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Abstract Intensive computational and theoretical
work has led to the development of mutliple mathe-
matical models for bursting in respiratory neurons in
the pre-Bötzinger Complex (pre-BötC) of the mam-
malian brainstem. Nonetheless, these previous mod-
els have not captured the preinspiratory ramping as-
pects of these neurons’ activity patterns, in which
relatively slow tonic spiking gradually progresses to
faster spiking and a full-blown burst, with a cor-
responding gradual development of an underlying
plateau potential. In this work, we show that the
incorporation of the dynamics of the extracellular
potassium ion concentration into an existing model
for pre-BötC neuron bursting, along with some pa-
rameter updates, suffices to induce this ramping be-
havior. Using fast-slow decomposition, we show that
this activity can be considered as a form of parabolic
bursting, but with burst termination at a homoclinic
bifurcation rather than as a SNIC bifurcation. We
also investigate the parameter-dependence of these
solutions and show that the proposed model yields
a greater dynamic range of burst frequencies, dura-
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tions, and duty cycles than those produced by other
models in the literature.
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1 Introduction

Since the original discovery of respiratory activity
in neurons within the pre-Bötzinger Complex (pre-
BötC) of the mammalian brainstem (Smith et al.,
1991), many experimental and computational efforts
have focused on characterizing the activity patterns
of these neurons. Experiments have shown that at
least under some conditions, individual pre-BötC res-
piratory neurons can generate temporally clustered
action potentials known as bursts. Moreover, some
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pre-BötC neuronal bursts have been shown to de-
pend on a persistent sodium current (Butera et al.,
1999; Del Negro et al., 2002, 2005; Koizumi and
Smith, 2008), while others require a nonspecific cation,
or CAN, current (Thoby-Brisson and Ramirez, 2001;
Peña et al., 2004), and combinations of these ion
flows can produce various distinctive burst patterns
including some that may arise under special condi-
tions such as early in development (Jasinski et al.,
2013; Chevalier et al., 2016; Wang and Rubin, 2020)
or during sighs (Jasinski et al., 2013; Toporikova
et al., 2015; Wang et al., 2017).

Functional respiratory rhythms under normoxic
conditions consist of three activity phases, commonly
known as inspiration, post-inspiration, and late ex-
piration, the latter two of which together comprise
expiration. During respiratory rhythms recorded in
various experimental preparations, a subpopulation
of glutamatergic pre-BötC neurons, sometimes known
as type-1 pre-BötC neurons (Rekling and Feldman,
1998; Gray et al., 1999) engages in what is known
as preinspiratory (pre-I) activity. These neurons re-
main silent throughout much of post-inspiration and
late expiration, but they begin to activate toward the
end of the expiration. Their activity ramps in inten-
sity as expiration gives way to inspiration and culmi-
nates in bursting that continues throughout inspira-
tion; indeed, this pre-I activity pattern is thought to
play an important role in initiating the expiration-
to-inspiration transition. While the gradual intensifi-
cation of pre-I activity likely involves network mech-
anisms including positive feedback induced by the
recruitment of additional neurons, experiments have
shown that even individual burst-capable pre-BötC
neurons can generate ramping activity patterns, in
which tonic spiking eventually intensifies and tran-
sitions to bursting, under pharmacological blockade
of glutamatergic neurotransmission (Thoby-Brisson
and Ramirez, 2001; Peña et al., 2004).

Despite the significant work done previously to
model pre-BötC neuronal activity, current spiking
models do not capture the ramping activity observed
in individual pre-BötC neurons. Moreover, experi-
ments show that the bursting capability of pre-BötC
neurons and networks depends on the extracellular
ion concentrations to which they are exposed. Slices
of 250-350 µm thickness prepared from the pre-BötC
are nonrhythmic at physiological [K+]ext, but some
individual pre-BötC neurons do burst in these condi-
tions (Del Negro et al., 2001; Tryba et al., 2003), es-
pecially if depolarized by a tonic input (Smith et al.,
1991), and pharmacological blockade of GABAA and

glycinergic inhibition also allows pre-BötC neurons
to burst in these conditions (Tryba et al., 2003).
In contrast to these results, however, modeling that
explains how different extracellular potassium con-
centrations can produce corresponding forms of pre-
BötC activity has led to the conclusion that, accord-
ing to existing modeling frameworks, individual pre-
BötC neurons should not be able to burst at phys-
iologically relevant extracellular potassium concen-
trations (Bacak et al., 2016b). In this paper, we re-
visit these issues, producing and analyzing what is to
our knowledge the first Hodgkin-Huxley (HH) style
model for ramping bursts of pre-BötC neurons in
the absence of rhythmic drive and inhibitory inputs.
Importantly, our model does not require tuning out-
side of physiological parameter ranges in order to
produce bursting dynamics.

Many of the previous models that inspired this
work were also posed in the HH framework, in which
a system of nonlinear ordinary differential equations
based on Kirchoff’s and Ohm’s laws represents the
temporal evolution of voltage along with a collection
of variables modeling the voltage-dependent activa-
tion and inactivation levels of transmembrane ionic
currents. In addition to these variables, HH models
include a variety of parameters, representing quanti-
ties associated with currents such as time constants,
half-activation levels, and reversal potentials. Neu-
ronal spikes last just a few milliseconds, whereas in-
spiratory bursts are much longer events, lasting up
to multiple seconds under some experimental con-
ditions. Despite the presence of ionic pumps and
glial cells that regulate intra- and extracellular ion
concentrations, respectively, spiking that continues
over such prolonged periods can lead to significant
changes in the ion concentrations that impact neu-
rons (Fröhlich et al., 2008; Barreto and Cressman,
2011; Kueh et al., 2016). Given this phenomenon
and the knowledge that pre-BötC respiratory neu-
ron activity patterns strongly depend on extracellu-
lar potassium concentration, we hypothesized that
the dynamics of potassium ions could be central to
the emergence of ramping activity in individual pre-
BötC neurons. The key innovation in our work rela-
tive to past pre-BötC neuron models is that we have
augmented the HH modeling framework with this
ionic dynamics. In this paper, we show that combin-
ing these components yields a neuronal model that
successfully produces ramping dynamics. Applying
fast-slow decomposition and associated bifurcation
analysis, we explain the mechanisms underlying this
activity pattern, which we find represents a form of
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parabolic bursting. Furthermore, we use direct sim-
ulations to explore the robustness and tunability of
the bursting dynamics in our model, and we perform
additional analysis to elucidate how transitions be-
tween bursting and other forms of activity occur as
certain model parameters are varied.

2 Model

2.1 Voltage dynamics

We consider a model that depicts the spiking behav-
ior of an isolated neuron in the pre-BötC. It is formu-
lated similarly to other HH-style models (Hodgkin
and Huxley, 1952) and depends on a persistent sodium
current to trigger bursting (Butera et al., 1999). Our
model is based heavily on a model presented by Ba-
cak et al. (2016b), augmented with some crucial mod-
ifications.

In this model, the membrane potential (V ) is gov-
erned by the current balance equation:

C · dV
dt

= − (INa + INaP + IK + IL + ISyn) . (1)

The membrane currents in (1) include: the fast
sodium current INa, the persistent sodium current
INaP , the delayed rectifier potassium current IK , the
leakage current IL, and the synaptic current ISyn.
These membrane currents are drawn from previous
work Butera et al. (1999); Bacak et al. (2016b), and
are represented as follows:

INa = ḡNa · (mNa)3 · hNa · (V − ENa), (2)
INaP = ḡNaP ·mNaP · hNaP · (V − ENa), (3)
IK = ḡK · n4 · (V − EK), (4)
IL = ḡL · (V − EL), (5)

ISyn = ḡSyn · (V − ESyn). (6)

Note that we model a single neuron, and ISyn is
a tonic synaptic current with time-independent con-
ductance, ḡSyn, representing a steady level of drive
from other sources, such as brainstem feedback path-
ways. This form of synaptic current is appropriate
for this study, since we are interested in rhythmicity
that can emerge due to intrinsic neuronal dynamics,
without contributions from time-varying inputs.

2.2 Sodium and potassium currents

The currents INa, INaP , and IK are given as prod-
ucts of maximal conductances, gating variables, and

restoring currents. Each of the sodium gating vari-
ables x ∈ {mNa, hNa,mNaP , hNaP } satisfies the equa-
tion

τx(V ) · dx
dt

= x∞(V )− x, (7)

where

x∞(V ) = [1 + exp ((Vx − V )/kx)]−1
,

τx(V ) = τ̄x/ [cosh ((V − Vτx
)/kτx

)] .

The parameter values used for these equations,
with corresponding sources and rationales, are all
presented in Appendix A.

The potassium current only has activation gates,
represented by the variable n, which also satisfies
equation (7). For n∞(V ) and τn(V ), we use the for-
mulation

n∞(V ) = κ1(V )
κ1(V ) + κ2(V ) , τn(V ) = 1

κ1(V ) + κ2(V ) ,

where κ1(V ) and κ2(V ) are the following voltage-
dependent functions, taken from Bacak et al. (2016b);
Huguenard and McCormick (1992):

κ1(V ) = nA · (nAV
+ V )

1− exp (−(nAV
+ V )/nAk

) ,

κ2(V ) = nB · exp (−(nBV
+ V )/nBk

).

The constants nA, nB , nAV
, nBV

, nAk
, and nBk

are
discussed in Appendix A.

The reversal potential for potassium ions, de-
noted EK , is viewed as a function of the dynamic
variable [ K+]out, and modeled through the Nernst
equation approximated at body temperature.

EK = 26.7 · log [K+]out
[K+]in

, (8)

Note that [K+]in is taken to be a constant value.
The justification for this approximation is discussed
in Sect. 2.3. Internal and external sodium ion concen-
tration, and thus also the sodium reversal potential
ENa, are taken as constants in this model as in the
previous literature (Bacak et al., 2016b), with values
listed in Appendix A.

2.3 Ion regulation and dynamics.

The crucial difference between our model and the
model presented in Bacak et al. (2016b) is the inclu-
sion of dynamics in the concentration of extracellular
potassium ions, denoted [K+]out.
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Experimental data has long indicated that neu-
ronal activity causes fluctuations in [K+]out, with
maximum increases of roughly 0.8 mm per spike,
which can nearly double the [K+]out local to a neu-
ron (Baylor and Nicholls, 1969).

Experimental manipulations that increase the ex-
tracellular potassium concentration are commonly
performed in in vitro studies to increase neural ex-
citability and induce bursting behavior. A typical
approach is to bathe slides containing neuronal tis-
sue in highly concentrated K+ solution. The vari-
ations of [K+]out due to neural activity and other
factors, however, imply that this bath concentra-
tion is not equivalent to what we present as the
[K+]out variable. Throughout this paper, [K+]out
represents the approximate localized concentration
of K+ in the vicinity of an individual neuron, while
Kbath represents the concentration of potassium in
the bathing solution, toward which [K+]out would
naturally evolve over time in the absence of neu-
ronal activity and glial effects. This diffusion of the
dynamic [K+]out variable towards Kbath is modeled
as a molar current of the form discussed in Barreto
and Cressman (2011):

Ĩdiff = 1
τdiff

([K+]out − kbath), (9)

where τdiff represents the corresponding time con-
stant. To simulate reasonable physiological condi-
tions, kbath was set to 4 mm (Barreto and Cressman,
2011).

Glial cells also play an active role in decreasing
the concentration of K+ external to neurons (New-
man and Reichenbach, 1996). The effects of the glia
on this concentration are also modeled as molar cur-
rents in the style of Barreto and Cressman (2011),
with maximal rate Ḡ, half-activation potassium con-
centration K̄, and steepness factor zk as follows:

Ĩglia = Ḡ

1 + ezk·(K̄−[K+]out)
. (10)

Note that neither diffusion nor glial cells move ions
across the neuronal membrane, and thus the currents
Ĩdiff , Ĩglia do not appear in the voltage equation.

Finally, increases in [K+]out are driven by the
action potentials of the neuron. The potassium cur-
rent IK derives from the movement of potassium ions
across the neural membrane. The resulting changes
in potassium concentration are therefore proportional
to IK . The proportionality factor is the product of
two constants. One of these terms, γ, represents the

ratio of the time-derivative of the internal ion con-
centration to the corresponding membrane current
and is derived in Appendix B. The second term,
β, represents the ratio of the internal neuron vol-
ume to the localized external volume that determines
the reversal potential across the neural membrane.
While previous authors have used a value of ap-
proximately 7 for this ratio (Barreto and Cressman,
2011; Somjen, 2004), there is clearly some ambigu-
ity in estimating β (as well as γ) and our model uses
β = 14.555. Since the parameter γ is proportional to
changes in internal concentration, changes in exter-
nal concentration must be proportional to a factor
of γβ. Putting these factors together, we model the
dynamics of localized external potassium concentra-
tion as

d[K+]out
dt

= γβIK − Ĩdiff − Ĩglia. (11)

Also, it is important to note that in this model,
[K+]in is approximated as being a constant value,
despite the fact that K+ ions inside the neuron flow
through the neural membrane via the IK current and
increase [K+]out. The change in external K+ con-
centration, which is under 2 mm per burst in this
model, would only correlate to a decrease of 0.137
mm in internal K+ concentration. This is negligible
on the scale of bursting behavior of an individual
neuron, as it constitutes only a small fraction of the
initial [K+]in value of 150 mm. This approximation
was also used in a previous neuronal bursting model
with dynamic ion concentrations, based on the argu-
ment that changes in [K+]in are more strongly cor-
related to fluctuations in internal sodium ion concen-
tration rather than to changes in [K+]out (Barreto
and Cressman, 2011).

2.4 The full model

In summary, we arrive at a 7-dimensional model of a
neuron, which depicts bursting behavior by connect-
ing the dynamics of membrane potential, sodium and
potassium gating and reversal potentials, and ion
concentrations. The formulations of these dynamics
are based on a combination of previous models of
bursting behavior (Butera et al., 1999; Bacak et al.,
2016b; Barreto and Cressman, 2011). The differen-
tial equations in this system are equations (1), (7),
and (11); note that in fact we have 5 equations of the
form (7), one for each of mNa, hNa, mNaP , hNaP ,
and n.
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3 Periodic Behaviors in the Model

3.1 Activity patterns

To match experimental data, a pre-BötC neuron model
must demonstrate a range of activity patterns across
different conditions. Previous modeling work showed
how different neuronal behaviors occur at different
fixed values of the external potassium concentra-
tion, and our model reproduces this result in Fig.
1. This agreement is not surprising: When internal
and external K+ concentrations are fixed, our model
is extremely similar to the model presented in Ba-
cak et al. (2016b), differing only in the values of a
few model parameter values, which affect quantita-
tive but not qualitative aspects of the dynamics in
this frozen-potassium setting.

Previous work has noted that fixing [K+]out, which
is directly related to EK by (8), at values sufficiently
elevated above physiological levels is enough to in-
duce bursting in a pre-BötC neuron model lacking
ion concentration dynamics (Bacak et al., 2016b).
Furthermore, modeling of other brain areas revealed
a wide array of bursting behaviors when K+ and
Na+ concentrations were allowed to vary dynami-
cally (Barreto and Cressman, 2011; Erhardt et al.,
2020). In this work, we combine the insights offered
by these earlier investigations to model pre-BötC
dynamics featuring ramping activity culminating in
a burst without imposed elevation of extracellular
potassium concentration.

Indeed, with dynamic extracellular potassium lev-
els, our model produces distinctive ramping bursts
as shown in Fig. 2, matching a pattern seen exper-
imentally in pre-BötC neurons; the slow spiking on
a gradually increasing voltage plateau at the start
of each burst active phase is referred to in the liter-
ature as “preinspiratory activity”. These bursts in-
clude periods of quiescence, during which [K+]out
remains on the low end of physiologically observed
levels, corresponding to low values of EK , by equa-
tion (8). Numerical simulations show that EK slowly
increases during this phase until spiking emerges. As
in other HH-type models, each spike involves dy-
namics of the sodium and potassium currents, INa
and IK , respectively. The ion flows associated with
these currents gradually increase [K+]out. Although
glia and diffusion regulate external K+ concentra-
tions, the strengths of these repolarization currents
depend on [K+]out as depicted in equation (11). At
low concentrations, the glia are almost inactive and
diffusion is too weak to bring [K+]out back to equi-

librium. A positive feedback loop results, such that
as the neuron continues to spike and [K+]out con-
tinues to increase substantially above baseline val-
ues. This rise in [K+]out is cut off by the nonlin-
ear rise in the strength of diffusion and glial cur-
rents as in equations (9)-(10). The overall increase
of EK is enough to trigger bursting behavior in the
neural cell, however, and this bursting continues un-
til some time after [K+]out saturates. Furthermore,
as demonstrated experimentally (Del Negro et al.,
2001) and discussed below (cf. Fig. 4), the spiking
frequency increases with [K+]out. Thus, the increas-
ing [K+]out during the build-up of a burst also pro-
vides a mechanism for a ramping effect, where the
spiking frequency gradually increases from an initial
slow tonic spiking until a burst is established. The
exact geometry of the burst pattern depends on var-
ious parameters, including conductance strengths.
For example, with a reduction in gNaP , gL, and gsyn
the bursting pattern changes to feature a more grad-
ual increase in spike frequency and a less pronounced
drop in spike amplitude during the burst (Fig. 2,
bottom).

3.2 Fast-slow decomposition analysis

Neuronal bursting results from dynamics occurring
across two or more distinct timescales. Voltage spikes
occur on a fast timescale. Transitions between the
spiking state and quiescent state within the bursting
regime, as well as the gradual oscillation of [K+]out
over the course of a burst, depend on slow timescale
dynamics. In our model, a positive feedback loop be-
tween the slow subsystem and the fast subsystem
causes a buildup in external K+ concentration and
a gradual increase in spike frequency during the ac-
tive phase of a burst. The variation in EK values
that results affects the timing of the transition from
the active spiking state to the quiescent state within
each burst.

A fast-slow decomposition is a standard mathe-
matical approach to elucidate the details of multiple
timescale dynamics in bursting (Bertram and Rubin,
2017). We begin a fast-slow decomposition by not-
ing that hNaP and [K+]out evolve significantly more
slowly that the other variables in the model. Hence,
the full model can be considered as having 4 fast
variables, comprising a fast subsystem, and 2 slow
variables, constituting a slow subsystem.

A standard approach when a model features mul-
tiple slow variables, which we follow, is to pick one
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(A): [K+]out = 4.0 mm, EK = −96.8 mV
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(B): [K+]out = 6.0 mm, EK = −85.9 mV
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(C): [K+]out = 8.0 mm, EK = −78.3 mV
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(D): [K+]out = 10.0 mm, EK = −72.3 mV

Fig. 1: Model pre-BötC neuron activity depends on the potassium reversal potential, EK , which relates to the local external
potassium concentration via equation (8). (A) At EK = −96.8 mV, the reversal potential is too low to support bursting, and
the neuron remains in a tonic spiking state, characterized by rhythmic spiking at a fixed frequency. (B) At EK = −85.9 mV,
the neuron has surpassed the threshold EK value for bursting and exhibits periods of quiescence alternating with periods
of high-frequency spiking riding a depolarized voltage plateau. (C) At EK = −78.3 mV, after release from a resting level
potential, the neuron spikes but cannot fully repolarize and return to a resting state. As a result, it once again enters a tonic
spiking state, but with reduced repolarization and a higher frequency relative to (A). (D) Finally, at EK = −72.3 mV, the
neuron enters depolarization block with an elevated membrane potential and an absence of spike generation.

of these as a primary bifurcation parameter and com-
pute bifurcation diagrams for the fast subsystem with
respect to this parameter, while the other slow vari-
ables are held frozen at some fixed values. This pro-
cess can then be repeated for various values of these
other slow variables, which are typically selected based
on the paths they follow when the full system evolves.
This approach does not capture certain transitional
solution patterns that involve subtle interactions of
multiple slow variables or mixing of time scales (Vo
et al., 2014; Teka et al., 2012; Wang and Rubin, 2016;
Wang et al., 2017; Bertram and Rubin, 2017; Wang
and Rubin, 2020), but it can be an effective way to

explain many activity patterns in fast-slow systems
nonetheless.

Previous analysis of respiratory neuron models
with fixed EK showed the utility of hNaP as a bifur-
cation parameter (Butera et al., 1999; Bacak et al.,
2016b), so we make hNaP our initial primary bifur-
cation parameter as well, and we use XPPAUT (Er-
mentrout, 2002) to consider how the dynamics of
the fast subsystem varies with hNaP . We repeat this
analysis for several values of [K+]out (and hence of
EK). Note that we refer to the fast subsystem to-
gether with hNaP as the neuronal system.
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(B): [K+]out & EK vs. t
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Fig. 2: Typical bursting trajectories of our preinspiratory pre-BötC neuron model with [K+]out dynamics. (A) The mem-
brane potential (in mV) plotted over time (in ms). Note that over the course of each burst, the frequency of the spiking
tends to increase and then decrease, while spike amplitude has the opposite trend (parameter set: gNaP = 5.0 nS, gL = 2.50
nS, gsyn = 0.365 nS). (B) The time course of the potassium reversal potential (EK , red) along with external potassium
concentration ([K+]out, blue). Note that increases in EK align with increases in spiking frequency. (C) Voltage time course
for bursting with reduced conductances (parameter set: gNaP = 4.5 nS, gL = 2.40 nS, gsyn = 0.360 nS). Note that the
spiking frequency increases more gradually over the course of the burst. (D) Time courses of EK and [K+]out for this
alternative burst waveform.

Let us start with the parameter set correspond-
ing to Fig. 2A. Consider first [K+]out = 4.5 mm
(Fig. 3, upper left). The fast subsystem bifurcation
diagram with respect to hNaP includes an S-shaped
curve of equilibria, known as the critical manifold S,
including two stable segments (red solid), one a hy-
perpolarized branch corresponding to quiescence and
the other a depolarized segment corresponding to
depolarization block. The lower stable branch ends
in a saddle-node bifurcation that we call the lower
knee of S, with h = hLKNaP , while the upper segment
destabilizes at even larger hNaP at a supercritical
Andronov-Hopf (AH) bifurcation, with h = hAHNaP .

These bifurcation values do depend on [K+]out, but
we suppress this dependence in our notation. The
family of stable periodic orbits, P, born in the AH
bifurcation continues for decreasing hNaP until ter-
minating in a SNIC bifurcation at the lower knee.
When the neuronal system, consisting of the fast
subsystem along with the slow hNaP dynamics, is
simulated with [K+]out, and thus EK , still frozen,
the system exhibits periodic tonic spiking in which
hNaP hovers near a particular value and the volt-
age of the cell oscillates along the associated part of
the periodic orbit family in the bifurcation diagram.
Past work has shown that this tonic spiking results
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(A): [K+]out = 4.5 mm, EK = −93.6 mV.
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(B): [K+]out = 5.3 mm, EK = −89.3 mV.
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(C): [K+]out = 6.0 mm, EK = −85.9 mV.
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(D): [K+]out = 6.7 mm, EK = −83.0 mV.

Fig. 3: Both spiking and bursting states can be realized with fixed K+ concentration (cf. Bacak et al. (2016b)). In each
panel, the solid red curve indicates stable (upper and lower) segments of the critical manifold, while the black dotted curves
show unstable segments. The solid purple circle labels an Andronov-Hopf (AH) bifurcation point hAH

NaP and the green curve
represents the periodic orbit family P originating from this AH point. The blue curve represents an orbit of the neuronal
system starting from a jump up to the active phase. The dashed orange curve is the hNaP nullcline. (A) At low EK ,
the trajectory converges to a spiking oscillation near the end of P, which occurs in a SNIC bifurcation (light blue) at the
lower fold, or knee, of the critical manifold S, with h = hLK

NaP . (B) As EK increases, hAH
NaP decreases and the termination

of P switches to a homoclinic bifurcation at hHC
NaP . The neuronal system switches from spiking to bursting. (C) As EK

continues to increase, hAH
NaP , hHC

NaP both decrease and the neuronal system’s bursting trajectory reaches lower hNaP values.
The shape of the bursting waveform is determined by the relative positions of hLK

NaP and hAH
NaP . (D) For large enough EK ,

hAH
NaP < hLK

NaP ; moreover, the relative positions of P and the hNaP -nullcline result in tonic spiking (note the absence of a
jump down in the orbit from P to the lower stable branch of S; also see main text).

when the weak leftward drift in hNaP during the part
of each oscillation when the trajectory lies above the
hNaP -nullcline (dashed orange) in (hNaP , V )-space
exactly balances the weak rightward drift when the
trajectory is below the hNaP -nullcline (Bacak et al.,
2016b).

When [K+]out is fixed at the larger value of 5.3
mm, the fast subsystem bifurcation diagram remains
similar but the termination of the periodic orbit fam-
ily decouples from the saddle-node bifurcation; that

is, the termination now occurs at a homoclinic bifur-
cation, with h = hHCNaP , instead of at a SNIC. The
shift in the periodic orbit family due to the selection
of a new EK value also changes its relation to the
position of the hNaP -nullcline and its shape. As a re-
sult, the trajectory of the neuronal system drifts in
the direction of lower hNaP as spiking occurs until
it reaches the hNaP value of the homoclinic bifur-
cation and returns to the silent, non-spiking phase.
Thus, this system produces square-wave bursting,
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also known as fold-homoclinic bursting (Izhikevich,
2007) (Fig. 2B).

As we consider progressively larger (less hyper-
polarized) values of [K+]out, P, hAHNaP , and hHCNaP all
move to smaller hNaP values. Moreover, the curve
of maximal voltages along the periodic orbit fam-
ily continues to change shape, becoming monotone
decreasing in hNaP instead of non-monotonic as pre-
viously. When [K+]out = 6.0 mm, for example, the
neuronal system continues to produce bursting dy-
namics, but with bursts of longer duration and more
spikes per burst than previously (Fig. 2C). As hAHNaP
becomes closer to hSNNaP , the initial spikes within each
burst have a large amplitude but subsequent spikes
are smaller, as the orbit converges down to small-
amplitude fast subsystem periodic orbits near the
AH point; as time continues to evolve, spikes become
larger again, as the bursting orbit travels toward the
homoclinic, where the fast subsystem periodics have
larger amplitude. This decreasing-increasing trend
in spike amplitudes becomes more pronounced as
[K+]out increases and hAHNaP moves to successively
smaller hNaP .

Finally, at a [K+]out value above a certain thresh-
old, the neuronal system no longer produces burst-
ing behavior. For example, for [K+]out = 6.7 mm,
the AH point now lies to the left of the saddle-
node point. Hence, if we start a trajectory in the
silent phase, then after hNaP grows and reaches the
SN point to initiate spiking, the initial decline in
spike amplitude is particularly pronounced, as the
trajectory initially converges toward the depolarized
branch of fast subsystem equilibria (Fig. 2D). Fur-
thermore, thanks to the more extreme leftward po-
sition of the periodic orbit family, the spikes that
occur at low hNaP spend significant time below the
hNaP -nullcline in the (hNaP , V ) plane, allowing the
corresponding rightward drift in hNaP to balance the
leftward drift that occurs when voltage is more de-
polarized. Thus, the trajectory becomes pinned and
oscillates along a particular fast subsystem periodic
orbit indefinitely, as it did for [K+]out = 4 mm, and
the neuron remains in a tonic spiking state.

Next, consider the parameter set with gsyn =
0.360 nS, gNaP = 4.5 nS, and gL = 2.4 nS. This
reduction in gL is analogous to increasing the ex-
citability of the neuron, as discussed in more detail in
Sect. 4. In Fig. 2C, the bursting waveform resulting
from this parameter set is demonstrated. However,
if [K+]out is set to be constant, bifurcation analysis
with respect to hNaP shows that the neuronal system
is unable to achieve a bursting state at any fixed ion

concentration. Fig. 4 displays example trajectories
of tonic spiking solutions of the neuronal dynamics
that arise with these parameter values when [K+]out
is fixed, which appear as thin closed loops when pro-
jected to (V, hNaP ) phase space.

The gradual rise of [K+]out essentially drags the
trajectory of the neuron through the steady states
shown in Fig. 4A in the direction of lower hNaP . As
these states correspond to higher spiking frequen-
cies, as depicted in Fig. 4B, the dynamics of [K+]out
provides a mechanism for an active phase geome-
try that features a gradual increase in spiking fre-
quency. Thus, we have shown that even a neuron
that can never burst on its own with fixed [K+]out
can nonetheless become intrinsically bursting when
[K+]out dynamics are taken into account.

3.3 A closer look at transitions in behavior as EK
is varied

As illustrated in Fig. 1, if the K+ concentration is
held fixed, then shifting the EK value has a clear ef-
fect on the long-term periodic behavior of the model
neuron. Each periodic behavior, whether tonic spik-
ing or bursting, can be depicted as a stable limit
cycle projected to the (V, hNaP ) phase space. As
shown in Fig. 3, with increases in EK , the stable
oscillation switches from tonic spiking to bursting,
and then, with additional increases, from bursting
back to spiking. Which behavior arises depends on
whether the periodic orbit family of the fast subsys-
tem terminates in a SNIC bifurcation or a homo-
clinic bifurcation and on where this termination lies
relative to the hNaP nullcline.

Before we move on to incorporate the dynamics
of EK back into the picture, we construct a bifurca-
tion diagram to present in more detail the changes
in stable periodic behavior that occur with EK as
a bifurcation parameter. More specifically, when the
neuronal system exhibits bursting, each burst is com-
posed of a finite number of action potentials, each as-
sociated with an approximately constant hNaP . For
each fixed EK , for the corresponding periodic spiking
or bursting attractor, we therefore record the hNaP
value at which each spike occurs (Fig. 5).

In this bifurcation diagram, each dot denotes the
value of hNaP at which an action potential occurs
during 80 seconds of simulated bursting behavior,
for a corresponding fixed value of EK . For each EK ,
the spikes from the first 55 seconds of neuron simula-
tion are not shown, such that the diagram omits the
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Fig. 4: Limit cycles of the pre-BötC neuron model with fixed [K+]out for the parameter set depicted in Fig. 2. (A) Starting
from the rightmost loop and moving leftwards, [K+]out = 4.0, 4.6, 5.2, 5.8, 6.4, 7.0 mm. Note that at [K+]out = 5.0 mm, the
trajectory of the neuron appears thicker than the other trajectories. Here, the neuron came close to undergoing a period
doubling bifurcation and establishing a distinctive 2-spike bursting pattern. Nonetheless, the neuron was unable to achieve
bursting with robustness anywhere near that of the dynamic [K+]out model. (B) The spiking frequency of the periodic orbit
of the neuronal dynamics is plotted against the fixed [K+]out value at which it occurs.

transient state and only reflects the attractors of the
system. For sufficiently low EK , the stable dynam-
ics consists of periodic tonic spiking, characterized
by a single hNaP value for each EK in the diagram.
As EK increases, the transition from a tonic spiking
state to a bursting state appears to arise through a
chaotic period doubling mechanism (Fig. 5A,B), es-
timated numerically to occur just above EK = −91.2
mV.

The transition from bursting back to tonic spik-
ing, depicted in Fig. 5A,C, is less clear cut. The
spike branch at highest hNaP values seems to dis-
appear instantly as EK increases. We expect that
this change is related to the phenomena shown in
Figs. 1C, 3D. In the solution displayed in Fig. 1C, it
appears that bursting is about to begin, but instead
a plateau of depolarization block occurs. From Fig.
3D, we can appreciate that the AH point has moved
to smaller hNaP than that of the fold point, such
that the trajectory’s initial jump to the active phase
does not yield a full spike. Only after hNaP drifts
to lower values, below the AH point, can spiking en-
sue. With an additional increase in EK to just below
−83.1 mV, most of the remaining spike branches dis-
appear together, leaving only a cluster of values near
hNaP = 0.155. We also notice pockets of variability
in hNaP as EK varies between −83.4 and −83.1 mV.
Interestingly, inspection of the voltage trace suggests
that periodic spiking begins at about EK = −82.6

mV, above the value at which most of the collection
of hNaP branches disappears.

Elucidating the details of this bifurcation is be-
yond the scope of our consideration of ramping bursts
in the full model and remains for future inquiry,
which would require more detailed simulations and
analysis.

3.4 Dynamics in (EK , V, hNaP ) phase space

Next, we incorporate the dynamics of EK back into
the picture. Consider the trajectory of the full model
system projected into the (hNaP , EK) plane (Fig. 6,
blue curve), where it progresses in a counterclock-
wise fashion. Starting from the quiescent state (the
leftmost intersection of the blue neuronal trajectory
and the lower purple line), hNaP increases until the
trajectory crosses the lower fold of S, the fast subsys-
tem critical manifold (Fig. 6, black line), which also
corresponds to a the termination of the fast subsys-
tem periodic orbit family (Fig. 6, green curve). If
EK were frozen, then this crossing would result in
tonic spiking. Instead, EK increases as spiking con-
tinues. Eventually EK crosses the value where the
neuronal dynamics supports bursting (Fig. 6, lower
purple line). Interestingly, we see that very close to
this EK , the periodic orbit termination curve di-
verges from the fold line, confirming that the switch
from spiking to bursting in the EK-frozen system
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Fig. 5: Bifurcation diagram of attracting dynamics of the neuronal model with [K+]out (and hence EK) as the bifurcation
parameter, varied in steps of 0.001 mV. (A) Bifurcation over the entire bursting interval. Insets show voltage and hNaP

time courses at the fixed values of EK marked by the numbered vertical dashed lines on the diagram. (B-C) Zoomed views
of different parts of the diagram in (A).

corresponds to a switch from termination of the pe-
riodic family in a SNIC bifurcation to termination
in a homoclinic bifurcation. As EK continues to in-
crease, the trajectory moves away from the homo-
clinic curve and towards the AH curve (Fig. 6, red
line with dots). Oscillation amplitude shrinks to zero
at an AH bifurcation. Correspondingly, the approach
of the trajectory towards the AH curve yields the de-
crease in spike height seen in Fig. 2A (see also Fig.
7), representing a less extreme form of the ampli-
tude modulation in the burst patterns arising with
EK fixed between −96 and −90 mV (Fig. 3) and
in bursting associated with the CAN current in past
work (Rubin et al., 2009; Dunmyre et al., 2011; Wang
and Rubin, 2016, 2020). Eventually, EK peaks and

then decays slightly due to Iglia and Idiff , and the
decrease in hNaP pulls the trajectory back across the
periodic orbit termination curve, terminating the ac-
tive phase of the burst.

Putting everything together, we see that the full
model system with dynamic EK engages in a form
of parabolic bursting (Ermentrout and Kopell, 1986;
Rinzel, 1987). Parabolic bursting was originally iden-
tified as a form of bursting in which the evolution of
two slow variables switches the fast subsystem back
and forth across a SNIC curve twice per cycle, yield-
ing an alternation between a quiescent regime cor-
responding to each inter-burst interval and a spik-
ing regime corresponding to the active phase of each
burst. This form of bursting was dubbed parabolic in
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reference to the parabolic shape of the curve depict-
ing spike frequency versus time within each burst,
resulting from the low frequency spiking associated
with passage near a SNIC bifurcation. In our case,
the use of projection shows that the initial slow spik-
ing at the start of the burst active phase corresponds
to the slow tonic spiking seen with very hyperpo-
larized EK (Fig. 1A), which emerges as the trajec-
tory evolves near the fast subsystem SNIC bifurca-
tion curve when EK is low. Interestingly, the transi-
tion from a SNIC to a homoclinic bifurcation curve
here differs from classical parabolic bursting and ac-
counts for the spike acceleration within the burst and
the lack of the significant slowing at the end of the
burst typically seen (Fig. 2), consistent with other
recent work emphasizing the quantitative variabil-
ity that can occur within individual bursting classes
(Rubin et al., 2018). Finally, to provide one more
perspective that confirms the nature of the burst-
ing dynamics, we visualize the bursting trajectory
in the (EK , V, hNaP ) phase space. The AH points
determined by different EK values can be collected
into a curve in (EK , V, hNaP ) space. Similarly, the
points of maximum and minimum voltage along the
periodic orbit families, parameterized by both hNaP
and EK , can be stacked into a surface in this phase
space, which is bisected by the AH curve. The tra-
jectory of the full model in this phase space along
with these additional structures are depicted in Fig.
7, which also gives another perspective on the tran-
sition from a termination of the fast subsystem pe-
riodic solution family in a SNIC to termination in a
homoclinic.

To summarize this whole section, our model uti-
lizes persistent sodium currents (Butera et al., 1999)
and dynamic ion concentrations (Barreto and Cress-
man, 2011) to recreate the ramping preinspiratory /
inspiratory behavior seen in bursting pre-BötC neu-
rons. Our model is built from a model proposed in
previous work (Bacak et al., 2016b), with the addi-
tion of dynamic ion concentrations and neuronal reg-
ulators (Barreto and Cressman, 2011). The process
of bursting in our model can be understood to be a
form of parabolic bursting based on two-dimensional
projections, fast-slow decomposition and computa-
tion of bifurcation curves, and can be visualized fully
by graphing in the (EK , V, hNaP ) phase space. Ramp-
ing of spike frequency at burst onset depends on the
passage of the bursting trajectory near a curve of
SNIC bifurcations that terminates a family of fast
subsystem periodic orbits and its subsequent depar-
ture from this curve, which prevents a symmetric

spike deceleration at the end of each burst. This
burst mechanism does not require there to be a fixed
value of EK at which the remaining equations pro-
duce bursting (Figs. 2C-D, 6B). The change in spike
heights during the burst depends on how the trajec-
tory travels relative to the AH bifurcation curve that
gives rise to the periodic orbits.

4 Robustness of Model Dynamics

4.1 Robustness in conductance parameters

A critical question for any model in which the de-
tails of an activity pattern are important is robust-
ness to variation in parameters. Experimental re-
sults have confirmed that the presence of persistent
sodium (INaP ) and leakage (IL) currents are es-
sential to pacemaker activity in pre-BötC neurons
(Del Negro et al., 2002; Koizumi et al., 2010). Thus,
we mapped the behavior of the model in the (gL, gNaP )
parameter space to measure the robustness of burst-
ing within the neuron under variation of these pa-
rameters (Fig. 8A). While bursting behavior could
be achieved over a wide range of physiologically rele-
vant parameter values, ramping bursts were restricted
to a smaller parameter set. Furthermore, we also
measured bursting frequency within the bursting pa-
rameter region (Fig. 8B), demonstrating how the
properties of the model bursting patterns are mod-
ulated by these conductance levels.

The parameters that induced bursting behavior
were also strongly affected by the synaptic input
into the neuron. In this model, this tonic input is
represented by the current ISyn. The effects of al-
tering synaptic input through variation of gSyn on
the bursting region within the (gL, gNaP ) parameter
space is depicted in Fig. 9.

The overall shape of these bursting regions is con-
sistent with previous studies (Del Negro et al., 2002;
Purvis et al., 2007), which indicate that pacemaker
properties are tied to the gNaP /gL ratio. Consistent
with this observation, the upper and lower bound-
aries of the bursting region for our model are ap-
proximately linear within the (gL, gNaP ) parameter
space. The exact values of (gNaP , gL) where burst-
ing occurs in this model differ from those presented
in (Del Negro et al., 2002; Purvis et al., 2007) and
include a narrower range of gL for each fixed gNaP .
The difference relative to the modeling work (Purvis
et al., 2007) makes sense as that study used the
model of INaP -based bursting proposed in (Butera



Dynamics of Ramping Bursts in a Respiratory Neuron Model 13
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Fig. 6: Projection of the full system bursting trajectory (blue) to the (EK , hNaP ) plane. This plane is useful for visualizing
the curve of fast subsystem fold points, which is independent of EK (black dashed line); the curve of fast subsystem AH points
(solid-dotted red), which do not play a strong role in the bursting pattern; the fast subsystem periodic orbit termination
curve (solid green), which switches from a SNIC, where is aligns with the fold line, to a homoclinic, where it deviates from
the fold; and the values of EK where the neuronal dynamics, with EK frozen, transitions from spiking to bursting (lower
purple dashed line) and from bursting back to spiking (upper purple dashed line). In (A), we examine the default parameter
set, the bursting behavior of which is depicted in Fig. 2(A). In (B) we depict the same trajectory for the parameter set in
Fig. 2(C). Note that this parameter set exhibits ramping bursts, despite not showing bursting behavior for any fixed value of
[K+]out. Thus, there are no dotted-purple lines, as there are no transitions in and out of a bursting state for fixed [K+]out.

et al., 1999), which incorporates a different mem-
brane capacitance compared to our model. More-
over, the experiments for which Kbath was reported
were performed at elevated Kbath (Del Negro et al.,
2002), which would tend to expand the bursting re-
gion to larger gL.

4.2 Inter-model robustness comparison

To further analyze the effectiveness of the proposed
model, robustness was compared to two existing mod-
els of bursting in pre-BötC neurons. Specifically, we
examined two facets of robustness: (1) robustness in
parameters, i.e., the ability of the model to maintain
bursting behavior over a wide range of physiologi-
cally observed parameter values, and (2) robustness
in behavior modulation, i.e., the ability of the model

to demonstrate realistic variation in properties of its
activity pattern (including bursting frequency, dura-
tion, and duty cycle) as parameter values are varied.

First, the proposed model was compared to the
model formulated by Bacak et al. (2016b); struc-
turally, the two models differ only in the fact that our
model includes the dynamics of the external potas-
sium ion concentration. Thus, this comparison demon-
strates how the introduction of a dynamic ion con-
centration, which allows for ramping bursts to occur,
affects overall robustness. Next, the proposed model
was compared to the model introduced in Butera
et al. (1999), which has been incorporated into mul-
tiple subsequent computational studies. In the orig-
inal paper, bursting was induced by increasing EL,
which increased activation in the neuron. To main-
tain consistency with the general literature, however,
we keep EL fixed and gradually decrease gL to in-
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(A) (B)

Fig. 7: The trajectory of a bursting neuron in (EK , V, hNaP ) phase space. (A) Phase space features shown include fast
subsystem equilibria (upper and lower blue surfaces), AH curve (red), and maximum and minimum voltages along periodic
orbit families emerging from the AH curve (green). The full model trajectory is also shown projected to this space, color
coded from yellow (less negative EK) to blue (more negative EK). The arrows show the direction of evolution of the bursting
trajectory. (B) By tracing the minimum (orange) and maximum (red) values of voltage attained in every spike within the
burst, it becomes clear that the trajectory of the neuron travels along the family of periodic orbits during the burst and
experiences a decline in spike amplitude when it pulls away from the edge of the periodic orbit family where it starts and
terminates (endpoints of the orange curve with larger and smaller hNaP , respectively).

crease activation, and we examine robustness within
the (gL, gNaP ) parameter space.

The variation of burst properties (frequency, du-
ration, and duty cycle) under changes in gL is de-
picted for all three models in Fig. 10. For each model,
this variation was tested for reduced, default, and
elevated gNaP values. To adjust for differences be-
tween the models, conductance values were normal-
ized with respect to membrane capacitance. Both
the proposed model and the model in Bacak et al.
(2016b) utilize a membrane capacitance of 36 pF,
while the model in Butera et al. (1999) utilizes a
capacitance of 21 pF. Thus, while the default gNaP
value in the proposed model is 5.0 nS, assuming con-
stant conductance/capacitance density, the default

gNaP value in the model in Butera et al. (1999)
would be 2.92 nS.

The first thing to note from this analysis is that
compared to the model in Bacak et al. (2016b), the
proposed model exhibits bursting behavior over an
almost identical set of gL values for the fixed gNaP
values tested (Fig. 10A,B). Thus, the introduction
of a dynamic ion concentration did not alter the ro-
bustness of bursting with respect to the (gL, gNaP )
parameter space. The inclusion of a dynamic ion con-
centration significantly increased the set of frequency
values attainable through variation of gL, however.
While the model presented in Bacak et al. (2016b)
could not reach bursting frequencies above 0.4 Hz,
our dynamic potassium model attained bursting fre-
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Fig. 8: Bursting within the (gL, gNaP ) parameter space. (A) The gray region depicts the set of parameters for which
bursting occurs. Within this region, a smaller set of parameters (blue), associated with relatively low gL values, correspond
to ramping bursts. For this diagram, a ramping burst was defined as a burst where the external potassium ion concentration(
[K+]out

)
after the first three spikes is less than the [K+]out required to induce bursting behavior for the model with the

same conductances but with a the potassium ion concentration. Parameter sets with lower gL than in the bursting region
correspond to tonic spiking behavior, while higher gL led to quiescence. (B) The burst frequencies for parameter values
within the bursting region is indicated by the gradient bar, with more yellow regions corresponding to greater frequencies.

quencies up to 0.6 Hz. It is important to note that,
as depicted in Fig. 8, the higher frequency bursts
correspond very closely with the newly attainable
ramping state. Moreover, the previous model (Ba-
cak et al., 2016b) maintained an essentially constant
burst duration under variation of both gL and gNaP ,
whereas our model could achieve substantially longer
bursts at the low end of the bursting range of gL
(Fig. 10D,E). It can be concluded that compared
to the static ion concentration model in Bacak et al.
(2016b), our proposed model allows for greater mod-
ulation of bursting properties through the inclusion
of the ramping state, without any significant cost to
robustness with respect to conductance parameters.

Compared to the model proposed in Butera et al.
(1999), the proposed model had decreased robust-
ness of bursting with respect to gL/C density, as
depicted in Fig. 10B,C. Despite the decrease in this
measure of robustness, the proposed model achieves
an increased range of burst frequencies compared to
the model proposed in Butera et al. (1999), as shown
in Fig. 10B,C. Higher frequency bursts were attain-
able in the model from Butera et al. (1999), but only
with a shift away from physiologically relevant pa-
rameters. Our model also achieved a wider range of
burst durations than could be produced by the ear-
lier model (Butera et al., 1999) (Fig. 10E,F); specif-
ically, our model allowed for shorter bursts at high
gNaP . Consistent with previous experimental results

(Koizumi et al., 2010), the bursting frequency de-
creased linearly with an increase in gL for all models.

The quality that stood out most about the pro-
posed model was the significant increase in the range
of possible duty cycles when compared to other mod-
els, as shown in Fig. 10G,H,I. The spiking region
could be set to account for an extremely low or ex-
tremely high percentage of burst duration, based on
variation of gL, for all levels of gNaP . This flexibil-
ity was not possible in the alternative models. Our
model produced bursts with similar large duty cy-
cles in the ramping regime, with relatively low gL,
with longer, lower frequency bursts for smaller gNaP
and shorter, faster bursts for larger gNaP . Neither
of the other models could achieve this duty cycle.
Our model produced shorter duty cycles for larger
gL, again for all gNaP , due to a decrease in burst
frequency without much change in burst duration,
similar to the other models.

5 Discussion

In this study, we present a model developed from
previous conductance-based neuron models that in-
duce bursting behavior dependent on a persistent
sodium current (Butera et al., 1999; Bacak et al.,
2016b). Our model replicates the observed frequency
ramping behavior of pre-BötC neurons, through the
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(A): gsyn = 0.330 nS. (B): gsyn = 0.300 nS.

(C): gsyn = 0.400 nS. (D): gsyn = 0.430 nS.

Fig. 9: The bursting region within the (gL, gNaP ) parameter space depends on gSyn. In all panels, the gray region represents
the bursting region for the default parameter value gSyn = 0.365 nS. (A), (B) The blue areas represent the bursting regions
for decreased synaptic input. Note that as synaptic input is decreased, the shape of the bursting region remains relatively
similar, but shifts towards smaller gL and gNaP values. (C), (D) Similarly, the red areas represent the bursting region for
increased synaptic input, which shifts bursting towards larger gL and gNaP .

inclusion of external potassium ion ([K+]out) dy-
namics. Previous studies have indicated the relation-
ship between fixed levels of [K+]out and burst fre-
quency and duration (Del Negro et al., 2001). The
incorporation of [K+]out dynamics as an additional
slow component of the model induced a modulation
of spike frequency throughout the spiking regime,
resulting in a robust parabolic bursting behavior.

The dynamics of the model was analyzed through
a three-dimensional extension of the traditional fast-
slow decomposition. Steady-state behavior was plot-
ted in the (V, hNaP )-phase space for various fixed
values of [K+]out and in of turn EK , via equation (8).
The curves of saddle-node and AH bifurcations and
the families of periodic orbits originating from the
AH points were mapped with respect to EK . These

quantities were then projected onto the (EK , V, hNaP )-
phase space, depicting the geometry that ultimately
dictates bursting dynamics. Tracking the trajectory
of the burst through this phase space revealed that
oscillations in the (V, hNaP )-phase space gradually
drive the trajectory to higher values of EK ; subse-
quently, higher EK values correspond to higher fre-
quency spiking, causing a positive feedback loop re-
sulting in ramping bursts. Eventually, the EK level
saturates due to the nonlinear dependence of pro-
cessing of potassium ions by glia, at which point the
slow inactivation of INaP can terminate the burst.
Specifically, as hNaP decays, the fast subsystem pe-
riodic orbit family terminates in a homoclinic bifur-
cation and the voltage repolarizes, corresponding to
a transition to the quiescent state of the burst cycle.
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Fig. 10: The effects of gL and gNaP on the quantitative characteristics of bursting dynamics, compared across models. The
left column (A, D, G) represents the model presented in Bacak et al. (2016b), the central column (B, E, H) represents
the model proposed in this paper, and the right column (C, F, I) represents the model from Butera et al. (1999). The top
row (A, B, C) shows modulation of bursting frequency, the central row (D, E, F) shows modulation of burst duration,
i.e. how long during the burst was the neuron in the spiking state within each burst, and the bottom row G, H, I shows
modulation of the neuron’s duty cycle, i.e. the ratio of the burst duration to the actual period of the burst. For the proposed
model and the model in Bacak et al. (2016b), reduced (blue), default (black), and elevated (red) gNaP values were selected
as 4.5 nS, 5.0 nS, and 6.0 nS, respectively. For the model in Butera et al. (1999), these conductances were normalized with
respect to the reduced membrane capacitance, and set to 2.625 nS, 2.917 nS, and 3.500 nS, respectively. Leakage reversal
potential (EL) was set to −64 mV for the model in Bacak et al. (2016b), −68 mV for the proposed model, and −62 mV
for the model in Butera et al. (1999), based on values in the previous papers and in the earlier parts of this study. Higher
bursting frequencies could be reached by fixing EL at a higher value in the model from Butera et al. (1999), but this strayed
even farther from the experimental value of −68± 3.4 mV determined in Koizumi et al. (2010).

Finally, the lack of spiking activity causes EK to de-
cay back to a baseline level as the trajectory of the
neuron travels back to the saddle-node bifurcation
curve, where it re-enters the spiking regime of the
burst. Hence, the dynamical system yields parabolic
bursting behavior that terminates in a homoclinic
bifurcation.

In classic parabolic bursting, burst initiation oc-
curs when the trajectory induced by the dynamics
of the slow subsystem, which includes two or more
slow variables, crosses a SNIC bifurcation curve for
the fast subsystem. As fast spikes ensue, the tra-
jectory of the averaged slow equations eventually
progresses back across the SNIC curve, terminating
the active phase of the burst. Thus, the spikes near
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both burst onset and burst termination are slower
than those in the heart of the burst, resulting in
a parabolic dependence of spike frequency on spike
number within the burst (Rinzel, 1987). This paper
adds to the collection of past works that have in-
cluded variations on this structure, including cross-
ings of additional fast subsystem bifurcation curves
during the active phase, which result in correspond-
ing variability of burst profiles (Rubin et al., 2009;
Barreto and Cressman, 2011; Rubin et al., 2018).
Specifically, due to the interplay of dynamic EK and
INaP , the ramping bursts in our model terminate
via a crossing of a homoclinic bifurcation curve for
the fast subsystem, rather than a SNIC, with little
slowing of spiking at the end of the burst. In theory,
a homoclinic crossing should also be associated with
some spike slowing, but the quantitative details are
system-specific (Rubin et al., 2018). Future work to
extend this model to take into account dynamics of
other ion concentrations, in addition to [K+], may
yield even more diverse burst profiles (cf. Barreto
and Cressman (2011)). Specifically, in addition to
Na+ dynamics, the dynamics of Cl− is an often-
overlooked factor that could contribute to ramping
bursts (Currin et al., 2020; Pace et al., 2007). Impor-
tantly, concentrations of ions that impact neuronal
dynamics can be coupled through pumps that trans-
port multiple ion types, so modeling the details of
this dynamics in the context of neuronal bursting
represents an interesting challenge for future work.

Analysis of model robustness revealed multiple
insights. In comparison to previous models of pre-
BötC neuron dynamics, the model proposed in this
paper exhibits similar robustness with respect to vari-
ations in parameters, while offering a greater de-
gree of modulation of burst geometry characteris-
tics, such as frequency, duration, and duty cycle.
One exception is that our model’s bursting behav-
ior does not extend over the full range of gL/C over
which bursting occurs in the model by Butera et al.
(1999). The robustness of pre-BötC bursting to gL/C
has not been experimentally tested, however, and in
fact experiments suggest that not the leak conduc-
tance itself but rather the ratio gNaP /gL is what
matters for whether bursting occurs or not (Del Ne-
gro et al., 2001, 2002; Purvis et al., 2007) (cf. the
nearly linear boundaries of the bursting regions in
our Figs. 8, 9). While our decision to treat EL as a
constant allowed us to compare our model directly
to earlier ones where leak strength was used to ex-
plore model behavior, EL may in reality be non-
linearly modulated by ion dynamics (Koizumi and

Smith, 2008; Huang et al., 2015). The robustness of
bursting that we found with respect to variations
in gL supports the claim that the ramping dynam-
ics that we have studied will persist with the in-
clusion of EL dependence on dynamic ion concen-
trations, but incorporating this effect in the model
and tuning it appropriately is beyond the scope of
the current study. Another future direction will be
the inclusion of additional membrane currents, such
as IA, IKCa, the Ca2+-activated nonspecific cation
(CAN) current, and the Na/K pump current, which
have been shown to have a significant effect on pre-
BötC neuron and network dynamics in multiple past
experimental and computational works (Hayes et al.,
2008; Pace et al., 2007; Zavala-Tecuapetla et al.,
2008; Krey et al., 2010; Jasinski et al., 2013; Koizumi
et al., 2018; Picardo et al., 2019; Rubin et al., 2009;
Dunmyre et al., 2011; Phillips et al., 2018, 2019).

The results of this study reveal a potential role of
dynamic ion concentrations in producing and shap-
ing ramping behavior within neuronal bursting. Pre-
vious computational studies of pre-BötC neuron ac-
tivity have ignored the dynamics of [K+]out, mod-
eling it as a fixed parameter. This viewpoint has
been utilized in experimental studies as well, where
[K+]out has often been viewed as equivalent to the
potassium concentration of the solution used to bathe
slices of neural tissue during experimentation (kbath).
Our study implies that the physiologically observed
oscillations of [K+]out can have a significant impact
on pre-BötC neuron dynamics; moreover, similar ef-
fects could emerge in prolonged bursting behavior
of other neurons and should be incorporated in cor-
responding models in future work. Rather than as-
suming that kbath = [K+]out, our model incorpo-
rates kbath as an environmental factor that can af-
fect the dynamics of [K+]out via diffusion, follow-
ing the framework of previous computational mod-
els that considered dynamic ion concentrations (Bar-
reto and Cressman, 2011). The role of kbath is im-
portant because kbath can be modulated experimen-
tally, providing a way for the mechanism proposed
in this paper to be tested. If [K+]out governs ramp-
ing dynamics through the mechanism proposed in
this paper, then it would be expected that increasing
kbath would cause a much faster build-up of [K+]out,
translating to a faster increase in spiking frequency
throughout the burst and hence a steeper frequency
ramp. Adjusting kbath to lie above some level would
remove the ramping effect all together, as [K+]out
buildup would primarily be driven by the excess in-
flux of external potassium from the bathing solution,
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rather than the export of internal potassium during
spiking. Similarly, lowering kbath should correspond
to slowing the rise in frequency over the course of
the burst. Setting kbath below some threshold would
cause the rate of removal of [K+]out via diffusion
to increase enough to entirely prevent the [K+]out
buildup needed to induce a bursting state. It is our
hope that future experiments consider the effects of
potassium concentration in the bathing solution on
the dynamic ramping behavior of individual neurons,
to test the mechanisms proposed in this paper. A
complication, however, is that prolonged changes in
kbath may induce other compensatory effects (Okada
et al., 2005; Ransdell et al., 2012; He et al., 2020).

Another important future research direction re-
lated to this work should involve an expansion of
the scope of the model, specifically to analyze the ef-
fects of ion-dependent ramping on the neuronal con-
trol of respiratory rhythms. The intrinsic dynamic
mechanisms within individual neurons and synap-
tic network interactions work together to generate
and modulate breathing rhythms (e.g., Molkov et al.
(2017); Del Negro et al. (2018); Rubin and Smith
(2019); Phillips and Rubin (2019); Phillips et al.
(2019)). A specific step to link these factors would
be to construct a computational network of both
pacemaker and non-pacemaker neurons in the pre-
BötC and to model the effects of ramping behavior in
pacemakers on the recruitment of non-pacemakers,
to advance our understanding of the generation and
patterning of inspiratory neural bursts (Kam et al.,
2013; Kallurkar et al., 2020). A potential approach
to the network modeling problem would be to ad-
dress the inherent limitations of using a system of
ODEs in depicting neuronal behavior. Spatial inter-
actions, which can be an important factor in network
dynamics, are not captured by ODE models. This
is especially relevant for our model as it incorpo-
rates diffusion, a naturally spatially-dependent pro-
cess, to differentiate between the equilibrium concen-
tration of external potassium (kbath) and localized
concentration of potassium near the neuronal mem-
brane ([K+]out). Hence, one possible research direc-
tion would be the development of a network-based
model that utilizes both ODEs and PDEs to depict
the spiking behavior of individual neurons and spa-
tially dependent processes governing ion dynamics,
respectively. The development of the PDE compo-
nent of the model would have to incorporate [K+]out
as both a space- and time-dependent variable, which
allows the spiking behavior of each neuron to affect
the localized external ion concentrations of its neigh-

boring neuron and is subject to the boundary con-
ditions imposed by the presence of the bathing so-
lution (e.g., a Dirichlet boundary condition forcing
[K+]out to take a value of kbath at the boundaries of
a modeled brain slice).

To summarize, this paper presents a new model
of neuronal bursting in pacemaker neurons, which
results in a frequency ramp at bursting onset. This
effect was demonstrated to be a manifestation of
parabolic bursting dynamics that allows for a broad
range of burst frequencies and duty cycles. The re-
sults of this study imply that oscillations in external
potassium concentration can play a significant role
in the ramping dynamics of pre-BötC neurons. This
ion-dependent ramping mechanism should be tested
in future experimental studies and incorporated in
future models of networks of pre-BötC neurons, and
is likely relevant to prolonged bursting dynamics in
other neurons and neuronal populations.
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A Constants and Parameters

The complete list of parameters used for this model is shown below. Certain parameters were fixed for all simula-
tions, while others were varied for different tests. These instances will be noted.

Universal & Experimental Constants:

– Elementary Charge: q = 1.602× 10−19 C.
– Avogadro Constant: NA = 6.022× 1023 1

mol .
– Unit Time Constant: τ = 1000 ms

s .
– Ratio of Volumes: β = 14.555 (modified from Barreto and Cressman (2011), β = 7).
– Membrane Capacitance: C = 36 pF (taken from Rybak et al. (2007)).

Derived Constants:

– Current Conversion Constant: γ = 7.214× 10−3 mM
s·pA (derived in Appendix B).

Conductances:

– ḡNa = 150 nS (taken from Jasinski et al. (2013)).
– ḡNaP = 5 nS (taken from Bacak et al. (2016b)). Varied as parameter in Section 4.
– ḡK = 160 nS (taken from Jasinski et al. (2013)).
– ḡL = 2.5 nS (taken from Jasinski et al. (2013), ḡL ∈ [2, 3]). Varied as parameter in Sect. 4.
– ḡSyn = 0.365 nS. (Introduced in this paper to represent constant synaptic drive, in contrast to model in Bacak

et al. (2016b) where ḡSyn = 0). Varied as parameter in Sect. 4.

Ion Concentrations & Reversal Potentials:

– [Na+]out = 120 mm (taken from Jasinski et al. (2013)).
– [Na+]in = 15 mm (taken from Izhikevich (2007), [Na+]in ∈ [5, 15]).
– ENa = 26.7 · log [Na+]out

[Na+]in
= 55.5 mV. (Consistent with Rybak et al. (2007), ENa = 55).

– [K+]in = 160 nS (modified from Izhikevich (2007); Jasinski et al. (2013), [K+]in = 140).
– EL = −68 mV (taken from Jasinski et al. (2013)).
– ESyn = −10 mV (taken from Jasinski et al. (2013)).

Parameters for Fast Sodium (INa) and Persistent Sodium (INaP ):

– VmNa
= −43.8 mV, kmNa

= 6 mV, VτmNa
= −43.8 mV, kτmNa

= 14 mV.
– VhNa

= −67.5 mV, khNa
= −11.8mV , VτhNa

= −67.5 mV, kτhNa
= −12.8 mV.

– VmNaP
= −47.1 mV, kmNaP

= 3.1 mV, VτmNaP
= −47.1 mV, kτmNaP

= 6.2 mV.
– VhNaP

= −60 mV, khNaP
= −9 mV, VτhNaP

= −60 mV, kτhNaP
= 9 mV.

– τ̄mNa
= 0.25 ms, τ̄hNa

= 8.46 ms, τ̄mNaP
= 1 ms, τ̄hNaP

= 5000 ms.
– All parameters were taken directly from Bacak et al. (2016a), with the exception of khNa

, which was altered
from a value of −10.8 mV to the listed value of −11.8 mV.

Parameters for Delayed Rectifier Potassium Current (IK):

– nA = 0.01 1
mV , nAV

= 44 mV, nAk
= 5 mV, nB = 0.17, nBV

= 49 mV, nBk
= 40 mV.

– All values taken from Bacak et al. (2016b).

Parameters for Diffusion of Extracellular Potassium ([K+]out):

– kbath = 4 mm (taken from Barreto and Cressman (2011)).
– τdiff = 750 ms (numerically equivalent to the formulation in Barreto and Cressman (2011), which uses 1

τdiff
≡

ε
τ , where ε = 1.333 Hz and τ = 1000 ms

s ).

Parameters for Glia:

– Ḡ = 10 mm
s , K̄ = 5mm, zK = 6 1

mm .
– These parameter values were altered from those in Barreto and Cressman (2011). In Barreto and Cressman

(2011), the concentration of [K+]out remains far below the mid-point value of the sigmoidal equation (10).
The parameters were adjusted such that the range of dynamic [K+]out was distributed over the midpoint of
equation (10), ensuring that the nonlinear behavior of glial cells was represented.
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B Derivation of γ

Our initial assumption is that the neuron is roughly spherical, or rather that the majority of the cell’s volume is
contained in a sphere. From Barreto and Cressman (2011), the radius of the neuron is taken to be approximately
r = 7.0 µm. Hence, the internal volume of the neuron can be approximated as Vin = 4

3πr
3 = 1.44× 10−9 mL.

The internal concentration cin can be determined from the total number of total ions N , and the internal
volume Vin, and Avogadro’s Constant NA.

cin = N · 1
NA
· 1
Vin

Note that the ions we are measuring concentrations of are Na+ and K+, both of which have an +1 charge.
Letting q = 1.60× 10−19 C, we can express the concentration in terms of total charge, Q.

cin = N

VinNA
· q
q

= Q

qVinNA

Differentiating, we get:

dcin
dt

= d

dt

(
Q

qVinNA

)
= dQ

dt
· 1
qVinNA

= I · 1
qVinNA

By , we can determine:

γ ≡ 1
qVinNA

= 7.2× 103 mol
C ·mL

By the following dimensional analysis manipulation, we obtain:

mol
C ·mL ·

(
103 mmol

mol · 103 mL
L · s

s ·
mm · L
mmol ·

C
A · s · 10−12 A

pA

)
= 10−6 mm

s · pA
Thus, we conclude:

γ = 7.214× 10−3 mm
s · 1

pA (12)


