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Abstract As technology scales, the increased vulner-

ability of modern systems due to unreliable compo-

nents becomes a major problem in the era of multi-

/many-core architectures. Recently, several on-line test-

ing techniques have been proposed, aiming towards er-

ror detection of wear-out/aging-related defects that can

appear during the lifetime of a system. In this work,

firstly we investigate the relation between system test

latency and test-time overhead in multi-/many-core sys-

tems with shared Last-Level Cache (LLC) for periodic

Software-Based Self-Testing (SBST), under different test

scheduling policies. Secondly, we propose a new method-

ology aiming to reduce the extra overhead related to

testing that is incurred as the system scales up (i.e.,

the number of on-chip cores increases). The investi-

gated scheduling policies primarily vary the number of
cores concurrently under test in the overall system test

session. Our extensive, workload-driven dynamic explo-

ration reveals that there is an inverse relationship be-

tween the two test measures; as the number of cores

concurrently under test increases, system test latency

decreases, but at the cost of significantly increased test

time, which sacrifices system availability for the ac-

tual workloads. Under given system test latency con-

straints, which dictate the recovery time in the event
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of error detection, our exploration framework identifies

the scheduling policy under which the overall test-time

overhead is minimized and, hence, system availability

is maximized. For the evaluation of the proposed tech-

niques, multi-/many-core systems consisting of 16 and

64 cores are explored in a full-system, execution-driven

simulation framework running multi-threaded PARSEC

workloads [1].

Keywords On-line Testing · Software-Based Self-

Testing · System Availability

1 Introduction

The era of nanoscale technology has resulted in mas-

sively complex systems consisting of billions of transis-

tors. However, a side effect of this deep technology scal-

ing is the exacerbation of the vulnerability of systems

to unreliable components afflicted by aging and wear-

out artifacts [2]. The issue of aging and gradual degra-

dation necessitates the development of techniques that

provide some form of protection against undesired sys-

tem behavior. Such schemes broadly fall into two cate-

gories: (a) concurrent methods relying on fault-tolerant

mechanisms (i.e., redundancy techniques), and (b) non-

concurrent periodic on-line testing [3], which aims to

detect errors that are – subsequently – addressed using

various mechanisms.

Falling under the latter category, several on-line er-

ror detection techniques have been proposed in the lit-

erature, which enable the dynamic detection of per-

manent faults during the lifetime of a system [4][5][6].

Software-Based Self-Testing (SBST) is an emerging new

paradigm in the testing domain, which relies on the ex-

ploitation of existing available resources resident in the



2 Michael A. Skitsas et al.

system. The SBST approach is based on software pro-

grams that are designed to test the functionality of the

processor, and they target either general-purpose mi-

croprocessors [7][8][9][10][11][12][13][14], or embedded

microprocessors and microcontrollers [15][16][17][18][19].

Specialized test routines (software programs) are exe-

cuted just like normal programs by the CPU cores un-

der test. As a result, the major cost of SBST is the time

overhead incurred by the execution of the appropriate

test routines on the CPU. The hardware overhead is ei-

ther non-existent, or negligible, and no Instruction Set

Architecture (ISA) extensions are required.

One salient aspect of on-line testing (in general) is

the scheduling of the testing session/process. In light of

the rapid proliferation of multi-/many-core micropro-

cessor architectures [20][21], the test scheduling issue

becomes even more pertinent. One approach is to peri-

odically initiate testing on all system cores simultane-

ously [22][23][24]. This method implies that the entire

system will be offline during the duration of the test

process, thereby interrupting the execution of other ap-

plications. Another approach is to initiate testing on

individual cores that have been observed to be idle

for some time [25][26][27]. Thus, the testing process in

minimally intrusive, but the time required to complete

the testing of all cores is substantially longer (since

each core is individually tested at different points in

time). Finally, testing may be selective (rather than

periodic), targeting cores that have experienced pro-

longed stressing due to high utilization. Selective test-

ing may be performed either at a full-core granularity,

or at a sub-core granularity (testing individual intra-

core components)[28].

In this work, we focus on periodic on-line SBST of

the processor cores of homogeneous multi-/many-core

systems with a shared and distributed Last-Level Cache

(LLC). Memory testing and on-chip interconnect test-

ing are beyond the scope of this work. A shared and

distributed LLC is found in the vast majority of exist-

ing commercial Chip Multi-Processors (CMP). In such

systems, each core in the CMP has a slice (bank) of

the entire LLC. The work presented in this article com-

prises an extensive exploration of the test scheduling

process in such systems. We assume that a testing ses-

sion is complete when all cores in the microprocessor

have completed their testing process. With this in mind,

we perform an investigation of different test scheduling

policies, based on the number of cores concurrently un-

der test in the overall system testing session. We are

motivated to study this problem, because, in shared

memory systems, the time overhead of SBST for each

core is affected by potential test program content – in-

structions and/or data – already resident in the LLC

(as a result of a previous core’s testing session).

The first goal of this work is to investigate the intri-

cate relationship between the two aforementioned key

metrics – the test latency and the test-time overhead –

under different test scheduling policies. Typically, the

system recovery mechanism imposes an upper bound on

the test latency, because excessive test latency will lead

to inordinate amount of wasted work (i.e., discarded

work) in the event of an actual fault detection. Hence,

given a specific test latency constraint, our exploration

framework is able to identify the test scheduling pol-

icy that minimizes the test-time overhead and maxi-

mizes system availability. To the best of our knowledge,

this is the first work in SBST for multi-/many-core sys-

tems exploring and juxtaposing these two important

test metrics in a systematic way, so as to minimize the

overall system availability. The second goal is related

with the scalability of systems in terms of number of

cores. As our target architectures are multi-/many-core

systems, maintaining the performance of the proposed

testing methodologies is very important and crucial for

the applicability of such methods as the number of cores

within a system is increased. In our experimental eval-

uation, we investigate the behavior of the proposed test

scheduling methodologies when the number of cores in

the system quadruples from 16 to 64. Results show that

the test-time overhead metric and, therefore, the test la-

tency are increased. The main reason for the additional

overhead is the larger Network-on-Chip (NoC), which

causes higher latencies when data is fetched from the

LLC to the private cache of the core under test.

In order to mitigate the increased testing overhead

as the multi-core system scales up (i.e., the number of

on-chip cores increases), we introduce a clustering ap-

proach. The CMP is divided into a number of contigu-

ous core clusters, i.e., each cluster comprises a number

of CMP processing cores. The main idea behind this

approach is to keep the test-related data resident in

the LLC of each cluster as close as possible to the core

under test. Indeed, using a clustering approach during

the test of a core in the system, we manage to keep the

LLC shared test data within the LLC banks of a num-

ber of adjacent cores in the vicinity of the core-under-

test. Thus, the test program’s LLC shared test data is

distributed and kept across the LLC slices of each core

cluster, instead of being uniformly distributed across

the entire system’s LLC. This technique can reduce the

overhead to fetch the data from the LLC to the private

cache of each core under test, and, consequently, assists

in the reduction of the testing overhead.

The evaluation of the various test scheduling poli-

cies is performed using the previously proposed Dae-
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monGuard framework [28]. DaemonGuard is a light-

weight and minimally intrusive O/S-resident framework

that manages the SBST procedure in multi-/many-core

systems. The operating system daemons employed by

DaemonGuard initiate periodic SBST testing on the

CPU cores. The overall exploration is performed using

an execution-driven, full-system simulation framework

running a commodity operating system and executing

the PARSEC benchmark suite [1] (a selection of emerg-

ing multi-threaded applications) in a multi-core setup

under 16-core and 64-core CMP systems.

2 Related Work

Recently, several techniques have investigated the schedul-

ing of test routines in multi-/many-core systems under

SBST. Apostolakis et al. [22] proposed a methodology

that allocates the test programs and test responses into

the shared on-chip memory, and schedules the test rou-

tines among the cores. The aim of the work in [22] is to

reduce the total test application time, assuming that all

cores are tested simultaneously (i.e., full-system parallel

testing).

Haghbayan et al. [27] proposed a power-aware non-

intrusive online testing approach for many-core sys-

tems. The proposed approach schedules software-based

self-test routines on the various cores during their idle

periods. The scheduler selects the core(s) to be tested

from a list of candidate cores. The selection is based on

a criticality metric, which is calculated considering the

utilization of the cores and power budget availability.

A Multi-Threaded (MT) SBST methodology was

proposed in [23], in order to reduce the test execution

time, based on the thread-level parallelism capabilities

of the core under test. Specifically, functional-based test

programs are scheduled onto individual multi-threaded

cores, and the focus is on the optimization of the test

time of a single core.

Yanjing Li et al. [26] developed a test-aware OS

scheduling technique for robust systems. A test con-

troller selects a core to be tested in a round-robin fash-

ion, and – once the core is selected – the OS scheduler

performs online self-test-aware scheduling, in order to

schedule the test program on the selected core with min-

imum disruption to the normal workloads running on

the system. The impact of simultaneously testing mul-

tiple cores is not considered.

In [29], the authors propose a test-program paral-

lelization methodology for many-core architectures, in

order to accelerate the online detection of permanent

faults. The underlying architecture does not have a

shared cache, but, instead, it relies on high-speed mes-

sage passing for data sharing among the cores. More-

over, the work in [29] only examines fully parallel sys-

tem testing (i.e., testing all cores simultaneously), lead-

ing to zero availability during the SBST session.

In [30][31], the authors proposed a scalable self-test

mechanism for online testing of many-core processors.

Software test routines are distributed among the cores

of the system using hardware components that monitor

the behavior of the processing cores.

3 Definitions and Framework Overview

A testing session is defined as the time interval required

to test all cores in the system. The evaluation metrics

that are used in the exploration are: (a) the Test La-

tency (TL), defined as the total time required to com-

plete a testing session (i.e., elapsed time between initi-

ation and completion of testing), and (b) the Test-time

Overhead (TO), defined as the total execution time de-

voted to the test programs of all the cores in the sys-

tem. Based on these two fundamental metrics, we de-

rive a new metric, termed System Availability during

Test (SAT ), which is the percentage of time the sys-

tem cores are available during a testing session of a

given test latency. During this time, the system is able

to continue execution of normal workloads, maintaining

system availability.

The execution of test programs on the cores of a

multi-core system employing shared memory (and shared

LLC) could benefit in terms of test-time overhead and

test latency. Test programs having the same text seg-

ment (test instructions) and data segment (test pat-

terns) could share data among different cores – through

the LLC – during the test execution. This sharing phe-

nomenon could be observed in cases where: (a) test

programs are executed in parallel over several cores;

(b) test programs have some execution-time overlap be-

tween the various cores; (c) a test program is executed

right after (or shortly after) another core’s test session.

In all these cases, part of the test program’s content

may still be resident in the cache hierarchy. On the

other hand, the parallel execution of test programs on

multiple cores could lead to further overhead, either by

increasing the on-chip network contention (due to in-

creased requests to the memory system for the same

data), or by reducing the system throughput (since the

available cores for normal operation are limited due to

the testing process). This realization motivates us to

investigate the parameter of the number of cores con-

currently under test, and how this test attribute affects

test-time overhead and the test latency.

Beyond the number of cores concurrently under test

and how they affect the considered metrics, we inves-
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Fig. 1 Architectural overview of the employed framework. The two main components are (1) the Test Scheduler (an OS
process), and (2) the actual Test Programs, which all operate at the OS level. The Cache Address Mapping component is
responsible for the mapping of physical addresses to the cores within a cluster when employing the clustering approach. The
figure illustrates an example of the clustering approach, whereby the test program data – that would otherwise be distributed
across the entire CMP – is mapped (red lines) within the cluster area (solid blue squares). Without clustering, the test program
data would go in the empty blue squares across the entire system.

tigate the behavior of the proposed solution when the

system scales up (i.e., from 16 to 64 cores). As the sys-

tem scales up, experimental results indicate that the

NoC incurs a significant overhead to the testing proce-

dure. In order to overcome this and eliminate the extra

network overhead, we use a clustering approach, where

the testing process is considered over a cluster instead

over the entire system. Again, the testing procedure is

completed when all the cores of all the clusters of the

system are tested. In this work, a cluster is defined as a

group of cores within the many-core system where the

aforementioned test scheduling policies will be applied.

When a test program is loaded on a cluster for exe-

cution, the data are fetched and uniformly distributed

over the LLC banks of the cores under the considered

cluster. With this technique, we reduce the latency of

exchanging data between the LLC and the private cache

of the core under test. This is achieved by limiting the

distribution of data in the LLC to the region where the

cores form a cluster, instead of distributing the data

across the entire system’s LLC.

To implement the proposed test scheduling scenar-

ios, we use a framework operating at the Operating Sys-

tem (OS) level, as abstractly depicted in Fig. 1. The two

main components are: (1) the test scheduler, and (2) the

actual test programs. In order to perform SBST, a num-

ber of test programs are loaded onto the OS. The num-

ber of test programs depends on the number of the cores

present in the system: we need one test program for

each core. Test programs are regular processes loaded

on the OS, so they have a portion of the main memory

allocated to them. However, since the considered sys-

tem is a homogeneous many-core system, it means that

all cores are tested using the same test program. Thus,

the memory footprint is independent of the number of

cores in the system. The test programs are kept in idle

mode during normal operation; they wait for the appro-

priate invocation signal from the test scheduler process,

in order to wake up and perform their test execution on

the targeted core. Note that the test scheduler is an OS

process, which is loaded and executed at the OS level.

The test scheduler process is responsible to orchestrate

the testing process during a testing session. According

to the test scheduling policy, the test scheduler sends a

wake-up signal to the test program that is assigned to

the selected core for testing. The execution of the test

programs is managed by the OS just like the execution

of any other program(s) running on the system. The

OS can still perform context switches between test pro-

grams and actual applications. Hence, the OS always

ensures that the core is not “blocked” by the test pro-

gram for an excessively long time. This allows the OS

to time-multiplex the test program with other running

applications, as well as to serve high-priority interrupts
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that may arrive at any given time. Upon completion of

a test program’s execution, the test scheduler is notified

and proceeds with the test scheduling procedure. The

OS-resident test scheduler and test programs described

here (and shown on the left-hand side of Fig. 1) are fa-

cilitated in this work by the DaemonGuard framework

[28].

The implementation of the clustering approach is

achieved in our simulation framework (DaemonGuard)

with the modification of the cache management units

and, particularly, the module responsible for the cache

address mapping. In real systems, the implementation

of the mapping component can be done at the OS Level

and/or with modifications at the micro-architectural

(hardware) level. In the literature, several works have

proposed techniques that allow the dynamic mapping of

data to specific locations within a shared cache. Schemes

to control data placement in large caches by modifying

the physical addresses are studied in [32]. In [33], the

authors proposed a hardware method that employs a

new level of indirection for physical addresses, allowing

for highly flexible data mapping. The implementation

and evaluation of such techniques is orthogonal to and

beyond the scope of this article. In our work, when we

employ the clustering approach, we assume the presence

of such a dynamic data mapping mechanism, which fa-

cilitates core clustering. Our focus here is solely on the

scheduling policies of the test scheduler in many-core

systems, with and without the clustering approach.

4 Test-Scheduling Exploration

4.1 Parameters affecting the testing process

Several parameters could affect the system behavior

during the testing process. These parameters are di-

rectly related to the test-time overhead and test latency

metrics. The first design parameter that could affect the

testing process is the test program size. As the memory

footprint of the test program increases, the test-time

overhead also increases, due to memory-, processor-,

and network-related latencies. Next, memory system

parameters, such as the LLC size, the cache organiza-

tion, and the employed cache coherence protocol could

also affect the testing process. The LLC size is closely

related to the test program size; a larger LLC could

reduce the test-time overhead, since more data could

reside in the cache during the test process. Another im-

portant parameter is the CMP size itself (in terms of

number of cores). Specifically, the total number of cores

in the system and, therefore, the number of cores con-

currently under test, directly affect the test overhead

during the testing sessions. Finally, the on-chip commu-

nication network (the NoC) is another parameter that

could affect the testing process. The impact of the latter

parameter becomes more important as the number of

cores increases and, therefore, the size of NoC increases,

too. Increased distance between the cores of the system

negatively impacts the testing overhead, since extra de-

lay is imposed for the completion of testing.

Beyond the testing procedure itself, all of the above

parameters affect – to varying degree – the clustering

approach as well. Basically, these parameters will help

in determining the cluster size and, thus, the number of

clusters in the system. More details about the clustering

approach will be provided shortly, in Section 4.4.

In this work, we assume that there is a given (fixed)

test program that targets the cores of a homogeneous

multi-core system. Also, during the lifetime of the sys-

tem, the parameters that are related to the CMP ar-

chitecture and memory system remain unchanged. To

perform the proposed exploration, we focus on the num-

ber of cores concurrently under test, and the clustering

approach as the system scales up. These parameters

could vary between different testing sessions, since it is

entirely under the control of the test scheduler process.

4.2 Scheduling policies

In order to evaluate the test-scheduling process, we pro-

pose test scheduling scenarios that vary the number of

cores concurrently under test. We evaluate three gen-

eral scheduling scenarios. In the first, the test scheduler

invokes all the test programs simultaneously, in order

to test all the cores of the system at the same time.
This case corresponds to parallel testing, whereby all

the cores are under test simultaneously. During such a

testing session scenario, normal workloads running on

the cores of the system must be suspended. Thus, the

system availability will be reduced to nearly zero, since

all cores are under test (our simulations have shown

that due to the shared memory, the test execution time

per core is not identical, but it may vary slightly).

On the other extreme, the second scheduling sce-

nario considers a serial execution of test programs dur-

ing each testing session. This scenario does not exhibit

any testing overlap among cores, because only one core

is under test at any given time. Initially, the test sched-

uler sends a signal to commence testing of the first core.

Then, when the end notification is received, the sched-

uler proceeds with the second core, and so on. The in-

terval between two consecutive core tests must be as

short as possible (ideally zero), in order to reduce the

test latency and to benefit from test data already re-

siding in the cache hierarchy.
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The last scheduling scenario aims to bridge the gap

between the first two. It initiates sequential testing among

subsets of the cores of the system. In this scenario, the

first core is tested alone at the beginning of the test-

ing session; this core is known as the “pilot” core, i.e.,

the first core to bring the test instructions and data

from the off-chip main memory into the on-chip cache

hierarchy. Subsequently, the remaining cores are tested

in groups, with each group being concurrently under

test. In particular, the test scheduling policy will have

the maximum number of cores k that could be concur-

rently tested as an input parameter. The untested cores

of the system will be divided in groups of k cores. When

all k cores within a group complete their tests, the test

scheduler will initiate simultaneous testing on the next

k cores, and so on. We assume in this work that any

core can be selected as the pilot core, and any k cores

can be selected for testing at any given time, i.e., the

order of selecting the cores for testing is irrelevant.

The decision of using a pilot core to execute the test

program alone has a two-fold advantage. The first one

was briefly mentioned above: at the beginning of each

testing session, the test program content (instructions

and data) is not resident in the cache hierarchy. As a

result of this, instructions and data will be fetched by

the pilot core, since this is the first core to execute a

test program in the particular test session. This could

be considered as a means to pre-fetch test data for the

remaining cores in the system. The second advantage

of having a pilot core is related to the availability of

the system. The execution of a test program by the

pilot core is characterized as a time-consuming process,

since all data will be fetched into the LLC. Using the

pilot core, this process will be handled by one core of

the system (or the cluster, when using the clustering

approach), while the remaining cores are available to

execute normal workloads. In other words, during the

time-consuming process – due to the LLC misses – of

the execution of the test program by the pilot core, we

ensure the highest possible system availability (all the

other cores continue to execute normal workloads).

Since this work assumes the use of full-core testing,

the test program in our case is, by construction, a sin-

gle program that tests the entire core. Moreover, since

we assume a homogeneous multi-/many-core system,

all cores are identical and, thus, they all use the same

test program. Nevertheless, in a different environment,

there may be a set of test programs that need to be

executed. If (a) these programs must all be executed to

complete a test session (e.g., because each test program

covers a different fault type, or a different component of

the CPU, etc.), and (b) we know the specific core that

each program targets, then the complexity of the pro-

posed test scheduling methodology will not be affected,

since all programs (for each core) will be “grouped to-

gether” and treated as one uniform “super program”

by the scheduler.

As mentioned in Section 3, the scheduling process is

the responsibility of the test scheduler OS process. Al-

gorithm 1 presents the pseudo-code implemented by the

test scheduler. The test scheduler is in idle mode dur-

ing normal (non-test) operation, in order to incur the

minimum possible overhead to the system. The sched-

uler simply waits (sleeps) for a period P , before waking

up to initiate and manage the testing process. In this

work, we focus on the exploration of system availabil-

ity during a single testing session. The period P , which

determines the testing frequency, is defined by the user.

In general, the frequency of testing can depend on var-

ious factors, such as usage, temperature, criticality of

programs, etc. Moreover, the frequency of testing can

be determined by the fault-detection latency that the

user is willing to accept. While some sectors/domains

may be willing to tolerate long fault-detection laten-

cies, there are mission-critical applications that require

much faster detection latency. Function SendSignal(c)

is used to initiate the test program assigned to core

c by sending a wake-up signal. The WaitCores(listC)

function is used by the testing scheduler to wait un-

til the completion of the test programs of the cores in

list C. When the clustering approach is used, the test

scheduler runs the same algorithm. The only difference

is in the input, and, specifically, the List of Cores C.

In the clustering case, instead of giving all the cores of

the system as an input, the list of cores includes only

the cores contained within the cluster under test. Algo-

rithm 1 can be trivially modified to give priority to idle
cores when selecting the pilot core, or the next k cores

to test.

4.3 Optimization

Considering the two fundamental metrics of test-time

overhead and test latency, we propose an optimization

formula, in order to find the maximum number of cores

that should be concurrently tested (i.e., tested at the

same time, in parallel) at any given time, in order to

maximize the system availability during test (SAT),

subject to a test latency constraint. This amounts to

identifying an optimal parameter k, described in the

previous sub-section. As system availability is defined

based on test-time overhead and test latency (see Sec-

tion 3), we, in fact, optimize the ratio of these metrics.

SATk is the system availability during the concurrent

testing of k cores, and it is calculated by Equation 1.
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Algorithm 1 Test Scheduler
Input: Period P
Input: List of Cores C
Input: Number of Cores Under Test k

Cores under Test List CUT

1: while True do
2: CUT = []
3: pilot← C.dequeue()
4: SendSignal(pilot)
5: CUT .enqueue(pilot)
6: if k = N then
7: k = k − 1
8: else
9: WaitCores(CUT )

10: end if
11: while C not Empty do
12: for i=1 to k do
13: nc← C.dequeue()
14: SendSignal(nc)
15: CUT .enqueue(pilot)
16: end for
17: WaitCores(CUT )
18: end while
19: Sleep(P )
20: end while

SATk =
TLk ×N − TOk

TLk ×N
(1)

The terms TOk and TLk are the test-time overhead

and test latency, respectively, under the scheduling sce-

nario of having k cores concurrently under test at a

time.

Based on Equation 1, and given a test latency con-

straint, we aim to find the maximum possible SAT using

the optimization formulas described in Equations 2 and
3.

SATmax = max
k
{SATk}, k = 1..N (2)

subject to TLk < L (3)

The term SATmax is the maximum system avail-

ability, k = 1 to N corresponds to the number of cores

that are concurrently under test, N is the total num-

ber of cores in the system, and L is the maximum test

latency constraint.

Using this optimization objective, we aim to find the

number of cores concurrently under test (i.e., k) that

maximizes the system availability, while taking into ac-

count the test latency constraint L.

The proposed optimization formula considers met-

rics that are focused entirely on execution time (i.e.,

test latency and test-time overhead). Another param-

eter that could affect the testing overhead and, there-

fore, the system availability is fault coverage. However,

in this work, we assume that the test programs are fixed

to one particular fault coverage, i.e., we did not consider

the presence of multiple versions of the test programs,

with each version providing a progressively higher fault

coverage at the cost of increased test-time overhead.

In such case, the test scheduling optimization process

would then include an additional parameter pertaining

to the targeted fault coverage.

Beyond the consideration of only time-related met-

rics, the optimization process could, potentially, include

other salient metrics, such as power consumption, which

may be very critical in portable/mobile devices. When

multiple programs (including the test programs) run in

parallel on any CPU, the processor utilization increases,

which results in higher power consumption than when

the CPU is lightly utilized. However, this increase in

power consumption is guaranteed not to exceed the

CPU’s Thermal Design Power (TDP), since the latter is

the maximum that can be generated under any software

workload (including functional SBST test programs).

Nevertheless, using power consumption as an additional

optimization parameter in our test scheduling policy is

an interesting extension to the current framework.

4.4 Scaling to many-core systems: a clustering

approach

The proposed test-scheduling approach works very ef-

fectively in relatively small-scale multi-core systems (e.g.,

with 16 on-chip CPU cores). The critical objective is to

ensure scalability of the proposed framework as the sys-

tem grows into the many-core realm, i.e., with tens –

or even hundreds – of cores. To address this imperative

goal, we introduce a clustering approach in our test-
ing methodology, which ensures the high performance

of the proposed test scheduling techniques regardless

of the size of the system. With the clustering approach,

the system is divided into a certain number of core clus-

ters. The testing process is then conducted at the gran-

ularity of individual clusters; the cores of each cluster

are tested following any of the scheduling policies de-

scribed in the previous sub-section. A key assumption

when employing the clustering approach is the pres-

ence of a mechanism that allows for dynamic mapping

of data to specific locations within a shared cache, as

described at the end of Section 3. In our case, the test-

related data is mapped to the cores of each cluster,

rather than being distributed across the cores of the

entire CMP.

As mentioned in Section 4.1, several parameters could

affect the configuration of the clusters, i.e., the cluster

size (the number of cores grouped within a cluster),

and, subsequently, the total number of clusters in the

system. Additionally, the decision of using a clustering
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Fig. 2 A high-level statistical analysis investigating the on-chip network latency (in terms of network hops) as the number of
on-chip cores in the CMP increases. Results in (a) the absence of clustering, and (b) in the presence of clustering are depicted.
In the latter case, the size of the employed test program is set to 3 MB.

approach in the first place within a system is based on

these parameters as well.

The clustering approach aims to reduce the imposed

testing overhead as the system scales up. When the

number of cores increases, the distances between the

cores of the system also increase, which results in longer

NoC delays. To evaluate the impact of the network

and to investigate the potential of the clustering ap-

proach, we proceed with a high-level statistical anal-

ysis/exploration. In modeling the network, we assume

that one network hop is required to transfer data be-

tween two adjacent cores (i.e., each CPU core is con-

nected to its own on-chip router). The cost of transfer-

ring data between any two cores in the system is calcu-

lated based on the Manhattan distance between the two

cores. This implies the use of a mesh-like NoC topology,

which is most frequently encountered in the literature

and even in recent commercial products. Moreover, as

the goal of the analysis is to evaluate the network im-

pact, we consider the case where all the test data is

resident within the system (or within one cluster). The

network latency is abstracted as the number of hops

required to fetch all the required test data to the core

under test. Beyond the scaling of the system itself (in

terms of number of cores), we also include in our anal-

ysis cases where the test program size is also changed.

The results of our statistical analysis are depicted

in Figure 2(a). Said figure shows the on-chip network

latency (in terms of network hops) as the number of on-

chip cores in the CMP increases all the way to 1024. The

four different curves correspond to four different test

program sizes. Obviously, the network latency increases

exponentially as the system size increases. Furthermore,

the network latency is also negatively affected by the

test program size. This worrisome trend motivates the

need for a different approach that would eliminate the

exponential increase in network latency. Toward this

end, we adopt the clustering approach, which breaks

the large-scale system into a number of smaller core

clusters.

The statistical analysis was repeated in the presence

of the clustering approach. The results are shown in Fig-

ure 2(b). In this case, the focus is on systems ranging

from 64 to 1024 cores, and three different configurations

are juxtaposed: absence of clustering, dividing the CMP

into 4 clusters, and dividing the CMP into 8 clusters.

For example, a 512-core CMP with 8 clusters implies 64

cores per cluster, and so on. Note that the size of the

employed test program is set to 3 MB in this experi-

ment, i.e., similar to the size of the test program used

in this work. The results in Figure 2(b) clearly indicate

that the use of clustering almost linearizes the increase

in the network latency as the system scales up. A lin-

ear (or super-linear) increase is certainly more desirable

and practical than the exponential increase observed in

the absence of clustering.

One key requirement – and elemental contributor

to this scheme’s effectiveness – is that the entire test

program should fit within the LLC banks of the cores of

each cluster. This is a fairly intuitive requirement, since

the goal of clustering is to maintain the required test

data within a cluster of cores, in order to expedite the

testing process. Consequently, the minimum number of

cores comprising each cluster is dictated by the size of
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the test program’s data and it depends on the size of

each core’s LLC bank (slice).

At the beginning of testing of each cluster (i.e., when

the first core of each cluster will initiate testing), there

is no test data available within the cluster’s LLC slices.

The test data required to test the cores of each clus-

ter must somehow be brought within the cluster. To

achieve this, there are two possible solutions: (1) use a

pilot core (see Section 4.2) in each cluster, which will

essentially pre-fetch all the test data for the remaining

cores within the cluster; and (2) migrate the test-related

data from a cluster that has just finished being tested

to a new cluster-to-be-tested. Of course, the second so-

lution presupposes that clusters are tested serially, one

after the other. Instead, the first solution allows for the

parallel testing of multiple clusters, if desired. Due to

this flexibility, we employ the first solution (i.e., the

use of a pilot core within each cluster) in our quan-

titative analysis in the next section. In any case, the

test scheduling methodologies described in Section 4.2

can be applied to either of the aforementioned two ap-

proaches (for the testing of the cores within each clus-

ter).

5 Experimental Framework and Results

5.1 Evaluation Framework

For the evaluation of the proposed test scheduling tech-

niques, we perform full-system, execution-driven simu-

lations using the Wind River’s Simics [34] simulator ex-

tended with the Wisconsin GEMS toolset [35] and the

GARNET network model [36]. We simulate two multi-

core systems, as presented in Table 1, one with 16 cores

in a 4×4 network topology and one with 64 cores in

an 8×8 network topology. In both systems, each core

is a SPARC-based in-order-execution processor, simi-

lar to the UltraSPARC III+. For the memory hierar-

chy, we considered a two-level cache system with two

split private caches at L1 (for instructions and data),

and a shared LLC (L2). The L2 banks (slices) are dis-

tributed equally (in size and configuration) to all the

cores of the system. As the targeted system is homo-

geneous, and our goal is to test all the cores of the

system, we use the full-core test program given in [28]

to test each individual core according to the proposed

test-scheduling techniques. Note that the fault coverage

of the proposed methodology depends entirely on the

employed test programs. The particular level of fault

coverage provided by the test programs is related to

the methodologies followed during the generation of the

test programs themselves. The test-program generation

process is beyond the scope of this work, and it can be

System 16-Core CMP 64-Core CMP
Processors 16 UltraSparc III+ 64 UltraSparc III+

Network 4×4 2D Mesh 8×8 2D Mesh
L1 Caches 32 KB I&D, 2c lat 32 KB I&D, 2c lat
L2 Caches 1 MB/core, 10c lat 0.5 MB/core, 10c lat

Main Memory 4 GB, 200-cycle latency
OS Solaris 10

Table 1 Simulated system parameters.

viewed as orthogonal and complementary to the pro-

posed framework.

Through our experimental exercise, we investigate

the impact of test-time overhead and test latency dur-

ing a testing session under all the possible schedul-

ing scenarios discussed in the previous section. Simi-

lar experiments are applied in both systems. Hence, we

consider the case of serial testing where only one core

is tested at a time during the testing session (k = 1),

the parallel case where all cores are tested in parallel

(k = N = 16 or 64), and all the other cases in between

where a fixed number k (power of 2) of a subset of the

cores are tested in parallel at a time (k = 2, 4, 8...), after

the test of the pilot core. We present results for both

systems (16- and 64-core), and the different schedul-

ing policies are compared for each system size. Further-

more, the scalability impact of transitioning from the

16-core CMP to the 64-core one is presented and an-

alyzed within the context of the results of the newly

proposed clustering approach.

We use workloads from the PARSEC Benchmark

Suite [1] in our exploration. PARSEC is a benchmark

suite of multi-threaded workloads that focus on emerg-

ing parallel workloads. For the evaluation, we use eleven

of the benchmarks for both explored system sizes. The

input size of the benchmarks is set to the maximum pos-

sible (large), in order to ensure that the execution of the

benchmarks is not finished prior to the completion of

the testing process. The scope of this work is the evalu-

ation of the proposed test-scheduling techniques while

the system is running normal workloads (i.e., PARSEC

Benchmarks). The number of threads is configured to

be equal to the number of cores in each system (16 or

64), in order for all cores to be fully-utilized.

5.2 Exploration Results

We simulate all the aforementioned benchmarks for each

scheduling policy and system to evaluate the impact

in terms of test-time overhead and test latency. To

eliminate the extra impact imposed by the OS due

to scheduling priorities that affect the considered met-

rics (TO and TL), we increased the scheduling priority
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of test programs to the maximum possible for a non-

privileged user (i.e., not OS admin user). This allows

us to perform a fair comparison between the different

scheduling policies by avoiding any overhead from the

OS due to context switching between different (non-

test) running processes. As a result of this, the only

imposed overhead beyond the testing procedure is due

to memory requirements (i.e., cache used by normal

workloads). To investigate the impact of the memory

system, we repeat the experiments by increasing the

LLC cache associativity in both systems, without af-

fecting the total LLC cache size. As it will be shown,

the experimental evaluation indicates that the number

of misses in the case of test programs is reduced.

The next two paragraphs present the simulation re-

sults for the two considered systems, i.e., the 16-core

and the 64-core CMPs. The test-time overhead (TO)

and test latency (TL) for each scheduling scenario, as

well as the System Availability under Test (SAT) for

two different cache configurations, are evaluated for both

systems. Additionally, results related with the scalabil-

ity of the system are presented while evaluating the

64-core CMP setup.

5.2.1 Performance of a 16-core CMP

Figure 3 presents the results of the 16-core CMP sys-

tem for all examined PARSEC benchmarks (each curve

corresponds to a different benchmark). The presented

results pertain to the three metrics (one metric per each

row of plots) for two LLC cache configurations: a setup

with 4-way LLC associativity, and one with 8-way as-

sociativity (each column of plots). Recall that the total

LLC size is the same in both cases. For all the plots of

the figure, the x-axis gives the number of cores tested

concurrently (in-parallel) at any given time. Hence, the

case where 1 core is under test gives the results for

the serial scheduling scenario, where one core at a time

is tested. The right-most “All” scenario on the x-axis

refers to the case where all cores are tested in parallel.

More accurately, the scenario “All” assumes that the

first core in an n-core system serves as the pilot core,

and, subsequently, the n − 1 remaining cores are all

tested in parallel. The y-axis reports the investigated

test metrics (TO, TL, SAT ) in terms of overall system

execution cycles.

The first – and expected – outcome of this simula-

tion is the increase in test-time overhead as the number

of cores tested concurrently increases. In particular, by

doubling the number of cores concurrently under test,

test-time overhead (first row of Figure 3) is increased

by a factor of 9–15%, depending on the size of k. The

“All” case imposed an increase of 20% over the serial

case. Hence, a single parameter optimization (in this

case) would suggest that the fully-serial scenario (case

k = 1) should be selected. However, this scenario comes

with a great cost in test latency, as shown in the second

row of Figure 3. Actually, juxtaposing the two figures

(first and second row) reveals the inverse relation be-

tween the two test metrics (which is, to some extend, ex-

pected). However, this analysis also reveals potentially

good compromises for optimizing both measures. For

example, increasing the number of concurrently tested

cores from 1 to 2 leads to a significant test latency re-

duction, at the cost of a small test overhead increase.

Given a realistic test latency constraint L, one can de-

cide on the number of concurrently tested cores, in or-

der to minimize overall system test overhead subject to

the given constraint.

An interesting point arising from the experimental

evaluation of the scheduling techniques is the behavior

of the different workloads. As we can see in Figure 3,

the majority of benchmarks have the same impact on

all the consider metrics. Nevertheless, some benchmarks

incur an extra test-time overhead, even though the Test

Latency is not always correspondingly affected. For in-

stance, The TO behavior under the Canneal (red line)

and Fluidanimate (yellow line) benchmarks is markedly

different than under other benchmarks. The reason for

this peculiar behavior are LLC conflicts. Since the test

programs and the benchmark applications run concur-

rently, there are cache conflicts which affect testing un-

der some benchmarks more than under others.

To verify this assertion and to provide a possible so-

lution to this problem, we increased the cache associa-

tivity. In particular, we doubled the LLC associativity

from 4-way to 8-way, while the size of each cache lines

was halved, in order to keep the total cache size un-

changed. The results of these experiments (8-way cache

system), and the impact on the two considered met-

rics (TO, TL) are presented in the plots of the second

column of Figure 3. The test-time overhead and test

latency still have the same trends, but – when consid-

ering absolute values – there is a slight reduction in

the overheads. Furthermore, benchmarks that behaved

erratically (outliers) in the first set of experiments (4-

way) now seem to follow the same trend as the rest of

the benchmarks. This shows that the increase in LLC

associativity “smooths out” the issue of cache conflicts

among the benchmarks and the test programs.

The last set of plots (third row of Figure 3) depicts

the system availability under test (SAT) for each of the

scheduling scenarios under exploration, calculated us-

ing Equation (1) (see Section 4.3) for both cache setups

(4-way and 8-way). The SAT metric combines the two

test metrics under consideration and reveals the best
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Fig. 3 The results of the 16-core CMP system for all examined PARSEC benchmarks. Each row of plots corresponds to one
of the three evaluated metrics. The left-column plots corresponds to a 4-way LLC, while the right-column plots correspond to
an 8-way LLC. The total LLC size for both setups is the same.

scheduling scenario to maximize availability, which, in

the case of no test latency constraints, is the same as

the one minimizing the test overhead. As expected, the

system availability is highly related to the number of

cores under test at any given time, and the overall trend

between the various benchmarks is similar.

5.2.2 Performance of a 64-core CMP

In order to evaluate the proposed test scheduling tech-

niques in larger – in terms of core numbers – systems,

where the impact of the NoC is significant, we also in-

vestigate a 64-core CMP setup. Beyond the evaluation

of the proposed testing techniques in larger systems, the

purpose of this experimental exercise is to also identify

any scalability issues resulting from the increased sys-

tem size. In fact, the results of this exercise will pave the

way for the clustering approach, which will be shown

to be necessary in maintaining the scalability of the

system.

The exploration exercise under the 64-cores CMP

system includes all the scheduling techniques (serial,

parallel, and k-cores concurrently under test) investi-

gated with the 16-core CMP system. Figure 4 presents

the results of the evaluation of the test scheduling poli-

cies for the three considered metrics under a 64-core

CMP system. Again, there are three rows of plots cor-

responding to the three metrics, and two columns for

the 4-way and 8-way LLC configurations.

Evidently, the trends in the three metrics (TO, TL,

SAT ) are the same as under the 16-core CMP system.

As the number of cores concurrently under test is in-

creased, the TO also increases, while the TL decreases.
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Fig. 4 The results of the 64-core CMP system for all examined PARSEC benchmarks. Each row of plots corresponds to one
of the three evaluated metrics. The left-column plots corresponds to a 4-way LLC, while the right-column plots correspond to
an 8-way LLC. The total LLC size for both setups is the same.

The impact of the cache is also demonstrated by dou-

bling the LLC associativity from 4-way to 8-way, while

keeping the same total LLC size. As a result of this in-

crease in associativity, the bahavior of all benchmarks

is “smoothed out”, i.e., there are no more outliers (ex-

hibiting unusually high TO). Note that the Test-time

Overhead is increased by a factor of 5–10% depending

on the size of k. The “All” case incurred an increase of

15% over the serial case.

Despite the same trends in our metrics, at the core-

level, the incurred overhead by the test program execu-

tion is increased. In particular, the required time to ex-

ecute the test program for a core in a 64-core CMP sys-

tem is higher than in a smaller system (16 cores). The

average required time in terms of cycles to execute the

test program in the 64-core CMP system is increased

by 60%, as compared with the 16-core CMP system.

Table 2 presents statistics derived from the experimen-

tal evaluation regarding the execution time of the test

program on each core of the system. The table shows

the number of cycles needed to run the test program on

the pilot core, and the minimum, maximum, and aver-

age numbers of cycles needed to run the test program on

each of the remaining cores of the system. As indicated

in Table 2, when executing the test programs in larger

systems, the execution time is considerably higher. The

main reason for this increase is the larger distance be-

tween the cores and, therefore, the latency to fetch the

data in the private caches of the core-under-test (ei-

ther from main memory or the LLC) is significant. In

an effort to mitigate this distance-related overhead, we

propose the use of a clustering approach, as explained
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System Pilot Min Avg Max
(Millions of Cycles)

16-Cores 50 14.5 15.5 16.5
64-Cores 58 22 25 31

Table 2 The number of cycles needed to run the test pro-
gram on the pilot core, and the minimum, maximum, and
average numbers of cycles needed to run the test program on
each of the remaining cores of the system.

System Min Avg Max
(Millions of Cycles)

w/o Clustering 22 26 30
(64-Cores)

w/ Clustering 15.5 18 21.5
(4 16-Core Clusters)

Table 3 Per-core Time-test Overhead (TO) assuming a 64-
core CMP being tested with and without the clustering ap-
proach.

in Section 4.4. The main premise of the clustering ap-

proach is to maintain all the test-related data within

the vicinity of the cores to be tested.

5.3 Evaluating the Clustering Approach

In this sub-section, we evaluate the effectiveness of the

clustering approach of Section 4.4. We employ a 64-core

CMP, which is divided into 4 symmetrical 16-core clus-

ters; each cluster is a quadrant of the 64-core system.

We assume the use of one pilot core in each of the four

clusters. The test program data is fetched by the pi-

lot core of each cluster and distributed all over the L2

banks of the cores comprising the cluster (using a dy-

namic data mapping mechanism, as mentioned at the

end of Section 3). The testing process proceeds at the

granularity of each cluster, i.e., each cluster is viewed

independently, and the testing policies are applied to

the cores of each cluster. Due to the symmetrical na-

ture of the clusters, the behavior/trends observed in all

clusters are identical.

Table 3 presents the per-core Test-time Overhead

(TO) results, in terms of the number of elapsed cycles

required to execute the test programs. Specifically, the

table shows the minimum, maximum, and average num-

bers of cycles needed to run the test program on each

of the cores of the system. For this experiment, we use

the Fluidanimate benchmark and we consider serial ex-

ecution of the test programs across all the cores of each

cluster, or across all the cores of the entire CMP when

clustering is not used. The first set of results is calcu-

lated over the cores of the entire system (i.e., without

the use of clusters), whereby the test-program data is

distributed across all the CMP cores. The second set of

results is calculated using the clustering approach, i.e.,

when using 4 16-core clusters (the values are averaged

over the four clusters). The results in Table 3 show a

significant reduction in the test-time overhead when us-

ing clustering. In fact, without clustering, the execution

time of the test program on a single core in a 64-core

CMP incurs an extra overhead of about 73%, as com-

pared to a 16-core system. On the contrary, when using

the clustering approach, this overhead is significantly

reduced to around 20%. Note that part of the incurred

overhead is due to the smaller-sized L2 bank (slice) per

core in the 64-core CMP (see Table 1). Hence, the clus-

tering approach allows us to contain the TO and scale

the investigated test-scheduling policies to arbitrarily

large CMP systems.

Figure 5 presents an overview of the savings ob-

tained when using the clustering approach. The y-axis

shows the percentage reduction in the test-time over-

head when using clustering, as compared to the case

without clustering. The different bars on the x-axis cor-

respond to the different PARSEC benchmarks that were

running concurrently with the testing process. Similar

to our previous experiments, we evaluate two different

LLC associativity setups: 4-way and 8-way. As demon-

strated by the results in Figure 5, the clustering ap-

proach yields substantial improvements in terms of test-

time overhead. In particular, the majority of the bench-

marks experience a significant reduction in test-time

overhead in both configurations (4-way and 8-way). The

only benchmark that is negatively affected by the clus-

tering approach is Canneal. As already demonstrated

in the 16-core CMP results (Figure 3), this behavior is

due to the high demands of the benchmark in terms of

memory usage and cache accesses.

Under the 8-way LLC setup, the average savings

across all examined benchmarks are in excess of 20%. In

general, the clustering approach seems to almost elim-

inate the NoC overhead incurred when testing larger

CMPs.

6 Conclusion

This article performs an exploration of periodic, on-

line SBST scheduling policies in homogeneous multi-

core systems. The ultimate goal is to reduce the test-

ing overhead, in terms of testing time and test latency.

Toward this end, we propose and examine several test

scheduling techniques, based on the number of cores

concurrently under test during test sessions. Given a

constraint in test latency, the proposed methodology

optimizes the test scheduling process, so as to minimize

the test-time overhead and maximize system availabil-

ity.



14 Michael A. Skitsas et al.

Blackscholes Bodytrack Canneal Dedup Ferret Fluidanimate Freqmine Raytrace Streamcluster Swaptions Vips Average
−30

−20

−10

0

10

20

30

R
e

d
u

c
ti
o

n
 i
n

 T
O

 (
P

e
rc

e
n

ta
g

e
)

Test−time Overhead using Clustering Approach

 

 

4−Way LLC

8−Way LLC

Fig. 5 An overview of the savings obtained when using the clustering approach. The graph shows the percentage reduction
in the test-time overhead when using clustering, as compared to the case without clustering. Two different LLC associativity
setups are evaluated: 4-way and 8-way.

Beyond the exploration pertaining to the number

of concurrent cores under test, we also investigate the

scalability of the test-scheduling policies as the CMP

system grows in size, i.e., it accommodates larger num-

bers of on-chip cores. In order to curtail exponential

increases in testing overhead in such large systems, this

work proposes a clustering approach, whereby the CMP’s

cores are grouped into contiguous clusters. The under-

lying premise is to enable all test-related data to be res-

ident in the LLC banks of the cores in the vicinity of the

core-under-test, rather than being scattered throughout

the CMP. The evaluation results indicate that cluster-

ing reaps substantial savings in test-time overhead, and

it enables efficient scalability of the testing process to

arbitrarily large systems.
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