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Abstract

Recurrent Neural Networks (RNNs) are frequently used to model aspects
of brain function and structure. In this work, we trained small fully-
connected RNNs to perform temporal and flow control tasks with
time-varying stimuli. Our results show that different RNNs can solve
the same task by converging to different underlying dynamics and
also how the performance gracefully degrades as either network size
is decreased, interval duration is increased, or connectivity damage
is increased. For the considered tasks, we explored how robust the
network obtained after training can be according to task parameteri-
zation. In the process, we developed a framework that can be useful
to parameterize other tasks of interest in computational neuroscience.
Our results are useful to quantify different aspects of the models,
which are normally used as black boxes and need to be understood
in order to model the biological response of cerebral cortex areas.
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1 Introduction:

Recurrent Neural Networks (RNN) emerged a few decades ago (see for example
the founding works of Hopfield [1], Elman [2] and Funahashi and Nakamura
[3, 4]) to model the mechanisms of a variety of systems, such as brain processes
[5-11], stability and control [12-15], and in Machine Learning [16-19].

Within the Machine Learning (ML) framework, the main objective is to
produce efficient network topologies and training methods to solve computa-
tional problems. The aim when implementing these models in Computational
Neurosciences is to describe the recurrent connectivity of the brain cortex to
understand the mechanisms that underlie different processes.

This paper takes relatively new training algorithms from the Machine
Learning community and applies them to analyze computational problems
related to temporal tasks relevant to Neurosciences. In particular, we want
models that could be used to study the problem of how cortical subpopulation
processes underlie various temporal tasks inspired by aspects of cognition. For
example, The Flip Flop is a working memory task considered previously in
other works in the field of Computational Neuroscience [20, 21], as well as the
Finite-duration oscillation generator. On the other hand, several versions and
parametrizations of decision-making tasks were also considered and constitute
an extended paradigm [22-26].

Recurrent neural networks are powerful tools since it has been proven that,
given enough units, they can be trained to approximate any dynamical sys-
tem [27-30]. It has been studied that RNNs can display complex dynamics
including attractors, limit cycles, and chaos [31, 32].

It is well established that RNNs constitute a versatile model in neuro-
science research. They can be trained to process temporal information and
perform different tasks such as flow control and many kinds of operations that
roughly represent computation in different brain areas. A simple RNN model
could perform tasks that are similar to stimuli selection, gain modulation, and
temporal pattern generation in the cortex [33].

Trained networks serve as a source of mechanistic hypotheses and also as a
testing ground for data analyses that could link neural activity and behaviour.
RNNs are also a valuable platform for theoretical investigation, and some
aspects of RNN models are used to describe a great variety of experimental
results observed in different studies, for example, working memory, motor con-
trol, temporal processing, and decision making [34-37]. For instance, it has
recently been studied that recurrent circuits in the brain may play a role in
object identification [38].

Another aspect considered is the computational principles that allow deci-
sions and actions regarding flexibility in time. In a recent review [39], a
dynamical system perspective is used to study such flexibility and shows how
it can be achieved through manipulations of inputs and initial conditions.

Recent experimental recordings of neurons in the cerebral cortex also show
complex temporal dynamics [9, 20, 31, 40], where different mechanisms of
information flow control could be present and coexist. Temporal aspects of an
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RNN constrain the parameters, topologies, and different parts of the compu-
tation. Those aspects deserve to be studied and will improve current neuronal
models. Given the complexity of these systems, it is not surprising that there
are still so many fundamental gaps in the theory of RNNs [21], such as how
RNNs control the flow of information [41].

A recurrent neural network can be trained to reproduce a task considering
two paradigms: On the one hand, we can have an intuition about the behaviour
of the system. Here the network represents an abstract variable that obeys
an equation of a low-dimensional dynamical system, and the dynamics can be
translated into the connectivity of the network. The underlying mechanism is
modelled using a low-dimensional dynamic system that is then implemented
in a high-dimensional RNN [21].

An alternative paradigm involves building a functional RNN, which is uti-
lized in machine learning as well as in Computational Neuroscience. In this
case, one presents to the network the information relevant to the task to be
fulfilled. This is done in terms of input-output data but without any direct pre-
scription on how to fulfil it, other than the training algorithm of choice. If the
mechanisms implemented by the network can be conceptualized, the network
analysis can become a method for generating hypotheses for future experiments
and data analysis [31]. The present work is based on this approach.

Typically, a cognitive task consists of elementary sensory, cognitive, and
motor processes. We examined a set of neuroscience-inspired tasks: time repro-
duction [42], oscillatory response [8, 20], a Flip Flop [20] and a set of decision
making boolean-like tasks. These simple tasks have been used in Cognitive
and Computational Neuroscience in the context of RNN studies [6, 31, 43],
among others with the aim to understand how different brain areas process
information.

In particular, we have taken a set of temporal and decision-making tasks,
parameterized them and trained recurrent neural networks to reproduce them.
We used in the process a new open-source framework that we developed that
could be useful for others to create their other tasks of interest, based on the
ones that we parameterized to develop their models (See Supplementary
Information 6).

In this framework, we numerically studied the properties of a simple model
representing a cortical subpopulation of neurons that, after training, can
perform tasks that are relevant to processing information and flow control.

After training the networks, we analysed the various configurations that
emerged. We carry out also a set of studies on how the performance of the
trained network degrades to show the scope and limitations of the model.
These studies are related to the performance degradation either as network
size is decreased or the time duration is increased, and what happens when
the connectivity of trained networks is damaged.

We decided to consider simple tasks (based on the temporal and the
decision-making paradigms) to focus on the effects of training on the networks,
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and also to study which are the multiple mechanisms that can arise without
considering tasks with contextual cues.

The rest of the paper is organized as follows. In Section 2, we describe the
network model, training method, the details of the code implementation and
task parameterization. In section 3, we explain each task and describe how
those were implemented. Then, we present the results of the different studies
that we performed. Section 4 we discuss the results obtained and finally in
Section 5 we present the conclusions.

2 Methods
2.1 Model

Motivated by models of interconnected neurons of the firing rate type [44-47],
we set out to study the dynamics of the discrete system as it was previously
considered, for example, in [48-50]. We considered the discrete RNN given by:

H(t) = o(WRH(t) + WX(2))), (1)

¢ is the hyperbolic tangent. Very early works have proved that it is pos-
sible to use discrete-time RRNs to uniformly approximate a discrete-time
state-space trajectory which is produced by either a dynamical system or a
continuous-time function to any degree of precision [3, 51]. RNNs are universal
approximators of dynamical systems.

The model was implemented in Python using Keras and TensorFlow. That
allows us to make use of all the algorithms and optimizations developed by
that ML community.

2.2 On training methods

There are a great variety of algorithms to train recurrent neural networks.
In a recent work from the ML field, a very detailed survey on RNNs with
new advances for training algorithms and modern recurrent architectures was
presented in [52].

The training methods for neural networks can be unsupervised or super-
vised. In this work, we focused on applying a supervised method.

The studies where some form of gradient descent is applied stand out in
the literature of supervised methods. An example is the Reservoir computing
paradigm with liquid- or echo-state networks [53], where the modifications of
the network weights are made in the output layer weights Wout,

One of the most outstanding methods was the one developed by Sussillo
and Abbott [46]. They have developed a method called FORCE that allows
them to reproduce complex output patterns, including human motion-captured
data [46]. Modifications to the algorithm have also been applied successfully
in various applications [54, 55].
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A frequently used alternative is gradient descent with backpropagation for
its calculation and then some optimization method for minimizing it. Given
the recent advances in the implementation of this method with Open Source
libraries, this is the method we explored.

For the choice of the training algorithm we were inspired by [52, 56, 57]. In
[56], authors use the Adam method to train networks and perform numerical
simulations. Adam is an algorithm for first-order stochastic gradient-based
optimization of objective functions [58].

2.3 Network implementation and training protocol

We used a simple RNN model which is composed of three layers. One is the
input, the second is the recurrent hidden layer, and the last is the output
layer. The input layer has k units, all of which are connected to all recurrent
units (N X k input connections). The inputs to this layer are a sequence of
vectors through time ¢, whose components are z;(t), with j = 1,... k. Every
input neuron from the input layer is connected to every neuron in the hidden
layer. The connectivity weight between input neuron ¢ and hidden neuron j
is wj? (matrix notation Win) The hidden layer has N recurrently connected
units with the activity given by h(t) = (h1(t), ha(t), ..., An(t)), with recurrent
connectivity weights wgfec (in matrix notation W®e¢), The initialization of
the connections wfj”»ec of hidden units is done with small non-zero elements
to improve the overall performance of the training. The connectivity from
the recurrent to the output layer is represented by the W©°Ut matrix. The
connectivity from the recurrent to the output layer with weights wf}”.

In the present work, we implemented a recurrent neural network with N =
50 hidden units, unless indicated. We used as activation function the hyperbolic
tangent.

The weight matrix W™ was initialised randomly from the uniform distri-
bution with the Glorot uniform initializer from Keras [59], which is the default
selection. It draws samples from a uniform distribution within [—limit, limit],
where limit = \/6/(fanm + faneur), (fang, is the number of input units and
fanyy: is the number of output units [60]). Recurrent weights matrix WERee ig
initialized in two different ways during the study: either as a random matrix
or as an orthogonal random matrix. The random matrix has elements drawn

from a normal distribution with standard deviation o = ﬁ and mean p = 0,

where N is the number of recurrent units. [61]. The orthogonal random matri-
ces are created with Orthogonal initializer from Keras, where an orthogonal
matrix is obtained by QR decomposition of a matrix of random numbers drawn
from a normal distribution.

This selection allows us to implement Adam as a training method with
low computational cost and diminish the impact of the vanishing gradient
problem for this simple implementation. The tasks can be learned in reasonable
computational time and with good accuracy in 20 Epochs.

The upper panel of Figure 1 shows a schematic for the neural network
model studied in this work. The input signal is a two-component vector with
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Fig. 1 Upper panel: neural network schema of our model with two units at the input to
process the time series with arbitrary value and one output. Lower panel: example for a
Neural Network connectivity matrices Wi*, WRec and WOUt for a 100 unit recurrent
network (arbitrary size) with two units at the input and one at the output. Rows represent
the output connection (post-synaptic) of each unit or column (pre-synaptic).

arbitrary time evolution. The output is the readout unit that provides the
output decision. The lower panel shows and example for a Neural Network
connectivity matrices Wi, WRee and Wout,

For instance, let us consider a network with 50 units that are further used
in the analysis presented in Section 3. The units in the hidden layer are fully
connected to each other, in the sense that the connectivity matrix WTee is
not sparse. Let us consider a two-input task, meaning that the input layer has
two input units. The input layer W will have 50 x 2 connections to process
a 2 X [length] vectors at the input, in general, we considered time series of
200 ms. The WRe® matrix has 50 x 50 connections that produce the temporal
response of the 50 units with a vector of 50 x [200ms]. At the output we
have one unit representing the output decision that combines the 50 activity
responses of the hidden units, using the W°"t matrix of 1 x 50. It produces a
vector Z(t) of 1 x [200ms].

The loss function used to train the model is the mean square error between
the target function and the output of the network. It is defined as:
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B(w) = 5 373 (#(0) - 2 1), )

t=1 j=1

where Z;-m'get(t) is the desired target function and Z;(t) is the actual
output.

We trained the model with no less than 15000 input signal samples for
all tasks described in the following section. We generated each sample of the
training set as a noisy time series that may contain a square pulse with noise
or only noise. Noise is an additive random variable drawn from a Gaussian
distribution with zero mean, and its maximum amplitude is 10% the height of
the pulse.

We also generated an additional set of input time series that we use to test
after training. We check if the output response against the testing time series
corresponds to the task for which the network has been trained.

In each experiment, we saved the initial pre-training configuration and the
final instance of the network weights to study how the weight matrix changes
during training. The aim of the training is to adjust all the parameters and
obtain a network that can reproduce the task for which it was trained.

Framework and Code to train the networks and produce the Figures in
this paper are open and available in the following repository:

https://github.com/katejarne/RNN _study_with_keras

2.4 General aspects of the tasks

We considered that every input signal may have a square pulse of fixed dura-
tion, and the network responds according to the rule that it was trained for a
given data set of the training sample.

The stimulus widths and response times of the tasks are on the order of
tens of milliseconds, part of the range of interest of signals processed by the
cerebral cortex [62]. We considered the training data set as the set of input
signals and target outputs with a low edge-triggered response to the input
signals with a delay time of 20 ms. In each task presented in the following
section (Figures from 2 to 5), we show a trained network responding to different
testing samples. Each stimulus at the input is presented in green (input signal
1) and pink line (input signal 2) for those tasks with two inputs. The target is
in a grey solid line, and the network response is in red. We considered a time
series of between 200 ms and 500 ms length, but the length and the position
of the stimulus are arbitrary.

2.5 Description of the tasks considered in the study

The networks learn to decide which state the output signal should take in the
face of the different stimuli presented at the input. In this sense, one task is
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defined as the different possible ways in which it can decide the output state
based on input stimuli and the respective regimes that the output should take.

The motivation for the selection of the considered tasks is to simulate flow
control processes that can occur in the cortex when receiving stimuli from
other cortical or subcortical areas. In [41] the notion of gating was discussed
as a mechanism capable of controlling the flow of information from one set of
neurons to another. In the present work, the gating mechanisms are modelled
using networks with a relatively small set of units.

It has been proposed that some sets of neurons in the brain could roughly
function as gates [41]. The dynamics of trained networks for the Flip Flop
task is also interesting, which is generally related to the concept of working
memory. It has been previously studied in [20, 31], but in this case, with a more
complex task referring to a 3-bit register called in the paper a 3-bit Flip Flop.

We focus on the study of networks trained for the following list of tasks
related to the processing of stimuli as temporal inputs:

1. Time reproduction.

2. Basic logic gate operation: AND, OR, NOT, XOR.
3. Flip-Flop (1-bit memory storage).

4. Finite-duration oscillation.

It should be noted that the tasks described in item 2 are not related to
those made by static feedforward networks like [63] but to a network solving
logic gates with time-varying inputs. We want to point out that, in item 3,
we are not referring to the concept of “Flip Flop neurons” such as the one
proposed in [64] but to a network learning the “Flip-Flop rule” as in [20] with
two inputs. The focus is on the process of temporal signals similar to the XOR
temporal task implemented in [2]. In every task, the focus is on the processing
of pulses (i.e., non-stationary signals).

The RNN model emulates a “cognitive-type” cortical circuit such as the
prefrontal cortex, which receives converging inputs from multiple sensory path-
ways and projects downstream to other areas. The chosen network architecture
and size showed to be sufficient to learn all the tasks mentioned above. We used
dimensional reduction methods to study the inner state of the network during
and after training and discuss, specifically, the results and observations regard-
ing each task [65]. In particular, PCA is the method that we chose because it
has been widely used in the study of simulations, as well as experimental high
dimensional neural space states [66].

For the network implementation and training, we use the Keras libraries
from [59] and TensorFlow from [60] as frameworks, instead of more traditional
choices like Matlab from [67] or Theano from [68], implemented in some works
such as [69]. The reason for our selection is that these new scientific libraries
are open-source, and their use is rapidly growing. In the case of Keras, it is
the first time that it is used for such kind of study. In the case of TensorFlow,
there are a few recent works that use it (for instance, see Ref [70]).
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3 Results

The results of the numerical studies are shown in this section. First, we present
in Section 3.1 a description of every task and the parameterization used in the
framework that we developed. This framework could be used to modify any of
the seven tasks that we considered, but also it could it is possible to use it for
developing different tasks of interest. In Section 3.2 we discuss how different
initialization schemas could improve the network training.

Section 3.3 shows different aspects that we observed of the dynamics of
the trained networks. Finally, Sections 3.4 and 3.5 show the result of different
studies performed on the memory capacity, scale and damage of the trained
networks.

To follow the examples shown in Section 3.2 and Section 3.3 (Figures 6 to
11), the trained networks have been labelled. The labels include a number to
identify the simulation number of the corresponding task and initial condition.
These also allow identifying the data in the Supplementary Information to
view the examples and the repository on Github.

We have trained 20 networks for each task and initial condition. The trained
networks shown in the paper and the Supplementary Information are available
in .hdf5 files in the repository. The code provided also allows training more
networks in each of the tasks described and also to plot network response to
the testing stimuli.

For each of the cases presented, the networks exhibit the same response
for the output, according to the training rule, each time the corresponding
input is activated. We provide examples of the different stimuli combinations.
In addition to that, some of the tasks need two inputs (thus four different
combinations to fully show its behaviour: AND, etc) while others only one
input (thus only two different combinations: NOT for example), and others
four combinations with history (Flip-Flop, not including repetitions of the
same input).

3.1 Tasks
3.1.1 Time reproduction

Let’s begin describing a simple temporal task considered in Section 2.5. In this
task, when the network has a stimulus at the input (a Gaussian pulse with
noise), it has to respond with a pulse at the output matching the input signal,
and no response otherwise.

We trained the network to produce an output pulse at a fixed time delay
after an input pulse occurs, and output close to zero if there is no input pulse.
Time delay is an arbitrary value parameter.

This task is parameterized in this simple way to study how the network is
capable of learning to respond after a certain interval of time. It is a simple
task, much simpler than a standard perceptual decision-making task [71]. In
that case, the network must also learn to integrate a signal for a certain period
of time and then a second time interval to respond. Here we are just training
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the network to learn to estimate one given time interval. We are interested in
studying that process. In Section 3.4, we show a study of how this temporal
task is affected by varying the temporal interval or the size of the network.
This is useful because it gives a minimal benchmark for time and network size
for network hyperparameters studies and for other more complex tasks.

In Figure 2, we show the simulations for two different input samples. The
same neural network is considered and trained to memorize and reproduce a
Gaussian pulse with noise at the input, after a 20 ms delay. If there is no
pulse, the network must output a zero signal. This task was used in the scaling
studies presented in Section 3.4.

»
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g = |nput A = Input A
= mmm Expected Output mm Expected Output
g- = Predicted Cutput ‘ = Predicted Output |
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Fig. 2 A trained neural network response to the testing input samples for the “time repro-
duction” task. The green line in the plot represents the input signal. The grey thick line is
the target signal or expected output, and the red line is the network predicted output. Time
is in ms and amplitude is in arbitrary units.

3.1.2 Binary basic operations between input stimuli with

AND, OR, XOR,

These tasks presented here are a class of decision-making tasks. Here, the
network has to perform different binary-inspired operations with temporal
stimuli at the input (or inputs). As a result, the output will switch to a High
value or keep a Low value depending on the task and the presented input(s).
The input stimuli are square signals with a duration of 20 ms and Gaussian
noise of 10% of the total amplitude. We considered our input data set random
time series of 200 ms length with or without a pulse. For two-input tasks, the
corresponding input pulses (if both are present) are simultaneous in time. The
network has to decide the state of the output, which should match the training
set rule for each considered task. We used 50-unit networks, and all networks
were able to successfully reproduce all tasks after training.

For each of the tasks, we created the target output time series according
to table 3.1.2. The truth tables for all logic operations are displayed in Table
3.1.2.

From inspecting the different realizations obtained, some general observa-
tions of these systems emerge when tasks are compared that are discussed in
Section 3.3.
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Input 1 | Input 2 | AND Output | OR Output | XOR Output
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 1 AND, OR and XOR states of the output with respect to the inputs states.

3.1.3 NOT task

The boolean NOT task consists of turning the output to a “High level” state
when input is in a “Low Level” state and vice versa.

To the best of our knowledge, this is the first time that the ”"Not” task
with temporal stimuli is considered. In the parameterization that we designed,
when the network receives a stimulus, it must remain with the activity at zero
level, while if it does not receive it, after the response interval time that we
have predefined in the training set, it must respond. This implementation of
the task can be interpreted as we are teaching the network to measure an
interval of time.

For the training to be successful in this task, it is the only one where it is
necessary to consider a bias term, that is, an initial value for the activity h;(t)
of the units other than zero. In the others, it is not necessary to consider it for
the training success. The networks trained for all other tasks from this study
have a bias equal to zero. This can be easily changed in the framework because
it is just a parameter in the code for the network topology. "Not” is the only
task that requires a bias term so that it can be learned by the network with
the same conditions described before.

In Figure panel d of Figure 3, we show the state of the output compared
with the input. In Section 3.3, we show how the activity looks for an example
of a network trained on this task and briefly discuss it.

Figure 3 shows the temporal response for four neuronal networks, each
trained to perform the Boolean operations indicated for each panel when
receiving the stimuli at the inputs: AND, OR, NOT, and XOR. The green and
pink lines show, in each case, the time series of each input, the thick black line
the target output, and the red line the status of the output.

3.1.4 Flip-Flop (1-bit memory storage)

In this study, we trained a network with two inputs with different functions.
One works as a “Set” signal (S-input), and the other is a “Reset” signal (R-
input). If the network receives a pulse in the S-input, then the output turns
to High. If the network receives a stimulus in the R-input, then the output
turns to Low. Two consecutive pulses to the same input do not change the
output state. Table 2 summarizes the rule learned by the network. Time series
are 400 ms in length to show different changes in the inputs during the same
time-lapse.
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Fig. 3 Four trained neural networks responses for 6 testing samples for a) AND operation
between two stimuli,b) OR operation, ¢) XOR operation and d) NOT operation applied to
the input. Time is in ms and amplitude in arbitrary units.

For this task, we considered the following parametrization: the training
data are time series that could have square pulses in the inputs S or R separated
by a certain fixed distance, with the condition that the signals in both channels
do not overlap. The occurrence of a pulse in one input or another, or its non-
occurrence, are random. The response of the output is 20 ms delayed with
respect to the input. The time interval between consecutive pulses is not fixed.

The Flip Flop task has been previously studied in [20, 31] and many others,
but in those works with a task related to a 3-bit register called a 3-bit Flip
Flop. Also, this task was studied in Maheshwanarathan et al [72]. This task
was selected because it is not a simple binary decision.

In Figure 4, the temporal response of a neural network trained to perform
the “Flip Flop” task with its Set and Reset inputs is shown. Each panel shows
six possible random time series from the testing data set. The green and pink
lines show the time series of each input, the thick black line is the target
output, and the red line is the status of the output. The training data set
consists of trains of pulses at the S-input and R-input with noise, and a target
output according to Table 2. We successfully obtained a set of neural networks
capable of performing the Flip-Flop task.

3.1.5 Finite-duration oscillator

In this task, we trained a network to obtain in the output an oscillation with
a frequency of 30 Hz, 20 ms after a pulse in the input. When the network
receives the stimulus, the output behaves as it is shown in Figure 5. If the
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Set Reset | Output state
0 0 QN
0 1 0
1 0 1
1 1 X

Table 2 Flip Flop task table. @y means that the output remains at the previous state.
X means that the state is forbidden for the data set.
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Fig. 4 Response of a trained neural network for six random testing samples for the Flip
Flop task. S-Signal is shown in pink, the R-Signal is shown in green. Grey thick line is the
Target output, and the red is the Network response. The output state depends on the state
of the set and resets signals, regardless of the length of the time series considered.

network has no stimulus, the output remains at the “LOW?” state. Once again,
we successfully trained a set of neural networks that perform this task.

Figure 5 shows the temporal response of a neural network trained to oscil-
late when receiving a stimulus at the input. Upon receiving a pulse at the input,
the output must respond with oscillation for a certain time. In all Figures
(from 2 to 4), the networks have 50 units and 20 ms for the response time.

This simple task is interesting, on the one hand, because here the network
has to learn to reproduce a pattern when it receives a contextual signal, differ-
ent from the other tasks that we have considered, which are decision-making
tasks. It is also interesting because the activity of the units always results in
oscillations, as we discuss in more detail in Section 3.3. We also used this task
in such section to discuss differences related to what happens with noise on
the input and in the absence of it.
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Fig. 5 A trained neural network response of the output to the testing samples for the
“finite-duration oscillator” task. The network does not spontaneously oscillate unless there
is a pulse in the input.

3.2 Network initialization studies

In this section we show the different properties of the network activity and
connectivity based on population analysis employing PCA and the estimation
of the eigenvalues of the recurrent weight matrix.

We started by training a set of networks to perform each of the considered
tasks described in the previous section. Each network was created by randomly
choosing the connectivity strengths WRe® from a normal distribution with
zero mean and variance 1/N, as described in Section 2.1. We considered two
cases: orthogonal matrices and non-orthogonal matrices (20 matrices in each
case). We studied the eigenvalue spectrum of the recurrent matrix WRee, The
eigenvalues of two sample matrices are shown in the upper and lower left panels
of Figure 6.

The non-orthogonal matrix, previous to the training (upper left panel),
shows a distribution consistent with the random matrix theory of Girko’s circle
law [73], which states that, for large N, the majority of eigenvalues of an N x N
asymmetric random matrix lie uniformly within the unit circle in the complex
plane and the fraction of eigenvalues lying outside the circle vanishes in the
limit Nypits — 00, when the elements are chosen from a distribution with zero
mean and variance %

In the orthogonal matrix, the eigenvalues lie at the border of the circle
(bottom left panel of Figure 6). As a result of the training, some eigenvalues
are pushed out of the circle. In the case of the networks shown in Figure
6, both final configurations correspond to fixed-point configurations with one
eigenvalue with real part greater than one and zero imaginary part, and the rest
of the eigenvalues scattered within the unit circle. Here we show a comparison
between the initial state (left panels) and post-training (right panels) of Figure
6. We have found similar configurations of the eigenvalue distribution for all
the trained networks.

We found in our simulations that this behaviour is consistent with esti-
mates made previously in [47, 74, 75], even when our networks are trained (i.e.
non-random) and input-driven. The system will either show nontrivial sta-
tionary solutions or oscillations depending on the value of the eigenvalue with
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the largest real part of the connectivity matrix as in [74]. A more profound
explanation is beyond the scope of the present manuscript.

For each of the tasks and the two conditions (orthogonal and non-
orthogonal), we estimated the rate of networks that successfully passed the
training. The results are shown in Table 3. We measure the success rate as
the number of trained networks that successfully reproduce each task, with
respect to the total number of networks that we trained, considering a fixed
number of epochs, which is 20 as defined in Section 2.3.

The orthogonal condition slightly improves the success rate for each task.
This is consistent with studies previously conducted by [76]. A possible
explanation for the success rate differences between the two possible initial
conditions is that at the training stage is “easier” to pull out the eigenvalues
when they are placed on the edge of the circle (orthogonal condition) than
when they are scattered within the unit circle (non-orthogonal condition).

Our results are consistent with [76] in the sense that, for a simple task,
and not complex architectures, such as the LSTM extensively analyzed in ML,
we observe also improvements in the training performance when initializing
matrices with the orthogonal condition. Orthogonal initialization shapes the
position of the non-dominant eigenvalues, but we observed that it has no addi-
tional effect on the dynamics of the obtained realizations. The only effect is in
the training performance, not in the activity after training.

The time reproduction task shows a perfect training rate (100%) with both
initializations. We think that this is because this is the simplest task to be
learned for the network. This is also why we chose this task for our scaling
studies in the following sections.

Task Initial orthogonal | Initial Rand Normal
AND 85% 65%
OR 90% 80%
XOR 90% 55%
NOT 90% 45%
Flip Flop (1-bit memory storage) 95% 65%
Oscillatory 90% 65%
Time reproduction 100% 100%

Table 3 The success rate for the training of 20 networks for orthogonal initial condition
compared with the random normal initial condition.

From Figure 6, it is interesting to note that there are a few eigenvalues
that dominate the behaviour of the states that result in the task for which the
network was trained.

The correlation between eigenvalue spectra and the dynamics of neural
networks has also been studied in [77], relating the design of networks with
memory face with the eigenvalues outside the circle in the complex plane.
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Fig. 6 Eigenvalue spectrum: Left. Eigenvalue distribution for a Neural network with initial
configuration random normal (upper panel) and orthogonal (bottom panel). Right. Eigen-
value distribution of the WRe®¢ matrix post-training AND (#ID14 for orthogonal condition,
#IDO07 for random normal).

3.3 Network dynamics

We plot the components h;(t) from the H(t) from Equation 1, this is the
temporal evolution of all recurrent units. We applied Principal Component
Analysis (PCA) to this set in each case. This means that we performed a
decomposition into Principal Components with the entire set of activity for the
output’s units h;(t) for each different relevant condition. It was done for each
input combination and task, using the method from the scientific library Scickit
Learn [78]. These are Python open-source libraries based on Numpy that allow
us to perform dimensionality reduction, feature extraction, and normalization,
among other methods for predictive data analysis. The behaviour of the system
was plotted into the 3 axes of greatest variance.

Our approach involves analyzing the response to noiseless stimuli to depict
the undisturbed trajectory and construct a geometrical representation of the
phase space. All networks were trained with noisy input signals, as previously
described.
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Let us first consider the simpler task proposed in section 3.1. In this case,
for all the realizations obtained and initial conditions, we observe that after
receiving the input stimulus, the activity of the units combines to give zero the
value at readout for the duration of the pulse. After the delay time, the signals
combine to give rise to the output pulse, and then the activity is oscillatory.
Different trained networks present variations in frequencies and amplitudes of
oscillations, but they all converge to the same general behaviour as shown in
Figure 7.

Start
Stop
( \ — Input A

s Target Output
— Output

Output
25 individual states

Amplitude [Arb. Units]

1 1 1 I 1
0 50 100 150 200 250 300
time [mS]

Fig. 7 Neural network #1D03 response in the time reproduction task.

Now we consider networks trained in the AND task. We want to show
the behaviour of the recurrent units. We studied the response to the stimuli
corresponding to the four different input configurations (Table 3.1.2).

Figure 8 shows the behaviour of a trained network (labelled as #I1D14
in Supplementary Materials) when the stimulus is applied. The left side of
the Figure shows the output and inputs signals vs. time in the upper panel
and some recurrent units h;(t). The right panel shows the trajectory in the
state space of the first three Principal Components. The results are shown
in Figure 8 with the “Low-Low”, “High-High”, “Low-High”, and “High-Low”
combinations (top to bottom). All four cases are represented by stable fixed
points. When no pulse is applied to the inputs, the activity of every recurrent
unit is zero (Figure 8 (a)). When both inputs are pulsed, the recurrent units are
perturbed, and then the system migrates to a fixed point that is different from
zero (Figure 8 (b)). When any single input is pulsed (Figure 8 (¢) and (d)), the
network dynamics converge to fixed points that are different from the previous
two and are also different from each other. It can be seen that the recurrent
units change their activity to reproduce the learned behaviour (HIGH output)
with a different final internal state that depends on which input was activated.

We repeated this analysis for all trained networks and found that the way
to achieve the desired trained rule is not unique, which is consistent with
[72]. We identified different dynamical regimes for learning the same rule by
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different networks. We show in Figure 9 the results for a different network
trained in the AND task. The High output state (corresponding to “Low-Low”
and “High-High” stimuli for the inputs, Figure 9) is solved with two different
stable fixed points as before, yet the Low output state (“Low-High” and “High-
Low” stimuli for the inputs, Figure 9) is represented by two different limit
cycles (i.e. an oscillation in the activity of the recurrent units). In this case, the
WRee matrix has one real and two complex conjugated leading eigenvalues.

From these results, it is clear that the same task can be performed with dif-
ferent internal configurations. In the case of the first network (#ID14, Figure
8), the task is solved by converging to stable fixed point recurrent states. In
this case, the distribution of eigenvalues of the trained matrix has pure real
dominant eigenvalues.

On the other hand, in the network identified as #1D04 (Figure 9) the input
configurations “01” and “10” produce oscillatory recurrent states, while “00”
and “11” produce stable fixed point recurrent states. permanent. In this case,
the leading eigenvalues are complex conjugates (i.e. nonzero imaginary part).

The same situation occurs for the other configurations when considering the
different tasks studied, except for the case of oscillation caused by a stimulus
presented in Section 3.1.5, where the internal state is always oscillatory.

It is worth noting that we have found the same behaviour in larger net-
works (500 units), i.e. behaviour driven by a small set of eigenvalues and a
variety of dynamical solutions underlying the same learned task (See Sup-
plementary Materials). On the other hand, and perhaps not surprisingly, the
finite-duration oscillation task was learned by all networks in the same way—a
limit cycle [20].

Let us now consider the response of the units of a network trained for the
"NOT” task (Figure 10) as we have described in Section 3.1.3. It is interesting
to note the behaviour of the activity in the absence of a stimulus. In this case,
the network must learn the time interval at which it must respond without
receiving any stimulus.

Different realizations for the same task showed to converge to similar solu-
tions, meaning they tend to fixed points when the input does not receive a
stimulus and oscillations when the output must remain at zero. The difference
between realizations is that the oscillations are usually of different frequencies
and amplitude.

Next, we show a network that learned the Flip-Flop Task in Figure 11.
Input A represents the “Set” Signal, and input B represents the “Reset”. The
upper panel shows an example of “Set” followed by “Reset”, and the lower
panel “Reset” followed by “Set”. The High output solution is a stable fixed
point, while the Low output is a stable limit cycle. It is interesting to note that
a reset signal will take the system to a state different from the one that started
before stimulation, even if the output must go back to the same value (zero).
This behaviour is also ruled by the three leading eigenvalues: one real and a
set of complex conjugated, as it is shown in the bottom panel of Figure 11.
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combination (a-d). Both configurations are represented by stable fixed points. Right: the
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Fig. 9 Left. Neural network #ID04 response of the output in the AND task for each
possible input combination (a-d). Right: PCA analysis for the same dataset. The top left
panel shows inputs, the target and output. The bottom left panel shows 25 individual h;(¢)
states.
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Fig. 10 Neural network #I1D17 response of the output in NOT task for the two possible
situations.

Finally, here we discuss the effect of noise. As mentioned before, all the
networks were trained with stimuli containing random noise levels throughout
the entire training data set. To visualize the behaviour of the dynamics, we
excited them with stimuli with and without noise. In all tasks, the only change
observed is the clarity of the trajectory in the reduced dimensional space.
Showing the dynamics in response to a noiseless stimulus results in a more
clear trajectory in the reduced dimension space for all decision-making tasks
and the time reproduction task. However, when we consider the task of the
finite duration oscillator stimuli with and without noise produced a different
effect.

We believe this happens because the nature of this task is different from
the decision-making tasks considered here. In this case, the network needs to
learn to reproduce a pattern, and the presence or absence of input noise is
a big difference for the network to generalize. This problem can be solved
by including in the training data set samples that do not contain noise or
including variations in the amplitude of the noise levels. But this will only
make sense if the system to be parameterized and modelled presents such
variation. Figure 12 shows an example of how the response of the same network
varies when the stimulus of the network has noise (as it was trained) and when
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is stimulated with a signal without noise. In this second case, it is observed

that the consequence is that the output continues to oscillate, which is not a
behaviour for which it was trained.
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Fig. 12 Neural Network Neural network #1D01, trained for the Finite Duration oscilator
task. Stimuli with and without noise applied on the same network produced a different effect.

These observations regarding what type of data sets to use have to do with
how robust we want to design our systems and what properties we are seeking
to represent and should be taken into account when comparing the abstract
models studied here with those obtained from experimental data.

Other examples of dynamics in the trained networks are available in the
repository, for all studied tasks and different initial conditions, showing the dif-
ferent possible internal states achieved with different pre-training connectivity
weights (Supplementary materials).

In this subsection, we showed that a small, fully connected nonlinear RNN
trained with Adam and backpropagation through time can successfully learn
and reproduce many different tasks. We also showed that the post-training
phase space is not uniquely determined by the learned task, as different dynam-
ical solutions (for the recurrent units) are compatible with a single learned
behaviour (output unit), which is consistent with [72].
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In [72] the authors found that the geometry of the representation of the
RNN is highly sensitive to the choice of the different architectures (RNN,
GRU or LSTM), which is expected since the equations of these architec-
tures, and the internal states are different from each other. They found that
while the geometry of the network can vary throughout the architectures, the
topological structure of the fixed points, transitions between them, and the
linearized dynamics appear universally in all architectures. However, in Mah-
eswaranathan et al., it is not stated that each topological structure is linked
uniquely to each task. The results of the present work do not contradict them.
This analysis is an extension showing how, within the same network archi-
tecture (in this case RNNs), different topological structures can be obtained,
as long as at least one structure (and one transition) is associated with the
different decisions for which the network has been trained to take in the task.

3.4 Network memory capacity and size scaling

Another interesting aspect of the trained networks is that they are translation-
ally invariant in time, even though they were always trained with the stimulus
occurring at the same moment. This situation is shown in Figure 13. The
network correctly responds to the input pulse no matter when it arrives.

This happens consistently for the AND, OR, and XOR decision-making
tasks and for the oscillation generator. Invariance to translations in time does
not happen for the NOT task. In this case, the task consists of learning not to
react after a certain time, and the network cannot generalize to time intervals
not seen for the chosen parameterization. See the Supplementary Information
for translational time invariance of the AND task.

We asked ourselves how much time between the stimulus and the answer
is possible to learn for a particular network size. This problem is related to
the well-known vanishing gradient problem concerning long-time dependencies.
When estimating the gradient for further minimization, by applying the chain
rule the value of the gradient will show short- and long-time dependencies on
past values. Long-time dependencies suffer from the shrinkage of the gradient
(see Supplementary Material). In the context of ML, this problem was solved
by using other recurrent network architectures such as LTSTM and GRU [79,
80].

Vanishing gradient is not the only cause for the recurrent network failing to
learn a task. By fixing the network‘s size in terms of the number of units, we are
fixing the number of parameters which are involved in gradient estimation. For
a given number of epochs, and only changing the time delay, we are studying
indirectly the effect in modeling the response to long-term dependencies.

To show the temporal limitations of the model, we performed a study where
we trained a set of networks on the time reproduction task, and then measure
the rate of success in terms of Euclidean distance between target and output.
The distance between the network’s predicted output and the target output
was estimated using the Numpy function linalg.norm(), which in this case
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Fig. 13 Time transnational invariance for the stimulus for an “Time reproduction” task.
The trained network is stimulated with a time series where the stimulus pulse occurs in
different moments. The pink line represents the state of the input signal. The Grey line
represents the output response and the red thick line is the output target.

is the Frobenius norm (or euclidean norm) between the output vector of the
trained network and the target output.

The top panel of Figure 14 shows the result of our study. Each point in
the plot is obtained as the average of the distance obtained for the considered
set of 20 networks trained for that time interval of response. For this task
and a particular duration of the time series, a distance close to 1 means that
all networks reproduce the desired output for the task for the sample test set
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with good performance. When a distance is equal to 1.8, it means that almost
none of the networks could reproduce the task given the worst-case distance
between target and output, meaning the maximum possible distance between
signal and target.

Our results presented in the upper panel of Figure 14 shows that the mean
distance increases with the time duration until it reaches the worst performance
at around 120 ms.

Next, we considered a fixed 150 ms delay between the input signal and
response, where the success rate is low. We then increased the number of
recurrent units.

When we increment the number of units, we are increasing the number of
parameters of the model. In the context of Machine Learning has been proved
that such a strategy improves learning, up to a certain point, depending also
on the minimization algorithm [81]

The results are shown in the bottom panel of Figure 14. For a fixed
time interval, the memory capacity improves with the size of the network as
expected, reaching the best performance when the number of units approaches
200. Larger networks do not give any additional advantage.

Regarding increasing the number of epochs, it does not improve the training
when the time delay is large. We performed the experiment changing this
parameter for the ”AND” with a long delay in time from 20 to 100, and there
is no improvement in the network’s performance of the trained networks.

Finally, regarding the amplitude of the pulses, it will depend on the training
data set. The network is not able to generalize the response to any amplitude
variation, but with our parameterization, networks are robust and can respond,
for example, in the AND task to input pulses by performing the task when the
amplitude of the input stimuli is reduced to 55% of its initial value, or when
it increases to 600% (See Supplementary Information).

3.5 Network response to damage

We induced post-training “damage” to a network that was previously success-
fully trained by removing connections. We then measure the performance of
the network as a function of the degree of damage.

The damage done to a pre-trained neural network by removing connections
is different from dropout [82] and pruning [83]. These techniques have other
effects on the network’s structure and performance have different aims and are
performed during different moments. Dropout is applied during training.

Dropout means randomly dropping out neurons during training, which
induces the network to learn more robust and generalizable features. Prun-
ing, on the other hand, is also a regularization technique. It means removing
the weakest connections in the network, which can lead to a more sparse and
efficient network during training. Removing connections from a pre-trained
network, which is the case here, has a different effect, diminishing the perfor-
mance. These effects can be generalised to other decision-making tasks. We
showed one task for simplicity but the effect is the same for the others. Here
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Fig. 14 Target-output distance in the “Time reproduction task” and scaling properties.
Upper panel: Mean distance between stimulus and response of the learned task vs. time.
Bottom panel: Mean distance between target and output vs. size of the network. A distance
close to 1 means that all networks reproduce the desired output for the task. A distance
close to 1.8, means that almost non of the networks could reproduce the task, given the
worst-case distance between the target and output. Dashed pink lines are the maximum and
minimum values for the distance.

we are not studying training performance. We are quantifying how important
the connection weights are according to sign and intensity between units in
terms of the network being able to perform a task. We are trying to under-
stand which connections are redundant or essential to the task performance in
each state.

The damage studies on the trained network are aimed to disentangle
whether the result of the training of the binary decision-making tasks could
result in the clustering of the neurons in response to the different stimuli or
not. In addition, we wanted to study whether there is a relationship between
the strength of the damaged recurrent connections and the performance of a
task. If there were clustering in the response of the neurons by removing certain
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units (removing all their connections and replacing with cero the values in the
matrix), the network could have a different reaction to the four combinations
of stimuli. It will respond with different accuracy in each case.

First, we tried the approach of randomly removing entire units to see if the
network was still capable of performing the task or at least responding to any
of the combinations of stimuli differently. But randomly removing even one
unit destroyed the learning in all the different responses to the combinations
of input stimuli. This proves that the network responses are not clustered,
in terms of neurons or connections. Next, we studied removing connectivi-
ties in terms of intensity, if there was a relationship between the response of
the network to the different combinations of input stimuli and how strong or
meaningful the connections could be.

We considered a set of 10 successfully trained networks (50 recurrent
units) that perform the AND task. Since we are using fully connected net-
works, the total number of connections is 2500, including positive and negative
connections.

We removed the connections gradually in a symmetric way by zeroing a
growing number of the connections from the smallest (in absolute value) up in
the connectivity distribution. For each percentage removed from each network,
we calculated the distance between the target and the output in the four
possible combinations of input values, and then the average.

The result of this study is shown in Figure 15 a, trained and damaged
connectivity distributions in the insets. Coloured lines represent the results
for every input configuration of the AND task (Table 3.1.2). In this plot, all
connections up to the given percentage are removed. It is clear that, when we
removed all the connections (positive and negative) with strength in the lowest
14%, the output of the networks deteriorates (the distance between output
and target is larger than 1 for any input configuration). At 20% of connections
removed, the distances are larger than 1.5, meaning the networks stop working
correctly (output very different from the target).

In panels b and c of Figure 15, we show the result of removing either
positive or negative only connections, respectively, up to the given percentage.
Here we show that the networks are disrupted, if we remove either only positive
or only negative connections. Both types are equally necessary to perform the
considered task, and there is no apparent difference for either sign, which is
consistent with our generic networks (no distinct excitatory and inhibitory
subpopulations).

Next we study what happens if we remove a single percentile (Figure 15 d
and e; for instance, 14% means that all connections between 13% and 14% are
zeroed). The output deteriorates at values a little higher than before. These
results show that both the connectivity strength and the number of removed
connections are important.

The effect of removing connections on the network causes the learned task
to deteriorate or destroy, whether one removes bands of connections of a certain
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intensity above a value, or if one accumulates the removal of many connec-
tions. The effect does not depend on whether we remove negative or positive
connections. The cumulative effect of removing the lower connection portion
produces deterioration at a lower percentage intensity value.

Finally, we summarise the results of this study. With the training method
used in the present work, without applying regularization mechanisms and
considering simple decision-making tasks, the responses to stimuli are not
clustered nor do they depend on the sign of connectivity. Also, removing
bands of connectivity values of intensity is almost as detrimental as removing
connectivities below a certain threshold.
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Fig. 15 Damage analysis: results of removing connections in RNN. (a) Removal of the
smallest (in absolute value) connections up to the corresponding percentile. (b) and (c))
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represented an example of how a band of weights is removed from the distribution of weight
connections.
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4 Discussion

Decision-making in time processing tasks involves the perception, production,
comparison, and maintenance of time intervals in working memory [84]. These
processes are crucial for animals to anticipate or act correctly at the right time.
Neural network models are useful to understand computation in this context.

Training recurrent networks to imitate different bio-inspired or cognitive
tasks is not new. However, in the literature, there are not many examples of
open-source frameworks to use until recently. Some of them are [43, 85]. Two
examples of useful code that can be used also are: [6, 20]. In [20] the main focus
is the dynamics and fixed pints, and in [6] RNNs with a particular structure
are considered.

Our work also is a new example of an open-source framework that can
be used and modified to include different aspects of task parametrization.
Particularly, it shows how the parameterization of the tasks is crucial in the
different emergent properties in the trained networks.

Also, within the decision-making tasks, a subset of those that we proposed
had not been implemented and characterized before. We obtained different
realizations for the same task with different possible dynamical behaviours,
which is consistent with [72] as indicated in Section 3.3.

We have previously studied how single tasks can be combined via a con-
textual signal and briefly explored some properties of multitasking [25]. In this
work, we have studied in more detail the activity of the networks and the conse-
quences of the different ways of parameterizing and modelling decision-making
or pattern-generation tasks.

The brain encodes sensory stimuli through the collective activity of thou-
sands of neurons. The coding process in this high-dimensional space is typically
studied using linear decoding and dimensionality-reduction techniques such as
those presented here. The underlying network is often described as a dynam-
ical system [21, 26, 31]. The decision-making options from tasks are reflected
in the eigenvalue spectrum with the values outside the unit circle.

Our results in this work suggest that additional information is necessary to
constrain the models and be able to compare them thoroughly. For example,
different topological structures can be obtained within the same initial network
architecture as long as at least one structure (set of dominant eigenvalues) is
associated with the different decisions or final states for which the network has
been trained. We have to be able to analyze which solutions are motivated by
results from biology.

Regularization methods could be used to penalize some solution types
against others if one had some argument or hypothesis related to the dynam-
ics of the biological process that motivates it. Because we implemented a
task-based approach, in principle, for the trained networks, nothing restricts
the different possible internal configurations that give rise to the same
decision-making process.

One explanation for the emergence of the multiplicity of solutions in trained
networks is related to the simplicity of the tasks considered and the absence of
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regularization mechanisms imposed during training. For the same set of initial
conditions, the training can converge to different solutions that are equivalent
in readout activity but different in recurrent activity.

To our knowledge, this is the first time where initialization differences in
trained RNNs for bio-inspired tasks are studied by comparing the Orthogonal
Initial condition and Random Normal initial condition.

A very particular initialization scheme with excellent performance is to
initialize a recurrent neural network with an identity matrix, i.e., a matrix
with ones on the diagonal and zeros elsewhere [86], which translates in all
eigenvalues initially equal to one. This can be useful in the field of machine
learning. One of the primary reasons is that it can help alleviate the vanishing
or exploding gradient problem, which is a common issue in training deep neu-
ral networks. The identity matrix allows the gradients to propagate through
time without significantly amplifying or attenuating them, thereby improving
the stability and speed of training. Additionally, the use of an identity matrix
as the initial weight matrix can help ensure that the network starts with a
balanced and symmetric configuration, which can help improve its overall per-
formance and ability to learn complex patterns. Overall, initializing a recurrent
neural network with an identity matrix can be a useful technique for improv-
ing its stability, performance, and ability to learn. But, from the point of view
of Computational Neuroscience, such configurations are arbitrary and far from
the biological characteristics desired to endow the models.

This is the first detailed study on the network scale in terms of temporal
response and size concerning the capacity to learn such tasks.

Also, this is the first study performed on the trained RNN with damage to
provide insights into how robust is a trained network in terms of its connec-
tivity. A better understanding of model constraints for simple tasks, such as
the ones studied in the present work, could help to develop better models in
computational neuroscience.

Different temporal tasks could require more than encoding time and can
have distinct computational requirements, which include exhibiting tempo-
ral scaling, generalising to novel contexts, or robustness to noise. This work
helps to understand how RNNs can encode time response and satisfy dis-
tinct computational requirements, but we also knowledge that neural activity
at the population level can exhibit different computational or generalization
properties to consider.

Understanding which features arise as a result of choices for task parame-
terization and which properties are related to behaviour in cortical areas from
data is a challenge. This work aims to help this by characterising how robust
the responses in the activity are when the input stimuli vary, when different
response times are considered, when parameters or hyperparameters of the
network (such as size) are changed, or when the characteristics of the trained
network are perturbed. This work provides, on the one hand, constraints on
the models, but on the other, gives ideas on how to define more adequately the
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task parameterization under study so that it is adapted to the characteristics
of the tasks in the laboratory with which individuals or animals are trained.

5 Conclusions

We have presented the results of a set of studies performed on RNNs trained to
perform various temporal and flow control tasks. We showed that small-sized
networks with simple rate models for the individual units are adequate to learn
and perform tasks in response to temporally dynamic inputs. We also showed
that recurrent networks can learn a given task by developing different internal
dynamics—for instance, a constant value in the output can be produced by
the recurrent network either converging to a fixed point or entering a limit
cycle [32].

With this study, we were able to characterize the memory limits for a given
trained network, showing a trade-off between network size and target duration
for a simple task. We explicitly showed how the problem of the vanishing
gradients arises as the target duration is increased, which would help when
selecting a specific model, network size, and target time scale.

We showed how much damage can sustain a trained network before col-
lapsing. In our model, it is the cumulative effect of removing connections that
have a greater effect, rather than the value of the largest connections removed.
In other words, we observed, given this training scheme and topology, in which
way the task is broken when deactivating certain parts of the network and
which part of the weights is significant. We also showed that the responses to
stimuli are not clustered nor do they depend on the sign of connectivity.

The three proposed analyses are valuable when constructing neural network
models employed in Computational Neuroscience. In this work, we analyzed a
simple model of a small network, making available our framework for its use
in further neuroscience studies whenever task parameterization needs to be
designed.

One must be cautious when interpreting model results from RNNs simula-
tions due to the multiplicity of possible outcomes. To provide an example of a
possible wrong conclusion that can be drawn from brain modelling, one might
assume that the observed network behaviour accurately reflects the under-
lying biology of the modelled brain region. However, our work shows that
network training methods can lead to a variety of responses that do not neces-
sarily could reflect typical cortical phenomena. Therefore, our contribution is
to highlight the importance of considering appropriate data-driven hypotheses
when developing a truly descriptive model. In this context, we are referring to
hypotheses about the behaviour and dynamics of the modelled brain region,
such as whether it exhibits oscillatory or non-oscillatory idle states.

We showed that certain characteristics can emerge naturally when applying
network training methods and that the responses obtained due to them are
varied and do not necessarily reflect phenomena typical of the cortex, but
rather typical of the model used.
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Further steps in our studies will include constraints motivated by the biol-
ogy of the brain, such as a distinction between excitatory and inhibitory
units and the study of other cognitive tasks similar to Context-dependent
decision-making making and different kinds of working memory tasks.
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