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Abstract
The optimality of behavior in experimental settings is usually determined with respect to an extrinsic reward defined by 
the experimenters. However, actions that do not lead to reward are ubiquitous in many species and in many experimental 
paradigms. Modern research on decision processes commonly treat non-optimal behaviors as noise, often excluding from 
analysis animals that do not reach behavioral performance criteria. However, non-optimal behaviors can be a window on 
important brain processes. Here we explore the evidence that non-optimal behaviors are the consequence of intrinsically 
motivated actions, related to drives that are different from that of obtaining extrinsic reward. One way of operationally char-
acterizing these drives is by postulating intrinsic rewards associated with them. Behaviors that are apparently non-optimal 
can be interpreted as the consequence of optimal decisions whose goal is to optimize a combination of intrinsic and extrinsic 
rewards. We review intrinsic rewards that have been discussed in the literature, and suggest ways of testing their existence 
and role in shaping animal behavior.
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Modern research on behavior usually defines optimality 
using an objective designed by the experimenters. This 
objective is often based on the extrinsic reward (e.g. food 
pellets) obtained by the experimental subject, providing a 
clear and straightforward procedure to quantify behavior 
succinctly. The use of experimenter-defined behavioral 
goals makes it possible to compare behaviors under con-
siderably different circumstances, manipulations and even 
across species.

However, animal behavior may be driven by more than 
just experimenter-defined objectives. For example, if the sub-
ject is driven by the extrinsic reward together with another 
one (e.g. the wish of the subject to maximize the frustration 
of the experimenter), optimal behavior would differ from that 
required to solely maximize the extrinsic-defined reward. 
Consequently, the observed behavior cannot be derived solely 
from the objectives set by the experimenter. Indeed, animal 
behavior often show evidence for deviations from optimality.

Take for example the paper by Trujano and Orduna 
(2015). By their definition rats are “optimal” while pigeons 
are “non-optimal”. This classification is based on a choice 
task, in which subjects could choose one of two regimes for 
each trial. In one regime, two stimuli predicted distinct out-
comes deterministically but with a low probability of reward. 
In the other regime stimuli poorly predicted the outcomes 
but the probability of reward was overall higher. Pigeons 
were considered to be “non-optimal” because they preferred 
the first regime, while rats were “optimal” for preferring the 
other. The underlying assumption of the researchers was that 
their externally defined reward is the sole driver of behav-
ior. In this paper, such behavior will be termed extrinsically 
directed behavior.

It has become common to design and implement behav-
ioral paradigms that minimize non-optimal actions, and 
to ignore them when interpreting behavior. For example, 
in experiments addressing decision making processes, 
researchers employ training phases aimed at reducing non-
extrinsically directed behavior (e.g. Miller et al., 2017), 
omit non-extrinsically directed decisions from the analysis 
(e.g. Constantinople et al., 2019; Garenne et al., 2011) and 
exclude animals who fail to learn the task (where success 
and failure are determined by extrinsic measures) from the 
analyzed data (e.g. Brunton et al., 2013; Miller et al., 2017).
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Importantly, the behavior of the pigeons in Trujano and 
Orduna (2015) can be interpreted as optimal if the pigeons 
maximize a weighted sum of the extrinsic reward with the 
predictive information supplied by the stimulus. One way of 
conceptualizing such an optimization is through the intro-
duction of the notion of an internal reward. Extrinsic reward 
induces internal reward that drives behavior, but internal 
reward may be acquired in other ways too. If we postulate 
that for the pigeons, high predictive information results in a 
substantial amount of internal reward, their behavior indeed 
optimizes the total internal reward.

Support for the notion that predictive information is a 
kind of intrinsic reward is provided by experiments employ-
ing the observing task (see Bromberg-Martin & Monosov, 
2020; Cervera et al., 2020). In the observing task, the deci-
sion maker is faced with two risky options (or gambles), each 
delivering a certain reward quantity with a given probability, 
after a fixed delay period. Importantly, one option offers pre-
dictive information during the delay period on the success 
of the gamble (informative gamble). Results from multiple 
species (see Cervera et al., 2020) show strong preference for 
the informative gamble, even if its expected extrinsic reward 
is lower than for the non-informative gamble.

In general, these results can be viewed as part of the study 
of motivated decisions that are not directly driven by extrinsic 
reinforcements. Evidence for these motivated but unrewarded 
processes were found across multiple species in behaviors 
directed towards exploration, manipulation or probing of the 
environment. The motivations that drive these behaviors are 
postulated to be intrinsic (Baldassarre & Mirolli, 2013; Ryan 
& Deci, 2000). Notable examples of intrinsic motivations 
include novel object investigation in birds (Berlyne, 1966), 
explorative decision making in humans (Daw et al., 2006), 
and explorative behaviors by infants (Nöe, 2004; Rochat, 
1989). Intrinsic motivations may shape behavior even in 
the presence of extrinsic reward. For example, hungry rats 
preferred to explore a novel feature before settling to eat 
(Berlyne, 1966; see also Thompson, 1953; Woods & Bolles, 
1965; Zimbardo & Miller, 1958). Moreover, subjects may 
actively choose to trade extrinsic for intrinsic rewards. In 
(Deaner et al., 2005), macaque monkeys consistently traded 
juice for social information. In other experiments similar 
effects were observed in humans for different types of infor-
mation (Reggev et al., 2021; Tamir & Mitchell, 2012). Fur-
thermore, decisions directed towards novel options at the 
expense of other rewarding options were observed in humans 
and rats (Miller et al., 2017; Wittmann et al., 2008; see also 
Kakade & Dayan, 2002). Evidence also exists for intrinsic 
costs (or negative intrinsic rewards). These values repre-
sent behavioral outcomes and characteristics that animals 
and humans prefer to avoid or reduce. Examples include the 
complexity of behaviors and information collection/integra-
tion (Amir et al., 2020; Sims, 2010; Tishby & Polani, 2011). 

Additionally, other reported intrinsic motivations have yet to 
be thoroughly researched, such as empowerment and compe-
tence driven behaviors (Klyubin et al., 2005; Baldassarre & 
Mirolli, 2013; Oudeyer & Kaplan, 2007). Thus, intrinsically 
motivated behaviors can be observed even in the presence of 
extrinsic reward, and can be found across species, settings, 
and experiments.

Some theoretical accounts of the intrinsically motivated 
behaviors mentioned above make use of the concepts of 
curiosity and play (Berlyne, 1966; Cervera et al., 2020; L. 
Fox et al., 2020; Loewenstein, 1994; van Lieshout et al., 
2020), whose objectives are information gathering/integra-
tion and environment manipulation, respectively. Interest-
ingly, two of the prominent psychologists to first address 
curiosity described it as an intrinsic cost (Berlyne, 1966; 
Loewenstein, 1994).

Some of the brain mechanisms underlying intrinsic 
rewards are known. For example, behaviorally-observed 
intrinsic rewards have been linked to brain regions critical for 
decision making processes. Notably, novel events and stimuli 
evoked responses in midbrain dopaminergic (DA) neurons 
known to encode reward prediction errors (RPE’s) in mice 
and primates (Horvitz, 2000; Kakade & Dayan, 2002). Simi-
larly, Wittman et al. (2008) suggested that midbrain novelty 
responses in humans were similar to the responses elicited 
by reward-related-events. Thus, decisions that are eventually 
rewarded by external reward and decisions that seem to be 
driven by the novelty of the stimulus share an internal reward 
signal. Additionally, in the same study, it was found that 
novelty directed decisions were correlated with ventral stri-
atal BOLD signals, which are typically evoked by rewarded 
events. Predictive information is also encoded by neurons 
during decision making. In (Blanchard et al., 2015) neurons 
in the orbitofrontal cortex of monkeys were found to code 
the value of decisions based on a combination of the offered 
extrinsic reward and predictive information. Moreover, neu-
rons in the lateral habenula were found to encode informa-
tion prediction errors (IPE’s), similarly to RPE’s (Bromberg-
Martin & Hikosaka, 2011), and midbrain DA neurons were 
found to respond to expectation of information delivery in the 
same way that they respond to expectations of reward deliv-
ery (Bromberg-Martin & Hikosaka, 2009). Importantly, these 
results provide evidence for the integration of extrinsic and 
intrinsic value in brain regions that are known to be involved 
in processing extrinsic reward and decision making.

Nevertheless, it is hard to study intrinsic motivations. 
The main difficulty is a lack of a good operational defini-
tion (Oudeyer & Kaplan, 2007). As a possible solution, 
psychologists and neuroscientists are using ideas, tools and 
terminology from the field of reinforcement learning (RL) 
(Daw et al., 2006, 2011; Dubey & Griffiths, 2020). Notably, 
RL tools are effective in characterizing decision strategies 
of human and animal subjects. These methods have been 

140 Journal of Computational Neuroscience (2022) 50:139–143



1 3

applied for example for studying exploration in behavioral 
experiments, particularly in relatively simple tasks such as 
the k-armed bandit task (see L. Fox et al., 2020). However, 
exploration was introduced in a somewhat simplistic form in 
these studies, so that a more nuanced view of exploration, as 
well as experiments in more complex settings, are needed to 
study exploration as an intrinsically driven process (L. Fox 
et al., 2020; Shteingart & Loewenstein, 2014).

It can be argued that intrinsic motivations (exploration 
in particular) are drives that increase future extrinsic yield, 
and for this reason they should not be interpreted as intrinsic 
drives. To counter this argument, we claim that reducing 
behaviors to their role in increasing extrinsic yield could 
blind us to their inner mechanisms. Specifically, it would be 
extremely difficult to discern the specific drives of behaving 
agents in complex environments based solely on their result-
ant extrinsic yield. Many are fundamentally different in their 
function and mechanisms, and their exact effects on extrinsic 
yield (in complex environments) may be hard to disentangle. 
Therefore, when attempting to unravel the different intrin-
sic components that may contribute to the decisions-making 
process, and especially for non-optimal behaviors, it is use-
ful to employ the concept of intrinsic rewards. This is par-
ticularly so since we have the tools to observe brain activity 
and therefore to find traces of the internal processes produc-
ing the behaviors in question. In particular, we suggest that 
the theoretical treatment of different intrinsic motivations 
is important, in order to improve our understanding of the 
similarities and differences in their underlying mechanisms 
and resulting performance.

While in the computational RL literature, different intrin-
sic reward mechanisms are sometimes studied independently 
of extrinsic rewards to directly compare them (e.g. Choshen 
et al., 2018; Little & Sommer, 2013), we do not claim that 
intrinsic rewards should be solely studied separately from 
extrinsic rewards. Indeed, the utility of endowing agents with 
intrinsic rewards is commonly evaluated in environments 
that do offer extrinsic rewards (e.g. Bellemare et al., 2016; 
Burda et al., 2018; Pathak et al., 2017). This is so because 
the complex tasks RL aims to solve often consist of complex 
environments providing sparse rewards (Burda et al., 2018; 
Duan et al., 2016; Dubey & Griffiths, 2020). Analyzing the 
interaction between intrinsic and extrinsic rewards in such 
environments led to better understanding of intrinsic moti-
vations as well as to improvements in the performance of 
simulated agents (Burda et al., 2018; Duan et al., 2016; Lopes 
et al., 2012). Similarly, when studying animal behavior, natu-
ral environments certainly provide extrinsic rewards, so that 
intrinsic and extrinsic rewards seem to operate simultane-
ously (Bromberg-Martin & Monosov, 2020; Cervera et al., 
2020; Deaner et al., 2005; Mehlhorn et al., 2015; Miller et al., 
2017; Wittmann et al., 2008). Therefore, we suggest to adopt 
the successful approach of computational RL studies to better 

understand the function of extrinsic and intrinsic rewards in 
behavior and in the brain.

Indeed, machine learning applications of RL often make 
use of intrinsic rewards. RL agents that only use extrinsic 
reward struggle to reach optimal performance in complex 
environments that provide sparse reward (Burda et al., 2018; 
Dubey & Griffiths, 2020). These types of environments com-
monly require effective and efficient exploration in order to 
achieve good performance. The provision of intrinsic rewards 
noticeably improves performance in such tasks (e.g. video-
games and locomotion (Burda et al., 2018; Duan et al., 2016)). 
Initially inspired by results on intrinsic motivations in humans 
and animals, algorithms that produce rewards based on the 
experience of the agent, independently of external rewards, 
have been developed (Baldassarre & Mirolli, 2013; Klyubin 
et al., 2005; Little & Sommer, 2013; Oudeyer & Kaplan, 
2007). Importantly, intrinsic motivations in RL produce 
rewards that are integrated together with extrinsic rewards 
into the values that drive agent performance. Moreover, these 
intrinsic motivations are often based on concepts from the 
behavioral and biological sciences (e.g. exploration, empow-
erment and mental effort (L. Fox et al., 2020; R. Fox et al., 
2017; Klyubin et al., 2005; Little & Sommer, 2013)).

Taxonomies of theoretical intrinsic rewards have been 
suggested in the literature (Baldassarre & Mirolli, 2013; 
Oudeyer & Kaplan, 2007). Here we review existing taxono-
mies with examples, and suggest a modification (Fig. 1).

Fig. 1  Taxonomy of intrinsic motivations
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In (Baldassarre & Mirolli, 2013; Oudeyer & Kaplan, 
2007), a distinction was made between knowledge-based and 
competence-based intrinsic motivations. Knowledge-based 
motivations serve to sample, gather and integrate information 
about the interaction of the agent with the environment. In this 
category, Baldassarre & Mirolli (2013) made a sub-distinction 
between novelty-based and prediction-based mechanisms. 
Novelty-based mechanisms drive the agent to experience all 
the available state-action pairs through novelty of actions and/
or observations. The goal of prediction-based motivations is 
to build an accurate model of the environment. Usually, these 
motivations work with an internal model of the environment, 
and guide behavior towards those parts of the world that are 
badly predicted. Competence-based motivations focus on 
improving the agent’s interaction with the environment, rather 
than refining its knowledge or increasing its experience. Typi-
cally, these mechanisms employ quantifications of the agent’s 
challenge, performance and efficiency in episodes of behavior 
(Oudeyer & Kaplan, 2007). Here we suggest expanding this 
category to motivations that drive towards different types of 
environment interactions as well as different characteristics 
of the state-action trajectory of the agent (to include intrin-
sic motivations such as empowerment (Klyubin et al., 2005) 
and complexity or mental effort (R. Fox et al., 2017; Still & 
Precup, 2012; Tishby & Polani, 2011)). We will refer to this 
generalized category as Interactive-based motivations.

We believe that the extensive literature and experience 
with intrinsic motivations in artificial RL agents creates 
a reverse opportunity: to use the existing quantitative 
models of intrinsic motivations, developed and studied in 
the RL setting, as tools for analyzing human and animal 
behavior. We believe that theoretically-derived intrinsic 
motivations can be used as tools to effectively address 
suboptimal behavior and its brain mechanisms. With such 
tools, it becomes possible to use available intrinsic rein-
forcers to infer optimal policies and compare them with 
observed behavior. By comparing policies that optimize 
given forms of intrinsic reward with behavior, it may be 
possible to identify the operation of intrinsic motivations 
as well as their nature. Neural activity associated with 
action selection and value representation can be analyzed 
also with respect to such policies. In fact, such analysis 
can already be applied to existing behavioral datasets and 
experimental environments, with the hope of shedding 
light on intrinsic rewards that may have been present but 
were not previously incorporated into the analysis. When 
pursuing such a program, it is important to acknowledge 
the potential pitfall of rationalizing behaviors with a super-
ficial combination of intrinsic and extrinsic rewards that 
post-hoc fit the behavior well.

In conclusion, by quantifying intrinsic motivations, 
behavioral drives that were previously unaccounted for could 

elucidate structure and meaning of seemingly non-optimal 
behaviors.

Taken together with the existing work on extrinsic reward, 
this would allow a richer understanding of decision making 
in behavior and in brains.
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