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Abstract

Pyramidal cells are the most prevalent neuronal type in the cortex,

receiving thousands of synaptic inputs from all over the brain, and

sending the largest axon outputs. They have a variety of active con-

ductivities and complex morphologies that support highly nonlinear

dendritic calculations. There has been a growing interest in understand-

ing the classification abilities of pyramidal neurons. The perceptron

learning algorithm, one of the foundations of machine learning, uses

the highly simplified mathematical abstraction of a neuron, and it is

unclear to what extent real biophysical neurons can perform percep-

tron like learning. In this article, we investigated the performance of

a pyramidal neuron model in the classification problem of a two-class

ECG dataset for different synaptic regions by using the perceptron

learning method. The main purpose of this study is to reveal what

role the soma, basilar and apical dendrites play in a classification

problem. We concluded that when the synaptic receptor locations

are selected close to the soma, classification performance close to
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2 Perceptron Learning in a Cortical Pyramidal Neuron Model

the single layer perceptron can be obtained. The results indicated

that the pyramidal neuron can successfully classify real-world data.

Keywords: ECG Data, Pyramidal Neurons, Machine learning, Synaptic
Inputs, Neural Dynamics, Biological Neural Networks

1 Introduction

Machine learning is the study of computer algorithms that focuses on ana-
lyzing and interpreting patterns and structures in data. Though traditional
algorithms have solved numerous problems in various areas such as health
(Doupe et al, 2019), security (Nassif et al, 2021), image processing (Zerouaoui
and Idri, 2021) and signal processing (Hosseini et al, 2020), with the increase
in the amount of data received from automated systems today, it has become
more difficult for them to process huge datasets (Janiesch et al, 2021). Their
compact structures have made them easy-to-implement and practical but as
the time passes their incapability of processing huge datasets emerged. It is
not fair to say that the era of the traditional machine learning algorithms has
passed but their usage in such areas have been bleeding day by day.

The structure of the brain has been a great inspiration to the scientists
studying on machine learning (Alzubaidi et al, 2021). Afterall, the concept of
learning has emerged from the capabilities of the brain. Therefore, the brain,
especially the human brain, has been a role model of machine learning algo-
rithms. Though the traditional algorithms have very similarities with brain
regarding the structure, they are not a typical replica of it. Therefore, the
structure of the brain inspired many to research itself for the sake of machine
learning (Mahesh, 2020).

In the first quarter of twentieth century, the structure of brain was well-
known in anatomical aspect. But the molecular and electrical structure was
incomparable (DeFelipe, 2011). When the first neuron model had been pro-
posed, maybe nobody would know that a first step in artificial intelligence was
taken. Accordingly, the first neuron model, which we call it Integrate & Fire
(IF) neuron model now, suggests that a neuron receives various stimulus, inte-
grates them and fires if the desired conditions were met (Lapique, 1907). That
was the first ever research modeling the neuron for understanding the brain
(Burkitt, 2006). Further research was made on models connecting neurons to
each other to build networks but the concept of learning in brain was still a
mystery.

Biological neuron processes information via spike trains in which the infor-
mation was encoded in the spike rate and the precise timings of the spikes,
but the real-world data was generally analogous (Gerstner and Kistler, 2002).
McCulloch and Pitts (1943) (MP) decided to focus on a new biological neuron
abstraction which assumes signals as spike rates. Their neuron model assumes
that neurons are basically simple units that take weighted sum of their inputs
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and spikes if the weighted sum is greater than a predefined value. This was
the first ever neuron model to build networks. But the weight values had to be
defined for learning purposes. Rosenblatt (1957) suggested the first ever learn-
ing algorithm to define the appropriate weights. The algorithm put accounts
the difference between the output and the desired values to reach the solu-
tion step by step which is known the first generational neural networks today.
But their incapability of solving XOR problem limited their usage in the area.
Then, the second generational neural networks emerged. First generational
networks were consisting of only two layers which are input and output lay-
ers. But the XOR problem required more layers, which are known as hidden
layers, to be solved. With slight changes on the learning algorithm and on the
neuron model the networks were able to be trained for hidden layers. Thus,
the first sparkle for the deep learning era has flashed (Rumelhart et al, 1986).

Second generational neural networks made it possible to analyze large and
complex data sets. The first ease of these networks was that they can be built
according to any design. This let them to be designed for any given prob-
lem specifically. Contrary to popular belief back then, more number of neuron
caused more problem since the networks tend to overfit as the number of neu-
ron increased (Prieto et al, 2016). Therefore, the architectures inspired by the
brain has been shown up. This unique approach was named as deep learning.
Today, it has conquered many fields in data analysis and machine learn-
ing (LeCun et al, 2015). However, deep learning has some limitations. Even
though, it is inspired by the human brain, it is still far from the capabilities
of the human brain. Furthermore, deep learning architectures include millions
of parameters in complex applications. Therefore, learning algorithms spend
hours on training and also encounter important issues; such as appropriate
architecture, learning parameters, stop criteria and local minimums (Shrestha
and Mahmood, 2019).

For last decades, MP neuron model was under the spotlight for building
neural networks for machine learning purposes. On the other hand, neural
modelling was still an active field of research. More and more neuron models
have been shown up mostly for computational neuroscience field to simulate
and understand the nature of biological neural networks. To date, many studies
have been carried out in the field of neural modeling using neuron models such
as Hodgkin–Huxley (HH) (Hodgkin and Huxley, 1952), IF (Lapique, 1907),
and Izhikevich (Izhikevich, 2007). The IF model is a valuable abstraction of a
biological neuron for using in networks but lacks representing the intracellu-
lar dynamics. On the other hand, HH model successfully represents the ionic
channels and molecular structure of the biological neurons. Considering their
value in computational neuroscience, these models are commonly used models
in the literature (Hay et al, 2011). In addition, the usage of neurons in machine
learning and the disadvantages of the algorithms took attention of researchers
from neuroscience. The idea of that the brain is the ultimate intelligence organ,
lead researchers to give more effort to the networks which is build up from
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biologically realistic neuron model. This effort resulted in Spiking Neural Net-
works (SNN) which are known as third generational neural network (Bose et al,
2016; Wang et al, 2020). SNN has opened new horizons in the field of machine
learning. These structures receive action potentials from sensors, neurons, or
external networks as postsynaptic potentials via synapses (Ponulak and Kasin-
ski, 2011). The best part of them is that they require less neurons for the given
tasks comparing to the networks with MP models, since they constitute from
non-linear dynamics. Also, MP models represent data as spike rates, but bio-
logical model represent data as pure spikes. This makes SNNs energy efficient
comparing to Artificial Neural Networks (ANN) (Farsa et al, 2019). But they
are still not fully realistic comparing to the networks of the brain. The biologi-
cally realistic neurons mostly represented as simple units called point neurons.
The biological neuron is more complex and detailed than the models used in
SNNs. At first look, It can be easily seen that brain neurons have a central
processing unit called soma and branches which are both responsible for pro-
cessing and propagating spikes. Neglecting the branches both makes the model
not realistic enough and causes inability to take advantage of the benefits
they would bring (Gerstner et al, 2014). Therefore, networks with biologically
realistic neurons with branches open new horizons to the field (London and
Häusser, 2005).

Pyramidal neurons have a complex dendritic tree structure that receives
and processes dense synaptic input. They receive synaptic input in the soma,
axon, and dendrites. The dendritic structure consists of three different tree
topologies: tuft, basilar, and apical. This indicates that pyramidal neurons
carry different functions depending on the locations where the synaptic inputs
are located (Spruston, 2008). The integration of excitatory and inhibitory
inputs into pyramidal neurons is a complex process that depends on the loca-
tions of the inputs, the weights and timings of synaptic inputs, the diversity
of ion channels, as well as the spatial relationship between activated synapses
and the final integration site in the axon. The functional impact of input loca-
tions has been extensively studied area but not fully understood due to this
complex process (Polsky et al, 2004). In this area, Poirazi et al (2003) revealed
that a hippocampal CA1 pyramidal neuron can be modeled by a two-layer
neural network. In this network, the nonlinear properties of the dendrites are
represented by choosing the hidden layer sigmoidal. The sum of the dendritic
currents in the soma is modeled using the output neuron. However in this
study, the computational advantage of nonlinear branches of the pyramidal
neuron is unclear. Legenstein and Maass (2011) revealed that the pyramidal
neuron can solve the linearly non-separable feature binding problem. An inte-
grated model is proposed for nonlinear dendritic computation using synaptic
plasticity and branch-strength potentiation. Limbacher and Legenstein (2020)
extended this idea with synaptic rewiring which shows that the locations of
the synaptic receptor are also important for learning. The synaptic plasticity
rule utilized in (Legenstein and Maass, 2011) and (Limbacher and Legenstein,
2020) is spike time dependent plasticity rule. In a recent study, Rao et al
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(2022) employ Dendritic Logistic Regression to define connection weights. Fur-
thermore Moldwin and Segev (2020) used perceptron rule to define synaptic
connection weights. These studies show that the learning in pyramidal neurons
is possible and requires to be improved. Their studies investigated the learning
rules for pyramidal neurons, but they did not use real-world data. The data
used by these studies were dummy data which is chosen for showing the mod-
els could perform well. It worth to say that the real capabilities of methods
can only be seen if they are forced to solve a real world problem.

In this study, we investigated the performance of a pyramidal neuron model
in the classification problem of a real-world dataset. Using ECG signals from
MIT-BIH Dataset, we investigated whether the pyramidal neuron could clas-
sify healthy and arrythmic beats, successfully. Since the pyramidal neurons
have complex structure and their dendritic morphology and biophysics vary
in numerous aspects, we first designed our study to ensure that the regional
specific features of the neuron can easily be demonstrated. The output of
pyramidal neurons is usually affected by the locations of the synapses since
the locations are related to various layers of the brain. Therefore, we elab-
orated our experiment such that the effect of the synaptic locations can be
observed. For this purpose, we performed our experiment for various synaptic
locations while the rest of the components of the experiment were fixed. Since
the study omits the synaptic inhibution and considers only the synaptic exci-
tation in neurons, we discussed whether we could compensate the inexistence
of inhibitory synapses. We suggested that extending spike patterns with their
mirror versions can improve the classification performance of the pyramidal
neurons. Considering all above, our study’s value can be stated as follows:

• The pyramidal neuron’s ability to classify real world data was investigated
for the first time using ECG dataset.

• Gray coding was chosen as the spike pattern generator for ECG Data, which
as far as we know no study has done that before.

• The effect of neuronal branches such as somatic, apical and basilar dendrites
was investigated to observe whether their morphology or biophysics could
make a difference in the classification performance.

• A new approach which extends the spike pattern to compensate inexistence
of inhibitory synapse was suggested. Also, the approach was investigated
and evaluated for usage in classification problems, which as far as we know
no study has done that before.

The rest of the paper is organized as follows. In Sections 2.1, 2.2, 2.3
and 2.4,respectively, dataset, spike pattern generation method, the neuron
model and perceptron learning rule briefly introduced. In Section 2.5, our
experimental setup is detailed. In Section 3.1 and Section 3.2, we have shown
our results by illustration with a figure and tables. In Section 3.3 the effect of
neuronal region on classification, in Section 3.4 the effect of synaptic receptor
locations, in Section 3.5 the robustness of the method and in Section 3.6 the
benefits of extending inputs were examined. In Section 3, we also discuss the
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results, after which we conclude the study with suggestions for future studies
in Section 4.

2 Material and Methods

2.1 ECG Dataset

The ECG dataset used in this study were obtained from the MIT-BIH Arrhyth-
mia Database on the Physionet site (Moody and Mark, 2001). This database
contains 48 half-hour excerpts of two-channel ambulatory ECG recordings,
obtained from 47 subjects. The record 228m contains R-R intervals which con-
sists 362 premature ventricular contraction (PVC) and 1688 healthy beats.
PVC is a too-early heartbeat that is initiated by Purkinje fibers in the ventri-
cles rather than by the sinoatrial node and disrupts the heart’s normal rhythm.
The ECG signals of database were digitized at 11-bit resolution at 10 mV inter-
vals with 360 samples per second and recorded from Lead II and one of the
modified leads (V1, V2, V4, or V5). For this study, recordings were selected
from Lead V1.

2.2 Conversion of Analog Signal to Spike Pattern using

Gray Coding

While neurons communicate with each other through the spike sequence in
their internal dynamics, external environmental stimuli are analog signals that
change over time. External environmental stimuli are converted into action
potential patterns, in other words, spike patterns, by sensory receptors.

An analog signal is converted by spike generation algorithms into a pattern
of all-or-none spikes. Binary coding techniques used in digital computers are
also included in these algorithms. The algorithms are better suited than others
depending on the type of data to be dealt with (Auge et al, 2021). Using the
Gray Coding (GC), the conversion of a ECG beat signal into a spike pattern
consists of three steps: sampling, quantizing, and coding. Sampling is the con-
version of analog signals to discrete time signals by recording observations in
a predetermined periodical time which is called sampling time. Most of times
the signals recorded for computers are already sampled for a given sampling
time. Quantizing is basically sampling in the amplitude axis but slightly dif-
ferent. It is for expressing infinite value range as finite number of levels. Since
the quantized data generally would be converted to binary codes, the number
of levels is chosen as exponents of 2. In this study, we utilized GC for convert-
ing a ECG beat signal to a spike pattern. The technique is as simple as binary
encoding, besides it also preserves the continuity of the signal. In this coding
technique, there is only one bit position difference in code words corresponding
to adjacent samples (Monteiro et al, 2022).
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Fig. 1 The experimental setup for the study. The ECG data is partitions as R-R intervals
and interpolated to 60 sample. The R-R interval were converted to gray codes (shown in
green.). The gray codes were flattened (shown in red.). The mirror versions of the input
bits were obtained (shown in blue) for extended inputs. The inputs were fed to pyramidal
neuron (shown in the right side of the figure).

2.3 Neuron Model

Pyramidal neurons are one of the most common cell morphology types in mam-
mals, birds, reptiles, and fish. Their inexistence in amphibians is discussed as
pyramidal neurons may be correlated with advanced cortical functions (Sprus-
ton, 2008). Their dendritic diversity provides flexibility and versatility, and
each pyramidal neuron has a unique dendritic structure (Galloni et al, 2020).
Although their dendritic properties are diverse, they can usually be character-
ized as two main dendritic trees, basal and apical dendrites. Basal dendrites
are located on the base of the neuron and apical dendrites are located on the
apex. Mostly, the soma is connected to tuft via a relatively long apical den-
drite. Studies suggest that more than one apical dendrite may connect the
soma to the tuft. In our study, we have employed modelled cortical pyrami-
dal cell given in (Hay et al, 2011). Their study includes three distinct neuron
morphologies, but we included only one of them given in Figure 1.

Another dendritic property of a pyramidal neuron is the biophysics. Hay
et al (2011) performed their study for two distinct experimental procedures,
backpropagation-activated calcium spikes (BAC firing) and perisomatic step
current firing. Consequently, they proposed four biophysical model sets. More
recently, Shai et al (2015) proposed their study about the physiology of the
same neurons. They re-fitted the biophysical parameters according to their
own experimental data. Since our study has similar purposes, we used their
parameter set as given in Figure S2 of (Shai et al, 2015).

Pyramidal neurons receive synaptic inputs from various cortical domains.
Mostly, the synaptic wirings are related to the distance of dendrites to the
soma. This leads researchers to cluster dendritic trees into domain specific
regions. In our study we basically divided the neurons into four main clusters
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as basilar dendrites, apical dendrites, soma, and axon as suggested in (Moldwin
and Segev, 2020). Apical and basilar dendrites were clustered as they were
given in the computational model in (Hay et al, 2011). Given that each cluster
receives synaptic inputs from different domains, we performed our experiments
in these domains separately.

2.4 Perceptron Learning

In this study, we used the perceptron learning algorithm to train the model. It
is an algorithm for supervised learning of binary classifiers that uses adjustable
weights to assign an input vector to a class. In the following, we will explain
the basic notation and how to implement it in classification of two-class ECG
data set using pyramidal neuron model.

We label the positive and negative class in our binary classification setting
as ”1” and ”-1”, respectively. The training set is denoted by:

DT = {(X1, d1) , ..., (XM , dM )} (1)

where Xj is jth input vector of the training set of M vectors, and denoted by:

Xj =





















X1,j

.

.

Xi,j

.

.

XN,j





















i = 1, .., N (2)

where N is the dimension of input vectors. dj is the label of the jth training
input vector. It takes the value ”+1” for normal ECG vectors and ”-1” for
arrhythmia ECG vectors. The synaptic weight vector is denoted by:

W =





















w1
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.
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.

wN





















i = 1, .., N (3)

where wi is the weight value corresponding to the ith synaptic input. The
perceptron algorithm attemps to adjust the synaptic weights so as to minimize
the sum-squared error E over all input vectors. It is given by:

E =
1

M

M
∑

j=1

Ej (4)

where Ej is the error between the desired output dj and the actual output oj
of a neuron on the jth training input vector, and is given by:
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Ej =
1

2
(dj − oj)

2
(5)

The value for updating the weights for jth input vector is calculated by the
learning rule.

∆wi = η (dj − oj)xi,j (6)

where η is the learning rate. The weights are updated by following iteration
algorithm.

wi (new) = wi (old) + ∆wi (7)

So far, the fundamentals of perceptron learning were given. But implement-
ing perceptron learning has some limitations for usage in biological neurons
since the weights of the synapses cannot be negative. This is because weights
manage the conductivity of the synapses and negative weights corresponds to
negative conductivity and even though this is possible in theory it is impossi-
ble for conductivity to be negative in real life. Therefore, the equation should
be re-arranged for the task as follows:

wi (new) = max (0, wi (old) + ∆wi) (8)

This equation states that the new weights should be set to zero in case they
are in negative values after the update of the weights step. To sum up, the
equations given above can be re-written as follows:

wi(new) =

{

wi(old) if dj = oj

max (0, wi (old) + ∆wi) if dj ̸= oj
(9)

It is wort to mention that all weights are updated simultaneously. Let us
make a simple thought experiment to illustrate how the learning rule works. In
case of xi,j = 0, the weight wi will not change. However, in case of xi,j = 1 and
the prediction is wrong, the weight wi will be pushed towards the direction of
the positive or negative target class, respectively:

∆wi = η (dj − oj)xi,j = η (1− (−1)) 1 = 2η (10)

∆wi = η (dj − oj)xi,j = η (−1− 1) 1 = −2η (11)

The strict rule that the weight values cannot be negative raises a vital issue
that the input vectors which need to be weighted with negative values becomes
useless as they will not transfer their information to the neuron even though
they are important. In real, there are two basic types of synapses which are
inhibitory and excitatory. Excitatory synapses motivate the neuron to spike,
which we assume all the synapses in the study are excitatory, and inhibitory
synapses does the opposite, which we did not include in our study. Excitation
and inhibition are controlled over the synapses’ reversal potentials and the
perceptron rule only regards the weight changes. Therefore, it is impossible for
perceptron learning rule to switch one to another.
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In order to compensate the negative weight effect, we extended the input
vectors by adding the flipped form of the vector beside it. In the flipped form,
1s are made 0 and 0s are 1. It is worth to mention that the size of the extended
input vector becomes twice the size of the input vector. For the extended
input vectors, the weights should increase if the mirror version of weight tend
to decrease to zero value. Also, In case of xi,j = 0, the weight wi would not
change. By this approach, the flipped version of xi,j will be 1. Thus, xi,j will
also contribute to the learning algorithm.

2.5 Experimental Setup

Biological neurons require spike patterns to process. But the ECG data in
this study was recorded in range variables. The first step for this study was
to convert data from ECG to binary inputs. For this purpose, the data was
arranged as R-R intervals as given in the database. Since the heart rate may
differ for various conditions, the R-R intervals have various number of samples.
Therefore we interpolated the R-R intervals to 60 samples so that they had
the same number of inputs. The data consists of one dimensional 60 samples
in this stage. To convert the R-R intervals to binary code, we employed GC
technique. Based on our experimental studies, the code length was selected
as 4 for GC, consequently the number of quantization levels was set to 16.
Therefore, the data was converted to two-dimensional code samples with size
of 60x4. Since biological neuron cannot deal with two-dimensional code input,
we flattened the code so that they can be one dimensional with code size of
240. For the further experiments, we obtained the mirror versions of the code
set by flipping each of the bit. After all, we extended the input vector with
their flipped versions of themselves. So, we obtained two sets of dataset with
the lengths of 240 and 480. The process was illustrated in Figure 1.

Considering the data balance, 600 beats were randomly selected from the
record 228m, such a way that 300 of which would be healthy beats, remaing
300 PVC beats. Since the machine learning has two main stages as training and
testing, we shuffled the samples and split into two subdatasets (training and
testing data). This process was repeated for two times more and we obtained
three inputs datasets (namely as Set 1, Set 2, and Set 3) to be used in the
experiments. Also, we repeated the process for both the 240-sized and 480-sized
datasets. The process was illustrated in Figure 1.

So far, the data processing stage was explained. But the pyramidal neurons
cannot process spikes by their own. They require synaptic receptors to gather
the spikes. The pyramidal neuron should have more synaptic receptors than
the inputs to obtain data properly. So, we modified the pyramidal neuron by
adding synaptic receptors according to number of inputs. As given in Section
2.3, the pyramidal neurons consist four main clusters of branches as somatic,
apical, basilar and axonal. We grouped these regional clusters as somatic,
apical, basilar and apical + basilar. So, we can seperately observe the regional
effect of synaptic receptors. The groups are distinct in two reasons which are
their distance to the soma and their biophysics. Somatic group which only
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contains soma has both active and passive ion channels. Apical group is distant
the soma and has both active and passive ion channels but the active ion
channels have no ability to emit an action potential by their own. Basilar group
is fairly near to soma but have only passive ion channels. The apical + basilar
group was selected to observe if any advantage or disadvantage may occur if
apical and basilar clusters were combined.

The second phase of the experimental process was the preparation of the
pyramidal neuron for the synaptic inputs. First, one of the regions given above
is selected. Then, according to the number of inputs, the synaptic receptor
locations are randomly distributed across the neuron. Synaptic receptor distri-
bution was done homogenously according to surface area. After the synaptic
receptor locations are determined, synapses are assigned to given locations,
randomly. Synaptic connections is modelled with a exponetially decaying func-
tion with reversel potential of 0mV and time constant of 1.7ms. Since the
locations of the synapses may affect the performance of the neuron, we repeated
the distribution step two more times and obtained three synaptic location sets
(namely as Syn Set 1, Syn Set 2 and Syn Set 3) in total for each regional group.

The ECG data was converted from analogous signal to binary input vector
(spike pattern) and the pyramidal neuron was modified by adding synaptic
receptors according to number of input vector. The last step of the experimen-
tal process is to combine these as a whole to simulate. First, the inputs are
randomly assigned to the synapses. An ECG sample is selected to simulate.
Each input bit of the sample is matched with their own synaptic receptors. If
the input bit for the corresponding synapse is 1, the synaptic receptor is acti-
vated, else it is de-activated. So, each bit was matched with their own synapse
and the synapses were activated/de-activated according to their bits. After
all, the neuron was simulated for 50 ms. In the 10th ms of the simulation, the
active synapses were stimulated with corresponding spikes of bits. In the end
of the simulation, if the neuron emits at least one spike was assigned as “1”
and if it never emits a spike it was assigned as “-1”.

Simulations were performed with the NEURON simulation environment,
interfaced with the Phython. The addition of Python allowed the use of a
very comprehensive analysis tools in the simulation. We conducted simulation
experiments on the computer with an AMD RyzenX 2700 8-core CPU and
16GB RAM.

3 Results and Discussion

A brief introduction to experimental setup was done in Section 2.5. In that
section, all the process was explained for a single sample of ECG data. In this
section, we extend the experimental setup in a holistic manner and present the
results obtained.
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Fig. 2 MSE metrics throughout the training. The figure shows the results of the trials
which are fed by pure (graphs which are in left side of the figure) and extended inputs(graphs
which are in right side of the figure). The graphs in rows shows the results for the regions
accross the pyramidal neuron. Each dataset was represented by a color in the graphs.

3.1 Training

Training is the step which is done for finding the appropriate parameters of the
models. The pyramidal neuron requires the synaptic weights to be determined
to successfully classify the samples. Since our study examines the effects of
various aspects of the pyramidal neuron, the training procedure was as given
below:

First of all, the input dataset (i.e., Set 1) to be used is selected. The synaptic
receptor locations on the pyramidal neuron’s selected regional group (i.e. Api-
cal) were determined. Note that the study aims to investigate the effect of the
synaptic locations. Therefore, we determined three separate synaptic locations,
namely syn sets. So, three identical pyramidal neurons were created. For each
neuron, three syn sets are determined to be located. The synaptic locations
for each neuron were matched and the input dataset was applied to neurons
simultaneously. So, there is three pyramidal neuron which are morphologically
and biophysically identical but different for their synaptic receptor locations.
The training data was fed to pyramidal neurons beat by beat and the weights
were updated individually according to the outputs of the pyramidal neurons.
In the beginning of the training, all the synaptic weights were set to zero since
we wanted to simulate the fact that no connections were made between neu-
rons in the beginning before learning. This training procedure was done for 20
epochs. The learning rate was chosen as η = 5e− 5. For each epoch, the MSE
metric was calculated and shown in Figure 2. Also, we equivalent trained sin-
gle layer perceptron (SLP) models for each dataset so that we could compare
the results with ours.
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Table 1 Training results using pure inputs.

Region Syn Set
Accuracy Precision Recall

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Only Soma

1 97.33 97.67 99.33 96.64 99.28 100.00 97.96 95.80 98.58
2 97.33 97.67 99.33 96.64 99.28 100.00 97.96 95.80 98.58
3 97.33 97.67 99.33 96.64 99.28 100.00 97.96 95.80 98.58

Mean±Std 98.11 ± 0.93 98.64 ± 1.53 97.45 ± 1.26

Only Basilar

1 96.67 97.33 96.33 96.60 97.87 92.76 96.60 96.50 100.00
2 96.67 97.00 97.67 95.97 99.26 97.86 97.28 94.41 97.16
3 96.33 97.67 99.00 94.74 100.00 100.00 97.96 95.10 97.87

Mean±Std 97.19 ± 0.85 97.23 ± 2.46 96.99 ± 1.64

Only Apical

1 95.67 96.67 99.33 95.89 97.16 99.29 95.24 95.80 99.29
2 96.33 92.33 99.33 94.16 87.50 100.00 98.64 97.90 98.58
3 97.00 97.33 99.67 96.62 99.27 100.00 97.28 95.10 99.29

Mean±Std 97.07 ± 2.30 96.65 ± 3.99 97.46 ± 1.69

Apical and Basilar

1 95.33 95.67 97.33 92.90 100.00 99.26 97.96 90.91 95.04
2 96.67 98.67 99.00 95.97 100.00 99.29 97.28 97.20 98.58
3 94.67 94.67 98.33 92.26 99.22 97.89 97.28 89.51 98.58

Mean±Std 96.70 ± 1.71 97.42 ± 3.02 95.82 ± 3.36

Single Layer Perceptron 99.83 99.83 99.67 99.66 99.65 99.30 100.00 100.00 100.00

After the training was done, we wanted to see if the training data was
successfully classified. For each trial, we re-classified the training data. Classi-
fication performance for all these cases was evaluated using accuracy, precision
and recall metrics.

As can be seen from Table 1, the average training accuracies in pure
input synaptic stimulations to the apical, basilar, somatic and apical+basilar
regional groups are %98.11, %97.19, %97.07 and %96.70, respectively. In the
training with pure input, the average precision values are in the range of %97-
%99, and the standard deviations are in the range of 1.5-4.0, as can be seen in
Table 1. The mean and standard deviations of the recall values in the same
experiment are in the ranges of %96.00-%98.00 and 1.25-3.40, respectively.
Accordingly, the pure inputs datasets were classified the data with accuracies
of minimum %96.70. When the extended inputs were used almost all the train-
ing accuracies were %100. The training results of pure inputs datasets were
mapped on Table 1. Since almost all the training accuracies of the extended
inputs were %100, we did not include the table of them in the study.

3.2 Testing

As explained in Section 2.5, we shuffled and split data as training and testing
data before training phase. We trained the pyramidal neuron only by using
the training data. The goal of the classification is assigning the testing data
labels accurately. The testing phase is the most important step since the model
could be declared as successful if the testing results are accurate. As can be
seen above, the testing data was never used in any process of the study before
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training. Therefore, the real-world problem can be solved for a given success
rate if the testing phase is successful enough.

The study can be divided into two main experiments as investigating pure
inputs and extended inputs. In pure inputs, our testing results were mapped
in Table 2. Depending on the neuronal regions, the accuracies were varying
between %88.33 and %93.33 and standard deviations are below 1.74 as can
be seen from Table 2. The mean and standard deviation of the precision
values in the same experiment are in the ranges of %90.78-%92.32 and 2.58-
2.77 respectively. In the testing with pure input, the average recall values are
in the range of %90.79-%93.21, and the standard deviations are in the range
of 2.35-4.02, as can be seen in Table 2.

Comparing with SLP, the testing results with pure inputs are not very
successful. It seems pyramidal neuron is not an appropriate choice compared
to SLP. But when we go in deeper by examining extended inputs result, the
pyramidal neuron catches up the SLP and even overtakes it. The results of
extended inputs are given in Table 3. The accuracies were varying between
%94.67 and %95.33 and standard deviations are below 0.87 as can be seen
from the Table 3. Similarly, the mean and standard deviation of the precision
values in the same experiment are in the ranges of %93.35-%95.26 and 1.66-3.10
respectively. In the testing with extended inputs, the average recall values are
in the range of %95.82-%96.84, and the standard deviations are in the range
of 1.54-2.87, as can be seen in Table 3. The accuracy of the pyramidal neuron
increases dramatically compared to pure inputs. In some trials, pyramidal
neuron which is fed by the extended inputs outperforms SLP model. This
shows that the capabilities of the pyramidal neuron increases if the extended
inputs were fed.

3.3 Investigating Neuronal Regions on Classification

In Section 2.3, the features of pyramidal neuron were briefly introduced.
Accordingly, the pyramidal neuron branches can be clustered into some regions
considering their topologies, morphologies, biophysics, and their connectivity.
Studies have shown that the synaptic connectivity of the branches may corre-
spond various layers of the brain. Also, the biophysical features of the neuron
may differ in terms of the locations of the branches. Biophysics are also differed
one neuron from another. The neuron shape can be distinctive among other
biological neurons (Stuart and Spruston, 2015). In the study, we have chosen
pyramidal neuron which is widely seen in the brain. They receive inputs from
various layers of the brain. This makes them a perfect candidate for a classifi-
cation study. Also, pyramidal neurons can be clustered into four main clusters
of the branches. Soma which is the main processing unit of the neuron has ion
channels that leads neuron to emit spikes if the conditions are appropriate.
Their capability of emitting spikes makes them the most important section of
the neuron. Axon is the main section responsible for propagating the emit-
ted spike. It is important that the spikes emitted in soma must propagated
(Spruston, 2008). But in the study, we only investigated the emitted spikes but
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Table 2 Testing results using pure inputs.

Region Syn Set
Accuracy Precision Recall

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Only Soma

1 92.00 92.67 92.33 88.62 95.30 93.04 96.73 90.45 92.45
2 92.00 92.67 92.33 88.62 95.30 93.04 96.73 90.45 92.45
3 92.00 92.67 92.33 88.62 95.30 93.04 96.73 90.45 92.45

Mean±Std 92.33 ± 0.29 92.32 ± 2.94 93.21 ± 2.78

Only Basilar

1 91.00 91.67 92.00 90.91 92.31 90.42 91.50 91.72 94.97
2 90.00 91.00 90.33 88.68 93.33 91.67 92.16 89.17 89.94
3 89.67 91.33 91.33 86.31 95.17 91.82 94.77 87.90 91.82

Mean±Std 90.93 ± 0.78 91.18 ± 2.58 91.55 ± 2.35

Only Apical

1 89.00 90.67 92.33 87.04 92.72 91.98 92.16 89.17 93.71
2 91.67 88.33 92.00 88.10 87.20 92.99 96.73 91.08 91.82
3 93.33 92.33 93.00 90.30 94.08 92.59 97.39 91.08 94.34

Mean±Std 91.41 ± 1.74 90.78 ± 2.71 93.05 ± 2.73

Apical and Basilar

1 89.67 88.67 89.67 87.20 93.62 91.56 93.46 84.08 88.68
2 90.67 92.00 91.67 88.34 92.90 91.36 94.12 91.72 93.08
3 90.00 89.33 91.67 86.83 94.33 91.88 94.77 84.71 92.45

Mean±Std 90.37 ± 1.18 90.89 ± 2.77 90.79 ± 4.02

Single Layer Perceptron 94.50 94.79 95.29 92.00 92.43 95.74 97.71 98.09 95.36

not the propagation of spikes across the neuron. Therefore, we did not include
the axon in our study for synaptic input placement. Basilar dendrites are the
branches which are located at the base of the neuron and has only passive ion
channels. This means that they cannot emit any spikes by themselves but only
they can transmit the input signals to the soma for further decisive processing.
Apical branches which are located in the apex of the neuron receives inputs
just like basilar branches, but they require active ion channels since their dis-
tance to soma are relatively high. Though they contain active ion channels,
the nature of their ion channels has no ability to spike. The purpose of the
active ion channels in the apical branches are transmitting the inputs without
any attenuation. So, there is four main clusters of branches in pyramidal neu-
ron which are somatic, axonal, apical and basilar (Magee, 2000). In the study
we investigated the effects of the regions by grouping them as somatic, apical,
basilar and apical + basilar. The results showed that the regional effect of the
classification is genuine.

It can be easily seen by looking at Tables 1, 2 and 3 that the regions
where the synaptic receptors were located affects the performance directly.
A superficial examination on tables suggests that when the distance of the
synaptic location from the soma increases the performance tends to decrease.
In addition to this, when looking deeper, it is a fact that the standard deviation
of the accuracies increases when the distance from soma increases. This can be
explained by the increase in distance range across the regions and the increase
of the possibility of a single synaptic receptor to be placed in a distant location,
which increases the possibility of a relative important synaptic connection to
be placed far from the soma, the processor.
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Table 3 Testing results using extended inputs.

Region Syn Set
Accuracy Precision Recall

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Only Soma

1 94.33 94.67 95.00 90.48 92.22 97.37 99.35 98.09 93.08
2 94.33 94.67 95.00 90.48 92.22 97.37 99.35 98.09 93.08
3 94.33 94.67 95.00 90.48 92.22 97.37 99.35 98.09 93.08

Mean±Std 94.67 ± 0.29 93.35 ± 3.10 96.84 ± 2.87

Only Basilar

1 94.67 96.00 95.33 91.52 95.03 96.77 98.69 97.45 94.34
2 95.00 96.00 95.00 92.59 95.03 96.15 98.04 97.45 94.34
3 95.33 93.67 94.67 93.71 94.81 93.87 97.39 92.99 96.23

Mean±Std 95.07 ± 0.72 94.39 ± 1.66 96.32 ± 1.97

Only Apical

1 95.67 96.67 95.67 94.30 96.82 97.40 97.39 96.82 94.34
2 95.67 94.33 95.33 93.75 94.87 96.18 98.04 94.27 94.97
3 93.67 95.67 95.33 91.36 94.44 96.77 96.73 97.45 94.34

Mean±Std 95.33 ± 0.87 95.10 ± 1.91 96.04 ± 1.54

Apical and Basilar

1 96.00 94.67 95.33 97.32 92.73 97.39 94.77 97.45 93.71
2 96.67 94.33 95.67 96.13 93.21 96.20 97.39 96.18 95.60
3 95.67 95.00 94.33 94.87 92.77 96.71 96.73 98.09 92.45

Mean±Std 95.30 ± 0.79 95.26 ± 1.92 95.82 ± 1.88

Single Layer Perceptron 94.50 94.79 95.29 92.00 92.43 95.74 97.71 98.09 95.36

3.4 Investigating the Effect of Synaptic Input Locations

in Regions

Previous section emphasizes that the regions where the synaptic receptors were
located affects the performance of the pyramidal neuron. When looking deeper
at the synaptic locations within the regions, the performance also fluctuates.
Examining Tables 1, 2 and 3, the accuracy of the pyramidal neuron varies
according to synaptic locations sets except for soma. Soma does not get affected
by the synaptic location set since it is the processing center of the neuron and
only constitutes from a single section. Therefore, defining synaptic receptor
locations are not a critical step for soma since each location is the same location
theoretically. But this is not applied to rest of the regions when looking at the
results. The apical, basilar and apical + basilar groups seems to be sensitive
where the synapses were located. Obviously, they react differently for the same
data when the synaptic locations change.

If the reasons why the pyramidal neuron’s classification performance got
affected by the synaptic locations were sorted, the winner and the runner-up
would be distance and biophysical inconsistency across the pyramidal neuron.
Assuming an input connection whose corresponding inputs are highly corre-
lated with the labels, as it spikes when the label is “1” and does not spike when
the labels is “-1”. In theory, only this input is enough for the model to classify
data accurately. But when it is located on the pyramidal neuron, the distance
is important for this synaptic input to excite the soma. If it was located far
from the soma, the input would be so distant that it would not be enough
for the branches to propagate the intracellular signal to soma since the signal
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was attenuated throughout the branches. Therefore, the neuron cannot benefit
enough from this hypothetical input because of the distance. Another reason
is the biophysical variability of the dendrites. As can be seen from the model,
the ion channels’ distribution, their parameters, the topology, and the mor-
phology are not consistent across the neuron. The geometrical features such as
length and radius are nearly unique for each dendrite. Also, their biophysical
parameters are distributed throughout the dendrites rather than being consis-
tent. Regarding our hypothetical synaptic input exampled above, locating the
synaptic receptor in the appropriate place is matter of chance if the synaptic
receptor distribution was done randomly. The reasons explained above sug-
gests that synaptic receptor locations play a key role in the performance of the
pyramidal neuron such that the tables show that the pyramidal neuron can be
more successful than the SLP or vice versa if the locations were determined
appropriately. Another suggestion of these reasons is that learning just by the
weight of the synapses is not enough, also learning by the synaptic locations
was required. This issue was not raised for the SNN’s because their neuron
content constitutes only somas which are shown that they are not affected by
the synaptic locations.

3.5 Generalization Task

The performance of the classifier on a given dataset may be illusory depending
on how the dataset exemplifies the universal cluster for the task. The classifiers
require training data to define their interior parameters to perform accurately.
In most cases, more data means more accurate classifiers. Therefore, the ulti-
mate classifier which yields the most accurate results is built up from all the
data recorded. However, this is impossible for real life applications since it is
not possible to gather all the data and most of times, the classifiers must deal
with the problem with less data as possible. Therefore, the dataset chosen for
classifiers to be trained should be as representative as possible.

In Section 2.5, we have mentioned that we shuffled and split the data into
two as training and testing data, randomly. The results obtained may be illu-
sory since the training data may be too separable or vice versa because of the
randomizing. This would cause misleading judgements such as the classifier
could perform well or poorly. Such a judgement would mean nothing scientifi-
cally. Therefore, we obtained three different datasets by shuffling and splitting
data repeatedly. By considering them as distinct datasets, we wanted to see
how the pyramidal neuron generalizes the data.

Examining the Tables 1, 2 and 3, it is fair to say that the pyramidal neuron
can deal with generalization task. Even if the training datasets chanced, it
represented the information encoded in data satisfyingly. The tables indicates
that the pyramidal neuron acts similar as the SLP model for the generalization
task. In this perspective of view, pyramidal neurons are satisfactory in term
of data generalization.
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3.6 Extending the Inputs

Perceptron learning was first proposed for the MP neurons which assume that
the neuron gathers the inputs, obtains weighted average of the inputs and
fires if the weighted average is above a predefined value. This approach makes
the weight values important for neurons to perform properly. In MP neurons,
the weight values range from negative infinity to positive infinity. In biologi-
cal neurons, weights corresponds to efficacy which indicates how strongly the
pre-synaptic neuron was connected to the post-synaptic neuron. When the
pre-synaptic neuron fires, neurotransmitters are released from the presynap-
tic neuron and causes increase in synaptic current (for excitatory synapse)
in the post-synaptic neuron. The increase in the synaptic current is corre-
lated with the synaptic efficacy between the neurons, which the larger efficacy
value causes larger synaptic current increase. The synaptic efficacy must be a
positive value by nature since it is related to synaptic conductivity and the
conductivity is a value which must be positive.

In MP neurons, the sign of the weights are not important, on the contrary
in biological neurons synaptic weights must be positive. Since the perceptron
learning was designed for the MP neuron, no regulations which limits the
weights are required. Moldwin and Segev (2020) also mentioned about this
issue stating that they limit their algorithm such that they set the values to
zero when it is required to be negative. Their study performed considerably well
but when we applied the algorithm on real world data, this weight limitation
also limited our study’s performance. The first reason why the performance of
the pyramidal neuron was limited was the weight limitation. Secondly, when
the data was examined deeper, we observed that the weight change equals zero
if the input bit is zero in Equation 6. This means that the input does not
affect the synapse for learning. The inputs do not have to affect the synapse,
but it means lack of information if the input has information. Third, when
the weights from a perceptron learning were examined, it can be easily seen
that the inputs which are negatively correlated with the output yields negative
weight and vice versa. This shows that the sign of the weight is the same with
the sign of the correlation value between the input and output. In our study,
since we set the weights to zero if they required to be negative, the information
from inputs which are negatively correlated with output is wasted.

The issues raised above constitute very big limitations on the performance
of the pyramidal neuron since it cannot perform as well as SLP model when
used as suggested in (Moldwin and Segev, 2020). Table 2 advertises this
issue as the SLP model outperforms the pyramidal neuron when we used
only the pure inputs. Fortunately, the solution was the same for all three
issues mentioned above: extending the features with their mirror versions. The
extending procedure was detailed in Section 2.4. Table 3 shows the results
of the extended inputs which clearly advertises that the pyramidal neuron can
perform as well as the SLP model when the extended features were used.

The benefit of extending features is that it overwhelms the “weight positiv-
ity barrier”. If a weight requires to be negative, this mean that the input and
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output are negatively corelated, the weight is set to zero, but the mirror version
requires a positive weight value since the correlation between the mirror input
and the output is positive. So, the information in the input is not wasted. This
approach increased the performance of the pyramidal neuron dramatically.

4 Conclusion

One of the most important questions in neuroscience is understanding how
networks in the brain process input information appropriately and perform
learning and memory mechanisms. So far, many experimental and modeling
studies have been done to understand the learning mechanism of pyramidal
neurons. In recent years, successful results have been obtained in classification
problems based on pyramidal neuron models. In this study, we investigated
the performance of a pyramidal neuron model in the classification problem
of a two-class ECG dataset for different density inputs to different synaptic
regions. In order to apply the continuous ECG signal to the selected model,
the signal was converted into a spike sequence with the GC technique.

The classification performance of the proposed method was extensively
analyzed with different scenarios, including the use of three different datasets,
stimulation of four different region group, use of input vectors of two differ-
ent lengths, and selection of different synaptic input locations. According to
the results obtained, it was observed that the classification performance did
not change significantly in the different datasets, increased in dendritic regions
close to the soma, increased in the case of using extended input vectors, and was
significantly affected by selecting different synaptic input locations. The clas-
sification performance was tested with an SLP algorithm, which was trained
and tested with the same datasets. It has been observed that the proposed
method has yielded similar performance with the SLP algorithm, especially
in extended inputs. These results encouraged the classification of multi-class
datasets with different architectures in our future studies.
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