
(70)

with

λ =
γ

cFM

G(1− g)

(1−G γ
cFM

)g
(71)

The expression for Φb′ remains unchanged as connectivity between two randomly
taken modules is effectively highly diluted.

5.2 Capacity calculation for a single module with diluted connectivity

Here we focus on a model made of a single module with N neurons whose dynamics
obey equation (1), where we store P patterns ~ξµ with coding level f (

∑
i ξ
µ
i = fN ). As

for modular networks we focus on the limits N → +∞, f = β lnN
N

and P = α
f2

with
α, β = O(1). Patterns are stored on a diluted connectivity matrix, such that at the end of
the learning phase the synaptic matrix is given byWij = wijdij . With wij = 1 if there exists
a pattern such that neurons i and j are co-activated, wij = 0 otherwise ; and dij is drawn
randomly in {0, 1} being 1 with probability d� 1.
To compute the capacity we follow the procedure described in the ’Methods’ section. We
first set the network in a state corresponding to one of the patterns ~ξµ0 , and ask whether
this a fixed point of equation (1). This is done by computing Pne, the probability that all
the fields are on the right side of the activation threshold. Similarly to equation (13),

Pne = (1− P(hi ≤ fNθ | ξµ0i = 1))fN (1− P(hi ≥ fNθ | ξµ0i = 0))(1−f)N (72)

Using the equations (52), (54) that describe the distributions of inputs and the fact that
P(hi ≤ fNθ | ξµ0i = 1) ' P(hi = fNθ | ξµ0i = 1) (see Dubreuil et al. (2014)) we can write

P(hi ≤ fNθ | ξµ0i = 1) = exp(−fNΦdc(θ, d) + o(fN)) (73)

and

P(hi ≥ fNθ | ξµ0i = 1) = exp(−fNΦdc(θ, dq) + o(fN)) (74)

where q is the fraction of synapses on i, wij , that are 1 after the learning phase, which
can be expressed as

q = 1− exp(−α) (75)
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Table 1: Notations
M number of modules
N number of neurons in each module
F fraction of active modules in a memory
f fraction of active neurons in an active module
β β = f N

lnN
= O(1)

P number of stored memories
P number of categories
p number of memories in each category
c number of categories in which a module is activated
α storage load α = pf 2 = O(1)
γ ratio between the numbers of synaptic contacts from long and short-range origins
θ activation threshold
g fraction of local pairs of neurons co-activated at least once during learning
G fraction of non-local pairs of neurons co-activated at least once during learning
E amount of error to correct
η amount of local inhibition

For Pne to go 1 in the large N limit, equations (17),(18) have to be satisfied. Saturating
these inequalities leads to a choice of activation threshold θ → d and a coding level with

β =
1

d(− ln q + 1− q)
(76)

In the specific case we are studying the general expression for the storage capacity (20)
can be written

I =
1

ln 2

α

βd
(77)

Using the two equations (75) (76), it can be expressed more simply

I =
ln(1− q)(ln q + 1− q)

ln 2
(78)

A maximal storage capacity I = 0.26 is reached at q = 0.24.
Note that for modular networks we can not get such a closed form for I since the P(hi =
fNθ) needs to be estimated numerically.
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