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How to correctly quantify neuronal phase-response curves from noisy recordings
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At the level of individual neurons, various coding properties can be inferred from the input-
output relationship of a cell. For small inputs, this relation is captured by the phase-response curve
(PRC), which measures the effect of a small perturbation on the timing of the subsequent spike.
Experimentally, however, an accurate experimental estimation of PRCs is challenging. Despite
elaborate measurement efforts, experimental PRC estimates often cannot be related to those from
modeling studies. In particular, experimental PRCs rarely resemble the generic PRC expected close
to spike initiation, which is indicative of the underlying spike-onset bifurcation. Here, we show
for conductance-based model neurons that the correspondence between theoretical and measured
phase-response curve is lost when the stimuli used for the estimation are too large. In this case,
the derived phase-response curve is distorted beyond recognition and takes on a generic shape that
reflects the measurement protocol, but not the real neuronal dynamics. We discuss how to identify
appropriate stimulus strengths for perturbation and noise-stimulation methods, which permit to
estimate PRCs that reliably reflect the spike-onset bifurcation – a task that is particularly difficult
if a lower bound for the stimulus amplitude is dictated by prominent intrinsic neuronal noise.

I. INTRODUCTION

Neuronal dynamics are commonly studied based on the
response of a neuron to specific stimuli. The spiking in
response to post-synaptic currents or temporally struc-
tured inputs, for example, often serves as a first indica-
tion for the neuronal code. Constraining the response to
weak stimuli, a neuron’s spiking dynamics can be cap-
tured by the so-called phase-response curve (PRC). The
PRC relates the timing of a short stimulus pulse to the
consequential advance or delay of the next spike. As
a well-defined theoretical quantity, the PRC is also ex-
perimentally accessible. PRCs are valuable to decipher
single-cell dynamics, such as the neuronal response to a
particular input shape, e.g. synaptic inputs [20, 24] or
noise [5], as well as the locking time to a time-dependent
stimulus [1, 16]. Beyond single cells, PRCs are often
used to predict how neurons behave when weakly con-
nected, informing about network dynamics and, in par-
ticular, their synchronization state [2, 8, 12, 27, 30, 34].
Beyond the neurosciences, the PRC is used for various
other biological oscillations such as cardiac pacemakers
or circadian rhythms [11, 18].
As we show in the following, suboptimal measurement

protocols yield PRCs that do not accurately reflect neu-
ronal dynamics. In order to estimate PRCs experimen-
tally, neuronal spiking is perturbed by an experimentally
known stimulus. The amplitude range of this stimulus is
bounded from below and from above: On one hand, the
experimental stimulus has to be chosen large enough to
overcome intrinsic noise, which perturbs spiking in addi-
tion to the stimulus [17]. On the other hand, the stimulus
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has to be weak enough such that the PRC is a valid de-
scription of the dynamics: Stimulus amplitudes have to
be sufficiently small to allow the dynamics to relax back
to the limit cycle within one period, because the PRC
assumes independence of subsequent spikes. As a rule of
thumb, the larger the intrinsic noise, the more restricted
the range of acceptable stimulation amplitudes.

Relatively strong intrinsic noise is, for example, typ-
ical for cortical and hippocampal neurons, which often
show notable spike jitter even for constant step current
stimuli. We show that the consequential variability of
the phase response observed experimentally can impair
PRC measurements [28, 35]. This was not observed pre-
viously because the methods for quantification of PRCs
were typically illustrated with neurons showing only low
levels of intrinsic noise, and thus stable firing rates (for
a review see Torben-Nielsen et al. [31]).

Here, we address the identification of spike-onset bifur-
cations from PRC measurements. Spiking in neurons can
be classified into four basic mechanisms of spike initiation
[15]. The corresponding spike-onset bifurcations give rise
to distinguishable, generic PRCs that reflect neuronal dy-
namics at spike onset [2, 14]. We show that the mapping
between PRC and spike-onset bifurcation is lost when
the measurement stimulus is not chosen appropriately.
In this case, the PRC shape becomes independent of the
neuron’s dynamics, and only reflects the measurement
protocol.

In the following, we compare the measurement accu-
racy of three different PRC methods faced with strong
intrinsic noise. While Torben-Nielsen et al. [31] have pre-
viously considered different methods under relatively be-
nign conditions, we are interested in extreme conditions
with large stimuli or large intrinsic noise levels. Explor-
ing the border where a PRC estimation becomes invalid
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allows us to delineate the range of experimental condi-
tions under which PRC measurements can be expected
to actually yield information on neuronal dynamics.

II. METHODS

A. Models

PRCs were measured for conductance-based neuron
models with three different spike onset bifurcations, for
details see Appendix. Of the four possible limit cycle bi-
furcations for spike initiation [15], we have chosen those
that result in biologically realistic all-or-none spikes with
finite voltage amplitude at spike onset: the subcriti-
cal Hopf bifurcation, the saddle-node on invariant cy-
cle (SNIC) bifurcation and the saddle-homoclinic orbit
(HOM) bifurcation. The level of the intrinsic noise was
set by the standard deviation of an additive zero-mean
white-noise current, see Appendix.

B. Phase-response curve

For a regular spiking conductance-based neuron model
with baseline period T (firing rate f = 1/T ), weakly
perturbed spiking can be described by an input-output
equivalent phase oscillator,

ϕ̇ = 1 + Z(t)s(t), (1)

with Z as PRC, and a time-dependent stimulus s(t). In
response to the stimulus s(t), the spike at t = ti+1 fol-
lowing the spike t = ti is advanced or delayed according
to the phase deviation

∆ϕ =

∫ ti+T

t=ti

Z(t)s(t)dt. (2)

C. Theoretical estimation of the PRC

For mathematical neuron models, the PRC can be
gained by numerical integration, for a review see Gov-
aerts and Sautois [10]. For a conductance based neuron
model with equation ẋ = F (x), the linearized dynamics
on the limit cycle are given as ẋ = Jx with the Jaco-
bian J = ∂F

∂x . The corresponding adjoint equation is

ẏ = −JTy. As these dynamics are unstable, backward
integration in time along the limit cycle leads to a stable
solution y, whose first entry corresponds to the voltage
PRC [2, 3]. We use this method to derive the “true”
PRC for the models. The comparison of theoretical PRC
and PRCs estimated with experimentally-inspired meth-
ods allows us to suggest the appropriate input strength,
as well as a reasonable noise level, both of which can be
employed in biological experiments to prevent false PRC
measures as mentioned in the introduction.

D. Experimental methods of PRC measurements

We consider three different methods for PRC estima-
tion. The estimation analyzes spike timing in response to
a known stimulus. For the first method, neuronal spik-
ing is perturbed by a sequence of short current pulses,
the other two method use a noise stimulus. In addition,
the neuron is stimulated with a DC current that ensures
repetitive spiking; we choose a baseline firing rate of 10Hz
(i.e., with period T = 100ms). The simulation duration
is sufficient to record about 500 perturbed spikes, for de-
tails see Appendix.
For two consecutive spikes at time t = ti and t = ti+1,

the actual interspike interval duration is ISIi = ti+1 − ti.
For the phase response, we normalize the time during the
unperturbed period T to a phase variable ϕ that ranges
from zero to one. For a perturbed interspike interval,
the change in duration is captured by the phase devia-
tion, ∆ϕi = 1− (ti+1 − ti)/T , which is positive for spike
advances, and negative for phase delays.
For plotting purposes, the PRCs are commonly fit-

ted either with polynomial functions, e.g., Netoff et al.
[19], or with Fourier series consisting of a low number of
Fourier coefficient, e.g., Galán et al. [8]. As we are here
also interested in PRCs with steep components (such as
the PRC of the HOM model in Figure 2a), we choose a
Fourier series of order five (i.e., with 11 Fourier compo-
nents) to fit our PRC estimates,

Z(ϕ) = a0 +

5
∑

j=1

(aj cos(2πjϕ) + bj sin(2πjϕ)) , (3)

with Fourier coefficients a0, a1, ...a5, b1, ..., b5. Using the
same number of Fourier components for all PRC esti-
mates facilitates the comparison of different methods.

1. PRC estimation based on individual-timepoint

perturbation

For the PRC estimation based on individual-timepoint
perturbations, the repetitively spiking neuron is stimu-
lated with delta current pulses of a specific amplitude.
The perturbation method was chosen for most experi-
mentally measured PRCs [9, 24, 25, 33, 35], as it is in-
tuitive and easily analyzed. Here, the interval between
two successive pulses is chosen randomly between 150ms
and 250ms, such that most perturbations occur as single
events in every second interspike interval. This ensures
the independence of subsequent perturbations, allowing
the dynamics a whole period to relax.
The analysis evaluates interspike intervals in which a

current pulse occurs. The timing of the perturbation is
related to the resulting phase deviation, compare Fig-
ure 1a. Given a current pulse at t = tp between two con-
secutive spikes at t = ti and t = ti+1, the PRC relates the
phase deviation, ∆ϕi = 1− (ti+1− ti)/T , to the phase at
which the current pulse occurred, ϕp

i = (tp − ti)/T [26].
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An estimate of the PRC in units of phase deviation is
gained by plotting the phase deviation against the per-
turbation phase. More precisely, each point of this graph
corresponds to a stochastic drawing from the underlying
PRC. In order to get the PRC in response to current per-
turbations, the PRC in units of phase deviation is divided
by the amplitude of the perturbation stimulus.
For neurons with intrinsic noise, even weak noise per-

turbs the raw data so strongly that the PRC shape can
often not be identified by naked eye. To fit a curve to the
raw PRC data, we here use Galán’s method [8, 21], for
which the Fourier components of Eq. (3) are given for a
set of N perturbed spikes as

a0 =
1

N

N
∑

i=1

∆ϕi, aj =
1

N

N
∑

i=1

∆ϕi cos(2πjϕ
p
i ),

bj =
1

N

N
∑

i=1

∆ϕi sin(2πjϕ
p
i ).

2. PRC estimation based on time-continuous noise

stimulation

For the PRC estimation based on noise-stimulation,
the repetitively spiking neuron is stimulated with a zero-
mean noise stimulus. We use a colored noise current with
time resolution of dt = 10µs, resulting from filtering a
white noise signal with a cut-off frequency of 1000Hz.
For each spike, the recorded phase deviation ∆ϕi is

related to the noise snippet ni that corresponds to the
preceding interspike interval, see Figure 1b. The duration
of the noise snippet ni(t) is rescaled to the phase variable,
resulting in a phase-dependent noise snippet ñi(ϕ), see
Figure 1c.
To estimate PRCs from the noise-stimulated spike

trains, we use the weighted Spike-Triggered Average
(wSTA) introduced by Ota et al. [22] and the STan-

dardized Error Prediction (STEP) method introduced by
Torben-Nielsen et al. [32].
The wSTA method sums over the phase-dependent

noise snippets, while weighting each noise snippet by a
variant of the phase deviation ∆̄ϕ = (T/(ti+1 − ti)− 1),
see Figure 1d. For the correct amplitude scaling, the
result is then divided by the variance of the noise input.
The STEP method optimizes the PRC shape to pre-

dict the phase deviation caused by the noise input since
the previous spike. The idea takes advantage of Eq. (2),
which predicts the phase deviation resulting from the
stimulus s(t) = ni(t). Both the PRC and the phase-
dependent noise snippets are discretized by a temporal
binning with 200 phase bins. This allows to replace the
integration in Eq. (2) by a simple sum of the PRC and
the phase-dependent snippet ñi (Figure 1e). To create
an optimization matrix M, the binned versions of noise
and base functions are multiplied (Figure 1e). Linear
least square optimization (here we used the python func-
tion numpy.linalg.lstsq()) allows to find the Fourier

coefficients that, when multiplied by the matrix M, best
recover the phase deviations extracted from the raw data
of spike times.
An advantage of the perturbation method and the

wSTA method compared to the STEP method is that
the PRC estimates can be implemented as an ongoing
process that continuously allows to add new data as it
is available. In contrast, the STEP method, and similar
methods that rely on spike prediction error minimization,
require a set of noise/spike-timing pairs of a fixed size,
and, at least in current implementations, the optimiza-
tion has to be redone when new data is collected.

III. RESULTS

In order to measure PRCs experimentally from repet-
itively firing neurons, the spike times are perturbed by
an additional stimulus consisting of either a noise current
or short pulse-like perturbations. Under the assumption
that the stimulus has to be weak, intrinsic noise in real
neurons makes the appropriate scaling of the stimulus
amplitude a non-trivial problem [21]. The stimulus has
to be large enough to stand out against the intrinsic noise,
yet also small enough to prevent the instantaneous induc-
tion of spikes.
While most previous studies focus on the PRC shape,

and neglect the PRC amplitude, we here also evaluate
the PRC amplitude. The PRC amplitude is essential for
a quantitative comparison of measurements, as it scales
quantities derived from the PRC such as the synchro-
nization range or the transition time until locking is es-
tablished.

A. PRC estimates with perturbations or noise

stimuli

Figure 2a-b shows PRC estimates for models with-
out intrinsic noise with three different spike generation
mechanisms (top to bottom), using three different meth-
ods (left to right: perturbation method, wSTA method
and STEP method), see Methods for details. For com-
parison, each small panel depicts the theoretical PRC
(brown) and PRCs estimated from spiking in response
to different stimulus strengths (color-coded from green
to violet). While all three methods estimate the shape
of the PRC with similar quality, the STEP method has
a tendency to overestimate the amplitude of the PRC,
which is not observed for the perturbation method and
the wSTA method.
For the Hopf model, the PRC derived with the wSTA

method seems reasonable. In contrast, the perturbation
method and the STEP method both lead to strongly
wiggling PRCs for intermediate stimulus amplitudes, see
Figure 2a-b. The wiggling PRCs occur for stimulus am-
plitudes for which the model becomes extremely sensitive
to inputs (the CV shows a maximum in response to these
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noise strength). As a side-note, this behavior was also
observed for another model with subcritical Hopf bifur-
cation at spike onset, the original Hodgkin-Huxley model
[13].

B. Stimulus amplitude dependence

The range of stimulus amplitudes in Figure 2a-b is cho-
sen to illustrate the transition from good to bad PRC
estimates. Because the models lack intrinsic noise, the
theoretical curve (brown) is best fitted by the PRC with
the lowest input strength (green), and reasonable fits are
derived for a range of small stimulus levels. The cor-
respondence between theoretical and estimated PRC is
lost for intermediate stimulus levels, and the estimated
PRC approaches a characteristic shape for large stimulus
levels. Figure 2c-d summarizes the PRC estimates cor-
responding to the largest stimulus strength (the violet
curves from Figure 2a-b). For all methods, these PRCs
have a characteristic shape that is hardly distinguishable
for different spike generation mechanisms, and thus the
PRC is not informative about neuronal dynamics. With
such a large input, the drive is too strong to estimate
meaningful PRCs, and we call this regime in the follow-
ing the overdriven regime.

C. Shape of overdriven PRCs

The stereotypical PRC shape in the overdriven regime
(Figure 2c-d) shows a linear relation for intermediate
phases, with a steep connection around phase zero that
is enforced by the periodicity of the Fourier-series fit.
The linear decrease/increase observed for the perturba-
tion and noise-stimulation methods, respectively, results
from instantaneous spikes in response to large perturba-
tions in the stimulus.

For the perturbation method (Figure 2c), the instanta-
neous initiation of spikes results in larger phase advances
for earlier perturbation phases, which directly translate
into a linear decrease, see Figure 3a. For the overdriven
PRC in units of phase deviation, the slope of the PRC
is minus one, which has been termed the causality limit

[21] or causal limit [35].

For the noise methods, spikes are mostly induced by
spontaneous, large deviations of the noise stimulus. As a
result, the noise snippets show an exceptionally large am-
plitude right before the spike, i.e., close to phase one (Fig-
ure 3b). Adding those snippets up in a weighted spike-
triggered average, transfers the large amplitude close to
phase one to the PRC, which eventually results in a lin-
early increasing overdriven PRC (Figure 2d). Also for
the STEP method, this temporal stretching induces a
bias. As the neuron seems to react particularly sensi-
tively to inputs right before the spike, it again induces a
large PRC amplitude close to a phase equal to one.

How easily an overdriven PRC can be confounded with
a real PRC depends on the combination of true PRC and
estimation method. For example, the overdriven PRC of
the perturbation method can be easily mistaken for the
PRC of a HOM spike generation, while the overdriven
PRCs of the noise methods might be mistaken for the
PRC of a Hopf spike generation.

D. Dependence on internal noise

When measuring PRCs in biological neurons, record-
ings will be perturbed by various intrinsic noise sources
including ion channel noise and recording noise [17]. We
next test the stability of PRC estimates for models im-
plementing intrinsic noise with a strong, yet biologically
realistic standard deviation, see Appendix for details.

With intrinsic noise, we observe an intermediate stim-
ulus strength that leads to optimal PRC estimates (third
column in Figure 4). For small stimulus amplitudes, the
stimulus’ effect on spike timing is veiled by the intrinsic
noise, which jitters the spikes more than the stimulus.
This results in PRC estimates hardly above noise level,
and the quality of the PRC estimates augments with in-
creasing stimulus amplitude (Figure 4, from the first to
the third column), while the estimation error decreases.
Further increase in the stimulus amplitude leads to the
overdriven regime, first indications of which are visible in
the forth column of Figure 4; the shift in the peak (com-
pare Figure 2a-b) will continue with increasing stimulus
amplitude until the linear PRC is fully established. The
error amplitude continues to decrease with stimulus am-
plitude in the overdriven regime (data not shown). In-
deed, the overdriven regime implies a stark, unrealistic
reduction in both error types, which shows in published
experimental results [9, 24, 25].

A comparison between two intrinsic noise levels
demonstrates that, as expected, larger intrinsic noise re-
sults in larger errors and increases the minimal possible
stimulus amplitude (Figure 4, stronger noise in bottom
panels compared to top).

Interestingly, all PRC estimation methods result in a
comparable PRC quality (similar shape, amplitude and
error levels). This result contrasts previous suggestions
that the noise-stimulation method should be less dis-
turbed by intrinsic noise compared to the perturbation
method [15, 21]. In Figure 4, even strong intrinsic noise
that induces a baseline coefficient of variation (CV) of
about 0.2 leads to similar PRC estimates for all meth-
ods, while small differences might be observed for slightly
higher noise levels with a CV of about 0.3, which is close
to the maximum intrinsic noise that still allows to derive
PRCs.
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E. Practical scaling of the input signal

When measuring PRCs from an experimentally
recorded neuron, what is the correct amplitude of the
signal? Our results suggest that the stimulus in addition
to the DC current (i.e., perturbation or noise) should
increase the firing rate by less than 10% above baseline
(i.e., when stimulated only with the DC current). The in-
crease in firing rate results from the positive mean value
of the PRC observed for most neurons, which predicts
that positive inputs will, on average, advance spikes to
earlier phases. The stronger the input amplitude, the
larger the increase in firing rate. In particular, our data
suggests that the overdriven regime correlates with a rel-
ative increase in firing rate exceeding 10%.
So far, common practice recommended to aim for noise

stimuli that are sufficiently large to induce voltage deflec-
tions on the order of 1mV, visible by bare eye [21]. Yet,
experimental results complying with these recommenda-
tions already show indications of the overdriven regime
[9, 25]. Also in our simulations, we found that at least
for neurons with relatively high intrinsic noise, this best
practice overestimates the required stimulus amplitude
and thus results in overdriven PRCs.
To bound the stimulus amplitude, one could consider

the increase in spike jitter due to the stimulation, as mea-
sured by the coefficient of variation (CV). In our numer-
ical simulations, the resulting CV, can be relatively large
(up to a CV of 1) without reaching the overdriven regime,
depending on the neuronal dynamics. Accordingly, we
found absolute CV values to be of minor help to estab-
lish the correct stimulus amplitude.
To summarize, a correct stimulus amplitude is indi-

cated by a relative increase in firing rate by maximally
10% when adding the stimulus to the DC current. In
contrast to the common assumption that the perturbing
stimulus should be clearly identifiable against the intrin-
sic noise, the stimulus signal is in this case not visible by
eye in the interspike voltage trace.

F. Checking the PRC estimate

The reporting of overdriven PRCs is undesirable, be-
cause they can severely misrepresent neuronal dynamics.
To check the quality of PRC estimates, we propose three
post-experimental analyses.
As mentioned above, one hallmark of the overdriven

regime is an unrealistically low level of estimation errors,
see Sect. III D. Thus, reported PRCs should always be
complemented by meaningful error bars, like those based
on bootstrapping (described in the Appendix).
The recording of PRC data for multiple stimulus am-

plitudes provides a good test against overdriven PRCs
for all estimation methods. For the perturbation method,
this was previously recommended to identify stimuli that
are too weak [1]. We argue that after normalization with
the stimulus strength, the amplitude of all PRC estimates

with appropriate stimulus strength is comparable, while
stimuli with too large an amplitude deviate and show
a larger (wSTA) or smaller (STEP and perturbations)
PRC amplitude. These size effects are easily singled out
in recordings, in contrast to the above described alter-
ations in PRC shape, which could be confused with the
unknown, actual PRC shape as described in Sect. III C.
Recording multiple stimulus amplitudes thus helps to
spot overdriven PRCs, yet at the cost of a prolongation
of the total recording duration.
The noise methods provide a clear hallmark of over-

driven PRCs without prolongating the recording dura-
tion when the same set of recorded spikes is evaluated
with the wSTA as well as the STEP method. As can be
seen in Figure 2b, both noise-stimulus methods yield sim-
ilar PRC amplitudes as long as the input strength is ap-
propriate. Yet, the effect of overdriven stimulation on the
PRC amplitude is opposite for both methods. We thus
propose to estimate PRCs from the same data via STEP
and wSTA methods. A comparison of their respective
amplitudes allows one to distinguish between valid and
overdriven PRC measurements: Only if the correspond-
ing PRCs are of similar amplitude, the measurement was
performed with an appropriate input strength. If the es-
timated PRCs differ considerably in their (mean) ampli-
tude, the measurement was most likely overdriven. This
test can also be applied to existing data, as it is based on
the same experimental recording being analyzed in two
different ways.

IV. DISCUSSION

Neuronal phase-response curves have been measured
for over twenty years [24, 25]. PRCs are valuable to ana-
lyze neuronal dynamics, and can be used to predict syn-
chronization and locking behavior of the neuron. We re-
port pitfalls of experimental PRC measurements by com-
paring theoretical PRCs with PRCs estimated based on
simulated spike trains. We find that reliable PRC esti-
mates require an intermediate stimulus amplitude, suffi-
ciently high to overcome intrinsic noise, but not too high
to infringe fundamental PRC assumptions. As a result
of the analysis, we propose to use stimulus amplitudes
that change the firing rate by not more than 10% and
that do not visibly impair the spike train. Stimulus am-
plitudes that are too large result in overdriven PRCs.
Mild cases of overdriven PRCs are marked by a linear
increase or decrease with reduced PRC error at low or
high phases, respectively. Comparable hallmarks can be
observed in previous experimental PRC measurements
[6, 7, 9, 24, 25, 35]. Even for mildly overdriven PRC
estimates, information about neuronal dynamics may be
occluded and conclusions based on these PRCs should be
derived with care.
While experimental studies often refer to their esti-

mated PRCs as “finite” PRCs, due to the finite, i.e.,
non-zero, stimulus amplitude of the experimental set-up,
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we here show that the distinction between “finite” PRC
and the theoretical “infinitesimal” PRC is not supported
by our results. We find that PRCs estimated with finite
stimulus amplitude either fit the “infinitesimal” PRC,
or they are not informative about neuronal dynamics:
For stimuli that are too small, PRCs estimates are below
noise level, and for stimuli that are too large, the PRCs
approach a method-specific, generic shape that depicts
the neuron misleadingly as a simplistic response machine.
The transition from PRCs hardly above noise level, to
PRCs with clear overdriven characteristics, is also ob-
served in experimental studies with an increase in stim-
ulus amplitude [20, 24]. As these experimental examples
show no clear PRC estimate that lies between intrinsic-
noise-dominated and overdriven, the range of appropri-
ate, intermediate stimulus amplitudes seems to be rela-
tively small for the recorded hippocampal and cortical
cells.

Here, we have compared PRC estimations for three
methods. With optimal stimulus amplitude, all methods
perform similarly [31], and, contrary to previous assump-
tions [15, 21], we show that even under noisy conditions,
the perturbation method does not per se perform worse
than the noise-stimulation methods. Yet, the prevention
of overdriven PRCs is facilitated by the noise-stimulation
methods compared to the perturbation method. Noise
stimulation data allows to estimate the PRC based on
the wSTA as well as the STEP method, and different
PRC amplitudes in both measures provide a clear indi-
cation for overdriven PRCs.

Overdriven PRC estimates are a common problem in
experimental studies. Farries and Wilson [6, 7] report
that even relatively large stimuli lead to reliable PRC
estimates. Their solution to the problem of overdriven
PRCs is a removal of the data points close to the causal-
ity limit. Others have related the causality limit to a
biased sampling of phase [23] or phase advance data [35].
The authors propose methods to estimate the total dis-
tributions from the available, partial observations in or-
der to get more realistic PRC estimates. While these
approaches may help to extract more information from
overdriven PRCs than the traditional analysis, they do
not address the alterations in phase response due to the
excessive stimulus amplitude discussed here.

The PRC amplitude is rarely reported in the litera-
ture, as many studies normalize the PRC amplitude ar-
bitrarily, e.g., to one. This practice removes important
information about the PRC: Not only is the amplitude
required for any quantitative description of neuronal dy-
namics, it also provides a most valuable tool in testing
for the overdriven regime. We stress that the correct am-
plitude scaling is as easily extracted from PRC data as
the PRC shape itself.

Preventing overdriven PRCs becomes particularly rele-
vant when measuring neurons with relatively high levels
of intrinsic noise, such as cortical or hippocampal neu-
rons, compared to neurons with stable repetitive firing.
High levels of noise are also common when PRCs are esti-

TABLE I. Parameters of the Hopf model and the SNICmodel.
The HOM model is equivalent to the SNIC model, but with
φ = 1.5 and IDC = 0.166µA/cm2 .

Parameter Hopf SNIC

Cm 20µF/cm2 1µF/cm2

EL −60mV −65mV
ENa 120mV 55mV
EK −84mV −90mV
gL 2mS/cm2 0.1mS/cm2

gNa 4.4mS/cm2 35mS/cm2

gK 8mS/cm2 9mS/cm2

IDC 90.76µA/cm2 0.212µA/cm2

φ 0.04 1

mated not for individual cells, but for whole brain areas.
In these cases, attempted PRC measurements often suffer
from exaggerated stimulus amplitudes in order to counter
the intrinsic noise. In contrast, when measured with the
appropriate stimulus amplitude, PRCs enrich our set of
“diagnostic” tools to quantify neuronal dynamics.
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APPENDIX

Conductance-based neuron models

Conductance-based neuron models were based on es-
tablished models from the literature. The Hopf model
was first described by Morris and Lecar; we use the ver-
sion from Ermentrout and Terman [4], p. 50-51. The
SNIC and HOMmodels are versions of the Wang-Buzsaki
model [36]. The membrane voltage v of the models fol-
lows the dynamics

dv

dt
= (Iin + gL(EL − v) + Igates)/Cm.

The input current is the sum of a DC current, a time-
dependent stimulus and an intrinsic noise ξ, Iin = IDC +
s(t) + σξ. For simulations without intrinsic noise, σ = 0.
The model parameters are summarized in Table I.

Gating for the Hopf model:

For the Hopf model,

Igates(v, n) = gNam∞(v)(ENa − v) + gKn(EK − v).
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The kinetics of the ion channel gating n are given by

dn

dt
= φ

n∞(v)− n

τn(v)
,

with τn(v) = 1ms/cosh ((v/mV − 2)/60). The ion
channel activation curves are given as

m∞(v) = 0.5(1 + tanh((v/mV − (−1.2))/18)),

n∞(v) = 0.5(1 + tanh((v/mV − 2)/30)).

Gating for the SNIC and HOM models:

For the SNIC model,

Igates(v, n, h) = gNam∞(v)3h(ENa − v) + gKn
4(EK − v).

The kinetics of the ion channel gating are given by

dh

dt
= φ(αh(v)(1 − h)− βh(v)h),

dn

dt
= φ(αn(v)(1 − n)− βn(v)n),

with

αh(v) = 0.07 exp(−v/mV+ 58

20
)/ms,

βh(v) =
1

1 + exp(−0.1v/mV− 2.8)
/ms,

αn(v) =
0.01v/mV+ 0.34

1− exp(−0.1v/mV− 3.4)
/ms,

βn(v) = 0.125 exp(−v/mV + 44

80
)/ms,

The ion channel activation curve for the gating variable
m is given as

m∞(v) =
αm(v)

αm(v) + 4 exp(− v/mV+60

18
)
,

αm(v) =
0.1v/mV+ 3.5

1− exp(−0.1v/mV− 3.5)
.

The HOM model is equivalent to the SNIC model, but
with φ = 1.5 and Iin = 0.166µA/cm2.
Conductance-based neuron models were simulated nu-

merically with the simulation environment brian2 [29].
To record 500 perturbed spikes, the recording duration
is 50 seconds for the noise-stimulation methods, and 100
seconds for the perturbation method, where only every
second spike is perturbed. We observed that the inter-
spike interval depends on the time resolution dt of the
simulation. We have chosen dt = 0.001ms for all models,
to ensure that a three times smaller time step changed
the deterministic interspike interval by less than 5%.
To investigate the tolerance of PRC measurements to-

wards an unknown noise source, PRCs were in a second

step measured for neuron models that included intrin-
sic noise, implemented as an additive zero-mean white-
noise current (the brian2 -implemented variable xi). The
noise levels chosen in this study correspond to relatively
strong intrinsic noise, with a phase noise of σ̃ = 2

√
ms or

σ̃ = 3
√
ms standard deviation (Figure 4). The next sec-

tion shows how to translate the phase noise into the stan-
dard deviation of the brian2 -implemented noise variable
xi. The chosen phase noise results in a CV of around
0.2 and 0.3, respectively, which is within a biologically
realistic range.

As a side-note, while the stimulus amplitude appropri-
ate for PRC estimation is larger for perturbations than
for a noise stimulus, the latter induce more spike jitter
(larger CVs) compared to the perturbations. It seems
that as the perturbation is temporally precise, even small
spike deviations are sufficient to estimate PRCs, while
the continuous input delivered by the noise stimulus re-
quires larger deviations to estimate the PRC, probably
because every spike informs about the full phase range,
instead of just one particular phase.

Adaptation of intrinsic noise levels for brian2 models

Comparable levels of the intrinsic noise between mod-
els can be ensured by identical noise levels in the phase
reduction. This requires the following choice of the stan-
dard deviation of the intrinsic noise current, σ: The de-
terministic phase equation Eq. (1) is ϕ̇(t) = 1 + Zs(t)
with current input s(t) and PRC Z. With the intrin-
sic noise as input, and taking a temporal mean, we get
ϕ̇(t) = 1 + σ̃η, with the variance of the white noise η as

σ̃2 = σ2
∫ 1

0
Z2(ϕ)dϕ. Setting the phase noise σ̃ to the

same value in all models, we find the appropriate current

noise strength as σ = σ̃Cm

T

[

∫ 1

0
Z2(ϕ)

]

−0.5

dϕ, where Cm

is the membrane capacitance of the model. For the sim-
ulations, we evaluate this formula with the theoretical
PRCs gained from backwards integration of the adjoint
equation as Z, see Section II C.

Error estimation by bootstrapping

In order to evaluate the quality of the PRC, we use a
bootstrap approach to estimate errors for the phase re-
sponse curves. Two different kinds of phase-dependent
errors are considered, the baseline error which results
from PRC estimates on shuffled data, and the error on
the PRC estimate.

In order to provide an error for the PRC, we repeti-
tively estimate PRCs using only a restricted amount of
spikes. We estimated PRCs in 100 repetitions from a set
about 250 spikes, randomly chosen from the total set of
about 500 perturbed spikes. The standard deviation of
the 100 PRC estimates was used as PRC error.
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In order to provide a baseline for the PRC estimate
– above which a significant PRC should rise – we mea-
sure PRCs for random combinations of noise snippets
and spike advances. We measure the PRC in 100 rep-
etitions for a random permutation of the numbering i
of spike deviations {∆ϕi}, and calculate the standard
deviation for the resulting 100 estimates. The mean of
these estimates results in a PRC close to zero, such that
the resulting standard deviation corresponds to the range
within which a zero, i.e., non-significant PRC estimate is
to be expected. This error around zero provides a lower
bound to PRCs that are significantly different from zero.

Amplitude scaling for estimated phase-response

curves

The appropriate unit for most experimentally derived
PRCs is cm2/µA, which naturally arises for PRCs that
measure the phase advance in response to a current, such
as a noise stimulus or perturbation in µA/cm2. For
this study, however, we aim at comparing experimentally
measured PRCs with theoretical PRCs. The theoretical
PRCs gained from backwards integration of the adjoint
equation have a unit of 1/mV, as they quantify the phase
advance in response to a voltage perturbation in units of
mV. For comparison, we transform the estimated PRCs
into the units of the theoretical PRCs by dividing the
current PRC by the membrane capacitance and the time
window of the input, Z(∆v) = Z(∆I) Cm/τ̃ , where τ̃ is
the temporal resolution of the measured PRC. τ̃ corre-
sponds for the perturbation methods to the duration of
an individual perturbation (in our case τ̃ = 0.1ms), and
for the noise-stimulation method to the time bin used
to evaluate the PRC (i.e., spiking period divided by the
number of data points per PRC estimate, in our case
τ̃ = T/200).
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FIG. 1. Experimental methods for PRC measurements. a: Individual time-point perturbation. The phase deviation ∆ϕ,
resulting from stimulation with a short current pulse, is plotted against the timing of the current pulse, and fitted by a curve.
b: Time-continuous noise stimulation. Spikes are jittered due to a continuous noise-stimulation. c: Noise is rescaled to the
phase variable. d: The wSTA method estimates the PRC via a weighted spike-triggered average. e: The STEP method relies
on an error minimization of the input-and-PRC-based prediction of spike jitter.
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FIG. 2. Comparing PRC measurements for three spike generation mechanism (input strength is color-coded from green to
violet). The smooth theoretical PRC is depicted in brown. a: PRCs measured with the perturbation method. b: PRCs
measured with wSTA and STEP method. c-d: Comparison of different dynamical classes at highest stimulus amplitude from
(a-b).
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FIG. 3. Perturbation and noise-stimulation methods lead to different but stereotypic PRCs. a: For the perturbation method,
the overdriven PRC result from the advance of the spike to the time point of the perturbation. b: The shape of the overdriven
PRC results for the noise stimulation methods from temporally stretched noise snippets with an elevation before the following
spike.
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FIG. 4. Perturbation and noise-stimulation methods perform similar under high intrinsic noise levels. The PRC estimation is
exemplified with the SNIC model, theoretical PRC in brown; the intrinsic noise is adapted to a baseline coefficient of variation
(CV) of 0.2 and 0.3, respectively. For the bottom traces, the PRC estimation directly reaches the overdriven regime once
the stimulus amplitude is large enough to counter the intrinsic noise, not allowing for an intermediate, appropriate range of
stimulus amplitudes. Bootstrapping of the data results in standard deviation errors for the PRC (transparent colored area)
and for the zero-PRC background (grey area), see Appendix.


