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Abstract
The brain is believed to operate in part by making predictions about sensory stimuli and

encoding deviations from these predictions in the activity of “prediction error neurons.” This
principle defines the widely influential theory of predictive coding. The precise circuitry and
plasticity mechanisms through which animals learn to compute and update their predictions are
unknown. Homeostatic inhibitory synaptic plasticity is a promising mechanism for training neu-
ronal networks to perform predictive coding. Homeostatic plasticity causes neurons to maintain a
steady, baseline firing rate in response to inputs that closely match the inputs on which a network
was trained, but firing rates can deviate away from this baseline in response to stimuli that are
mismatched from training. We combine computer simulations and mathematical analysis system-
atically to test the extent to which randomly connected, unstructured networks compute predic-
tion errors after training with homeostatic inhibitory synaptic plasticity. We find that homeostatic
plasticity alone is sufficient for computing prediction errors for trivial time-constant stimuli, but
not for more realistic time-varying stimuli. We use a mean-field theory of plastic networks to
explain our findings and characterize the assumptions under which they apply.

1 Introduction

Cortical neuronal networks can make predictions about sensory stimuli and detect errors about these
predictions. For example, in the visuomotor system, head movements produce predictable flows of
an animal’s visual scene. Visual cortical circuits learn predictable associations between bottom-up
input from the visual stream and top-down input from the motor system. Violations of the learned
predictions, known as “mismatched stimuli” or “prediction errors”, produce distinct responses in
visual cortical neurons, which can help the animal distinguish between self-driven and externally
driven movements of its visual scene [1, 2, 3].

The idea that the brain uses predictions and prediction errors to encode and interpret sensory
information dates back to 19th century work by Helmholz [4, 5] and underlies more general theories
of neural function such as predictive coding, predictive processing, active inference, and the free
energy principle [6, 7, 8, 5]. The question of how neural circuits compute prediction errors and how
they learn predictions through biologically plausible synaptic plasticity rules is not settled, but some
theories have been put forward [9, 10, 11, 12, 13, 14, 15].

Cortical neurons are highly interconnected, even within a single cortical area and layer. This
dense, recurrent, and intralaminar connectivity shapes the intrinsic dynamics and stimulus responses
of local cortical circuits. The nonlinear firing rate dynamics that arise from this recurrent con-
nectivity can interact with the slower dynamics of synaptic plasticity in complex ways. Homeo-
static inhibitory synaptic plasticity is a widely observed and widely studied type of synaptic plas-
ticity [16, 17, 18, 19, 20, 15, 21] in which the strength of inhibitory synapses are adjusted in an
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activity-dependent manner that tends to push the postsynaptic neurons’ firing rates toward a homeo-
static baseline targets. Simulations and theoretical analyses of mathematical models of homeostatic
inhibitory plasticity show that, while firing rates are near their targets in response to stimuli on which
the network has been trained, firing rates deviate from their targets in response to unfamiliar stimuli
in these models [17, 22, 14, 23, 15, 24].

As in related computational work [14, 23, 15], we conjectured that homeostatic inhibitory plas-
ticity could learn to perform some type of predictive coding. In particular, if the external input to a
neural population were formed from bottom-up and top-down stimuli, then homeostatic plasticity in
the network would naturally learn to produce baseline activity in response to “matched” top-down
and bottom-up pairings (i.e., pairings that are similar to those on which the network was trained).
On the other hand, “mismatched” pairings (i.e., pairings from outside the training distribution) would
produce firing rate responses that are further from the homeostatic baseline. In this sense, the net-
work should learn to encode prediction errors (i.e., errors in the ability to predict top-down input from
bottom-up input or vice versa) in the deviation of the firing rates from their baseline. Importantly, and
in contrast to previous work [14, 23, 15], we conjectured that the network should not need to be im-
parted with any special structure or architecture to learn this computation since homeostatic plasticity
should naturally achieve this result due to its tendency to produce baseline responses to stimuli on
which the network was trained, but not in response to novel stimuli.

To test our conjecture, we used an unstructured, recurrent, spiking neuronal network model en-
dowed with a homeostatic inhibitory plasticity rule receiving two sources of external input, model-
ing top-down and bottom-up stimuli. We trained the network with given patterns of top-down and
bottom-up pairings, interpreted as “matched” stimuli, before presenting a “mismatched” stimulus that
deviated from the pairings used during training. Numerical simulations showed that the network reli-
ably produced baseline firing rates for a fixed pair of bottom-up and top-down inputs during training,
and deviated from baseline in response to a mismatched stimulus. A mean-field, firing rate model and
a mathematical analysis using a separation of timescales helped reveal the dynamics underlying these
numerical simulations. Hence, homeostatic plasticity learned to compute prediction errors whenever
top-down and bottom-up stimuli are fixed during training. However, useful predictive coding algo-
rithms should learn to detect relationships between time-varying top-down and bottom-up inputs. We
generalized our input model to vary the intensity of top-down and bottom-up inputs in unison. An
effective learning algorithm should learn to detect a prediction error whenever the intensity changes
out of unison. To our surprise, our spiking network with homeostatic synaptic plasticity was unable to
learn to detect this type of prediction error, even in a relatively simple (time-varying) setting. Going
back to our mean-field analysis helped to clarify how and why the model failed to perform predictive
coding in this setting after succeeding in the simpler (time-constant) setting.

We conclude that homeostatic inhibitory synaptic plasticity alone is not sufficient to learn and
perform non-trivial predictive coding in unstructured neuronal network models. Previous theoretical
work shows that network models that carefully account for the connectivity structure of multiple
inhibitory subtypes are able to learn prediction errors using homeostatic plasticity, even for inputs
where top-down and bottom-up input co-vary in intensity [14, 23]. Hence, the failure of our model
in this scenario implies that network structure is critical for successfully learning predictive coding
tasks with homeostatic plasticity.
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2 Results

2.1 Spiking network model description

We consider a computational model of a local cortical circuit composed of N = 5000 randomly
connected exponential integrate-and-fire (EIF) spiking neuron models (Ne = 4000 of which are
excitatory and Ni = 1000 inhibitory) [25, 26]. The membrane potentials of neuron j in population
a = e, i obeys

τm
dV a

j

dt
= −(V a

j − EL) +DT e
(V a

j −VT )/DT + Iaj (t) (1)

with the added condition that each time Vk(t) crosses a threshold at Vth, it is reset to Vre and a spike
is recorded. The synaptic input to neuron j in population a is modeled by

Iaj (t) = Xa
j (t) +

∑

b=e,i

N∑

k=1

Jabjkαb(t− tbn,k)

where Xa
j (t) models external synaptic input, Jabjk is a synaptic weight, tbn,k is the time of the nth

spike of neuron k in population b, and αb(t) = (1/τb)e
−t/τbH(t) is a synaptic filter with H(t) the

Heaviside step function.
Initial connectivity in the model is random (connection probability p = 0.1) with initial weights,

Jabjk , determined only by pre- and post-synaptic neuron type (Jabjk = jab for connected neurons). Ex-
citatory connectivity, Jaejk , remained fixed, but inhibitory connectivity evolves according to a homeo-
static, inhibitory spike-timing-dependent plasticity (iSTDP) rule [17, 19, 20, 24]. Specifically, each
time that neuron j in population a = e, i spikes (which occurs at times tan,j), the inhibitory synaptic
weights targeting that neuron are updated according to

Jaijk = Jaijk − ηaxik(taj,n)

where ηa is a learning rate and recall that taj,n is the time of the nth spike of neuron j in population
a = e, i. Additionally, each time inhibitory neuron k spikes, its outgoing synaptic weights are updated
according to

Jaijk = Jaijk − ηa
(
xaj (t

i
k,n)− 2ra0

)

where tik,n is the time of the nth spike of inhibitory neuron k. The time series, xaj (t) are defined by
the differential equation

τSTDP
dxaj
dt

= −xaj
in addition to the rule that xaj (t) is incremented each time that neuron j in population a = e, i spikes
according to,

dxaj (t
a
j,n)← dxaj (t

a
j,n) +

1

τSTDP
. (2)

As a result, xaj (t) estimates the firing rate of neuron j in population a by performing an exponentially-
weighted sliding average of the spike density. This plasticity rule tends to push excitatory and in-
hibitory firing rates toward their target rates, re0 and ri0, respectively (see [17, 19, 20, 22, 24] and the
mean-field theory presented below).

We are interested in understanding the extent to which such networks can learn to perform pre-
dictive coding [6, 12, 5]. More specifically, we reasoned that neurons would spike close to their target
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Figure 1: Prediction errors after training on time-constant inputs to multiple sub-populations.
A,B) Network diagram with “training” and “mismatch” stimuli respectively. A randomly connected,
recurrent spiking neural network of N = 5000 neurons consisted of two excitatory sub-populations
(e1 and e2) and one inhibitory (i) population. During the first 100s of the simulation, the network
received a “training” stimulus in which e1 and e2 received extra external input modeling bottom-
up and top-down stimuli respectively (A). Then a “mismatch” stimulus was introduced for 1s by
removing the top-down stimulus to population e2. C) Homeostatic inhibitory synaptic plasticity
caused population-averaged firing rates to converge to their targets during training, but they deviated
from their targets in response to the mismatch stimulus. D) The deviation of the mean firing rates
from their targets (MSEmean) and the mean deviation of individual neurons’ firing rates (MSEpop)
quantify the deviation of firing rates from their targets. E,F) Raster plots (top) and membrane potential
(bottom) of a random subset of neurons from population e1.

rates in response to stimulus patterns similar to those on which they were trained, but deviate from
the target rates in response to stimuli that deviate from the from the training stimuli. In other words,
the deviation of firing rates from their targets should encode a “prediction error,” i.e., a deviation of
the inputs from the patterns that appeared during training.

2.2 Prediction errors after training on time-constant inputs to multiple sub-populations

For illustrative purposes, we first considered a simple input model for which the excitatory population
was divided into two sub-populations, e1 and e2, with Ne1 = Ne2 = 2000 neurons in each sub-
popuation (Figure 1A,B). Recurrent connectivity did not depend on sub-population membership, so
the network was completely unstructured. During training, each neuron in populations e1 and e2
received external stimuli of the form (Figure 1A)

Xe1 = X0
e + U

Xe2 = X0
e + V

}
matched (3)

where X0
e is a baseline input that assures neurons spike at reasonable rates, U is a perturbation mod-

eling bottom-up input, and V is a perturbation modeling top-down input. We used positive bottom-up
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input and negative top-down input,
U = X0

e /5

V = −X0
e /5,

(4)

but our results are not sensitive to this specific choice of inputs. We refer to this as a “matched”
stimulus because it defines the matching of bottom-up with top-down stimuli that the network is
trained on. After training on matched stimuli, we modeled mismatched stimuli by the absence of
top-down input (Figure 1B),

Xe1 = X0
e + U

Xe2 = X0
e

}
mismatched. (5)

We refer to these stimuli as “mismatched” because the top-down and bottom-up inputs are mis-
matched when compared to the “matched” pairings used to train the network. Mismatched stimuli
could also be modeled by an absence of bottom-up input, or any other deviation from the inputs used
for training.

We hypothesized that, after training on matched stimuli, the network would produce firing rates
close to the target rates in response to matched stimuli and produce firing rates further from the target
rates in response to mismatched stimuli.

At the beginning of the simulation mean excitatory and inhibitory firing rates deviated from their
targets, but inhibitory plasticity pushed them toward their targets over the course of tens of seconds
(Figure 1C). After 100s of training on matched stimuli, we tested a mismatched stimulus for 1s.
Consistent with our hypothesis, mean firing rates of each population were further from their targets
in response to the mismatched stimulus (Figure 1C).

We quantified the distance of the firing rates from their targets from spiking network simulations
using two methods. For the first method, we computed the MSE of the population-averaged firing
rates (Figure 1D, light green),

MSEmean =
∑

a=e1,e2,i

qa(ra − r0a)2

where r0a is the target rate and ra the mean firing rate of each population averaged over neurons in that
population and averaged over time windows of size T = 1s. The coefficients qa = Na/N represent
the proportion of the network contained in each population (qe1 = qe2 = 0.4 and qi = 0.2 for our
network). Hence, MSEmean weights the errors of larger sub-populations more heavily.

The MSEmean measures how far the population-average rates differ from their target rates, but
does not measure the deviation of individual neurons’ firing rates. Despite the fact that external input
was constant across time and the simulations were deterministic (with the exception of “quenched”
randomness from the random connectivity), neurons exhibited substantial variability in their spike
timing and membrane potential dynamics (Figure 1E,F). These dynamics are characteristic of an
asynchronous-irregular state [27, 28, 29, 30, 31, 32, 33].

To account for the deviation of individual neurons’ firing rates from spike-timing variability in
spiking network simulations, we also computed the MSE across the entire network (Figure 1D, dark
green),

MSEpop =
1

N

N∑

j=1

(rj − r0j )2
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where rj is the firing rate of neuron j = 1, . . . , N and r0j is its target rate. Both measures of MSE
show a decrease during training and a sharp increase in response to the mismatched stimulus, but
MSEpop is larger overall due to the spike-timing variability of each neuron.

The results from the spiking network can be understood using a simpler dynamical mean-field
model in which mean firing rates of each population are approximated by a system of differential
equations,

τ � dr

dt
= −r+ f (Wr+X) (6)

where τ = [τe1 τe2 τi]
T is a vector of time constants, � represents element-wise multiplication,

and r = [re1 re1 ri]
T is a vector approximating the mean firing rates of the two excitatory sub-

populations and the inhibitory population. Mean external input to each population is given by the
vector

X =



Xe1

Xe2

Xi




and the recurrent connectivity matrix is defined by

W =



we1e1 we1e2 we1i
we2e1 we2e2 we2i
wie1 wie2 wii




where [34, 35, 36, 37, 22, 24]
wab = Nbpabjab

Here, Nb is the number of neurons in population b = e1, e2, i (so Ne1 = Ne2 = Ne/2 = 2000 and
Ni = 1000), pab is the connection probability from population b to population a, and jab is the mean
non-zero synaptic weight (mean of J jkab between connected neurons). The inhibitory entries, wai for
a = e1, e2, i, are negative and evolve according to

dwai
dt

= −ηa(ra − ra0)ri (7)

where ηa sets the timescale of plasticity and ra0 is the target rate of population a = e1, e2, i. For
simplicity, we consider a rectified-linear f-I curve,

f(I) =

{
gI I > 0

0 I ≤ 0
. (8)

The gain, g, was fit to spiking network simulations (see Materials and Methods).
Simulating this model shows excellent agreement with the firing rates from the spiking network

simulations (Figure 2) and the mean-field simulations are computationally more efficient than the
spiking network simulations by a factor of 70 (6.0s for the mean-field simulation compared to 435.0s
for the spiking network simulation). The deviation of the firing rates in the mean-field rate model
from their targets can be quantified by

MSEmf =
∑

a=e1,e2,i

qa(ra − r0a)2 (9)
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Figure 2: A mean-field firing rate model captures the dynamics of the spiking network model.
A) Firing rates of the mean-field firing rate model defined by Eqs. (6) and (7). Compare to Figure 1C.
B) MSE deviation of the firing rates from their targets (MSEmf ; light green) and the MSE with a
Poisson correction (MSEPoisson; dark green). Compare to Figure 1D.

which is identical to MSEmean above except that ra represents the rate from the mean-field sim-
ulations instead of the mean firing rates from the spiking net simulations. Indeed, MSEmf closely
matchesMSEmean from the spiking network simulations (Figure 2B, compare to Figure 1C), demon-
strating that the two models have similar mean-field dynamics. The value of MSEpop from the
spiking network simulations does not have a direct analogue in the mean-field model, but under an
assumption of Poisson-like spike-timing variability in the spiking network, MSEpop can be approxi-
mated by (see Materials and Methods for derivation)

MSEPoisson =MSEmf +
1

T

∑

a

qara (10)

where ra is the firing rate of population a = e1, e2, i from the mean-field model and T is length of
the time window over which firing rates are computed in the spiking network simulations. Specifi-
cally, MSEPoisson represents the population-level MSE (i.e., MSEpop) that would be produced by
populations of Poisson spike trains with firing rates ra. Indeed, MSEPoisson shows close agreement
withMSEpop (Figure 2B, compare to Figure 1D), demonstrating that the deviation ofMSEpop away
from the values of MSEmean is consistent with Poisson-like spike-timing variability.

This example shows that homeostatic inhibitory synaptic plasticity can train a network to detect
mismatched stimuli, which is a form of predictive coding. To better understand how and why the
network is able to detect mismatched stimuli, we consider a fixed point analysis via a separation of
timescales.

In the absence of plasticity (W fixed, e.g., ηe = ηi = 0), fixed point firing rates would satisfy
r0 = f(Wr0 + X). Taking the rectified linear f-I curve from the dynamical mean-field model, if
there were a fixed point with positive rates (ra > 0 for all a) then it would be unique and given (as a
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function of W ) by
r(W ) = [D −W ]−1X = AX (11)

where D = (1/g)Id is a diagonal matrix, I is the identity matrix, and A = [D −W ]−1. With W
fixed, the Jacobian matrix for the firing rate equation, Eq. (6), would be given by

J = g




(we1e1 − 1)/τe we1e2/τe we1i/τe
we1e2/τe (we1e1 − 1)/τe we1i/τe
wie1τi wie2τi (wii − 1)/τi




If the eigenvalues of this matrix have negative real part, then the fixed point given by Eq. (11) is stable
and globally attracting.

Due to plasticity,W itself is time-dependent, so this fixed point analysis does not tell the full story.
When plasticity is much slower than the firing rate dynamics (η sufficiently small and τ sufficiently
large, but η should not be compared directly to τ because they have different dimensions), we can
perform a separation of timescales under which r relaxes to the quasi-steady-state value given by
evaluating Eq. (11) at the current value of W , while W evolves more slowly according to Eq. (7).
Putting this together, the separation of timescales approximation is defined by

dW

dt
=




0 0 −ηe(re1 − re0)ri
0 0 −ηe(re2 − re0)ri
0 0 −ηi(ri − ri0)ri




r =



re1
re2
ri


 = [D −W ]−1X = AX

(12)

Note that this is a 3-dimensional dynamical system because r is defined by a functional relationship
instead of a differential equations. Solving Eqs. (12) directly gives similar results to the full mean-
field model and is 482 times more computationally efficient than the full mean-field simulations
(Figure 3A,B; 12.5× 10−3s to simulate Eqs. (12) versus 6.0s for the full mean-field model) primarily
because the slower dynamics allow for a larger time discretization (we used dt = 0.1ms for the full
mean-field and dt = T = 1s to simulate Eqs. (12)). Simulating Eqs. (12) was 34751 times faster than
the spiking network simulations. This speedup is not surprising given the lower dimension (2 versus
5000 dimensions) as well as the larger time discretization.

During training, X is fixed to the “matched” value given by Eq. (25). During this phase, the
slow-timescale system described by Eqs. (12) has a fixed point for which r = r0 where

r0 =



r0e
r0e
r0i




is a vector of the target rates from the plasticity rule. However, this expression gives the fixed point
in terms of r whereas the dynamical system is described by the dynamics of the entries of W . If the
network converges to the target rates during training, then the weight matrix, W , for the slow system
converges to a value, W 0 (or, equivalently, A converges to a value of A0) that satisfies

[
D −W 0

]−1
Xm = A0Xm = r0 (13)

8



Figure 3: Slow dynamics are captured by a separation-of-timescales approximation. A) Firing
rates of the model defined by Eqs. (12). Compare to Figures 1C and 2A. B) MSE deviation of
the firing rates from their targets (MSEmf ; light green) and the MSE with a Poisson correction
(MSEPoisson; dark green) from the model defined by Eqs. (12). Compare to Figures 1D and 2B. C)
Deviation of the inhibitory weights, wai, from the fixed point values given in Eqs. (14).

where

Xm =



X0
e + U

X0
e + V
X0
i




is the value of X for matched stimuli. Eq. (13) is a system of three equations for three unknowns
(we1i, we2i, wii) and its solution is given by

we1i =
r0e − 2gr0ewee − g(U +X0

e )

gr0i

we2i =
r0e − 2gr0ewee − g(V +X0

e )

gr0i

wii =
r0i − 2r0ewie +X0

i

gr0i

(14)

Indeed, the weights converged toward these fixed point values during the training period (before the
mismatch stimulus; Figure 3C).

When the input is changed by a mismatched stimulus (so X changes away from its value during
training), firing rates deviate from their targets. Using the same quasi-steady state approximation, we
can quantify the magnitude of this deviation as

dr := rmm − r0

= A0Xmm − r0

= A0(Xmm −Xm)

= A0dX

(15)

where rmm is the vector of firing rates during a mismatched trial, r0 = [r0e r0i ]
T is the vector of

target rates, and

dX = Xmm −Xm =




0
−V
0



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Figure 4: Prediction errors after training on distributed time-constant inputs. Same as Figure 1
except bottom-up and top-down inputs were modeled as distributed stimuli using multivariate Gaus-
sian inputs vectors (Eq. (18)).

is the perturbation of the external stimulus away from its training value during the mismatched trial.
This derivation makes it clear that larger perturbations of the stimulus (larger values of ‖dX‖) gen-
erally lead to larger deviations of the firing rates from their targets (larger values of ‖dr‖). Here and
elsewhere, ‖ · ‖ refers to the Euclidean norm.

Firing rate perturbations, ‖dr‖, are especially large if the input perturbations, dX , point in a
direction in whichA0dX is large. Such directions correspond to the directions indicated by the largest
eigenvalue(s) of A0. Since A0 =

[
D −W 0

]−1, when W 0 is much larger than D in magnitude, these
directions correspond to directions indicated by the smallest eigenvalue(s) of W 0. This phenomenon
is an instance of “imbalanced amplification” in which a perturbation that points toward the nullspace
or “approximate nullspace” of the connectivity matrix, W 0, is amplified by the network, see [36] for
more in-depth explanations.

Temporarily ignoring the direction of the perturbation, we can make the rough approximation
that ‖dr‖ is approximately proportional to ‖dX‖. This rough approximation provides the intuition
for mismatched responses shown in the simulations above. Put simply, mismatched responses are
caused by the deviation of a stimulus away from its “matched” training value and the magnitude of
the mismatched response increases with the magnitude of the input perturbation. While this intuition
may seem trivial for this example, its extensions will help explain some non-trivial, counterintuitive
results below.

2.3 Prediction errors after training on distributed, time-constant inputs

The example above modeled a stimulus that was homogeneous across each neural population, i.e.,
every neuron in population e1 received the same input and every neuron in population e2 received the
same input. Stimulus representations in cortical circuits can be distributed in an inhomogeneous way
across neural populations [38].

We next considered a spiking network model with distributed bottom-up and top-down inputs

10



(Figure 4A). As above, matched and mismatched stimuli were defined by the presence and absence
of top-down input to population e2 (Eqs. (25) and (5)) to match the bottom-up input to population
e1, but these inputs are heterogeneous vectors (~U and ~V ) instead of homogeneous scalars (U and V ).
Specifically, matched and mismatched stimuli to excitatory neurons were defined by

Xe = X0
e +

~U + ~V
}

matched (16)

and
Xe = X0

e +
~U

}
mismatched. (17)

where ~U and ~V are normally distributed Ne-dimensional vectors,

~U ∼ σsN(0, 1)

~V ∼ σsN(0, 1).
(18)

Here, N(0, 1) is a standard multivariate normal distribution and σs = X0
e /5 controls the strength

of the stimuli. Importantly, this means that each neuron receives a different value of top-down and
bottom-up input, in contrast to the previous example (Eq. (4) and Figures 1–3) in which every neuron
in the same excitatory sub-population received the same input.

Simulating this spiking network model shows that population-averaged firing rates converge to
their targets during training on matched stimuli, as expected, but only deviate slightly from their
targets in response to a mismatched stimulus (Figure 4C).

We suspected that the deviation of mean excitatory and inhibitory firing rates was small because
some neurons increased their firing rates and some neurons decreased their firing rates in response
to mismatched stimuli, so the increases and decreases cancelled at the level of population averages.
Another way to see this is to note that the expected value of ~U and ~V is zero, so the absence of ~V
does not affect the population-averaged value of the inputs and (under a linear approximation) we
should not expect a change in mean firing rates by removing ~V . Under this reasoning, the firing rates
of individual neurons would still change in response to a mismatched stimulus because individual
elements of ~V are non-zero. This line of reasoning implies that MSEmean should not increase much
for a mismatched stimulus, but MSEpop should increase more for a mismatched stimulus. Indeed,
this is exactly what we observed in simulations (Figure 4D).

In summary, our network model with iSTDP learned to adjust inhibitory weights in such a way to
“match” or “cancel” top-down input with bottom-up input in the sense that the firing rates approach
their target rates in response to matched stimuli after sufficient training. Moreover, the network
responded to mismatched stimuli with deviations of the firing rates away from their target values.
Note that the deviation of firing rates from their targets is not a consequence of the mismatch alone,
but is due to the network being trained on matched stimuli. In this sense, the network is simply
detecting deviations of its input patterns from the input patterns on which it was trained.

2.4 A lack of detectable prediction errors after training with time-varying stimuli

While instructive, the examples above were restricted to input patterns that were held fixed during
training. In other words, the network only learned to associate one bottom-up input, U , with one
top-down input, V (as schematized in Figure 3D). Since animals are exposed to multiple stimuli, a
more realistic model would be trained on multiple pairings of top-down and bottom-up inputs. For
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uli were multiplied by the same time-varying signal, c(t). C-F) Same as Figure 1C-F except we
additionally plotted the mean excitatory firing rates (black curve in C).

example, in the visuomotor system, head motion (which we can interpret as top-down input, V ) is
coupled with movement of an animal’s visual stimulus (which we can interpret as bottom-up input,
U ). But head motion varies in direction and speed, and the movement of a visual scene covaries with
it. Prediction errors arise whenever the learned covariation between head motion and visual stimulus
is violated, i.e., whenever there is a mismatch between top-down and bottom-up input [1, 3, 2, 39].

We next considered a simple extension of the first input model from Figures 1–3 to account for
top-down and bottom-up inputs with time-varying intensity. Specifically, the excitatory neurons were
again broken into two sub-populations, e1 and e2. During training, each neuron in populations e1 and
e2 received external stimuli of the form (Figure 1A)

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

}
matched (19)

where c(t) is a scalar time-series that changes on each trial. Specifically, c(t) is drawn independently
from a uniform distribution on [0, 2] at the start of each 1s trial. Hence, the expected value of c(t) is 1
and therefore, the expected values of Xe1 and Xe2 are the same as in the example from Figures 1–3,
but they vary around this expectation across time. We used similar top-down and bottom-up, but
needed to make the inputs weaker to avoid very large rate deviations,

U = X0
e /20

V = −X0
e /20.

(20)

Hence, bottom-up input, c(t)U , is matched by top-down input, c(t)V , during training. After training
on matched stimuli, we again modeled mismatched stimuli by the absence of top-down input

Xe1 = X0
e + U

Xe2 = X0
e .

}
mismatched. (21)
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The input to e1 is not out of the ordinary during a mismatched stimulus (it corresponds to the value
when c(t) = 1 is equal to its expectation) and the input to e2 is not out of the ordinary either (it
corresponds to the value when c(t) = 0), the joint value of the inputs to e1 and e2 together is out of
the ordinary because the inputs are not matched (see Figure 5A for a schematic).

We reasoned that if our iSTDP rule could learn the relationship between top-down and bottom-up
input during training, then it would detect the mismatch between them by evoking a larger deviation of
firing rates from their targets. In other words, the network should detect the out-of-distribution input
represented by a mismatch. However, our spiking network simulations contradicted this prediction.
Firing rates deviated from the targets even during matched stimuli and the deviation in response
to a mismatched stimulus was similar in magnitude (Figure 5B–F). Hence, the the response to a
mismatched stimulus was not detectable in the sense that it could not be distinguished from the
response to matched stimuli.

2.5 A mean-field explanation for the absence of mismatch responses after training on
time-varying inputs.

We now return to our mean-field theory to better understand why we do not see mismatch responses
after training on time-varying inputs, but we do see them after training on time-constant inputs. We
first simulated dynamical rate model from Eqs. (6)–(8) with the time-dependent stimuli defined by
Eqs. (19)–(21). As above, the dynamical mean-field rate model captured the general trends from the
spiking network simulations (compare Figure 6A,B to Figure 5C,D). Eq. (11) for the quasi steady-
state firing rates generalizes to

r(W ) = [D −W ]−1X(t) = AX(t) (22)

An assumption underlying Eq. (22) is that X(t) changes more slowly than the timescales (τa for
a = e, i) at which firing rates evolve. This assumption is valid in our case because X(t) switches
every 1s while τa ≤ 6ms.

Now we can transition to the slower timescale dynamics of W by re-writing Eqs. (12) as

dW

dt
=




0 0 −ηe(re1(t)− re0)ri(t)
0 0 −ηe(re2(t)− re0)ri(t)
0 0 −ηi(ri(t)− ri0)ri(t)




r(t) =



re1(t)
re2(t)
ri(t)


 = [D −W ]−1X(t) = AX(t)

(23)

where we have only added the explicit time-dependence. Simulating this system shows general agree-
ment with the trends from the spiking networks simulations and the dynamical mean-field model
(Figure 7A,B, compare to Figure 5C,D and Figure 6A,B).

Due to the time-dependence of X(t) in the current example, Eqs. (23) do not have a fixed point,
so we cannot proceed directly with the fixed point analysis from above. To perform a fixed point
analysis on W , we must assume that plasticity is slower than the stimulus, i.e., that W (t) changes
much more slowly than X(t). This assumption is valid for our simulations and even more so for
biological neural circuits. Under this assumption, the slow timescale dynamics of W evolve based on
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Figure 6: Mean-field rate model with time-varying stimuli. A,B) Same as Figure 2 except using
the time-varying stimuli from Figure 5.

Figure 7: Slow dynamics captured by a separation of timescales in a model with time-dependent
stimuli. B-C) Same as Figure 3 except using the time-varying stimuli from Figure 5B-C. D) Same as
Figure 5D except time-dependent stimuli during training are represented by multiple dots (each one
representing the inputs on one trial) and the mean is represented by a purple x.
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the mean value of X(t). Specifically, we can use the approximation

dW

dt
=




0 0 −ηe(re1 − re0)ri
0 0 −ηe(re2 − re0)ri
0 0 −ηi(ri − ri0)ri




r =



re1
re2
ri


 = [D −W ]−1X = AX

(24)

where
X = Et[ ~X(t)]

and Et denotes the expectation over time during training, i.e., during matched stimuli.
During training (for matched stimuli), we have from Eq. (19) that

Xm(t) =



X0
e + c(t)U

X0
e + c(t)V
X0
i


 (25)

Since Et[c(t)] = 1, we have that

X =



X0
e + U

X0
e + V
X0
i


 (26)

which is the same as the model from Figures 1–3. Hence, under this approximation, W should
converge to the same fixed point in Eq. (14). Notably, this implies that the time-averaged rates should
be equal to the target rates, r = r0. As predicted, simulations show that average firing rates are close
to their targets (Figure 7A) and the weights do converge to the given fixed point with the addition of
some noise (Figure 7C) coming from the noisy time-dependence of X(t) and r(t).

Therefore, the state of the network (as represented byW ) after training is similar for the networks
with time-constant and time-dependent stimuli. As a result, the deviation, dr(t), of the firing rates
from their targets on any given trial takes the same form derived in Eq. (15),

dr(t) := r(t)− r0

= A0X(t)− r0

= A0(X(t)−X)

= A0dX(t)

(27)

where dX(t) = X(t) − X is the deviation of the stimulus from the mean value it takes during
training and A0 is the fixed point of A = [D −W ]−1 after training (see Eq. (13) and surrounding
discussion). This conclusion assumes that the mean-field approximation in Eq. (22) is approximately
accurate or, more specifically, that the firing rate response to a perturbation is approximately a linear
function of the input perturbation. This, in turn, requires that the input perturbation is not too strong.

As a heuristic, we can ignore the effect of A0 in Eq. (27) and make the approximation that dr(t)
is larger whenever dX(t) is larger. In other words,

‖dr(t)‖ = ‖A0dX(t)‖
≈ ‖A0‖‖dX(t)‖
∝ ‖dX(t)‖.

(28)
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Figure 8: Schematic illustrating why mismatch responses are detectable after training on time-
constant, but not time-dependent stimuli. A) Schematic representing inputs to the network in a
model with time-constant stimuli. Training stimuli occupy a single point in (U, V ) space (purple dot).
The deviation of firing rates from their targets on any particular trial is approximately proportional to
the distance of the input from its value during training (Eq. (15)). Since the mismatch stimulus (orange
dot) is far from the matched, training stimulus, firing rates deviate from their target in response to the
mismatched stimulus (as seen in Figures 1–3). B) Schematic representing inputs to the network
in a model with time-varying stimuli. Training stimuli (purple dots) vary in (U, V ) space along a
predictable line. The mismatched stimulus lies far from this line. However, the deviation of firing
rates from their targets on any particular trial is approximately proportional to the distance of the
input from its mean value during training (Eq. (15)). Since the distance between the mismatch input
(orange dot) and the mean training stimulus (purple x) is similar to the typical distance between the
individual training stimuli (purple dots) and the mean training stimulus (purple x), the deviation of
the firing rates from their targets is similar for matched and mismatched stimuli.

where ‖A0‖ denotes the induced Euclidean norm on A0. In other words, stimuli that are further
from the mean training stimuli evoke larger firing rates. Note that we necessarily have ‖A0dX(t)‖ ≤
‖A0‖‖dX(t)‖, so this assumption is saying that ‖A0dX(t)‖ is not much smaller than ‖A0‖‖dX(t)‖.
This approximation assumes that dX(t) is not close to being orthogonal to the rows of A0.

During matched stimuli, combining Eqs. (25) and (26) gives the perturbation for training stimuli

dXm(t) =




(1− c(t))U
(1− c(t))V

0


 .

Since |U | = |V |, we have
‖dXm(t)‖2 = 2(1− c(t))2|V |

= 2u2(t)|V |
where u(t) = 1− c(t) is uniformly distributed on [−1, 1]. Hence, the squared distance of X(t) from
its mean varies between 0 and 2|V |. During the mismatched stimulus, we have from Eq. (21), that

Xmm =



X0
e + U
X0
e

X0
i



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Combining this with Eq. (26) shows that, during a mismatched stimulus, the input perturbation is

dXmm =




0
−V
0




and therefore
‖dXmm‖2 = |V |.

Hence, the deviation of the external input, X(t), from its mean value during training is similar in
magnitude during matched and mismatched stimuli. As a result, the deviation of the firing rates from
their targets is also similar during matched and mismatched stimuli, so the mismatch is not detectable
based on the deviation of firing rates from their targets alone.

This intuition, and how it differs from the time-constant model of Figures 1–3, is illustrated
in Figure 8. For the model with time-constant inputs, there is only one stimulus during matched,
training trials (Figure 8A, purple dot). Since the mismatch stimulus is far from this matched stimulus,
the firing rate deviates from its target in response to the mismatched stimulus (as demonstrated in
Figures 1–3). For the model with time-varying stimuli, there are multiple training stimuli that lie along
a line (Figure 8B, purple dots). While the mismatch stimulus is clearly away from this line (Figure 8B,
orange dot), the deviation of the firing rates from their targets is approximately proportional to how far
an input is from the mean training stimulus (Figure 8B, purple x). Since this distance is similar for the
mismatch stimulus and a typical training stimulus, the deviation of the firing rates from their targets
is also similar during matched and mismatched stimuli (as demonstrated in Figures 5–7). While this
intuition might seem obvious in hindsight, the complexity of dynamics in recurrent spiking neural
network models can make this conclusion difficult to foresee without the benefit of the mean-field
analysis provided here.

For the sake of completeness, we also considered a model with distributed, time-varying stimuli.
Specifically, we combined the time-varying stimuli from the example in Figure 7 with the distributed
stimuli from the example in Figure 4 to get inputs of the form (Figure 9A,B)

Xe = X0
e + c(t)~U + c(t)~V

}
matched (29)

and
Xe = X0

e +
~U

}
mismatched. (30)

where c(t) is a scalar drawn from a uniform distribution on [0, 2] on each trial, and ~U and ~V are
normally distributed Ne-dimensional vectors as in Eq. (18). Unsurprisingly, given the failure on the
simpler example discussed above, the spiking network model did not produce an easily detectable
response to mismatched stimuli (Figure 9C-F). Specifically, the deviation of the firing rates away
from their targets was similar in matched and mismatched trials (Figure 9C,D).

2.6 How do our conclusions generalize to other network models?

The mean-field analysis above relied on several assumptions that were used to derive approximations.
This raises the question of how general our conclusions are. Specifically, for which network mod-
els does the argument above imply an absence of noticeable mismatch responses? To answer this
question, we can distill the argument above into three fundamental assumptions:
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Figure 9: Prediction errors after training on distributed time-dependent inputs. Same as Figure 4
except bottom-up and top-down inputs were time-dependent, as described by Eqs. (29)–(30).

1. The linear approximation in Eq. (27) should be approximately accurate,

dr(t) ≈ A0dX(t)

While this assumption is strong, it should be satisfied when dX(t) is sufficiently small. In
addition, balanced excitation and inhibition linearize the firing rate responses of networks to
external input [30, 40, 41, 42, 36, 43], so this assumption should hold in networks with balanced
excitation and inhibition, which is encouraged by inhibitory synaptic plasticity [17, 20, 22, 24].

2. The approximation in Eq. (28) should be accurate, specifically

‖A0dX(t)‖ ≈ ‖A0‖‖dX(t)‖

which requires that dX(t) not be close to orthogonal to the rows of A0.

3. The magnitude of the input perturbations for a mismatched stimulus should be similar to a
typical value during matched stimuli,

‖dXmm‖ ≈ ‖dXm(t)‖

In general, if a model satisfies these three assumptions then dr(t) is similar in magnitude during
matched and mismatched stimuli. Note that these assumptions are sufficient, but not necessary for a
lack of mismatch responses. For example, if assumption 1 is violated because the rate perturbations
are nonlinear, then the nonlinear model might still not compute mismatch responses.

Strictly speaking, assumption 2 is stronger than needed. Instead, we only need that the relation-
ship between A0 and dX is similar for matched and mismatched stimuli, i.e., that

‖A0dXm(t)‖
‖A0‖‖dXm(t)‖ ≈

‖A0dXmm‖
‖A0‖‖dXmm‖
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which is a weaker assumption because it allows for dX to be aligned with the rows of A0 so long as
the alignment is similar for matched and unmatched stimuli.

For our examples in which the network is trained on time-constant input (Figures 1–4), we have
that Xm(t) = X , so dXm(t) = 0 whereas dXmm 6= 0, so assumption 3 above is not met. This
explains why our examples trained on time-constant were able to produce robust mismatch responses.

In previous work [14], a network with homeostatic plasticity successfully computed prediction
errors after training on time-varying stimuli. In that work, the weights of the connectivity matrix
were carefully chosen so that A was singular and the directions of the input perturbation during
matched stimuli (the “feedback” stimulus condition) was in the nullspace of A0. See equation 28 in
their appendix and note that A0 was called W in their analysis. As a result, the model studied there
does not satisfy assumption 2 above. This explains how [14] were able to compute prediction errors
with time-varying inputs.

In all of the examples we have considered so far, external input was provided to excitatory neurons
only. However, our analysis implies that our overall results should still hold if input is provided to
inhibitory neurons as well. Specifically, in Eqs. (27) and the surrounding equations and analysis, there
is nothing preventing dX(t) from having a non-zero component for the inhibitory population(s).
To verify this prediction, we repeated all of the spiking network simulations (those in Figures 1,
4, 5, and 9) in models in which external input was also added to the inhibitory population. Our
results show the same overall conclusions for all figures (see Supplementary Materials Section 1
and Supplementary Figures 1–2). Specifically, in all examples, a noticeable mismatch response was
observed after training on time-constant inputs, but not after training on time-varying inputs.

Assumption 3 above implies that mismatch responses could be possible after training on time-
varying stimuli if the mismatch stimulus is larger in magnitude than the matched stimuli used during
training. While this is not necessarily a surprising finding (a larger stimulus should evoke a larger
response), we decided to test it in a simulation. Specifically, we repeated the simulation from Figure 5,
but we scaled the magnitude of the mismatched input by a factor of six. These simulations confirm
that a mismatch response was produced in this case (Supplementary Figure 3).

In all of the examples above, we considered only a single inhibitory population and at most
two excitatory populations. In reality, there are multiple inhibitory neuron subtypes in the cortex
and previous work on mismatch responses with inhibitory plasticity accounts for this [14, 23]. Our
analysis above implies that increasing the number of neuron populations alone should not affect our
overall conclusions. To test our findings empirically on a model with several neural populations,
we performed a simulation that was identical to the simulation in Figure 5 except we used three
inhibitory and three excitatory populations. Consistent with our theoretical predictions, the results
were qualitatively similar to those in Figure 5: After training on time-dependent stimuli, there was no
noticeable deviation of firing rates in response to a mismatched stimulus (see Supplementary Figure
4).

3 Discussion

We combined numerical simulations of spiking networks and mean-field rate models with mathemat-
ical analysis to evaluate the extent to which homeostatic inhibitory synaptic plasticity can train an
unstructured network to compute prediction errors. We found that the networks successfully learn to
compute prediction errors when training stimuli are static. Specifically, if top-down and bottom-up
inputs are fixed in time during training, then firing rates in the trained network will maintain a baseline
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firing rates in response to stimuli that match the training stimuli, but firing rates will deviate from their
baseline levels in response to mismatched stimuli. This result holds when stimuli are uniform (with
each of a few sub-populations receiving homogeneous external input) or when stimuli are distributed
(with each neuron receiving distinct, but time-constant levels of external input during training).

To our surprise, simulations showed that even under a simple model of time-varying stimuli,
in which bottom-up and top-down inputs are modulated by the same time-varying factor, the same
networks fail to produce reliable mismatch responses after training. Specifically, firing rates deviate
from their baseline levels by a similar amount in response to stimuli that are matched (a shared
modulation, as in training) or mismatched (one input is modulated differently than the other). We
used a mean-field approximation to explain these empirical findings and elucidate a set of conditions
under which robust mismatch responses do not occur. Our results therefore help to clarify the extent to
which homeostatic inhibitory synaptic plasticity is sufficient to train a network to compute mismatch
responses.

For networks trained on time-varying inputs, our results show a lack of mismatch responses in
the sense that firing rates do not deviate from their baseline (when deviation is measured by mean-
squared error) more during mismatched inputs than they do for matched stimuli. However, mismatch
responses could potentially be detected by some linear projection of the firing rates and this linear
projection could be fed as input to a readout neuron that would be able to detect mismatch responses.
However, our main goal was to understand the situations under which a natural homeostatic plasticity
rule would spontaneously produce elevated responses to mismatched stimuli. Training a separate
linear projection is outside the scope of this goal.

Inhibitory homeostatic synaptic plasticity is only one of many homeostatic mechanisms in the
brain [44]. While homeostatic plasticity is one candidate mechanism for predictive coding, other
homeostatic mechanisms could play a role as well. Future work should consider the potential role of
other homeostatic mechanisms in predictive coding and mismatch detection.

Previous work [14, 23] found that networks with homeostatic plasticity can learn to compute
mismatch responses in models with time-varying stimuli that are similar to the time-varying stim-
uli that we used (in the cases where our networks failed). They used a more biologically detailed
network model with multiple inhibitory subtypes and multi-compartment excitatory neurons. Impor-
tantly, connectivity in their model was constrained so that matched stimuli were in the nullspace of
the effective connectivity matrix (A in our work, W in theirs). Our theoretical analysis agrees with
their analysis showing that this assumption is necessary for their overall results. We additionally
provided a set of conditions under which more general classes of models will not produce robust mis-
match responses, which generalizes some of the theoretical results in [14] to more general classes of
networks. The requirement that matched stimuli are in the nullspace of the effective connectivity ma-
trix is a strong assumption because it implies that the connectivity matrices must be precisely tuned.
Moreover, the dimension of the nullspace of the connectivity matrix must match the dimensionality
of the training stimuli, which could make it difficult to train a network to maintain baseline firing
rates on a higher dimensional space of training stimuli.

Our study and the previous work described above [14, 23] incorporates homeostatic synaptic
plasticity, but does not account for any other of the wide variety of synaptic plasticity rules ob-
served in neural recordings. Other work has shown that predictive coding can be learned in carefully
constructed networks using learning rules that are not exclusively homeostatic [12]. Indeed, our ap-
proach of learning prediction errors in unstructured, randomly connected networks could potentially
be made successful if the target rates, ra0 , were effectively modulated by the top-down or bottom-
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up input. Future work should consider the possibility of learning prediction errors in unstructured,
random networks by combining these approaches.

4 Materials and Methods

All simulations were performed by numerically solving the corresponding differential equations using
the forward Euler method in custom written Python code. Code to produce all figures can be found at
https://github.com/RobertRosenbaum/PCISP.

For spiking network simulations (Eqs. (1)–(2); Figures 1, 4, and 5) and mean-field rate network
simulations (Eqs. (6)–(7); Figures 2 and 6) we used a time step size of dt = 0.1ms. For the slow-
timescale model (Eqs. (24); Figures 3 and 7) we used a time step size of dt = 1s.

For all spiking network simulations (Eqs. (1)–(2); Figures 1, 4, and 5), we used Ne = 4000
and Ni = 1000 excitatory and inhibitory neurons. All neurons were connected with probability
pee = pei = pie = pii = 0.1. Connected neurons had initial synaptic weights jee = 7.07mV/ms,
jei = −49.5mV/ms, jie = 31.8mV/ms, and jii = −70.7mV/ms. EIF neuron parameters were
τm = 15ms, EL = −72mV, Vre = −73mV, DT = 2mV, VT = −55mV, Vth = 0mV, and a
reflecting lower boundary on the membrane potential was placed at Vlb = −80mV to approximate an
inhibitory reversal potential. Synaptic timescales were τe = 6ms and τi = 4ms. Baseline external
input to excitatory and inhibitory neurons was X0

e = 42.4mV and X0
i = 28.3mV. Parameters for the

inhibitory plasticity rule were ηe = 56.6mV, ηi = 28.3mV, and τSTDP = 200ms with target rates at
re0 = 4Hz and ri0 = 8Hz. For mean-field rate network simulations (Eqs. (6)–(7); Figures 2 and 6), we
used a gain of g = 0.001ms/mV, which was derived by simulating the spiking network model without
plasticity and then fitting the f-I curve r = f(I) = gIH(I) (where H is the Heaviside step function)
to the time-averaged firing rates and input currents of all neurons in the simulation. Learning rates for
rate network simulations were ηe = 8944mV and ηi = 4472mV. All other parameters were the same
as those used in spiking network simulations or their derivations are given in Results. Python code to
simulate the networks reproduce the figures can be found on the last author’s academic webpage.

4.1 Derivation of Eq. (10) for MSEPoisson.

Here, we derive Eq. (10) for MSEPoisson. Consider a population of N neurons divided into M sub-
populations where sub-population a containsNa neurons for a = 1, . . . ,M (M = 3 and a = e1, e2, i
for the models considered in this paper). Assume that each neuron in population a spikes like a
Poisson process with a rate of ra. Let naj be the number of spikes emitted by neuron j = 1, . . . , Na

in population a = 1, . . . ,M during a time interval of duration T and let

raj =
naj
T

be the sample firing rate of neuron j. Then each naj has expectation and variance

E[naj ] = var(naj ) = raT

so each sample rate has expectation

E[raj ] = E

[
naj
T

]
= ra
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and variance

var(raj ) = var
(
naj
T

)
=
ra
T
.

Now suppose we have a target rates of r0a for each neuron in population a and we would like to
compute the population-wide MSE deviation of the sample rates from their targets. This can be
written as

MSEpop =
1

N

N∑

j=1

(rj − r0j )2

=
1

N

M∑

a=1

Na∑

j=1

(raj − r0a)2

=
M∑

a=1

qa
1

Na

Na∑

j=1

(raj − r0a)2

where qa = Na/N is the proportion of neurons in population a, rj is the sample rate, and r0j is the
rate parameter for neuron j = 1, . . . , N . The inner sum can be written as

1

Na

Na∑

j=1

(raj − r0a)2 = (r0a − ra)2

+
1

Na

Na∑

j=1

(raj − ra)2 − 2(r0a − ra)(raj − ra).

The first term in the sum is the sample variance of raj , so

1

Na

Na∑

j=1

(raj − ra)2 ≈ var(raj ) =
ra
T
.

when Na is large. The last term in the sum can be ignored when Na is large because

1

Na

Na∑

j=1

(r0a − ra)(raj − ra) = (ra − r0a)


ra −

1

Na

Na∑

j=1

raj




≈ 0

since ra is the expected value of raj . Putting this altogether gives

MSEpop ≈
M∑

a=1

qa

[
(ra − r0a)2 +

ra
T

]

=MSEmf +
1

T

M∑

a=1

qara

where

MSEmf =
M∑

a=1

qa(ra − r0a)2
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is the mean-field MSE defined in Eq. (9). This calculation motivates the definition of the Poisson-
corrected MSE,

MSEPoisson =MSEmf +

M∑

a=1

qara
T

as defined in Eq. (10). Specifically, our calculations above show that MSEPoisson approximates
the population-level MSE (i.e., MSEpop) that would be produced if all of the spike trains in each
sub-populations were Poisson processes. The approximation becomes exact as Na →∞.
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1 Adding external input to inhibitory populations does not alter main
conclusions.

In the main manuscript, we only considered examples where external input was provided exclusively
to excitatory neurons. In this section, we empirically test whether our conclusions were sensitive to
the assumption that only excitatory neurons received external input by repeating some simulations
from the main text with external input provided to the inhibitory populations as well. Supplementary
Figure 1 shows results from a simulation in which top down input was provided to the inhibitory pop-
ulation in addition to population e2 during training. For the mismatched stimulus, the top-down input
was removed from the inhibitory population and from population e2. Specifically, in Supplementary
Figure 1C,D, we used

Xe1 = X0
e + U

Xe2 = X0
e + V

Xi = X0
i + V





matched

and
Xe1 = X0

e + U

Xe2 = X0
e

Xi = X0
i





mismatched

where
U = X0

e /5

V = −X0
e /5.

which is identical to Figure 1 from the main text, but with input V provided to i as well. In Supple-
mentary Figure 1E,F, we used

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

Xi = X0
i + c(t)V





matched

and
Xe1 = X0

e + U

Xe2 = X0
e

Xi = X0
i





mismatched.
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V

time-constant training stimulus time-varying training stimulus

Supplementary Figure. 1: Similar results are obtained with input to inhibitory populations. A,B)
Network schematics. Same as Figure 1A,B except top-down external input was provided to the in-
hibitory population as well. C,D) Same as Figure 1C,D except top-down external input was provided
to the inhibitory population as well. E,F) Same as Figure 5C,D except top-down external input was
provided to the inhibitory population as well.

where
U = X0

e /20

V = −X0
e /20.

This is identical to Figure 5 from the main text, but with input V provided to i as well. Our results
(Supplementary Figure 1) show a strong mismatch response after training on time-constant input, but
not time-varying input.

We additionally tested whether similar results were obtained for distributed external input pro-
vided to the inhibitory and excitatory populations (Supplementary Figure 2). Specifically, in Supple-
mentary Figure 2C,D, we used

Xe = X0
e + ~Ue + ~Ve

Xi = X0
i + ~Ui + ~Vi

}
matched

and
Xe = X0

e + ~Ue

Xi = X0
i + ~Ui

}
mismatched.

where ~Ua and ~Va are normally distributed Na-dimensional vectors,

~Ua ∼ σsN(0, 1)

~Va ∼ σsN(0, 1)

for a = e, i. This is identical to Figure 4 from the main text except distributed input was provided to

2
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training (matched) stimulus

mismatched stimulus
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e

i

V
U

Supplementary Figure. 2: Similar results are obtained with distributed inputs to inhibitory pop-
ulations. A,B) Network schematics. Same as Figure 4A,B except distributed external input was
provided to the inhibitory population as well. C,D) Same as Figure 4C,D except top-down external
input was provided to the inhibitory population as well. E,F) Same as Figure 9C,D except top-down
external input was provided to the inhibitory population as well.

the inhibitory population as well. In Supplementary Figure 2E,F, we used

Xe = X0
e + c(t)~Ue + c(t)~Ve

Xi = X0
i + c(t)~Ui + c(t)~Vi

}
matched

and
Xe = X0

e + ~Ue

Xi = X0
i + ~Ui

}
mismatched.

which is identical to Figure 9 from the main text except distributed input was provided to the in-
hibitory population as well. Our results (Supplementary Figure 2) show a strong mismatch response
after training on time-constant distributed input, but not time-varying distributed input.

In conclusion, adding external input to the inhibitory population does not qualitatively affect our
overall findings.

2 Increasing the strength of mismatched stimuli produces pronounced
mismatch responses.

We next repeated the simulation from Figure 5 of the main manuscript, but increased the strength of
the mismatched stimulus. In particular, we set

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

Xi = X0
i





matched

3
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Supplementary Figure. 3: Mismatch responses are observed with stronger mismatched stimuli.
A,B) Same as Figure 5 except the strength of the mismatched input was increased by six-fold.

and
Xe1 = X0

e + 6U

Xe2 = X0
e

Xi = X0
i





mismatched.

In this case, the mismatched stimulus has a larger magnitude than any of the matched stimuli used for
training (in addition to the mismatch that occurs). As predicted, we observed a pronounced mismatch
response in this case (Supplementary Figure 3)

3 Including several excitatory and inhibitory populations does not change
our conclusions.

In all examples considered so far, we considered a single inhibitory population and one or two ex-
citatory populations. We next tested whether including more populations would affect our results.
Specifically, we repeated the simulations from Figure 5, but we broke the excitatory and inhibitory
populations each into three subpopulations (Supplementary Figure 4). During training (matched stim-
uli), populations e1 and i1 received bottom-up input from U , populations e2 and i2 received top-down
input from V . And populations e3 and i3 received no external input. Specifically,

Xe1 = X0
e + c(t)U

Xe2 = X0
e + c(t)V

Xe3 = X0
e

Xi1 = X0
i + c(t)U

Xi2 = X0
i + c(t)V

Xı3 = X0
i





matched
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Supplementary Figure. 4: Mismatch responses are not observed when more populations are con-
sidered. Same as Figure 5 except more populations were added. Connections between populations
are not shown for simplicity of the diagram.

and
Xe1 = X0

e + U

Xe2 = X0
e

Xe3 = X0
e

Xi1 = X0
i + U

Xi2 = X0
i

Xı3 = X0
i .





mismatched.

Our results (Supplementary Figure 4C,D) shows no visible mismatch response, consistent with our
original findings from Figure 5. Hence, simply adding more populations does not change our overall
findings. This is consistent with the conclusions reached by our theoretical arguments in the main
text.
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