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Abstract

Data assimilation techniques for state and parameter estimation are frequently applied in the context
of computational neuroscience. In this work, we show how an adaptive variant of the unscented Kalman
filter (UKF) performs on the tracking of a conductance-based neuron model. Unlike standard recursive
filter implementations, the robust adaptive unscented Kalman filter (RAUKF) jointly estimates the
states and parameters of the neuronal model while adjusting noise covariance matrices online based on
innovation and residual information. We benchmark the adaptive filter’s performance against existing
nonlinear Kalman filters and explore the sensitivity of the filter parameters to the system being mod-
elled. To evaluate the robustness of the proposed solution, we simulate practical settings that challenge
tracking performance, such as a model mismatch and measurement faults. Compared to standard vari-
ants of the Kalman filter the adaptive variant implemented here is more accurate and robust to faults.

Keywords: Conductance-based model, Nonlinear Kalman Filtering, Adaptability, Model Mismatch

1 Introduction

The application of data assimilation (or state esti-

mation) techniques to single neuron dynamics was
greatly popularized by Schiff (2011), based on
the work of Voss, Timmer, and Kurths (2004)
on the FitzHugh-Nagumo model. The latter have
shown that recursive Bayesian state estimators
such as the unscented Kalman filter (UKF) (Julier
& Uhlmann, 1997) could be used to track the non-
linear dynamics of neuronal models and identify

relevant model parameters based on the obser-
vation of a measurable, albeit noisy, membrane
voltage trace. The effective combination of track-
ing and system identification garnered a lot of
interest from researchers working at the intersec-
tion of computational neuroscience and control
theory. While indispensable for attitude estima-
tion in aerospace and localization in robotics
(Barfoot, 2017), state estimation is still emerging
in the neuroscience and biomedical fields.
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While often assumed to be static, changes
in neuron model parameters can lead to signifi-
cantly different excitability characteristics. In the
absence of direct measurements of such parame-
ters, recursive state estimators allow for observed
states, unobserved states, and parameters to be
tracked more accurately. Moye and Diekman
(2018) explore the robustness of data assimilation
against poor initialization of neuronal parame-
ters by comparing the performance of the UKF, a
sequential approach, to variational methods. The
UKF has been shown to be robust against mis-
matches between the model known a priori and
the model from which the observed data origi-
nates, even in the presence of significant model
inaccuracies (e.g., steady-state constants replac-
ing transient dynamics (Ullah & Schiff, 2009)).
As knowledge of these underlying models may
be lacking (particularly in neuroscience), adaptive
techniques that simultaneously identify missing
parameters are highly desirable. This challenge is
common to many disciplines and it has led to
the concept of robust adaptive unscented Kalman
filter (RAUKF) (Hajiyev & Soken, 2014; Zheng,
Fu, Li, & Yuan, 2018). However, to the best of
our knowledge, these robust and adaptive methods
have yet to be applied to neuronal dynamics.

The Kalman filter is known to be the opti-
mal recursive state estimator in the context of
linear dynamics and Gaussian distributed noise
(Kalman, 1960). However, neuronal dynamics are
typically highly nonlinear and warrant the use of
nonlinear estimators such as the extended Kalman
filter (EKF), unscented Kalman filter (UKF)
(Julier, Uhlmann, & Durrant-Whyte, 2000) or
particle filter (PF). While linearization of neuronal
dynamics about the most recent state estimate
(such as in the EKF) can be shown to perform
well in certain situations, it is prone to instability
and divergence (Lankarany, Zhu, & Swamy, 2014).
Deterministic sampling alternatives, such as the
sigma-point transform around which the UKF is
built, are generally more suited to the dynamics
under study here (Schiff, 2011). In this case, the
analytical derivatives of the dynamics and obser-
vation models used in the EKF are no longer
required. Instead, the sampling-based UKF allows
for the models to be treated as black boxes, which
could suit practical biomedical applications.

Despite the undoubted capability of these tech-
niques in inferring hidden dynamics in nonlinear

systems, some critical challenges related to the
robustness of UKF and other families of KFs
remain when it comes to their application on
real-time inference in biological models. These
challenges are mainly related to a lack of a priori

information to inform the initialization of state
variables and noise covariance matrices. When
modelling neurons, one must take into account the
behaviour of specific ion channels, their conduc-
tances, and kinetics, which may not be present
in the dataset to provide suitable estimates for
the initial state, especially as conductances and
dynamics vary greatly in different neurons, even
within the same region (Golowasch, 2014). The
inability of the model to observe the full state,
as well as abrupt changes that can occur in
recordings (e.g., sharp discontinuities in mem-
brane potential traces) can lead to drastic changes
in covariance estimates and in turn, instability.
While ad hoc adjustments of covariance matrices
such as covariance inflation have been proposed in
the past (Schiff, 2009), a state estimation method
capable of handling biological systems is still lack-
ing. The present work endeavours to address this
gap.

To address the challenges of applying the KF
to neuron models, we consider a few modifications
based on modern adaptations of the UKF. For
KF initialization, we address this challenge as fol-
lows: We employ a RAUKF which, through online
fault detection, adjusts the covariances supplied to
more appropriate values. We ensure optimal per-
formance of this fault detection by performing a
grid space search of the relevant parameters across
a range of trials. The optimal parameters deter-
mined are model specific; however, certain aspects
of the values determined may be used with some
consideration of their relevance in what parame-
ters need to be estimated. For the concern of the
model being incomplete and thus unable to repre-
sent fully or reproduce the desired behaviour, we
implement a more detailed model and track it via
a RAUKF using the less complete version of the
model. In doing so, we monitor the performance
over time, especially when the less complete model
is unable to match spike times, hyperpolarization
curves, or other features due to its incompleteness.
Abrupt changes in recorded data, be they from
random noise or artifacts from the recording, are
addressed by the robust and adaptive response to
state changes in the RAUKF.
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In this paper, we develop a RAUKF for
neuronal state and parameter estimation based
on the work of Hajiyev and Soken (2014) and
Zheng et al. (2018). We use two variants of the
conductance-based Morris-Lecar neuron model
(Prescott, De Koninck, & Sejnowski, 2008) to
showcase the filter’s adaptability against noise and
lacking model information.

The following section (2.1) introduces the 2-
dimensional conductance-based model, which is
subsequently used in the state estimation frame-
work (2.2) as the dynamics model. The core
implementation of the UKF is reviewed in section
2.3 before introducing the extensions that support
adaptation (2.4) and correction (2.5) of uncertain
parameters and noise covariance matrices.

A numerical exploration of the RAUKF
parameter space is provided in section 3.1 to
identify the set of conditions best suited for this
application. The performance of the RAUKF for
neuronal state estimation is compared to existing
algorithms in section 3.2, followed by simulations
mimicking measurement faults (3.3) and model
discrepancies (3.4). The significance of the results
for neuronal dynamics identification and future
extensions are discussed in section 4.

Overall, the RAUKF outperforms a standard
UKF implementation in the case of poor ini-
tialization of covariance matrices and neuronal
model parameters. The bulk of RAUKF adapta-
tion steps are taken at the onset of simulation,
where it adjusts its parameters based on the most
recently observed data. The advantages of adap-
tation are particularly noticeable in the presence
of measurement faults and model mismatch where
the performance of a standard implementation
quickly deteriorates. Demonstrations of robust-
ness against experimental faults are of particular
importance to validate the use of algorithms like
RAUKF in practical settings.

2 Method

2.1 Neuron Model

As the simplest possible biophysical representa-
tion for a neuron, conductance-based models are
commonly used in computational neuroscience
(Skinner, 2006). To demonstrate applications of
this filtering technique, we use variants of the
Morris-Lecar model as provided by Prescott et

al. (2008) (see Appendix A). As our developed
method may be applied to any conductance-
based neuron model, we here refer to a generic
conductance-based neuron model described by

C
dV

dt
= Istim − ḡfastm(V − Efast)

− ḡsloww(V − Eslow)

− ḡleak(V − Eleak)

τm
dm

dt
= m∞(V )−m

τw
dw

dt
= w∞(V )− w

(1)

where V denotes the membrane voltage, Istim
an external current stimulation, m and w are
arbitrary gating variables with associated time
constants τm and τw, ḡ∗ are maximal conduc-
tances and E∗ are ion channel reversal potentials.
By considering a separation of timescales, the
quasi-steady-state approximation m = m∞ will
be used in the following sections. Table 1 provides
ranges for each variable.

Table 1 Parameter range estimates

Parameter Range Units

V [−100, 50] mV
w [0, 1]
m [0, 1]
ḡfast [0.1, 100] mS cm−2

ḡslow [0.1, 100] mS cm−2

ḡleak [0.1, 10] mS cm−2

2.2 Neuronal State and Parameter

Estimation

In this context, the main goal of data assimila-
tion consists in estimating V and w based on
noisy measurements of the membrane voltage and
predictions V̂ and ŵ afforded by the dynamics
model (1). Given that the incoming measurements
represent the newest source of information about
the biological system, the recursive updates are
performed at a rate equal to the measurement
sampling period T . To accommodate this discrete
process, the dynamics are discretized, with state



xk =
[

Vk wk

]T
and input current uk = Istim,k:

Vk = Vk−1

+
T

C

[

Istim,k−1 − ḡfastm∞(Vk−1 − Efast)

− ḡsloww(Vk−1 − Eslow)

− ḡleak(Vk−1 − Eleak)
]

+mV,k−1

wk = wk−1 +
T

τw

[

w∞ − wk−1

]

+mw,k−1

(2)

abbreviated as

xk = f(xk−1, uk−1) +mx,k−1 (3)

where k = 1, . . . , N , xk ∈ R
2, uk−1 ∈ R and

mx,k−1 ∼ N (0,Qx) models uncertainty inherent
to the dynamics.

Given a neuron model such as (1), attribut-
ing the notion of internal state to the membrane
voltage V and recovery variable w to comply with
the state-space representation of control theory
(2) can be ambiguous. As alluded to in section 1,
the geometrical space of a model describing a bio-
logical system relies on a set of parameters which
are not constant in reality. The parameters reflect
biophysical processes that fluctuate as a result of
noisy interactions. While we can initialize param-
eters based on ranges obtained from experimental
studies (see Table 1), parameter estimates more
consistent with the latest observations are desired.
The conductance of the ionic channels in (1) are a
prime example of biologically relevant parameters
that naturally vary at a much slower rate of change
than the state variables. Consequently, it may be
beneficial to directly estimate these parameters
from data alongside the state xk.

In joint state and parameter estimation, the
state variable is augmented to account for l param-
eters θk ∈ R

l of interest (Stengel, 1994). It is
assumed that the rate of change of the parame-
ters is much slower than that of the main variables
xk. As such, the parameters are assigned artificial
stochastic dynamics

θk = θk−1 +mθ,k−1 (4)

where mθ,k−1 denotes additive white Gaussian
noise. The dynamics of the augmented state Xk =

[

xk θk

]T
can then be expressed as





Vk

wk

θk



 =





fV (Vk−1, wk−1)
fw(Vk−1, wk−1)

θk−1



+





mV,k−1

mw,k−1

mθ,k−1





Xk = F(Xk−1,uk−1) +Mk−1 (5)

where Mk−1 ∼ N (0,Q). The observation model
used to characterize noisy membrane voltage mea-
surements is described by

yk = Vk + nV,k (6)

where nV,k denotes measurement noise (in the gen-
eral case, yk = g(Xk)+nk, nk ∼ N (0,R)). Here,
the direct observation of the membrane voltage
yk mimics experimental recording techniques (e.g.,
current-clamp methods). With only a subset ofXk

being measurable, the method presented in this
study allows hidden states to be estimated.

2.3 Unscented Kalman Filter

Following a Bayesian inference approach and
assuming Gaussian beliefs, the state Xk ∈ R

n+l of
the neuronal system is a random variable tracking
the mean of a normal probability density func-
tion, while a covariance Pxx

k ∈ R
(n+l)×(n+l) tracks

its spread. State estimation consists in estimating
the current state Xk given knowledge of its ini-
tial conditions X0, inputs uk−1 and observations
of its behaviour over time yk. The filter aims to
maximize the probability of observing yk given a
belief about Xk afforded by a model of the system
dynamics and an observation model, (5) and (6)
respectively. This relationship can be reversed via
Bayes’ rule to solve for the a posteriori conditional
distribution p(Xk | yk,uk−1) which represents the
true state probability given measurements.

We start by assuming the following Gaussian
priors for the prediction step:

p(Xk−1 | X0,u1:k−1,y0:k−1) = N (X̂k−1|k−1,

P̂xx
k−1|k−1) (7)

p(Xk | X0,u1:k,y0:k−1) = N ( X̂k|k−1,

P̂xx
k|k−1) (8)

where X̂n|m denotes an estimate of X at time n
based on observations up to and including time
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m ≤ n with corresponding estimated covari-
ance matrix P̂xx

n|m. Then, the predicted belief

N (X̂k|k−1, P̂
xx
k|k−1) is approximated as follows:

1. A set of 2N + 1 sigma-points Xk−1|k−1 =

{X 0
k−1|k−1, . . . ,X

i
k−1|k−1, . . . ,X

i+N
k−1|k−1}

is sampled from the prior density
N (X̂k−1|k−1, P̂

xx
k−1|k−1) according to

X 0
k−1|k−1 = X̂k−1|k−1 (9)

X i
k−1|k−1 = X̂k−1|k−1 +

√

(N + κ) colj L (10)

X i+N
k−1|k−1 = X̂k−1|k−1 −

√

(N + κ) colj L (11)

where colj L is the jth column of the matrix
obtained by Cholesky decomposition LLT =
P̂xx

k−1|k−1; κ is a user-definable parameter, often
selected according to the heuristic N + κ = 3 to
best capture higher order moments (Julier et al.,
2000).

2. The set of sigma-points Xk−1|k−1 are passed
through the nonlinear dynamics model (5)

X i
k|k−1 = F(X i

k−1|k−1,uk−1) (12)

3. The transformed sigma-points are combined
into the predicted mean X̂k|k−1 and predicted

covariance P̂xx
k|k−1

X̂k|k−1 =

2N
∑

i=0

αiX
i
k|k−1 (13)

P̂xx
k|k−1 =

2N
∑

i=0

αi(X
i
k|k−1 − X̂k|k−1)

(X i
k|k−1 − X̂k|k−1)

T +Q (14)

with the weights αi summing to 1 according to

αi =

{

κ
N+κ

i = 0
1

2(N+κ) , otherwise
(15)

Second, the predicted belief is revised against
the most recent observations yk according to the
following steps:

1. A new (optional) set of 2N +1 sigma-points
Xk|k−1 = {X 0

k|k−1, . . . ,X
i
k|k−1, . . . ,X

i+N
k|k−1} is sam-

pled from the predicted belief N (X̂k|k−1, P̂
xx
k|k−1)

following the same procedure as before

2. The sigma-points Xk|k−1 are passed through
the measurement model (6)

Yi
k|k−1 = g(X i

k|k−1) (16)

3. The innovation vector vk|k−1 and associated
covariance matrix S

yy

k|k−1 are defined as

vk|k−1 = yk − g(X̂k|k−1) (17)

S
yy

k|k−1 = E[vk|k−1v
T
k|k−1] (18)

4. The transformed sigma-points are combined
into the predicted innovation covariance matrix
P̂

yy

k|k−1 and cross-covariance matrix P̂
xy

k|k−1

ŷk|k−1 =

2N
∑

i=0

αiY
i
k|k−1 (19)

P̂
yy

k|k−1 =

2N
∑

i=0

αi(Y
i
k|k−1 − ŷk|k−1)

(Yi
k|k−1 − ŷk|k−1)

T +R (20)

P̂
xy

k|k−1 =

2N
∑

i=0

αi(X
i
k|k−1 − X̂k|k−1)

(Yi
k|k−1 − ŷk|k−1)

T (21)

2
5. The calculation of the Kalman gain Kk and

the corrected belief N (X̂k|k, P̂
xx
k|k) follow from the

standard equations below (Barfoot, 2017):

Kk = P̂
xy

k|k−1(P̂
yy

k|k−1)
−1 (22)

P̂xx
k|k = P̂xx

k|k−1 −Kk(P̂
xy

k|k−1)
T (23)

X̂k|k = X̂k|k−1 +Kkvk|k−1 (24)

6. Finally, the residual vector vk|k and associ-
ated covariance matrix S

yy

k|k are defined as

vk|k = yk − g(X̂k|k) (25)

S
yy

k|k = E[vk|kv
T
k|k] (26)

7. Following the same procedure as
before, a set of 2N + 1 sigma-points
Xk|k = {X 0

k|k, . . . ,X
i
k|k, . . . ,X

i+N
k|k } is sampled

from the corrected belief N (X̂k|k, P̂
xx
k|k), passed



through the measurement model (6) and recom-
bined into the predicted residual covariance
matrix P̂

yy

k|k:

Yi
k|k = g(X i

k|k) (27)

ŷk|k =

2N
∑

i=0

αiY
i
k|k (28)

P̂
yy

k|k =

2N
∑

i=0

αi(Y
i
k|k − ŷk|k)(Y

i
k|k − ŷk|k)

T (29)

2.4 Adaptive Filter

Despite having no guarantee of convergence, the
UKF performs well with nonlinear systems, both
in tracking state variables and in identifying sys-
tem parameters. A strong condition for success-
ful estimation is the initialization of covariance
matrices Q and R based on a priori informa-
tion about the system (e.g., measurement noise
can be estimated from preexisting data and sen-
sor characteristics). However, in many real-time
scenarios, particularly in neuroscience, such infor-
mation might be lacking, resulting in incomplete
initial estimates and, in turn, suboptimal filter-
ing (Stengel, 1994). With Q and R too large, the
solution might end up biased, too small and diver-
gence could occur (this is particularly true for
slow states, given that they depend on the noise
evolution defined by the process noise covariance).

Adaptive techniques have been devised to ren-
der the state estimation algorithm more robust
against poor estimates of covariance matrices
(Schiff, 2009). While methods such as covari-
ance inflation aim to adjust the covariance of
the state, and thus improve the stability of the
filter, few works have looked at addressing inac-
curate noise covariance matrices in this field. Yet,
innovation and residual-based approaches (Sten-
gel, 1994) allow, respectively, Qk−1 and Rk to be
updated recursively alongside states and parame-
ters based on information readily available in the
current UKF implementation.

From (2), (13) and (24), let

M̂k−1 = X̂k|k − F(X̂k−1|k−1,uk−1)

≈ X̂k|k − X̂k|k−1

= Kkvk|k−1 (30)

Then,

Q̂k−1 = E[M̂k−1M̂
T
k−1]

= E[(Kkvk|k−1)(Kkvk|k−1)
T ]

= KkE[vk|k−1v
T
k|k−1]K

T
k (31)

Windowing methods are typically used to approx-
imate E[vk|k−1v

T
k|k−1] as a sample covariance

(Mohamed & Schwarz, 1999; Stengel, 1994)

Ŝ
yy

k|k−1 =
1

N

k
∑

j=j0

vj|j−1v
T
j|j−1 (32)

where j0 = k − N + 1. Alternatively, (Zheng et
al., 2018) proposed a weighted update rule based
on the direct approximation of the covariance,
E[vk|k−1v

T
k|k−1] ≈ vk|k−1v

T
k|k−1 (N = 1, effec-

tively). At each adjustment, Q̂k−1 and Qk−1 are
combined based on a weighting factor λ ∈ (0, 1):

Qk−1 ← (1− λ)Qk−1 + λQ̂k−1 (33)

= (1− λ)Qk−1 + λKkvk|k−1

vT
k|k−1K

T
k (34)

2 A similar approach is used to estimate R̂k, this
time based on the residual vk|k. From (6),

n̂k = yk − g(X̂k|k)

= vk|k (35)

Then,

R̂k = E[vk|kv
T
k|k] + P̂

yy

k|k (36)

where, similar to (20), P̂yy

k|k is the covariance of

the residual vk|k approximated by the set of 2N+
1 sigma-points Xk|k = {X 0, . . . ,X i, . . . ,X i+N}

sampled from the corrected belief N (x̂k|k, P̂
xx
k|k)

following the same procedure as before. That is,

Yi
k|k = g(X i

k|k) (37)

ŷk|k =

2N
∑

i=0

αiY
i
k|k (38)
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leading to

P̂
yy

k|k =

2N
∑

i=0

αi(Y
i
k|k − ŷk|k)(Y

i
k|k − ŷk|k)

T (39)

Again, E[vk|kv
T
k|k] can be approximated by the

sample covariance Ŝ
yy

k|k (based on N samples)

or by a weighted update rule based on a single
sample:

Rk ← (1− δ)Rk + δR̂k (40)

= (1− δ)Rk + δE[vk|kv
T
k|k] + P̂

yy

k|k (41)

where δ ∈ (0, 1) is the weighting factor analogous
to λ.

2.5 Fault Detection

Naturally, the addition of adaptation constitutes a
trade-off between computational cost and tracking
accuracy. Once sufficiently corrected, additional
updates of the noise covariance matrices Qk−1

and Rk will lead to marginal improvements in
performance. For this reason, adaptation may be
considered as a response to fault detection. Pro-
vided with a means of identifying faults in the
system (process- or measurement-related), adap-
tation may be used selectively to return the esti-
mation system into normal operating conditions.

A simple fault detection rule follows from
innovation-based methods and the statistical func-
tion

φk = vT
k|k(P̂

yy

k|k)
−1vk|k (42)

which has χ2 distribution with s = 1 degrees
of freedom since vk|k ∈ R (Hajiyev & Caliskan,
2003; Zheng et al., 2018). Under normal operating
conditions, the innovation vector is normally dis-
tributed (H0). Any deviation from this nominal
behaviour could indicate a system fault, such as a
damaged sensor, and trigger a recovery mechanism
as a result (H1). To determine which hypothesis
should be accepted, a chi-squared test is per-
formed to determine when P (χ2 > χ2

α,s) = α,
where α is the significance level and χ2

α,s denotes
the threshold to be exceeded for a fault to be
detected (Hajiyev & Soken, 2014):

H0 : φk ≤ χ2
α,s

H1 : φk > χ2
α,s (43)

The updates (33) and (40) are performed as a
result of rejecting H0. If a windowing method is
followed, the selection of N effectively tunes the
detection system’s sensitivity to faults (a large
N may smooth the effects of a potential fault,
whereas a small N may lead to false alarms)
(Hajiyev & Caliskan, 2003). Alternatively, Zheng
et al. (2018) show how the fault threshold could
be used in the selection of appropriate weight-
ing factors λ and δ. Application-dependent tuning
parameters a > 0 and b > 0 are introduced to
control how sensitive the noise covariance update
rules should be to the innovation statistic φk.

λ = max
(

λ0,
φk − aχ2

α,s

φk

)

(44)

δ = max
(

δ0,
φk − bχ2

α,s

φk

)

(45)

where λ0 ∈ (0, 1) and δ0 ∈ (0, 1) are now the
default weighting parameters.

3 Results

Given the dynamics model (2) and observation
model (6), the state xk may be recursively esti-
mated for k = 1, . . . , N using the RAUKF algo-
rithm despite significant amounts of noise in the
measurements, poor parameter initialization as
well as poor initial estimates of Q0 and R1. The
noisy measurements y1:N,meas are obtained before-
hand by evolving (2), sampling the membrane
voltage at a period T = 0.1ms and adding white
Gaussian noise with covariance cov(nV ) = 3mV.
Figure 1 illustrates these measurements as well as
the noisy input stimulation, generated according
to an Ornstein-Uhlenbeck process with time con-
stant τnoise = 5 simulating synaptic currents seen
in vivo (Destexhe, Rudolph, Fellous, & Sejnowski,
2001):

dIstim
dt

=
Iavg − Istim

τnoise
+ σnoiseη (46)

where η ∼ N (0, 1), Iavg = 50µA/cm2 and
σnoise = 25µA/cm2. All simulations use the Euler
method (Moye & Diekman, 2018) to integrate
the dynamics (2) for 1500ms with a timestep of
0.01ms.



Fig. 1 RAUKF voltage state estimation (dashed black
line) given noisy membrane voltage measurements yk,meas

(nV,k ∼ N (0, 3)) (orange) of a 2-dimensional Morris-Lecar
variant (A1) (with Class 2 parameter values found in Table
A1) subject to a noisy input current Istim (bottom half)
(OU process with Iavg = 50µA/cm2, τnoise = 5 and
σnoise = 25µA/cm2)

In addition to qualitative assessments of track-
ing performance, errors are measured quantita-
tively using the root-mean-square error (RMSE).

RMSE =

√

√

√

√

1

N

N
∑

k=1

∥X̂k −Xk∥2 (47)

where Xk represents groundtruth data.

3.1 Exploring the filter parameter

space

In performing joint state estimation and parame-
ter identification for a conductance-based neuron
model, the accuracy of the tracking and con-
vergence to the true states are most important.
Figure 2 and Figure 3 show the root-mean-square
tracking error (RMSE) result of sweeps over
parameters λ0, δ0 and a, b from equations (44) and
(45) respectively. The RMSE is computed from
the simulation half-point to allow enough time for
transients to subside and subsequently divided by
the range of each variable (see Table 1) to facilitate
the comparison of tracking errors.

Fig. 2 Parameter sweep over λ0 and δ0 according to
RMSE (default parameter values: a = 5, b = 5, σ = 0.5)

According to Figure 2, the combination of a
small δ0 and small λ0 seem to be the most effec-
tive. Yet, for larger δ0, λ0 values, the filter becomes
too sensitive to adaptation leading to more fre-
quent failures. RMSE increases when δ0 and λ0

are dissimilar, when one is much larger than the
other.

Fig. 3 Parameter sweep over a and b according to RMSE
(default parameter values: λ0 = 0.2, δ0 = 0.2, σ = 0.5)

The higher a and b, the higher the probability
that λ ← λ0 and δ ← δ0 respectively. While this
can be seen above for a ≥ 5, the selection of b does
not seem particularly sensitive. Overall, λ0 = δ0 =
0.2, a ≥ 5.0 and b ∈ [3, 10] seem appropriate for
this system.

3.2 Joint State and Parameter

Estimation

In the absence of adaptation, poor initialization
of noise covariance matrices Q and R signifi-
cantly impacts the stability of a recursive filter.
Unless specified otherwise, the following param-
eterization is used throughout this section to
illustrate this point: X0 = [−100, 0.5, 10, 80, 140],
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P0 = diag([0.0001, 0.0001, 0.0001, 0.0001]), Q0 =
diag([10, 0.001, 10, 10, 10]), R1 = 0.3.

Figure 4 compares the performance of the UKF
algorithm and that of the RAUKF on a tracking
task where the initialization of the filters is iden-
tical in X0, P0, Q0 and R1. While both filters
successfully maximize the probability of observing
the measurements (top panel), the UKF strug-
gles to estimate the unobserved state (bottom
panel). This shortcoming of the standard filter is
even more pronounced during the identification of
conductance parameters, as shown in Figure 5.

In both cases, the RAUKF leverages the fault
detection process to adapt the unknown covari-
ance matrices, resulting in clear tracking and
identification improvements. Transient effects of
adaptation are noticeable early on in the simula-
tion, when a high number of corrections are made
(i.e., when the innovation vector is the least nor-
mally distributed). Quantitative performance of
the filters is compared based on RMSEs, evaluated
from t = 750ms onward to minimize the impact
of transients.

Fig. 4 Tracking the neuron model subject to a stochastic
input current Istim, noisy measurements y and unknown
conductances

Fig. 5 Identifying the neuron model parameters from
noisy observations

3.3 Performance Against

Measurement Faults

The fault detection test introduced in section 2.5
was originally developed as a response to potential
actuator or sensor malfunction Hajiyev and Soken
(2014). To emulate a faulty sensor, we consider a
scenario where the measurement noise profile of
the membrane voltage observations changes mid-
simulation. Between t = 375ms and t = 1125ms,
the measurement noise profile is set to ñV,t =
5nV,t. In such a scenario, standard recursive esti-
mation techniques (e.g., UKF) tend to fail owing
to the unexpected change in noise covariance prop-
erties and the lack of adaptation (see the red line
at t = 640ms in Figure 6). On the other hand,
as the faulty measurements momentarily alter the
distribution of the innovation vector, the RAUKF
triggers a correction of the measurement noise
covariance matrix Rk. Figures 6-7 illustrate the
changing measurement noise profile and its effect
on state tracking and parameter identification.

Fig. 6 Tracking performance under momentary change
in measurement noise profile to simulate faulty membrane
voltage sensing (ñV,t = 5nV,t, t ∈ [375, 1125]ms); tracking
with UKF fails at t = 640ms (red line)

Fig. 7 Parameter identification performance under
momentary change in measurement noise profile to simu-
late faulty membrane voltage sensing (ñV,t = 5nV,t, t ∈

[375, 1125]ms); tracking with UKF fails at t = 640ms (red
line)



3.4 Performance Against Model

Inadequacies

The final simulation tests the RAUKF tracking
performance when using incomplete models. A 3-
dimensional Morris-Lecar-like model (see Morris-
Lecar variant (A2) with parameter values in Table
A2) is used to generate noisy observations, while
the filter’s dynamics model is described by a 2-
dimensional Morris-Lecar-like model (A1). As a
result, the source of the measurements and the
tracking model no longer match. This setup aims
to simulate a practical setting where measure-
ments of membrane voltage are far more expres-
sive than that which could be reproduced with a
low-dimensional model.

The 3-dimensional model (A2) splits the slow
current Islow = ḡsloww(V − EK) into a K+ rec-
tifier current IK,dr and a subthreshold (outward)
current Isub (Prescott et al., 2008). Since (A2)
includes all the parameters from (A1), the estima-
tion objectives remain the same as in the previous
simulations, with only the measurements being
different. Figures 8 and 9 showcase the tracking
performance achieved with RAUKF despite the
model mismatch.

Fig. 8 Tracking performance given a mismatch between
the dynamics model and the model generating observations

While it comes as no surprise that the filter
now favours observations over its internal estimate
of the membrane voltage, the successful tracking
of the unobserved state and parameters reflects
the robustness of the filter. Compared to previous
simulations, the estimation incurs a larger overall
tracking error, yet the accuracy remains satisfac-
tory (compare RMSEs between Figures 4-5 and
Figures 8-9). The ability to accurately determine
the true channel conductances from more realistic
measurements is of particular importance for prac-
tical applications of these estimation methods.

Fig. 9 Parameter identification performance given a mis-
match between the dynamics model and the model gener-
ating observations

4 Discussion

The application of state estimation in neuro-
science and biomedical fields is burgeoning. In
this work, we detail the efficacy of a robust and
adaptive unscented Kalman filter (RAUKF) when
applied to neuronal state and parameter estima-
tion. RAUKF is capable of estimating neuronal
dynamics accurately in simulation despite initial
poor estimates. Further, RAUKF maintains track-
ing performance when subject to measurement
faults and model mismatch.

Tuning parameters of the RAUKF is some-
thing that must be done under the consideration
of the system that is being modelled. While some
generalizations about parameter selection can be
made, most are specific to the context in which
the filter is being applied. The choice of param-
eters a and b depend on the model being used.
In a previous work (Zheng et al., 2018), a and b
were increased in tandem resulting in an increase
of performance that plateaued, as can be seen in
Figure 3. However, performance increases with an
increase in a and degrades with an increase in b
when a ̸= b. The performance trend observed with
an increasing a is likely due to the filter’s poor
initialization of estimates for states, parameters
and process noise covariances, over which a has
a direct influence through the adaptation of (44).
In contrast, the filter’s observation comes from
the noisy membrane potential, and this source
is known to have white Gaussian noise; increas-
ing b makes the filter over-tune the estimate of
the noise of the observation, detracting from the
filter’s capacity to estimate the hidden states of
the system. This difference is illustrated in the
heatmap of the RMSE for the w gating parameter,
where an increase in b does not lead to as drastic
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a decrease in performance compared to the states
that are estimated by a random walk. The values
to use for λ0 and δ0 may be adjusted in a similar
fashion to that used for a and b, as the model has
less certainty about the process dynamics than the
observation so there is a bias to the value of λ0

over δ0.
Fault detection is especially of use when mod-

elling mechanisms that are prone to discontinuous
or abrupt changes, such as spike firing in neurons,
especially when being acted upon by some exter-
nal activity. Action potentials and their related
spike times are often of particular relevance when
replicating a neuron’s behaviour in a model. A
fault detection mechanism would make it such
that spikes that are not reflected in the model’s
prediction will likely be detected as a fault, result-
ing in a non-normal distribution such that the
state estimation, more so the variance of the
estimation, will change more rapidly. While not
considered in this work, modifying the filter to
constrain the parameter space would allow for
better parameter fitting (Simon, 2010). Constrain-
ing parameters based on their physical/biological
interpretation may allow for better tracking, e.g.,
constraining the gating parameter w between [0, 1]
as the value represents how open a given chan-
nel is. This type of constraint behaviour may also
make the filter more robust as the parameter space
being constrained would be able to prevent numer-
ical instabilities that unconstrained estimates may
cause.

The application of the RAUKF on incomplete
models relates to possible future research that
may extend this work. When the state estimation
process does not match the model used to gen-
erate the observed state (Figure 8) the filter still
does well to track state estimates even when the
mismatch between the observation and process is
apparent. Future work may address this by intro-
ducing some of the constrained methods previ-
ously mentioned (Simon, 2010) and incorporating
additional states following random walk dynam-
ics that may be representative of hidden dynamics
not encapsulated by the process model. In addi-
tion, building upon previous work conducted on
simpler neuronal models (e.g., leaky integrate-
and-fire) (Lankarany, Heiss, Lampl, & Toyoizumi,
2016; Lankarany, Zhu, Swamy, & Toyoizumi,
2013), robust and adaptive filtering techniques
may be used to identify heterogeneous populations

of neurons and possible differential properties or
mechanisms (such as excitatory/inhibitory affer-
ents or conductances) that contribute to this
heterogeneity.

Another possible extension would be to deter-
mine channel conductance properties of spe-
cific cell types in different locations, such as
hyperpolarization-activated cation (h-) channels
in oriens lacunosum-moleculare (OLM) cells of
the hippocampus. H-channels in OLM cells are
known to vary in a location-dependent fashion
(Hilscher et al., 2019), and OLM cells are known to
be important contributors of theta rhythms that
facilitate spatial memory processes (Klausberger
& Somogyi, 2008). We have developed detailed
multi-compartment OLM cell models to under-
stand how they contribute to circuit function
(Sekulić et al., 2020). Since we have demonstrated
that the RAUKF technique can deal with incom-
plete models, it may be possible to determine
varying h-channel conductances using reduced
(and thus incomplete) OLM cell models with
experimental OLM cell recordings from different
locations.

Finally, it is important to note that the adap-
tation of noise covariance matrices presented in
this work applies to a wide range of recursive
state estimation algorithms. While the UKF gen-
erally performs better than other filters in its class,
its sampling-based approach and higher computa-
tional cost may hinder its adoption in embedded
biomedical application. Alternatives based on lin-
earization include a robust adaptive EKF or, if
the hardware supports it, a robust adaptive iter-
ated EKF. Demonstrations of these alternatives
for the joint state and parameter estimation of
various neuronal models can be found in the
supplementary material.

The assumption of linearizable dynamics may
prove unrealistic for certain neuronal models,
especially as higher-order dynamics are consid-
ered. However, extending early works on single
model tracking and control (Ullah & Schiff, 2009),
we believe estimation algorithms such as RAUKF
could be effectively combined with low-order rep-
resentations of high dimensional neuronal dynam-
ics (e.g., reduced order models, mean-field models)
in future model-based closed-loop neuroscience
applications.



Supplementary information. The Python
code used in this study can be found at https://
github.com/nsbspl/RAUKF.
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Appendix A Conductance-
based
models

The conductance-based models used in this study
are derived from the Morris-Lecar model (Morris
& Lecar, 1981) as shown in Prescott et al. (2008).
The 2-dimensional model is given by (A1) based
on the parameters in Table A1.

C
dV

dt
= Istim − ḡfastm∞(V )(V − ENa)

− ḡsloww(V − EK)− ḡleak(V − EL)

dw

dt
= φ

w∞(V )− w

τw(V )

m∞(V ) =
1

2

(

1 + tanh
V − βm

γm

)

w∞(V ) =
1

2

(

1 + tanh
V − βw

γw

)

τw(V ) =
1

cosh V−βw

2γw

(A1)

Table A1 Parameters for the 2-dimensional Class 1 (2)
[3] Morris-Lecar-like model

Parameter Value Units

C 2 µF cm−2

φw 0.15 s−1

ḡfast 20 mS cm−2

ENa 50 mV
ḡslow 20 mS cm−2

EK -100 mV
ḡleak 2 mS cm−2

EL -70 mV
βm -1.2 mV
γm 18 mV
βw 0 (-13) [-21] mV
γw 10 mV

The 3-dimensional model used in the model
mismatch simulation (see Figure 3.4) is given by
(A2) based on the parameters in Table A2.

C
dV

dt
= Istim − ḡfastm∞(V )(V − ENa)

− ḡK,dry(V − EK)− ḡsubz(V − Esub)

− ḡleak(V − EL)

m∞(V ) =
1

2

(

1 + tanh
V − βm

γm

)

dy

dt
= φy

y∞(V )− y

τy(V )

y∞(V ) =
1

2

(

1 + tanh
V − βy

γy

)

τy(V ) =
1

cosh
V−βy

2γy

dz

dt
= φz

z∞(V )− z

τz(V )

z∞(V ) =
1

2

(

1 + tanh
V − βz

γz

)

τz(V ) =
1

cosh V−βz

2γz

(A2)

Table A2 Parameters for the 3-dimensional
Morris-Lecar-like model with outward (inward) Isub

Parameter Value Units

C 2 µF cm−2

φy 0.15 s−1

φz 0.15 s−1

ḡfast 20 mS cm−2

ENa 50 mV
ḡK,dr 20 mS cm−2

EK -100 mV
ḡsub 2 mS cm−2

Esub -100 (50) mV
ḡleak 2 mS cm−2

EL -70 mV
βm -1.2 mV
γm 18 mV
βy -10 mV
γy 10 mV
βz -21 mV
γy 15 mV

https://github.com/nsbspl/RAUKF
https://github.com/nsbspl/RAUKF
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