
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits / Maksim, Jenihhin; Squillero,
Giovanni; Thiago Santos, Copetti; Valentin, Tihhomirov; Sergei, Kostin; Marco, Gaudesi; Fabian, Vargas; Jaan, Raik;
SONZA REORDA, Matteo; Leticia Bolzani, Poehls; Raimund, Ubar; Guilherme Cardoso, Medeiros. - In: JOURNAL OF
ELECTRONIC TESTING. - ISSN 0923-8174. - STAMPA. - 32:3(2016), pp. 273-289. [10.1007/s10836-016-5589-x]

Original

Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10836-016-5589-x

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10836-016-5589-x

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2640850 since: 2019-02-21T18:50:50Z

Springer

1

Identification and Rejuvenation of NBTI-

Critical Logic Paths in Nanoscale Circuits

Maksim Jenihhin1, Giovanni Squillero2, Thiago Santos Copetti3, Valentin Tihhomirov1, Sergei

Kostin1, Marco Gaudesi2, Fabian Vargas3, Jaan Raik1, Matteo Sonza Reorda2, Leticia Bolzani

Poehls3, Raimund Ubar1, Guilherme Cardoso Medeiros3.

1Department of Computer Engineering, Tallinn University of Technology,

Akadeemia 15A, Tallinn 12618, Estonia

E-mails: {maksim | valentin | skostin | jaan | raiub}@ati.ttu.ee

2Politecnico di Torino, Department of Control and Computer Engineering,

Corso Duca degli Abruzzi, 24, Torino 10129, Italy

E-mails: {giovanni.squillero | marco.gaudesi | matteo.sonzareorda} @polito.it

3Catholic University – PUCRS,

Av. Ipiranga, 6681, Porto Alegre 90619-900, Brazil

E-mails: thiago.copetti@acad.pucrs.br, {vargas | leticia.poehls}@pucrs.br

Abstract The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be

one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of

pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI

may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this

paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic

along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical

paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet

accurate model for computation of NBTI-induced delays at gate-level is developed. This model is

based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are

used to drive those pMOS transistors to the recovery phase, which are the most critical for the

NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an

execution overhead, periodically. Experimental results performed on a set of designs demonstrate

reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1% or less.

The proposed approach is aimed at extending the reliable lifetime of nanoelectronics.

Keywords hardware rejuvenation, aging, NBTI, critical path identification, logic circuit,

evolutionary computation, MicroGP, zamiaCAD.

1. Introduction

Guaranteeing lifetime reliability is a key challenge in current nanoscale semiconductor

manufacturing processes. One of the most critical downsides of technology scaling beyond the

65nm node is the non-determinism of the devices’ electrical parameters caused by time-dependent

2

variations [1] in the operating characteristics of the device. Two essential sources of time-

dependent variations have been identified: Bias Temperature Instability (BTI), and Hot Carrier

Injection (HCI) [2]. These physical/chemical effects result in the degradation of the oxide thus

causing a drift of the Threshold Voltage (VTH) over time. In terms of magnitude, BTI has become

the most prominent effect. In fact, BTI creates the interface traps along the entire silicon-oxide

interface and is thus sensitive to temperature and the vertical electric field. On the contrary, hot

carrier generation only damages the interface near the drain side, which makes it basically depend

on the lateral electric field. As devices shrink, the influence of the temperature and the vertical

electric field has largely surpassed the influence of the lateral field [5].

BTI manifests in two distinct forms, depending on the type of transistor involved:

Negative BTI (NBTI), which affects pMOS transistors, and the its counterpart Positive BTI

(PBTI), which affects nMOS devices. In current technologies, the impact of PBTI is much lower

than NBTI. Therefore, this paper specifically addresses the Negative Bias Temperature Instability

(NBTI) phenomenon [4]. It is worth mentioning that the importance of PBTI is expected to

increase, particularly with the adoption of high-k, Hafnium-based dielectrics in the gate-oxide for

leakage reduction [3].

1.1 Preliminaries

NBTI is defined as the effect that occurs when a pMOS transistor is negatively biased.

The effect manifests itself as an increase of the pMOS transistor threshold voltage |VTHp| over

time. This leads to drive current reduction and noise increase, which in turn causes a degradation

of the device delay. NBTI’s impact on the long-term stability of functional logic is expressed

through the incapability of storing a correct value in memory elements such as flip-flops. This

effect is due to the de-synchronization between clock distribution and signal propagation through

logic paths of a circuit. Therefore, after several years of circuit operation time, the NBTI-induced

delays may cause, first, intermittent faults and, ultimately, permanent functional failures in the

circuit [6].

The analysis of the NBTI effect is more complicated than other traditional reliability

issues, e.g., HCI [11]. Despite of several theories proposed over the last decade in order to explain

NBTI degradation, common understanding of the process in the scientific community is still

subject for research. Nowadays, two widely accepted theories coexist, namely the reaction-

diffusion model (R-D) [4],[5] and the trapping/detrapping model (T-D) [7],[8]. In this paper, we

will rely on the R-D model. Generally, NBTI includes stress and recovery phases (see Fig. 1a).

The stress phase occurs when a pMOS transistor is in a negatively biased condition, i.e., VGS =

−VDD (see Fig. 1b for an example of NBTI in a CMOS invertor gate). However, when the biased

voltage is removed, i.e., VGS = 0, the pMOS transistor is in the recovery phase and the NBTI effect

is partially reversed. The VTHp will still increase over time, however in case of sufficient in the

recovery phase, the aging process may be slowed down considerably.

3

The variation of VTHp of pMOS transistors due to dynamic NBTI (i.e. when the stress and

recovery phases are iterating) is estimated to be 5-15% per year [12],[13]. The exact value depends

on the targeted technology and the environment (e.g. ambient temperature and user workload). The

VTHp shift due to static NBTI (i.e. when a transistor is under constant stress) can be significantly

higher. The path delay degradation follows the same trend, though with a smaller magnitude. It has

been shown that NBTI depends on many factors [16], but its strongest correlation is with the

signal probability Pz (input duty cycle). The signal probability Pz(xi) for a logic gate’s input xi is

defined as the ratio of time during which the input signal xi is set to logic 0.

1.2 Contributions

In this paper, we propose a novel approach to mitigate NBTI using rejuvenation of

nanoscale logic at NBTI-critical paths with dedicated stimuli sequences. The method is based on

fast and hierarchical identification of NBTI-critical paths at gate level and the rejuvenation stimuli

generation using an Evolutionary Algorithm. Note that this work does not aim at contributing to

the development of a new transistor-level model for the underlying NBTI physical and chemical

processes and assumes the existing models as an input.

First, based on SPICE electrical simulations, an accurate gate-level model for fast

computation of NBTI-induced path delay degradation Δtpath and identification of NBTI-critical

paths is developed. In more detail, this method is based on the estimation of NBTI-induced delays

for individual gates Δtgate along selected timing-critical paths followed by a static timing analysis.

Experiments with an industrial ALU circuit expose the good match of the gate-level approach to

the electrical simulation results with the simulation speed-up of several orders of magnitude.

Second, an approach to create rejuvenation stimuli for the identified NBTI-critical paths

using an evolutionary stimuli generation algorithm is proposed. In this paper, we exploit a general-

purpose evolutionary toolkit called µGP [36],[37] and find a suitable fitness function using an

open source hardware analysis framework zamiaCAD [39]. The advantage of such flow lies in its

flexibility for solving the dependencies of impacts by individual gates to the most critical NBTI-

induced path delay by using evolutionary optimization processes.

Fig. 1 (a) Illustration of NBTI stress and recovery phases; (b) CMOS invertor gate under NBTI stress.

a) b)

4

The generated rejuvenation stimuli are applied at predefined periods in order to drive

pMOS transistors to the recovery phase. Thus, the proposed approach aims at extending the

reliable lifetime of nanoelectronics.

The remainder of the paper is organized as follows. Section 2 provides an overview of the

related work. Section 3 introduces SPICE-inspired models for NBTI-induced gate delay

calculation. Section 4 proposes a method for fast gate-level identification of NBTI-critical logic

paths. Section 5 introduces a flow for evolutionary generation of rejuvenation stimuli and presents

corresponding experimental results. Section 6 discusses applicability and limitations the

rejuvenation procedure. Section 7 concludes for the paper.

2. Overview of Related Work

Previous works appearing in the literature address the NBTI problem both for memories

[12],[18] and for functional logic. Usually, to mitigate the impact of NBTI on the circuit’s lifetime

these approaches adopt redesign strategies, voltage and frequency scaling and internal node

control guided by monitoring attributes or design structure analysis.

The work in [19] proposes a redesign approach for functional logic based on transistor

sizing technique that not only mitigates NBTI induced delay of the gate under consideration, but

also minimizes its impact on the adjacent gates. This technique appears to be very effective, but it

is mandatory to provide the critical gates and paths to which it should be applied. Otherwise, this

technique will result in an unacceptable area overhead and eventually, excessive power

consumption. In [20] the authors present a method, which characterizes the delay of every gate in a

standard cell library as a function of the signal probability (Pz) of each of its inputs and suggests an

NBTI-aware synthesis accordingly. It demonstrates an average of 10% area recovery for 65nm

technology under the pessimistic assumption that all pMOS transistors in the design are under

constant static NBTI stress. Although the calculation process in [17] and [20], allowing the

derivation of aging curves for logic components, is handy, it is also prohibitively time consuming.

This is due to an extremely large number of stress recovery cycles that have to be computed. The

work in [21] proposes an approach for temporarily hiding NBTI-induced aging by applying

changes to voltage and frequency of the circuit.

Approaches to analyze the efficiency of controlling input signal probability for mitigating

NBTI at circuit level were proposed in [22],[23]. Works in [24],[25] propose to exploit the idle

time of processors and unused bits in source operands [26]. A very relevant approach for processor

circuits’ rejuvenation is presented in [27], where authors propose to replace the default NOP with a

special “maximum aging reduction NOP instruction” that, while having no effect on the program

state, minimizes the NBTI effect. The results show that this method can extend circuit lifetime by

an average of 37%, with performance, power, and area overhead within 1%.

Different from state-of-the-art, in this paper, a novel approach of approximation by

mathematically convenient functions is used to calculate the gate and path delay degradations

caused by NBTI aging. In addition, to the best of our knowledge, it is the first time that

evolutionary algorithms are applied to the task of rejuvenation stimuli generation.

5

The following points resume the advantages of the approach proposed in this paper:

a) it is based on fast, yet accurate hierarchical gate-level identification of NBTI-critical

paths where rejuvenation has to be applied;

b) it proposes efficient rejuvenation stimuli generation using an evolutionary algorithm;

c) it does not require redesign and can be applied to an existing circuit, exploiting , if

necessary, the existing design-for-testability instruments.

3. NBTI-Induced Gate Delay Models

In this section, a hierarchical modeling of NBTI aging process [29] is introduced. Here,

the gate delay degradation is calculated by polynomials matching previously measured or

simulated NBTI-degradation data on devices, e.g. [17] or [8], and SPICE simulations at transistor

level. The NBTI-induced gate delay degradation analysis flow implemented in this paper can be

represented by the following three steps:

 Step 1: Obtaining a curve for ∆VTHp as a function of Pz for selected environmental

variables, technology and a given time of operation in years. (Section 3.1 presents the

details for deriving the equation).

 Step 2: Performing extensive electrical simulations of individual gates in SPICE to

obtain curves of degradation of delay Δt for each input of each gate type under the

stressed conditions, i.e. when the corresponding input switches from 1 to 0. Δt will be

represented as the percentage of change of the nominal delay t for the given gate.

(Section 3.2 explains the process of obtaining the curves for Δt).

 Step 3: Developing approximated polynomial equations for the aging curves obtained in

Steps 1 and 2. This step enables mathematically convenient calculation of NBTI-critical

paths at the gate-level, as to be presented in Section 4.

Note, that as a preprocessing step, complex gates are flattened into NAND, NOR and

inverter stages (e.g. an AND gate is represented by a NAND gate followed by an inverter gate).

3.1. Modeling dependency of pMOS transistor VTHp shift on signal probability Pz

In the NBTI effect analysis, we rely on a reaction-diffusion (R-D) mechanism based

predictive model for dynamic NBTI presented in [9],[10] and verified with an industrial 65-nm

technology as stated in [10]. The proposed model predicts the long term threshold voltage VTHp

degradation due to NBTI at a time t > 1000s and is proven to be independent of the frequency at

high frequencies [9]. It captures the dependence of NBTI on the gate oxide thickness tox of pMOS

transistor, a variety of the dominant diffusion species (H or H2) expressed by the time exponent

parameter n, a duty cycle Pz (probability that pMOS transistor is under stress) in addition to its

dependence on other key process and design parameters as presented in [9]:

|∆𝑉 ு௣| ≈ (
௡మ ௄ೡ

మ ௉೥ ஼ ௧

కభ
మ௧೚ೣ

మ (ଵି௉೥)
)௡ (1)

6

where C = To
-1exp(-Ea / kT), Ea is the activation energy of hydrogen species, k is the Boltzmann’s

constant, T – temperature, ξ1 and To are technology dependent constants, and Kv is expressed by

following formula [9]:

𝐾௩ = (
௤ ௧೚ೣ

ఌ೚ೣ
)ଷ 𝐾ଵ

ଶ 𝐶௢௫൫𝑉௚௦ − 𝑉௧௛൯√𝐶 exp (
ଶா೚ೣ

ா೚భ
) (2)

where q is electron charge, Cox = εox / tox is the oxide capacitance per unit area, in the strong

inversion region the vertical electrical field Eox = (Vgs – Vth) / tox ; εox K1 and E01 are technology

dependent constants.

Equation 1 is valid only for dynamic NBTI, since if Pz reaches the value 1, the value of ∆VTHp

becomes infinite and the formula incorrect. Therefore, the upper limit of ∆VTHp is defined by

following equation, which models only static NBTI [9]:

|∆𝑉 ு௣| = (𝐾௩
ଶ𝑡)௡ (3)

When values of all key design parameters are entered into Equation 1, then arithmetical operations

with known values are performed and the result is stored in parameter γ, the equation gains the

following form:

 | ∆𝑉 ு௣ | = 𝛾(
௉೥

ଵି௉೥
)௡ (4)

Equation 4 represents a mathematically convenient function of threshold voltage VTHp degradation

dependence on the signal probability for input signal Pz(xi) of pMOS transistor, where n = 1/6 and

γ = 0.0904. In Fig. 2 the corresponding dependence is illustrated for PTM 65 nm technology after

10 years of NBTI-induced degradation.

Fig. 2 Threshold voltage shift ∆VTHp as a mathematically convenient function of signal probability Pz

Alternative technologies or alternative silicon measurements data may result in variations

of the function shape and, thus, changes of the coefficients’ values. Moreover, threshold voltage

VTHp degradation depends also on temperature T and supply voltage Vdd as shown in Fig. 3.

However, the procedures of NBTI-critical paths identification and rejuvenation proposed in this

paper maintain their validity. Equation (1) allows fast computation of NBTI-induced VTHp shift, as

it depends on a signal probability at the inputs of the considered logic gate. These voltage shift

values serve as input values for modeling the NBTI-induced gate delays.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

∆VTHp , V

Pz

Static NBTI

65 nm PTM

Vdd = 1.1V

T = 400K

t = 10 years

7

3.2. Modeling NBTI-induced gate delay degradation based on electrical simulations

in SPICE

Modeling of NBTI-induced gate delay degradation relies on intensive SPICE electrical

simulations, in case of this work, performed using Synopsys HSPICE simulator. The selected

technology was the 65nm PTM [30] with VDD = 1.1V and VTHp = -0.365V. For an alternative

technology, it would be necessary to repeat the same gate aging characterization procedure in

SPICE.

The SPICE simulation process consisted of simulating the basic cells of the technology

library for different VTHp shift values ∆VTHp in order to capture the dependence of gate output

delay on VTHp. The output load capacity CL for gate output was chosen to be 1.0fF in accordance

with the selected 65nm technology. Fig. 3 displays the typical n- and p-networks device

interconnections for Inverter, NAND and NOR gates considered for simulation.

(a)

OUT

INA

INB

INK

INBINA INK

(b)

GND

VDD

P-NET

N-NET

OUT

INA INB INK

INB

INA

INK

(c)

GND

VDD

P-NET

N-NET

OUT

VDD

GND

P-NET

N-NET

IN

Fig. 3 Typical n- and p-networks displaying device interconnections for (a) Inverter, (b) NAND and (c) NOR

gates considered in this work.

According to the Equation (3), the maximum VTHp shift under static NBTI can be up to

0.27V (for 10-year induced NBTI aging). Therefore, we have performed SPICE simulations

increasing the ∆VTHp(xi) value step-by-step from 0V to 0.27V applying a 2.5% sampling step to

obtain gate output delay degradation for basic gates.

Fig. 4 shows the gate-aging characterization curve in SPICE for an Inverter. It captures

the dependence of the gate output delay on ∆VTHp for the rising input transition 0→1.

8

Fig. 4 Dependence of the gate output delay Δt on the VTHp shift ΔVTHp in an Inverter gate. Results of SPICE

simulations (blue curve) and of the proposed mathematically convenient function (black dashed curve).

The following mathematically convenient function (black dashed curve) was matched to

the curve produced by the characterization using SPICE (blue curve) in order to extract gate output

delay dependency on NBTI-induced aging due to ∆VTHp:

Δtgate= λ·∆VTHp(xi)+μ·∆VTHp(xi)
2 (5)

where Δtgate is the gate output delay increase (in percent) compared to nominal gate delay,

ΔVTHp(xi) is the change of VTHp for pMOS transistor at the gate input xi, while λ and μ are

technology dependent constants. In our experiments λ and μ are set to 1.63 and 5.3 for the Inverter

gate. The maximum and average deviation values of the fitting function from the SPICE results

were 4.22% and 1.19%, correspondingly.

In case of many-input gates embracing pMOS transistors networks (see Fig. 4), both the

physical location of each pMOS transistor relative to the output node and the combination of gate

inputs 1→0 transitions have impact on the level of gate delay degradation. Assume INA and INB

are logic input values for a 2-input NAND gate switching as follows. In this case, 3 different

curves exist to describe the NBTI effect in the gate depending on the input values case the gate

output switches 0→1. These are depicted in Fig. 5a. Note, that our approach is pessimistic in case

c), because, in fact, the two pMOS transistors will not degrade with the same speed.

a) INA= 0→1, INB = 1 (poly1);

b) INA= 1, INB = 0→1 (poly2);

c) INA= 0→1; INB = 0→1 (poly3).

The largest difference appears between the values of curves a) and b). It increases up to

15% when ∆VTHp surpases 0.24V that corresponds to a signal probability Pz(xi) very close to 1.

Moreover, for Pz(xi) values below 0.9, the mean difference is still significant – up to 4%. This

difference is caused by the stressed pMOS transistor location in the net (see Fig. 4) and identifies

the necessity to consider which pMOS transistor of the gate is being under NBTI stress since it

impacts on the gate output delay degradation.

0%

10%

20%

30%

40%

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

Inverter

SPICE

poly

Vdd = 1.1V

T = 400K

Δt, %

ΔVTHp , V

= 3.2𝑉 ு௣
ଶ + 0.7𝑉 ு௣

9

Fig. 5 NBTI impact on gate delay degradation for combinations of input values at
a) 2-input NAND and b) 2-input NOR.

This dependence becomes more significant for NOR gates where pMOS transistors are

connected in series (compared to the parallel connection in NAND gates). Fig. 5b presents

corresponding curves for a 2-input NOR gate, where:

a) INA= 0→1, INB = 0 (poly1);

b) INA= 0, INB = 0→1 (poly2);

c) INA= 0→1; INB = 0→1 (poly3).

Here, the difference between curves b) and c) is over 20% if the VTHp is shifted by 0.2V

and more.

The degradation variance is even more dramatic for logic gates with a larger number of

inputs. Each combination of input values corresponds to an individual function of delay

degradation Δt over VTHp shift. Considering a 4-input NOR gate output delay degradation

described by 15 different curves presented in Fig. 6, where up to 4 simultaneous transitions of the

4 inputs are analyzed. In our approach, each curve is modelled by different values of constants λ

and μ in Equation (2).

Fig. 6 SPICE simulation for 15 different scenarios of a 4-input NOR gate delay degradation.

The SPICE experiments show that only the 0→1 transition at gate inputs reveals the

NBTI-induced gate delay, while the 1→0 transition is computed by the gate with no or negligible

NBTI-induced gate delay Δtgate. This can be explained by the fact that during the time the pMOS

device in the p-network ages, it facilitates the task of discharging the gate output capacitance by

0%

10%

20%

30%

40%

50%

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

2-NAND
SPICE1
SPICE2
SPICE3
poly1
poly2
poly3

ΔVTHp , V

Δt, %

Vdd = 1.1V

T = 400K

= 2.45𝑉 ு௣
ଶ + 0.96𝑉 ு௣

= −0.3𝑉 ு௣
ଶ + 1.6𝑉 ு௣

0%

10%

20%

30%

40%

50%

60%

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

2-NOR
SPICE1
SPICE2
SPICE3
poly1
poly2
poly3

ΔVTHp , V

Δt, %

Vdd = 1.1V

T = 400K

= 2.37𝑉 ு௣
ଶ + 0.79𝑉 ு௣

= 2.92𝑉 ு௣
ଶ + 1.16𝑉 ு௣

= 4.65𝑉 ு௣
ଶ + 0.82𝑉 ு௣

0%

30%

60%

90%

120%

150%

180%

0 0,03 0,06 0,09 0,12 0,15 0,18 0,21 0,24 0,27

4-NOR
'1000'->'0000' '0100'->'0000' '0010'->'0000' '0001'->'0000' '1100'->'0000'
'1010'->'0000' '1001'->'0000' '0110'->'0000' '0101'->'0000' '0011'->'0000'
'1110'->'0000' '1101'->'0000' '1011'->'0000' '0111'->'0000' '1111'->'0000'

ΔVTHp , V

= 1.75𝑉 ு௣
ଶ + 1. 1𝑉 ு௣

Vdd = 0.9V

T = 27C

10

the nMOS device, placed in the n-network. The exceptions are NOR gates, especially the NOR

gates with multiple inputs, where gate delay degradation Δtgate for input 1→0 transition becomes

even negative, i.e. the transition delay is decreased compared to the nominal one.

Environmental variables such as ambient temperature T have significant impact on the

NBTI-induced delay. SPICE simulations for 27°C, 105°C and 400K (126.85°C) performed for the

three basic gates are presented in Fig. 7.

Fig. 7 Influence of the ambient temperature on NBTI-induced delays at basic gates.

Both the gate nominal delay and the NBTI-induced delay are impacted by the gate output

load capacitance, which itself is defined by the circuit structure, e.g. the fan-out size at the gate

output (available at the gate-level modelling stage), the length of wires (available at the layout

floor planning phase). While its impact on the nominal delay is very significant, it was able to

conclude from our SPICE simulations that output load capacitance does not significantly impact

the NBTI-induced delay even in the case of realistic long wires, i.e. CL is up to 10 fF (see Fig 8).

As a simplification, our NBTI-induced path delay modelling approach does not explicitly model

gate-output load capacitance for aging and applies it to nominal delay calculation only. Our

experiments (see Section 4.3) demonstrate that this simplification yields acceptable NBTI-induced

path delay estimation with inaccuracy lower than 2% when compared to SPICE simulations.

Fig. 8 Impact of output load capacitance on NBTI-induced delay

4. NBTI-Critical Logic Paths

The approximation of the curves to mathematically convenient polynomial equations

proposed in Section 3 enables fast hierarchical identification of NBTI-critical logic paths at the

gate-level. It is based on simulation of signal probabilities, static timing analysis with nominal

delays and calculation of the longest NBTI-degraded path using NBTI-induced path delays. In

order to explain the main concepts, let us introduce some basic definitions.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0,00 0,03 0,05 0,08 0,11 0,14 0,16 0,19 0,22 0,25 0,27

Inverter
27C 105C 126.85C(400K)

ΔVTHp , V

Δt, %

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0,00 0,03 0,05 0,08 0,11 0,14 0,16 0,19 0,22 0,25 0,27

2-NAND
27C 105C 126.85C(400K)

ΔVTHp , V

Δt, %

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0,00 0,03 0,05 0,08 0,11 0,14 0,16 0,19 0,22 0,25 0,27

2-NOR
27C 105C 126.85C(400K)

ΔVTHp , V

Δt, %

0,0%

5,0%

10,0%

15,0%

20,0%

0 2,5% 5% 7,5% 10% 12,5% 15% 17,5% 20% 22,5% 25%

Δtinverter, %

ΔVTHp , %

Inverter

1 fF
1.5 fF
5 fF
10 fF

Vdd = 0.9V
T = 27C

11

Definition 1: An NBTI-critical path is a path in the circuit whose delay d is greater or equal than a

ratio of B/D, where B is the time budget for the computations along the path to complete, i.e. the

time during which a signal can arrive without making the clock cycle longer than desired and D is

the coefficient by which a path can be slowed down by NBTI in the current technology and for the

given workload.

For example, if it is known that in the particular case NBTI may cause up to 20% of delay

degradation for the given time period of interest, then D is equal to 1.2.

Definition 2: The longest NBTI-degraded path is the path that has the longest total delay when

considering NBTI-induced additional delays Δt for the gates along that path. Here, NBTI-critical

paths have to be analyzed both for 0→1 and 1→0 transitions at their primary inputs.

This Section is organized as follows. First, we introduce an algorithm to identify NBTI-

critical logic paths and the longest NBTI-degraded path. This is followed by an example

explaining the identification process. Finally, we provide experimental results for accuracy

assessment of the hierarchical NBTI-critical paths calculation.

4.1. Identification of NBTI-critical logic paths

Consider a combinational gate-level logic circuit represented as a netlist N = (G, X) where

G={ gj|j=0,…,m} is a set of gates and X={xi|i=0,…,n} is a set of signal lines. The set X is

partitioned into three subsets: a set of lines IN to represent the primary inputs of the network, a set

of internal lines FN to represent the signal lines connecting the gates, and a set of lines OUT to

represent the primary outputs of the netlist. An example of such a netlist is presented in Fig. 9.

1) The first task is to calculate the values of signal probabilities Pz(xi) for signal lines xi

by applying logic simulation of the expected workload to netlist N.

2) The next task is to characterize each signal line xi of the circuit by a restricted number

of L paths represented by pairs Mk(xi)=(dk(xi), sk(xi) = {xPI, ..., xi}), where k = 1, ..., L and xPI is the

primary input at the start of the corresponding path.

dk(xi) – is the delay of the k-th selected path from the primary input xPI to the line xi;

sk(xi) – is the set of signal lines on the path from a primary input xPI to the signal xi.

The calculation of the pairs Mk(xi) starts from the primary inputs of the netlist N. The

delay value dk(xi) for an output signal xi of a gate gj is calculated as dk(xi) ={max dk(xin,l)}+t(gj),

where xin,l is the l-th input signal of the gate gj and t(gj) is the nominal delay of the gate gj. In order

to avoid an explosion of the number of paths to be analyzed, we introduce a threshold L for the

number of longest paths traced up to the current signal line xi under analysis for continuing the

calculations of the pairs. As a result we obtain a list of Li pairs Mk(xi) for each primary output

signal xiOUT, where Li ≤ L.

Fig 9 shows the values of Mk(xi) calculated for each signal line xi in the netlist N.

3) As the next task, all the obtained pairs {Mk(xi) | xiOUT} for which dk(xi) ≥ B/D, where

B is the time budget for the path to complete and D is the maximum expected delay degradation

ratio, will be added to the set of NBTI-critical paths C.

12

4) Finally, all the paths sk(xi) in C={Mk(xi)=(dk(xi), sk(xi) = {xPI, ..., , xi, …, xPO} |

k=0,…,K} will be analyzed for both 0→1 and 1→0 transitions at their primary inputs in order to

calculate their delays after NBTI-degradation. We will calculate the NBTI-degraded delay for the

paths sk(xi) by summing up the delays of gates along these paths obtaining the NBTI-degraded path

delay d'(sk(xi)) for the given transition. Since all the gate stages gj along the paths invert the values

at their input, for 0→1 (1→0) transition at the primary input of the path sk(xi), in the case of even

order (odd order) gates on path sk(xi) their nominal delays t(gj) are summed, while NBTI-degraded

delays τ(gj) are summed for the odd order (even order) gates, respectively. This is due to the fact

that the NBTI-induced delay Δt(gj) manifests itself only under the stressed condition, i.e. when the

output of gj is switching from 1 to 0. The NBTI-degraded gate delay τ(gj) is calculated as

t(gj)·(100% + Δt(gj)), where Δt(gj) is provided as percentage of delay degradation (see Section 3).

Degraded delays for the different gate inputs are calculated separately.

As a result, we obtain NBTI-degraded delay values d'(sk(xi)) for both input transitions for

all the NBTI-critical paths in the set C and we identify the overall delay of the longest NBTI-

degraded path. The latter will be applied as the fitness value to the evolutionary optimization

presented in Section 5.

Table 1 shows an example of calculating the values of NBTI-degraded delays τ(gj) for

each input of gates gj. In addition, it shows the resulting values for the NBTI-degraded path delays

d'0→1 and d'0→1 for the identified NBTI-critical paths.

The four above-described tasks are summarized in Algorithm 1 presented in the

following:

Algorithm 1. Identification of NBTI-critical logic paths

Calculate Pz(xi) for signal lines xi by logic simulation of the expected workload

For all lines xi  IN Do Assign dk(xi): =0; End for

For all lines xj  FN  OUT Do

proceed along the numeration of the lines calculating the following:

 dk(xi) :={max dk(xin,l)}+t(gj), where xin,l is the l-th input signal of the gate gj;

 Save highest dk(xi) values only up to L for further calculation;

 End for

 C:={Mk(xi) | xiOUT} for which dk(xi) ≥ B/D;

 For all pairs Mk(xi) =(dk(xi), sk(xi)) C Do

 For 0→1 and 1→0 transitions at the primary input of sk(xi) Do

 d'(sk(xi)):=∑ t'(gj), where gj are the gates forming the path sk(xi) and

 t'(gj)= τ(gj) when 0→1 at the input of gj, otherwise t'(gj)= t(gj);

 End for

 End for

 Return {max d'(sk(xi))}

13

4.2. NBTI-critical path identification example

Consider the example circuit shown in Fig. 9 consisting of 7 gates. The nominal delays

for each gate t(gj) are marked next to them. As the starting point, we set a limit L for the number of

paths to be considered at each signal line xi. In other words, only up to L paths with the most

significant delay d(xi) will be propagated to the next gate from xi. In our simple example, L is set

to 4. An additional parameter is the time budget B. Let the time budget for the circuit in Fig. 9 be

45 time units. Assuming that a maximum NBTI degradation for a path is estimated to be e.g. 20%,

we can calculate a threshold for a path to be considered NBTI-critical. According to the values in

this example, any path longer or equal to B/D=45/1.2=37.5 time units will be NBTI-critical.

The first task is to characterize a restricted number of L paths represented by pairs Mk(xi)

for each primary output signal line xiOUT of the circuit. As we can see from Fig. 9, four paths

(represented by pairs M1(x10), M2(x10), M1(x11) and M2(x11)) exceed the threshold value of 37.5

time units and are therefore included to the set of K=4 NBTI-critical paths (highlighted by bold

lines in the figure).

Fig. 9. An example of NBTI-critical paths identification.

Table 1. An example identification of NBTI-critical paths and of the longest NBTI degraded path.

 Delays (in time units)

Gates g0 g1 g2 g3 g4 g5 g6

t(gj) 10 10 14 6 8 15 9
d(xi) 10 10 24 16 32 39 41

τ(gj) for INA 12 11 16 8 10 18 10
τ(gj) for INB 12 12 17 9 20 11

d'0→1({x2,x6,x7,x9,x11}) 11 25 34 43
d'1→0({x2/3,x6,x7,x9,x11}) 10 26 34 44
d'0→1({x3,x6,x7,x9,x11}) 12 26 35 44

d'0→1({x2,x6,x7,x10}) 11 25 45
d'1→0({x2/3,x6,x7,x10}) 10 26 41
d'0→1({x3,x6,x7,x10}) 12 26 46

Table 1 presents the identification of NBTI-critical paths and calculation of the longest

NBTI degraded path. The third row “t(gj)” provides the nominal delays for each gate gj. The fourth

14

row “d(xi)” shows the longest delay from primary inputs to the signal corresponding to the gate

output.

In order to calculate the delays of the NBTI-critical paths after the NBTI-degradation we

apply Δt(gj) derived for each gate input based on the corresponding Pz values at these inputs

obtained by gate-level simulation of the user workload. Rows 5 and6 in Table 1 show the NBTI-

degraded delay τ(gj) for gates in the stressed state, i.e. when the input is switching from 0 to 1.

Degraded delays for both gate inputs INA and INB are calculated separately (g3 being an inverter

has only one input).

Subsequently, the degraded delay d' of each NBTI-critical path is calculated separately

with τ(gj) used for 0→1 transitions (stressed condition) and t(gj) used for 1→0 transitions (relaxed

condition) at the respective gate inputs. Two degraded path delay calculations will be performed

for each NBTI-critical path, one for primary input transition 0→1 and one for the transition 1→0.

Thus, for K=4 NBTI-critical paths 2·K=8 calculations are made. The Table lists the NBTI-

degraded path delay calculations for the eight paths on six rows, due to the fact that the calculation

results for the paths starting with x2 and x3 (denoted by x2/3 in the Table) are equivalent with 1→0

primary input transition and are consequently combined into single rows. As it can be seen from

the Table, the path M2(x10)=(46, {x3,x6,x7,x10}) for a 0→1 primary input transition is the longest

NBTI degraded path with the given user workload.

 In order to explain obtaining the delay of the longest NBTI degraded path M2(x10)=(46,

{x3,x6,x7,x10}), consider the last row “d'0→1({x3,x6,x7,x10})” of Table 1. For the delay from input x3

to the output of gate g1, we have to select the “τ(gj) for INB” since 0→1 transition represents the

stressed condition for the gate g1. Thus, the delay at g1 is 12. For the next gate, gate g2, we have to

apply the nominal delay “t(gj)” because the transition at the gate input is 1→0 and the gate is in a

non-stressed state. Thus, the delay at g2 is 12+14=26. Finally, for g5 we have to select again the

“τ(gj) for INB” since x7 has the 0→1 transition, which represents the stressed condition for the gate

g5. Thus, the final NBTI degraded path delay for path d'0→1({x3,x6,x7,x10}) at the output of g5 is

12+14+20=46.

4.3. Experimental results for accuracy assessment of model-based NBTI-critical

paths calculation

NBTI-critical paths identification is demonstrated on a 4-bit ALU 74HC/HCT181 design

from Philips [44] with minor modifications, i.e. its XOR gates have been replaced by NAND and

Inverter gates. In Fig. 10, the design’s combinational logic is outlined by a dashed border. We

assume that the interfaces can be connected to flip-flops (FF) and consider logic paths between

them. In our experiment, we compare the proposed fast gate-level approach and SPICE simulation

results for path delay calculation and assess accuracy using 5 selected NBTI-critical logic paths

shown in as colored lines in Fig.10.

15

Fig. 10 A set of NBTI-critical paths identified in the 74HC/HCT181 design.

According to the circuit specification [44] all input stimuli combinations are allowed. In

our experiment, an exhaustive set of input patterns (16,384 vectors) has been generated. This set

has been repetitively applied in order to represent a potential user workload. Firstly, input signal

probabilities Pz for all related pMOS transistors are calculated based on logic simulation results.

Secondly, these values are used as input in order to compute the ∆VTHp values for pMOS

transistors using Equation (1). The resulting ∆VTHp values serve as input for: a) Equation (2)

followed by application of Algorithm 1 and b) path delay simulations in SPICE.

Table 2 demonstrates the path delays induced by NBTI during 10 years at the selected

NBTI-critical paths in the 74HC/HCT181 design calculated by the proposed approach and

accurate transistor-level simulation in SPICE. Columns 2 and 3 show path delay degradation ∆tpath

in percentage for the rising-edge output transition calculated by the proposed approach and SPICE

simulation, respectively. Columns 4 and 5 represent the same information for the falling-edge

output transition. The proposed fast gate-level NBTI-induced delay estimation closely correlates

with the results obtained in SPICE. The small deviation is mainly caused by the impact of output

load capacitance values on gate delay degradation considered in SPICE simulation and not taken

into account by the abstraction level of the proposed model. The proposed approach provides a

reduction of several orders of magnitude regarding the time required to compute NBTI-induced

delays for NBTI-critical paths compared to respective SPICE simulations (0.56 seconds versus 5

minutes). The resulting accuracy for NBTI-induced path delays computation by the proposed

approach is acceptable (always lower than 2%) and within the accuracy margins required by the

rejuvenation approach described below.

16

5. Evolutionary Generation of Rejuvenation Stimuli

While several test generation techniques can be applied to create rejuvenation stimuli for

the identified NBTI-critical paths, an evolutionary algorithm is an efficient option due to its

inherent properties. Primarily, it is by construction “blind” regarding the structure of the circuit

under analysis, and, therefore, it is able to solve dependencies caused by impacts of individual

gates and capable to obtain a cost-effective global solution with respect to all critical paths.

5.1. Evolutionary Algorithms

Evolutionary Algorithms (EAs) [31] are algorithms loosely inspired by mechanisms of the

biological theory of evolution. When EAs are used to tackle a specific problem, an individual is a

single candidate solution, and its fitness is a measure of its capacity to solve the problem to be

tackled; the set of all candidate solutions that exists at a particular time represents the population.

Evolution proceeds through discrete steps called generations. In each of them, the population is

first expanded (using a set of operators applied to the existing population), and then collapsed,

mimicking the processes of breeding and struggling for survival. The population in the first

generation may be either completely random or seeded with existing solutions (see Fig. 11).

Fig. 11 An evolutionary algorithm.

Over the years, EAs have proven capable of solving difficult problems even within highly

complex fitness landscapes, such as open problems related to networking or protocols.

GENERATE AND EVALUATE

INITIAL SET OF SOLUTIONS

STOP

CONDITION
REACHED

?

NO

GENERATE

NEW SOLUTIONS

EVALUATE

NEW SOLUTIONS

DISCARD LESS FIT / OLDER

SOLUTIONS

RETURN BEST SOLUTION
YES

Table 2. NBTI-induced path delays at selected NBTI-critical paths in the 74HC/HCT181 design. A
comparison of values calculated by the proposed fast gate-level approach and simulations in SPICE.

Path

Delay for path output transition

01 (rise-edge delay) 10 (fall-edge delay)
Proposed SPICE Proposed SPICE

∆t, %
+- %

∆t, % ∆t, % ∆t, %

F3#26 13.76 13.95 11.12 11.71
F3#38 13.16 13.73 12.23 10.92

F2#61 13.06 12.09 12.27 13.91

F3#74 13.26 12.93 11.68 11.76

F1#77 7.78 9.76 17.20 16.38

17

Evolutionary optimizers have been successfully exploited both in stationary and dynamic

situations. They were demonstrated to be able to identify either single optima or Pareto sets in

multi-objective problems. Since 1990s, the complexity of the electronic circuits dramatically

increased, and evolutionary heuristics started to be seen as alternatives to classic approaches in the

EDA area. Researchers proposed EA-based methodologies for tackling several well-known NP-

hard problems, such as placement, floor-planning, routing [32], and automatic test-pattern

generation [34], [35]. EAs have also demonstrated to be efficient for evolving assembly test

programs for microprocessors, for validation, post-silicon verification, and test [33].

The task of generating rejuvenation stimuli calls for the use of an EA. The evolutionary

approach is intentionally “blind” towards the structure of the circuit. As a result, the EA might be

able to sort out dependencies of impacts by individual gates, and obtain a global solution with

regard to all critical paths in a cost effective manner. Note, that, generally, the internal information

about the circuit is still required by external tools that provide the EA with feedback on the

generated solutions’ quality (i.e. fitness).

5.2. The Evolutionary Toolkit µGP

The approach presented here makes use of an evolutionary toolkit named µGP. µGP was

developed at the Politecnico di Torino in the early 2000s [36], [37], [38], and it is now available

under the GNU Public License from Sourceforge.

µGP allows a high degree of customization, but most of its parameters can also be self-

adapted, that is, it can autonomously set them to a reasonable value during the optimization

process. This self-adaptation mechanism is also used to shift the algorithm’s focus between

exploration, i.e., seeking new solutions changing significantly the current ones, and exploitation,

i.e., tweaking the current good solutions changing them slightly, increasing both the speed and the

quality of result.

µGP implements a large variety of genetic operators that can handle the specific

characteristics of the individuals. Moreover, two operators mimic differential evolution [38] to

more efficiently handle real-valued parameters, while one operator performs a pseudo exhaustive

search on a single element of the solution. All operators may be activated with a specific

probability, and, further, self-adaptation regulates these probabilities [39].

5.3. Flow for evolutionary generation of rejuvenation stimuli

Fig. 12 A general flow of the evolutionary system developed in this work.

µGP core
Rejuvenation

stimuli set

Individuals Best
individual

zamiaCAD

EVALUATOR EA

Rejuvenation
stimuli set

Circuit
under

analysis

fitness value

18

The approach for rejuvenation stimuli generation proposed in this paper was implemented

on top of the open source scalable hardware design and analysis framework zamiaCAD [40],[41].

The front-end of zamiaCAD includes a parser and an elaboration engine that supports full VHDL-

2002 standard specification and a set of VHDL-2008 extensions. On the back-end side, the

framework allows design simulation, static analysis and other applications for debug [42].

zamiaCAD has an Eclipse IDE plug-in based graphical user interface for advanced design entry

and navigation.

The general flow of the evolutionary system is presented in Fig. 12. It is composed of two

main parts: an EA represented by µGP and an EVALUATOR represented by the zamiaCAD

framework. The evolutionary optimizer devises a set of new stimuli vectors by evolving a

population of candidate solutions. The usefulness of each candidate stimuli vector is evaluated

with respect to the existing Rejuvenation Stimuli Set by the zamiaCAD framework by simulating

the NBTI-degraded path delays for the K most timing delay critical paths that were identified as

described in Section 4. The longest NBTI-degraded path delay value over these K paths is reported

back to the µGP core in form of fitness values. The best individual from the population, i.e. the

one with the highest fitness, is added to the Rejuvenation Stimuli Set (RSS). Then, the process

iterates. When the process starts, the RSS is empty. In our experiments we selected K longest paths

from the circuit obtained by static timing-analysis to be included into the optimization process.

The evolutionary optimizer evolves the population until a steady state condition is

detected (i.e., non-improvement is recorded for a given number of generations), or a maximum

number of steps has been performed. The outer loop (see Fig. 12), on the other hand, is repeated

until the RSS reaches a satisfying rejuvenation capability.

Fig. 13 An example of evolutionary generation of rejuvenation stimuli.

Fig. 13 demonstrates the dependencies being solved during the evolutionary generation of

rejuvenation stimuli. Here, P1 through P4 represent a set of NBTI-critical paths. In the given

example, the final rejuvenation stimuli sequence consists of two vectors. Here, only the

combination of two vectors achieves the targeted effect of rejuvenation, i.e. reduction of the

longest path delay in the circuit (Fig. 13c). Reduction of one path delay can lead to increase of

delay for another one and individual vectors can in fact increase the longest path delay (Fig. 13b).

In the performed experiments, the accurate impact of very small execution overheads is calculated

via estimation of the NBTI-induced path delay for the accordingly weighted sum of input signal

path delay at time zero

NBTI-induced delay

delay reduction

caused by
rejuvenation

delay increase
caused by

rejuvenation

P
1

P
2

P
3

P
4

P
1

P
2

P
3

P
4

P
1

P
2

P
3

P
4

time

time

time

NBTI-degraded
path delays

Estimated
rejuvenation effect

for vector 1

Estimated
rejuvenation effect
for vectors 1 and 2

a)

b)

c)

19

probabilities Pz. The allowed execution overhead is distributed equally between all vectors in the

RSS.

5.4 Experimental results for rejuvenation stimuli generation

The proposed approach is applied to several combinational circuits representing sets of

logic paths between flip-flops. The benchmarks include 4-bit and 32-bit implementations of the

ALU (Arithmetic Logic Unit) core extracted from a MIPS processor design Plasma [41]. The

designs were initially described in VHDL at the RT level and the gate level was synthesized with

Synopsys Design Compiler.

First, consider a detailed analysis of the 4-bit ALU design. For the purpose of the

rejuvenation experiments, a set of workloads for the circuit were generated.

 Functional User Workloads are realistic exploitation scenarios of the ALU circuit, when

only one, two or three functions out of the 16 implemented by the ALU logic were used.

o The workload 1F-OR repeatedly uses only the function OR with all possible

combinations for 4-bit operands. 1F-NOR, 1F-AND and 1F-ADD are similar

workloads for corresponding single functions.

o The workloads 2F-ADD_NOR, 2F-ADD_OR and 2F-OR_AND activate only the two

corresponding functions during their execution.

o The workloads 3F-OR_ADD_NOR and 3F-OR_AND_NOR exercise 3 functions each.

 The Random workload is a set of stimuli repeating 150 random vectors.

 The Artificial workloads were generated to represent near-maximum and near-minimum

aging scenarios (i.e. the Pz values for a large number of gate inputs are either very high or

very low).

The 4-bit ALU circuit was first simulated with the given workloads to obtain values for Pz

at each node (gate input). Further, NBTI-induced path delays were estimated based on these Pz

values (corresponding structural details and initial path delays were calculated by static analysis).

Rejuvenation stimuli sequences were individually generated for each workload and their

contribution to reduction of path delays was calculated. Table 3 presents an overview of the

experimental results.

Table 3. Rejuvenation Stimuli Generation for 4-bit ALU design

Workloads

Functional User Workloads R
andom

Artificial

1F-OR 1F-NOR 1F-AND 1F-ADD
2F-ADD

_NOR
2F-ADD

_OR
2F-OR
_AND

3F-OR
_ADD
_NOR

3F-OR
_AND
_NOR

near-
max

near-
min

Nodes at
static NBTI (%)

total
(along the

longest path))

22.5
(14.3)

20.1
(11.5)

23.7
(14.3)

16.0
(14.3)

8.3
(7.7)

12.4
(10.7)

13.6
(10.7)

6.5
(7.14)

5.3
(7.14)

0.0
(0.0)

39.6
(50.0)

16.6
(0.0)

Δt by NBTI (%) 14.91 18.49 28.15 30.05 18.83 28.49 17.87 18.66 14.97 12.37 51.28 8.82

ΔtR after
rejuve-

nation for
the given
overhead,

(%)

1.0E-14 14.91 18.49 28.15 30.05 18.83 28.49 17.87 18.66 14.97 12.37 51.27 8.82
1.0E-12 14.89 18.37 28.01 29.9 18.71 28.35 17.85 18.61 14.94 12.37 50.94 8.82
1.0E-10 14.49 17.2 26.71 28.43 17.93 27.01 17.46 18.13 14.71 12.37 47.6 8.82
1.0E-08 13.79 15.36 24.55 26.02 17.18 24.89 16.75 17.37 14.35 12.37 42.32 8.82
1.0E-06 13.05 13.23 21.99 23.16 16.25 22.33 15.89 16.45 13.9 12.37 35.89 8.82
0.001% 12.65 12.63 20.55 21.53 15.72 20.9 15.4 15.93 13.65 12.37 32.64 8.82
0.01% 12.2 12.15 19.02 19.8 15.17 19.36 14.87 15.37 13.38 12.37 28.35 8.82
0.1% 11.81 11.73 17.36 17.95 14.58 17.7 14.3 14.77 13.11 12.37 24.19 8.82
1.0% 11.48 11.37 15.63 16.02 13.93 15.97 13.68 14.12 12.9 12.31 19.8 8.82

20

10.0% 11.19 11.06 13.68 13.98 13.02 14.02 13.07 13.21 12.47 11.88 15.52 8.82

Fig. 14 Smooth decrease of NBTI-induced Δtpath after application of rejuvenation stimuli at increasing

execution overheads.

In case of different workloads, the NBTI-induced path delay over 10 years was estimated

to reach 9% to 51%. The highest path delay increase due to NBTI (the “artificial near-max”

workload) is less realistic (just 5 deterministic stimuli vectors are repeatedly applied keeping many

gates on the NBTI-critical paths in the static NBTI state). It is provided here mainly in order to

present one possible worst-case scenario. However, the increased path delays resulting from the

Functional User Workloads can be considered realistic and still provide very high delay

increments Δtpath, in the range of 15% to 30%. The workload with random stimuli produces a very

smooth distribution of Pz probabilities close to 0.5 in the whole design structure and therefore in

case of longer random sequences can cause only small and well-distributed NBTI-induced path

delays (around 12%, which is also a common estimation found in literature). The last column

shows an NBTI-induced path delay of 9% that is possible only in case of deterministic workloads

targeted at minimal NBTI.

Two of the most notable parameters characterizing the workloads are depicted in the third

row. The first one is the relative number of those nodes (i.e. gate inputs) whose NBTI was

observed to be static in relation to the total number of nodes in the circuit. The second is the subset

of these nodes, which fall on the longest NBTI-degraded path, i.e. the one whose NBTI-delay is

presented in the red row (the value is also given in percentage relative to the total number of nodes

along the path and it is put in brackets). It can be observed that the functional workloads, indeed,

include a significant number of nodes at static NBTI, many of them are on the longest NBTI-

degraded path. Larger and smaller NBTI-induced path delays caused by the Artificial near-

maximum and Random workloads, correspondingly, also correlate with these parameters. The

Artificial near-minimal workload illustrates that even with the presence of nodes at static NBTI in

0

10

20

30

40

50

1,00E-14 1,00E-11 1,00E-08 1,00E-05 1,00E-02

Artificial near-max

1F-ADD

2F-ADD_OR

1F-AND

2F-ADD_NOR

3F-OR_ADD_NOR

1F-NOR

2F-OR_AND

3F-OR_AND_NOR

1F-OR

Random

Artificial near-min

Rejuvenation overhead sizes (logarithmic)

Pa
th

de
la

ys
 b

y
N

BT
I,

%

Mitigation of NBTI-induced path delays by rejuvenation

21

the circuit, but being located beyond the NBTI-critical paths, combined with moderate dynamic

NBTI elsewhere, may generate an small overall impact on circuit delay degradation.

The last 10 rows in the table demonstrate the efficacy of the generated rejuvenation

stimuli mitigating the paths delays execution overheads of 10-1 (i.e. 10%) to 10-14. These

dependencies of NBTI-induced Δtpath reduction on growing overheads are illustrated graphically

Fig. 14 for all 12 workloads.

A use case of rejuvenation can be depicted in the following example. Consider a scenario

where the circuit’s time slack is set to 15%. In this case, during ten years of operation, 7 out of 9

user workloads (columns 4-10 in Table 3) will result in larger delays induced by NBTI and may

functionally fail because of desynchronization (the red row). Here, application of the generated

rejuvenation stimuli limited, for example, to 0.1% execution overhead (the green row) will

mitigate NBTI and reduce the induced delays to fit into the time slack margin for 4 functional user

workloads (columns 4, 7, 9, 10). In case of workloads with a large number of gate inputs at close-

to-1 signal probability (i.e. column 13), rejuvenation may result in NBTI-induced path delay

reduction by factor two. The path delays induced by NBTI caused with random and artificial near-

min workloads cannot be reduced efficiently by application of rejuvenation stimuli.

Table 4 demonstrates similar efficacy of the generated rejuvenation stimuli for a 32-bit

implementation of the Plasma ALU core.

Table 4. Rejuvenation stimuli generation for 32-bit Plasma ALU core.

Workloads

Functional User
Workloads

R
andom

Artificial

1F-NOR 1F-OR 1F-AND
near-
max

near-
min

Nodes at
static NBTI (%)

total
(along the

longest path)

20.7
(26.7)

24.0
(26.8)

20.8
(26.7)

0.0
(0.0)

36.0
(50.0)

13.4
(0.7)

Δt by NBTI (%) 23.88 33.33 24.56 12.35 54.80 9.17

ΔtR after
rejuve-

nation for
the given
overhead,

(%)

1.0E-12 23.78 33.17 24.45 12.35 54.44 9.17
1.0E-08 20.71 28.73 21.27 12.35 45.34 9.17
1.0E-04 18.39 25.42 18.86 12.35 38.56 9.17
0.01% 15.76 21.51 16 12.35 30.53 9.17
0.1% 14.56 19.35 14.42 12.34 26.09 9.17
1.0% 13.45 17.05 13.56 12.31 21.8 9.17

10.0% 12.27 14.54 12.14 12.02 16.58 9.17

The time the proposed approach required to generate the individual rejuvenation stimuli

sequences for each user profile was about 20 minutes on a moderate workstation (i.e. 3GHz iCore7

Windows 64 bit, 1 GB of memory used by JVM). This time includes iterative execution of the

evolutionary algorithm with the circuit simulation by dedicated workload stimuli and NBTI-

critical path identification calls.

6. Discussion

Despite the fact that static NBTI may occur significantly more rarely compared to

dynamic NBTI in powered nanoscale logic, it is still very probable in practice. Even a correctly

designed circuit with no redundancy may be exploited in various applications that keep parts of the

logic unused for a very long time. Consider an ALU circuit or its logic as a part of a complete

processor design. Because of system-level architecture properties or due to the end user’s habits

22

and needs [14], the logic of the ALU implementation, e.g., 16 functions can be exploited

throughout the use of computations with one or two functions only, thus leaving a part of the ALU

logic unused and under constant static NBTI stress for years. The same may happen with particular

parts of the control logic that activates some service regimes of a product. A particular concern for

vulnerable logic can be long-life reliability-critical applications [15]. In both cases, a user profile

can change after long periods of product exploitation (e.g. a car changing the owner or an

airplane/satellite changing the flying route) after several years, consequently the logic part

degraded over years under static NBTI may be activated and, therefore, potentially cause a

functional failure.

Fig. 15 An illustrative schedule for rejuvenation stimuli execution and the resulting impact

Mechanisms for the application of the rejuvenation stimuli sequences depend on the

particular design architecture and if necessary may exploit existing design-for-testability structures

and, hence, are out of scope for the proposed approach. Application of the rejuvenation stimuli

implies execution overhead and, consequently, the related power budget overhead while utilizing

the existing logic. A schedule for rejuvenation stimuli execution may be predetermined in advance

or kept dynamic based on the actual workload and idle times of the targeted logic, e.g. a real-time

system. For illustration, see Fig. 15. The chart on the right-hand side illustrates a scenario with the

slack time set to 15% of the most critical path’s delay at time zero (i.e. the fresh circuit). The

NBTI-induced delay at the longest path is estimated to reach 15% after 2.5 years and 19% after 10

years of operation for a given workload without rejuvenation. At the same time, the delay is still

15% after 10 years if the rejuvenation procedure is applied. A similar rejuvenation impact is

demonstrated in Table 3 (e.g., for the 2F-ADD-NOR workload). Therefore, reduction of the NBTI-

induced delay by just several percent can significantly extend reliable lifetime of nanoscale logic.

Different from other known NBTI mitigation approaches, the proposed rejuvenation

method does not require redesign of the physical layer before fabrication and can be introduced to

a product in the field even after years of operation (e.g. through a firmware update). It can be also

an attractive alternative for products, which aim at avoiding frequency or voltage scaling

techniques that in return may reduce performance or accelerate transistor’s aging.

Lifetime extended
by rejuvenation

Product lifetime limited by
nanoscale logic aging

Rejuvenation sequences
0

5

10

15

20

0 2.5 5 7.5 10 12.5 15

N
BT

I-i
nd

uc
ed

 cr
iti

ca
l p

at
h

de
la

y
 d

eg
ra

da
tio

n,
 %

Years of operation

Impact of rejuvenation on lifespan

without
rejuvenation
with
rejuvenation
slack time

time-zero
delay

23

7. Conclusions

The proposed approach is aimed at extending the reliable lifetime of nanoelectronics. It

addresses the time-dependent variation caused by Negative Bias Temperature Instability (NBTI) as

one of the main reliability concerns in the nanoscale logic circuits. Different from existing works

in the state-of-the-art, the proposed approach:

 is based on accurate and fast hierarchical gate-level identification of NBTI-critical

paths and particular gates where rejuvenation has to be applied;

 proposes efficient rejuvenation stimuli generation with evolutionary algorithm;

 does not require redesign and can be applied to the existing circuit, i.e. exploiting if

necessary the existing design-for-testability instruments.

The proposed rejuvenation approach may have a very significant impact on the circuit’s

lifetime extension. The experimental results clearly demonstrate the feasibility and the efficiency

of the proposed approach to generate rejuvenation stimuli, as well as efficacy of the rejuvenation

stimuli sequences to mitigate NBTI, especially in cases with static NBTI or dynamic NBTI in

which a high number of extreme close-to-1 signal probabilities are involved in the pMOS VTH

degradation. It was demonstrated that NBTI-induced path delays can be reduced by up to two

times with an execution overhead of 0.1% or less.

Acknowledgements The work has been supported in part by EU FP7 STREP project

BASTION and H2020 RIA IMMORTAL, by CNPq (Science and Technology Foundation, Brazil)

under contract n. 303701/2011-0 (PQ) and FAPERGS/CAPES under contract n. 014/2012, by

European Union through the European Structural and Regional Development Fund, and by

Estonian SF grant 9429.

We would like to acknowledge Dr. Christoph Werner, from TU Munich, Germany for valuable

comments regarding the proposed approach.

REFERENCES

[1] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, P. Bonnot, “Reliability Challenges of Real-Time
Systems in Forthcoming Technology Nodes”, Proc. ACM/IEEE Conference on Design, Automation and Test in
Europe, pp. 129–134. Mar. 2013

[2] S. Mahapatra, D. Saha, D. Varghese, and P. B. Kumar, “On the generation and recovery of interface traps in
MOSFETs subjected to NBTI, FN, and HCI stress”, IEEE Trans. Electron. Dev. 53(7): 1583-1592, 2006

[3] S. Kumar, S. Kim, S. Sapatnekar, “Adaptive techniques for overcoming performance degradation due to aging in
digital circuits”, Proc.Asia and South Pacific Design Automation Conference, pp. 284–289, 2009

[4] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,” Microelectronics Reliability,
45(1): 71–81, Jan. 2005

[5] M. A. Alam, “Reliability- and process-variation aware design of integrated circuits”, Microelectron. Reliabil. 48(8):
1114–1122, 2005

[6] T. Grasser and B. Kaczer, "Negative bias temperature instability: Recoverable versus permanent degradation," Proc.
37th European Solid State Device Research Conference, Munich, 2007, pp. 127–130.

[7] Yu Cao; Velamala, J.; Sutaria, K.; Chen, M.S.-W.; Ahlbin, J.; Sanchez Esqueda, I.; Bajura, M.; Fritze, M., "Cross-
Layer Modeling and Simulation of Circuit Reliability," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 33(1): 8–23, Jan. 2014

[8] G. I. Wirth, R. da Silva and B. Kaczer "Statistical model for MOSFET bias temperature instability component due to
charge trapping", IEEE Trans. Electron. Devices 58: 2743–275, 2011

24

[9] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive modeling of the NBTI effect for reliable
design,” Proc. IEEE Custom Integr. Circuits Conf., pp. 189–192, Sep. 2006

[10] W. Wang, V. Reddy, A. Krishnan, R. Vattikonda, S. Krishnan, Y. Cao, et, “Compact Modeling and Simulation of
Circuit Reliability for 65nm CMOS Technology” IEEE Trans. on Device and Materials Reliability 7(4): 509-517,
Dec. 2007

[11] Ing-Chao Lin, Chin-Hong Lin, Kuan-Hui Li, “Leakage and Aging Optimization Using Transmission Gate-Based
Technique”, IEEE Trans. on Computer-Aided Design of Integratedd Circuits and Systems 32(1): 87–99, Jan. 2013

[12] C. Ferri, D. Papagiannopoulou, R. Iris Bahar, A. Calimera, “NBTI-Aware Data Allocation Strategies for Scratchpad
Memory Based Embedded Systems”, Proc. IEEE 12th Latin American Test Workshop, pp. 1–6, Mar. 27-30, 2011.

[13] A. Ceratti, T. Copetti, L. Bolzani, F. Vargas, "Investigating the use of an on-chip sensor to monitor NBTI effect in
SRAM," Proc. IEEE 13th Latin American Test Workshop, pp.1-6, Apr. 10-13, 2012.

[14] Q. Li, Q. Han and L. Sun, "Context-Aware Handoff on Smartphones," Proc. IEEE 10th International Conference on
Mobile Ad-Hoc and Sensor Systems, pp. 470-478, Oct. 2013

[15] A.T Tai, L. Alkalai, S.N. Chau, "On-board preventive maintenance for long-life deep-space missions: a model-based
analysis," Proc. Computer Performance and Dependability Symposium, pp.196-205, Sep 7-9, 1998

[16] H. Kukner, S. Khan, P. Weckx, P. Raghavan, S. Hamdioui, B. Kaczer, F. Catthoor, L. Van der Perre, R. Lauwereins,
and G. Groeseneken, “Comparison of reaction-diffusion and atomistic trap-based BTI models for logic gates,” IEEE
Transactions on Device and Materials Reliability 14(1): 182-193, 2014

[17] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, Y. Cao, “The Impact of NBTI Effect on Combinational Circuit:
Modeling, Simulation, and Analysis”, IEEE Trans. On VLSI 18(2): 173-183, 2010

[18] F. Ahmed, L. Milor, “Reliable Cache Design with On-Chip Monitoring of NBTI Degradation in SRAM Cells using
BIST”, Proc. 28th IEEE VLSI Test Symposium, pp. 63-68. 2010

[19] S. Khan, S. Hamdioui, “Modeling and Mitigating NBTI in Nanoscale Circuits”, Proc. 17th International On-Line
Testing Symposium, pp. 1-6, 2011

[20] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis of digital circuits,” Proc. Design Automation
Conference, pp. 370–375, 2007

[21] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in multicores”, Proc. International Symposium
on Microarchitecture, pp. 129–140, 2008

[22] F. Firouzi, S. Kiamehr, and M.B. Tahoori, “A linear programming approach for minimum NBTI vector selection”,
Proc. Great Lakes Symposium on VLSI, pp. 253–258, 2011

[23] Y. Wang, X. Chen, W. Wang, V. Balakrishnan, Y. Cao, Y. Xie, and H. Yang, “On the efficacy of input Vector
Control to mitigate NBTI effects and leakage power”, Proc. Quality Electronic Design Int’l Symp., pp. 19–26, 2009

[24] J. Abella, X. Vera, et al. “Penelope: The NBTI-aware processor”, Proc. 40th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 85–96, 2007

[25] L. Li, Y. Zhang, J. Yang, and J. Zhao, “Proactive nbti mitigation for busy functional units in out-of-order
microprocessors”, Proc. ACM/IEEE Conference on Design, Automation and Test in Europe, pp. 411–416, 2010

[26] X. Fu, T. Li, and J. Fortes. “NBTI tolerant microarchitecture design in the presence of process variation”, Proc. Int.
Symposium on Microarchitecture, pp. 399–410, 2008.

[27] F. Firouzi, S. Kiamehr, and M.B. Tahoori, “NBTI mitigation by optimized NOP assignment and insertion”. Proc.
ACM/IEEE Conference on Design, Automation and Test in Europe, pp. 218–223, 2012

[28] R. Ubar, F. Vargas, M. Jenihhin, J. Raik, S. Kostin, L. Bolzani Poehls, “Identifying NBTI-Critical Paths in Nanoscale
Logic”, Proc. Euromicro Conference on Digital System Design, pp. 136 – 141, Sep. 2013

[29] S. Kostin, J. Raik, R. Ubar, M. Jenihhin, F. Vargas, L. M. Bolzani Poehls, T. Copetti, “Hierarchical identification of
NBTI-critical gates in nanoscale logic”, Proc. IEEE 15th Latin American Test Workshop, pp.1-6, 2014

[30] W. Zhao and Yu. Cao, “Predictive Technology Model for Nano-CMOS Design Exploration”, Journal on Emerging
Technologies in Computing Systems 3(1), Article 1, April 2007, (http://ptm.asu.edu/modelcard/2006/65nm_bulk.pm)

[31] A. E. Eiben, and J. Smith, “Introduction to Evolutionary Computing”, Springer, 2015

[32] R. Drechsler, “Evolutionary Algorithms for VLSI CAD”, Springer, 1998

[33] G. Squillero, “Artificial evolution in computer aided design: from the optimization of parameters to the creation of
assembly programs”, Computing, 93(2): 102-120, 2011

[34] F. Corno; M. Sonza Reorda, G. Squillero, “RT-level ITC'99 benchmarks and first ATPG results”, IEEE Design &
Test of Computers, 17(3): 44-53, Jul/Sep 2000

[35] F. Corno; E. Sanchez, M. Sonza Reorda, G. Squillero, “Automatic test generation for verifying microprocessors”,
IEEE Potentials, 24(1): 34-37, Feb/Mar 2005

[36] G. Squillero, “MicroGP - An Evolutionary Assembly Program Generator”, Genetic Programming and Evolvable
Machines, 6(3): 247-263, Sep 2005

[37] E. Sanchez, M. Schillaci, G. Squillero, “Evolutionary Optimization: the µGP toolkit”, Springer, 2011

[38] Rainer Storn and Kenneth Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces”, J. of Global Optimization 11(4): 341-359, 1997

[39] Belluz, Jany, Marco Gaudesi, Giovanni Squillero, and Alberto Tonda. “Operator Selection using Improved Dynamic
Multi-Armed Bandit”, Proc. ACM Genetic and Evolutionary Computation Conference, pp. 1311-1317, 2015

[40] zamiaCAD framework web page, [http://zamiaCAD.sf.net] (accessed 2015-09-01)

[41] A. Tšepurov, G. Bartsch, R. Dorsch, M. Jenihhin, J. Raik, V. Tihhomirov, “A Scalable Model Based RTL Framework
zamiaCAD for Static Analysis”, Proc. IFIP/IEEE International Conference on Very Large Scale Integration, pp. 171-
176, 2012

[42] M. Jenihhin, A. Tsepurov, V. Tihhomirov, J. Raik, H. Hantson, R. Ubar, G. Bartsch, J.M. Escobar, H.-D. Wuttke,
“Automated Design Error Localization in RTL Designs", IEEE Design & Test, 31(1): 83-92, Feb. 2014

[43] Open Cores Plasma CPU project, [http://opencores.org/project,plasma] (accessed 2015-09-01)

25

[44] Data sheet “74HC/HCT181 4-bit arithmetic logic unit”, Philips, 1998

