
J Electron Test manuscript No.
(will be inserted by the editor)

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking

Yadi Zhong1 · Ayush Jain1 · M. Tanjidur Rahman2 · Navid Asadizanjani2 · Jiafeng
Xie3 · Ujjwal Guin1

Received: date / Accepted: date

Abstract The outsourcing of the design and manufactur-
ing of integrated circuits has raised severe concerns about
the piracy of Intellectual Properties and illegal overproduc-
tion. Logic locking has emerged as an obfuscation technique
to protect outsourced chip designs, where the circuit netlist
is locked and can only be functional once a secure key is
programmed. However, Boolean Satisfiability-based attacks
have shown to break logic locking, simultaneously motivat-
ing researchers to develop more secure countermeasures. In
this paper, we present a novel fault injection-based attack
to break any locking technique that relies on a stored secret
key, and denote this attack as AFIA, ATPG-guided Fault
Injection Attack. The proposed attack is based on sensitiz-
ing a key bit to the primary output while injecting faults at
a few other key lines that block the propagation of the tar-
geted key bit. AFIA is very effective in determining a key bit
as there exists a stuck-at fault pattern that detects a stuck-at

Yadi Zhong
E-mail: yadi@auburn.edu

Ayush Jain
E-mail: ayush.jain@auburn.edu

M. Tanjidur Rahman
E-mail: mir.rahman@ufl.edu

Navid Asadizanjani
E-mail: nasadi@ufl.edu

Jiafeng Xie
E-mail: jiafeng.xie@villanova.edu

� Ujjwal Guin
E-mail: ujjwal.guin@auburn.edu

1Department of Electrical and Computer Engineering, Auburn
University, Auburn, AL, 36849, USA
2Department of Electrical and Computer Engineering, University of
Florida, Gainesville, FL, 32611, USA
3Electrical and Computer Engineering, Villanova University, Vil-
lanova, PA, 19085, USA

1 (or stuck-at 0) fault at any key line. The average complex-
ity of the number of injected faults for AFIA is linear with
the key sizeK and requires onlyK test patterns to determine
a secret key K. AFIA requires fewer injected faults to sen-
sitize a bit to the primary output, compared to 2K−1 faults
for the differential fault analysis attack [36].

Keywords Logic locking, differential fault analysis, fault
injection, IP Piracy, IC overproduction

1 Introduction

Over the last few decades, the impact of globalization has
transformed the integrated circuit (IC) manufacturing and
testing industry from vertical to horizontal integration. The
continuous trend of device scaling has enabled the designer
to incorporate more functionality in a system-on-chip (SoC)
by adopting lower technology nodes to increase performance
and reduce the overall area and cost of a system. Currently,
most SoC design companies or design houses no longer man-
ufacture chips and maintain a foundry (fab) of their own.
This is largely due to the increased complexity in the fab-
rication process as new technology development is being
adopted. The cost for building and maintaining such foundries
is estimated to be a multi-million dollar investment [3]. As
modern integrated circuits (ICs) are becoming more com-
plex, parts of the design are reused instead of designing
the whole from scratch. As a result, the design house in-
tegrates intellectual properties (IP) obtained from different
third-party IP vendors and outsources the manufacturing to
an offshore foundry. Due to this distributed design and man-
ufacturing flow, which includes designing SoCs using third-
party IPs, manufacturing, testing, and distribution of chips,
various threats have emerged in recent years [4, 20, 87]. The
research community has also been extensively involved in

ar
X

iv
:2

20
6.

04
75

4v
2

 [
cs

.C
R

]
 1

2
O

ct
 2

02
2

2 Yadi Zhong1 et al.

Tamper-proof Memory

Locked Circuit
Primary

Inputs

Primary

Outputs

Key (Secret)

a

b
y

a

b
y

Memory

a

b
y

Memory

1

0

a

b
y

Memory

(a)

(b)

k

k

k1 k2 k3 k4

G1

G1G1

Gk

G3

G3G3

G3

G2

G2

G1G1

G2

Fig. 1: Logic Locking: (a) An abstract view of the logic
locking. (b) Different types of logic locking techniques with
XOR/XNOR, MUX and LUT.

proposing countermeasures against these threats [22, 32, 38,
39, 51, 57, 61].

Logic locking has emerged as the most prominent method
to address the threats from untrusted manufacturing [4, 21,
46, 61]. In logic locking, the netlist of a circuit is locked
with a secret key so that the circuit produces incorrect re-
sults in regular operation unless the same key is programmed
into the chip. Figure 1(a) shows an abstract view of logic
locking where the key is stored in a tamper-proof mem-
ory and is applied to the locked circuit to unlock its func-
tionality. The key needs to be kept secret, and care must
be taken during the design process so that this secret key
is not leaked to the primary output directly during the op-
eration. The common logic locking techniques insert ad-
ditional logic elements like XOR gates [61], multiplexers
(MUXs) [58], and look-up tables (LUTs) [14] to lock the
circuit functionality, and are shown in Figure 1(b). SAT at-
tack, by Subramanyan et al. [83], was among the first ones
to efficiently attack a range of locking schemes. With SAT
analysis et al. [83], the key of a locked circuit is determined
in a short period of time. The SAT attack requires the locked
netlist, recovered through reverse engineering, and a func-
tional working chip. Since then, several SAT-resistant lock-
ing techniques have emerged [10, 34, 41, 42, 52, 60, 68, 74,
84, 91, 93, 94, 99] and many of them were broken soon af-
ter they have been proposed [26, 27, 29, 40, 43, 47, 53, 73,
103]. The majority of the research has been directed towards
SAT attack resiliency. However, can we reliably state that
a logic locking technique is completely secure even if we
achieve complete SAT resistivity? An untrusted foundry can
be treated as an adversary as logic locking is proposed to
protect designs from untrusted manufacturing. The adver-

sary has many more effective means to determine the secret
key without performing SAT analysis. A few of these attacks
can be in the form of probing [55, 56], inserting a hardware
Trojan in the design [37], and analyzing the circuit topol-
ogy [78, 101, 102]. Countermeasures are also developed to
partially prevent these attacks [6, 43, 77, 79, 90, 100–102].

Unlike cryptosystems, not all input patterns for a locked
circuit are valid for propagating the incorrect key values to
the primary outputs. Instead, only a few patterns may exist
to carry the values of key bits to the output, similar to the
identification of hard-to-detect faults. This is especially true
for Post-SAT solutions [69, 72, 95, 97, 99], where they min-
imize the output corruptibility for incorrect keys. For logic
locking, some key bits can block the propagation of the tar-
get key bit, i.e. SLL [57] and Post-SAT designs. This is dif-
ferent from the fault injection attack in cryptography, where
an entirely new output can be observed under any input pat-
tern even though there is a single bit change in the key as
the plaintext goes through many transformations (e.g., Shift
Rows, Mix Columns and key addition for AES) [16,28,48].
It is trivial for a cryptosystem to change one key bit and ap-
ply a random pattern. Unfortunately, this is not the case for a
circuit locked with a secret key. It is hard to observe the out-
put change with the change of a single key bit by applying
a random pattern. The novelty of this paper is that we apply
the methodology in ATPG to efficiently derive the desired
input pattern, which guarantees the change in output under
different keys and helps launch the fault injection attack.

This paper shows how an adversary can extract the secret
key from a locked netlist, even if all the existing countermea-
sures are in place. An adversary can determine the secret key
by injecting faults at the key registers [55, 56], which hold
the key value during normal operation, and performing dif-
ferential fault analysis. In this paper, we present AFIA, key
sensitization-based ATPG-guided Fault Injection Attack, to
break any locking scheme. The entire process can be per-
formed in three steps. First, we process the locked netlist and
converted it into a directed graph to extract all logic cones
and construct a key-cone association matrix that records the
distribution of keys among different cones. This structural
analysis facilitates total fault reduction for subsequent test
pattern generation. Second, it is necessary to select an input
pattern that produces an incorrect response for the target key
bit only while keeping its dependent keys at faulty states.
This can be achieved by using a constrained automatic test
pattern generation (ATPG) [18] to generate such a test pat-
tern, which is widely popular for testing VLSI circuits. It is
a simple yet effective way to determine a 1-bit key by gener-
ating a test pattern that can detect the stuck-at fault (saf) at
the target key (corresponds to that key bit) while keeping its
dependent keys at logic 1 (or logic 0). Dependencies are of-
ten inserted [98] to prevent direct sensitization of a key bit to
the output by test patterns due to other key lines blocking its

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 3

path. In our proposed approach, the pattern which detects a
stuck-at 1 (sa1) fault at one key line with logical constraints
for the recovered key lines is sufficient to determine that key
bit. One can also use stuck-at 0 (sa0) fault to derive such
pattern. Note that the fault-free and faulty responses are al-
ways the complements under the test pattern that detects that
fault, which helps to derive the key bit value. The same pro-
cess needs to be applied for other key bits to generate such
input patterns, and this results in most K patterns for deter-
mining the entire key of size K. Note that one test pattern
can detect multiple key bits when they are placed in differ-
ent logic cones (no dependencies). Third, we apply these test
patterns to only one instance of unlocked chip obtained from
the market and collect the responses. Faults can be injected
at the blocking key registers using laser fault injection equip-
ment (see Section 5.1 for details) and obtain the key value
by comparing the output responses with test patterns’ gen-
erated by constrained ATPG. This is a significant improve-
ment compared to our previous conference paper [36] where
differential fault analysis requires injection of faults twice.

The contributions of this paper are described as follows:

– We propose a novel attack to break secure logic locking
techniques using fault injection-based method. The ba-
sic idea behind the attack is the availability of an input
pattern that sensitizes a key bit to the primary output. If
there are interdependencies among keys, fault injection
is necessary only for the dependent key bits in order to
propagate the desired ones to the output. Multiple key
bits can be sensitized to the outputs if they are placed
in different logic cones during locking. To the best of
our knowledge, we are the first to demonstrate that the
stuck-at fault patterns can be used to determine the se-
cret key of a locked circuit with fault injections on in-
terdependent keys.

– The proposed attack can be launched very efficiently
with the minimum number of injected faults. It is neces-
sary to inject faults only to ensure the proper key prop-
agation, whereas our prior work [36] requires 2K− 1
faults (K−1 faults for CA and K faults for CF) to deter-
mine one key bit. In addition, our proposed cone analysis
approach can find key bits which are located in different
cones in parallel. As fault injection is an expensive pro-
cess, we propose to generate test patterns that reduce the
number of injected faults. Each key bit is targeted one at
a time to minimize the number of faults. Note that fault
injection is necessary when a group of key bits blocks
the propagation of a targeted key bit to the output.

– We demonstrate the feasibility of our proposed fault in-
jection attack using Hamamatsu PHEMOS-1000, a laser
fault injection equipment, on a Kintex-7 FPGA [96]. We
have performed extensive simulations on different bench-
marks with secure locking techniques. Constrained ATPG
using the Synopsys TetraMAX tool [86] is used to gen-

erate test patterns to simulate the attack. The simulation
result shows a significant reduction of total fault count
for AFIA compared to DFA [36] in breaking the same
locked benchmark.

The rest of the paper is organized as follows: An overview
of different logic locking techniques and existing attacks
along with fault injection techniques is provided in Section 2.
We describe our previously published attack [36] in Section
3. The proposed attack and its methodology to extract the se-
cret key from any locked circuit are described in Section 4.
We present the results for the implementation of the pro-
posed attack on different locked benchmark circuits in sec-
tion 5. Finally, we conclude our paper in Section 7.

2 Prior Work

The prior work related to logic locking and fault injection
techniques is described in this section.

2.1 Logic Locking

As mentioned in Section 1, the objective of logic locking is
to obfuscate the functionality of the original circuit by in-
serting a lock (secret key). The key-dependent circuit makes
it difficult for the adversary to pirate or analyze the original
circuit directly. In this context, various traditional logic lock-
ing techniques were based on different location selection al-
gorithms for key gate placement, such as random (RLL) [62],
fault analysis-based (FLL) [57], and strong interference-based
logic locking (SLL) [58]. To demonstrate the capabilities of
an adversary, Subramanyan et al. [83] developed a technique
using Boolean Satisfiability (SAT) analysis to obtain the se-
cret key from a locked chip. This oracle-guided SAT attack
iteratively rules out incorrect key values from the key space
by using distinguishing input patterns and the corresponding
oracle responses.

In post-SAT era, resiliency against the SAT attack be-
came one of the crucial metrics to demonstrate the effective-
ness of newly proposed schemes [40]. Sengupta et al. pro-
posed stuck-at-fault based stripping of original netlist and
reconstruction to form the locked netlist, where incorrect re-
sults are produced only for chosen input patterns [68, 99].
Simultaneously, researchers have adopted a different direc-
tion to tackle the SAT attack, including restricting access
to the internal states of a circuit through scan-chains. Guin
et al. proposed a design that prevents scanning out the in-
ternal states of a design after a chip is activated and the
keys are programmed/stored in the circuit [33,34]. The con-
cept of scan locking gained significant interest from the re-
searchers, which led to the development of various scan-
chain-based locking schemes [44, 53, 91]. Alrahis et al. at-
tack scan-chain-based locking schemes by unrolling the se-

4 Yadi Zhong1 et al.

x0

x1

x2

x3

y

(a)

x0

x1 y

x2

x3

k5

k0

k1

k2

k3

k4

(b) (c) (d)

x0

x1 y

x2

x3

k5

k0

k1

k2

k3

k4

sa0

1

0

0

1

1

1

1

1

0

0

1

x0

x1

x2

x3

y1

0

1

0
1

Fig. 2: The inefficiency of CLIC-A attack. (a) Original circuit. (b) Locked circuit with 6 dependent key gates, where correct
key {k0, ...,k5} = {001100}. (c) Key assignment and input pattern returned by Constraint-based CLIC-A. (d) The oracle
response y = 1.

quential circuit to a combinational one, which is then pro-
vided to the SAT solver to extract the secret key [7]. Sise-
jkovic et al. [79] proposed an oracle-less structural anal-
ysis attack on MUX-based (SAAM) logic locking to ex-
ploit insertion flaws in MUX-based key gates. Deceptive
multiplexer-based (D-MUX) logic locking is proposed to
achieve functional secrecy [75] against both SAAM and oracle-
less machine learning-based attacks. As combinational feed-
back loops are not translatable to SAT problems, cyclic-
based locking [60] is resistant to the initial SAT attack [83].
In addition, there has been extensive efforts in the proposal
of non-functional logic locking techniques, such as scan-
chain-based [9,53], timing-based locking [10,52,84,94], and
routing-based locking [41–43].

As the research community explores new directions to
understand an attacker’s latent qualities, new attacks on logic
locking have been proposed. An adversary may perform di-
rect or indirect probing on the key interconnects or regis-
ters [56]. An attacker is not required to understand the com-
plete functionality of the circuit to perform these attacks.
In this, Rahman et al. demonstrated how an attacker could
target the key registers and perform optical probing to gain
knowledge regarding the fixed value for those registers. Fol-
lowing this, tampering attacks can also become an attacker’s
primary choice. Jain et al. exploited this notion to extract
the secret key by implementing hardware Trojans inside the
locked netlist [37]. Without an oracle, the attribute of re-
peated functionality in the circuit can also be used to com-
pare the locked unit functions and their unlocked version
to predict the secret key [101]. This makes it necessary to
lock all instances of unit functions in the entire netlist to
achieve a secured logic locking scheme. CLIC-A [26,27], an
ATPG-based attack, can break keys by applying constraint-
based ATPG to propagate the target key bit to the primary
output but suffers scalability in the dependent key count.
Cyclic-based locking has suffered from modified SAT-based
attack [74], where cyclic-based constraints are placed to avoid
infinite loops. Several non-functional-based locking can be
broken by sequential-based attacks with limited scan access [29,
40, 47] or SMT attack [8].

2.1.1 Comparison of AFIA with CLIC-A [26]

There is a major difference between our proposed AFIA and
CLIC-A. First, the worst-time complexity for test generation
regarding the total test pattern count for solving the key-
dependent faults between AFIA and CLIC-A differs signifi-
cantly. Our worst-case complexity of solving an n-bit key of
non-mutable convergent key gates inside a single logic cone
is at most n test patterns with n·(n−1)

2 injected faults (see The-
orem 3). This is because AFIA determines each key bit by
directly comparing the output response with the generated
test pattern. On the other hand, CLIC-A applies constraint-
based ATPG by assigning constraint on the (n− 1)-bit key
and setting a stuck-at 0 at the target key line since placing
don’t cares (X) on other key bits will not produce the desired
test patterns for non-mutable convergent key gates. How-
ever, the simulated output from the constraint-based ATPG
likely agrees with the oracle simulation under the same test
pattern hardness of logic locking. Note that it does not mean
that the constraints placed on the (n− 1)-bit key is the cor-
rect key values, and it only indicates that, under the partic-
ular test pattern, the output from the netlist with constraints
and the stuck-at fault matches with the oracle output. In-
stead, CLIC-A has to perform additional constraints in ATPG
and check the output against the oracle to ensure that key
values are correct. The worst-case complexity in the total
test pattern count for CLIC-A is exponential O(2(n−1)).

Let us consider an example of an unlocked circuit in Fig-
ure 2(a) locked with 6 dependent XOR/XNOR key gates, as
shown in Figure 2, whose correct key {k0, ...,k5}= {001100}.
As none of the keys can be sensitized to the output without
knowing the correct value for the other five, CLIC-A runs
constraint-based ATPG and sets sa0 to k0. Suppose ATPG
returns a test pattern with key vector {k0, ...,k5}= {110011}
and input vector {x0, ...,x3}= {1100}, along with the simu-
lated fault-free output atpg-sim(x0, ...,x3,k0, ...,k5) = 1, as
shown in Figure 2(c). Although the output of the simulated
netlist matches with the oracle response y = 1, the key value
returned by constraint-based ATPG is incorrect. There is no
method for CLIC-A to check whether the key vector is the

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 5

actual key other than appending it as a constraint to ATPG
so that the test pattern returned at the next iteration would
be different from the current one. The worst-case complex-
ity for CLIC-A to fully determine the 6-bit key is to iterate
through all possible combinations of the remaining 5-bit key
(excluding k0 with sa0), resulting in a 25 test pattern count
to break the locking scheme with dependent keys. On the
other hand, AFIA only requires 6 test patterns to determine
all 6-bit keys, which is much more efficient than CLIC-A.
In summary, test pattern generation for CLIC-A becomes
infeasible if there are a large number of dependent keys in a
logic cone.

2.1.2 Comparison of AFIA with Key Sensitization
Attack [57]

There is a similarity between our proposed AFIA and sensi-
tization attack [57]. The similarity between these approaches
is the sensitization, i.e., the propagation, of the key to the
output. However, our approach is more general for the fol-
lowing reason. First, the sensitization attack does not need
fault activation as the key gates are XOR/XNOR gates, and
the key can propagate to the key gate output for both input
0 and 1. However, this may not hold for non-XOR-based
locking techniques. For example, MUX-based locking has
keys connected to the input of AND gate instead of the XOR
gate, where one needs to set the other AND input to the non-
controlling value 1 for fault activation. Besides, it is com-
mon practice for recent locking techniques to synthesize the
locked benchmark after key insertion. The synthesis tool can
optimize the key gate with other gate types, which results in
keys directly connected to non-XOR gates like AOI, NAND,
etc. To propagate the key value to the primary output, having
only key sensitization without the activation would not work
for synthesized locked circuits. For example, we can break
SFLL-hd [99], SFLL-flex [99], and SFLL-rem [71] with n
patterns for a n-bit key (see Section 4.7), where sensitiza-
tion attack requires brute force attack (O(2n)) to all the non-
mutable keys in the SFLL restoration circuitry. Second, our
proposed fault injection can break non-mutable convergent
key gates from strong logic locking, which is the counter-
measure proposed in a sensitization attack. AFIA only needs
at most n (see Theorem 1) test patterns for a n-bit pairwise
non-mutable convergent keys, but it would take O(2n) in the
worst case to brute force the correct key under sensitization
attack [57].

2.1.3 Dissimilarities between Logic Locking and
Cryptosystems

There has been considerable efforts [15, 99] in the proposal
of formal analysis on logic locking through introducing sim-
ilar concepts used in cryptography. However, logic locking

techniques differ from various cryptosystems in two aspects.
First, the objective for logic locking and cryptosystem is
different. The cryptographic algorithm ensures that the se-
cret key is fully integrated with the input plaintext (i.e., the
addRoundKey in all ten rounds of AES encryption). Logic
locking, however, focuses on perturbing the output, com-
monly by XORing a 1-bit key with a wire in the circuit,
under certain input patterns, where no repeated insertion of
the same key bit or its derived value to elsewhere. Second,
the output of a locked circuit and the ciphertext of a cryp-
tosystem behaves differently under input combinations. A
locked circuit under an incorrect key may behave identically
to the oracle (or locked circuit with the correct key) under
multiple input patterns. This is particularly true for Post-
SAT locking solutions, i.e., SARLock [97], Anti-SAT [95],
SFLL [69, 99], CAS-Lock [72], where the output corrupt-
ibility for incorrect keys is reduced to the bare minimum.
This means that a locked circuit with an incorrect key be-
haves exactly as an unlocked circuit under an exponential
number of input combinations.

The cryptographic algorithms, especially the block ci-
phers, are built on confusion and diffusion properties recom-
mended by Claude Shannon in his classic 1949 paper [76].
This results in a large number of output bit changes in the
output (ciphertext) even for a single bit change in the input
(plaintext) [28, 48]. For example, AES has 10/12/14 rounds
of diffusion and confusion operations depending on the key
size of 128/192/256 bits. It is thus trivial to launch differ-
ential fault analysis as it will guarantee the change in the
output, where one can compare the faulty and fault-free re-
sponses by injecting a fault into a key register, one at a time.
On the contrary, digital circuits generally do not have re-
peated layers of operations like block ciphers. Digital cir-
cuits, except crypto accelerators, are designed to meet the
user specification of speed, power, and area, and the func-
tionality (change in output) depends on the user’s needs. It
is well understood and verified that digital circuits have lots
of don’t cares (Xs) in the inputs. The VLSI test community
adopted test compression [1, 59] to reduce the test pins and
resultant test times. As there exists a large number of Xs in
the test pattern, it is infeasible to apply a random pattern and
expect it to propagate the target key bit (e.g., a stuck-at fault
at the key line) to output. For example, if there are 70% Xs
in a test pattern with a 100 input cone [which is very com-
mon], the probability of a random pattern propagating the
key to the output is 230/2100 ≈ 0. The effect of some keys
in a locked circuit can even be muted due to the circuit’s
structural and functional behavior [57], which is in direct
contrast to cryptosystems, where every output is influenced
by all key bits [48].

6 Yadi Zhong1 et al.

2.2 Fault Injection Methods

Over the years, several threats and methods have emerged
to break a cryptosystem without performing mathematical
analysis or brute force attacks. Using these attacks, an ad-
versary can subvert the security of protection schemes, pri-
marily through extracting or estimating the secret key using
physical attacks. Fault injection attacks intentionally disturb
the computation of cryptosystems in order to induce errors
in the output response. To achieve this, external fault in-
jection is performed through invasive or non-invasive tech-
niques. This is followed by the exploitation of erroneous
output to extract information from the device.

Fault-based analysis on cryptosystems was first presented
theoretically by Boneh et al. on RSA [17]. This contribution
initiated a new research direction to study the effect of fault
attacks on cryptographic devices. The comparison between
the correct and faulty encryption results has been demon-
strated as an effective attack to obtain information regarding
the secret key [25, 45, 49]. These can be realized into differ-
ent categories:

• Clock Glitch: The devices under attack are supplied with
an altered clock signal which contains a shorter clock pulse
than the normal operating clock pulse. For successfully in-
ducing a fault, these clock glitches applied are much shorter
than the circuit’s tolerable variation limit for the clock pulse.
This results in setup time violations in the circuit and skip-
ping instructions from the correct order of execution [30,
66].

• Power Variation: This technique can be further bifurcated
into two subcategories: either the malicious entity may choose
to provide a low power supply to the system (also abbrevi-
ated as underfeeding), or the adversary may choose to influ-
ence the power line with spikes. This adversely affects the
set-up time and influences the normal execution of opera-
tions. The state elements in the circuit are triggered without
the input reaching any stable value, causing a state transi-
tion to skip operations or altering the sequence of execu-
tion [11, 12, 31].

• Electromagnetic Pulses/Radiation: The eddy current gen-
erated by an active coil can be used to precisely inject faults
at a specific location in the chip. This method does not re-
quire the chip to be decapsulated in order to inject the fault.
However, the adversary is required to possess information
regarding specific modules and their location inside the chip [24,
65].

• Laser: Fault injection using lasers is also regarded as a
very efficient method because it can precisely induce a fault
at an individual register to change its value [13]. For op-
tical fault injection, the laser can be focused on a specific
region of the chip from the backside or front side. However,
due to the metal layers on the front side, it is preferred to

perform the attack on the backside of the chip. Skoroboga-
tov et al. [82] first demonstrated the effectiveness of this
method by using a flashgun to inject fault to flip a bit in
the SRAM cell. Several other research groups also utilized
and proposed different variants of this method to study the
security of cryptographic primitives [19, 50, 67, 81].
• Focused-ion Beam (FIB): The most effective and expen-
sive fault injection technique is devised with focused ion
beam (FIB) [88]. This method enables cutting/connecting
wires and even operates through various layers of the IC fab-
ricated in the latest technology nodes [92].
• Software Implemented Fault Injection: This technique pro-
duces errors through software that would have been pro-
duced when a fault targeted the hardware. It involves the
modification of programs running on the target system to
provide the ability to perform the fault injection. It does not
require dedicated complex hardware, a gate-level netlist, or
RTL models that are described in hardware description lan-
guages. The faults are injected into accessible memory cells
such as registers and memories through software that repre-
sent the most sensitive zones of the chip [35, 80, 89].

3 Background

In this section, we present a differential fault analysis (DFA)
attack introduced in [36]. Our attack method is inspired by
VLSI test pattern generation. One test pattern is able to de-
tect a single stuck-at fault with the propagation of this fault
to the primary output. Since key values from tamper-proof
non-volatile memory are loaded to key registers, these reg-
isters are the potential locations for stuck-at-faults. With an
active chip at hand, the adversary could target these registers
and extract the secret key.

3.1 Threat Model

The threat model defines the capabilities of an adversary and
its standing in the IC manufacturing and supply chain. It is
very important to know an attacker’s ability and the available
resources/tools to estimate its potential to launch the attack.
The design house or entity designing the chip is assumed
to be trusted. The attacker is assumed to be the untrusted
foundry or a reverse engineer having access to the following:

– The locked netlist of a circuit. An untrusted foundry has
access to all the layout information, which can be ex-
tracted from the GDSII or OASIS file. Also, this locked
netlist can be reconstructed by reverse engineering the
fabricated chip in a layer-by-layer manner with advanced
technological tools [88].

– An unlocked and fully functional chip is accessible to
the adversary since the chip is publicly available from
the market.

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 7

– A fault injection equipment is essential to launch the
attack. It is not mandatory to use high-end fault injec-
tion equipment. The main operation is to inject faults
at the locations of key registers (all the flip-flops) on a
de-packaged/packaged chip. Precise control is not nec-
essary as we target all the flip-flops simultaneously. An
adversary can also choose the software methods to inject
faults at these flip-flops. Once the register is at the faulty
state, the scan enable (SE) signal needs to be assigned to
put the chip in test mode.

– The attacker has the know-how to determine the location
of the tamper-proof memory. Then, it will be trivial for
an adversary to find the location of the key register in a
netlist, as it can easily trace the route from the tamper-
proof memory.

Notations: To maintain uniformity across the entire paper,
we represent frequently used terms with the defined nota-
tions, and they will be referred to with these notations in the
following subsections.

– K denotes key length or key size, i.e., the number of bits
in the key.

– K denotes the keyspace; K = {k0,k1, . . .kK−1}.
– The locked netlist of a circuit is abbreviated as CL. The

unlocked and fully functional chip/circuit, whose tamper-
proof memory has been programmed with the correct
key, is denoted by CO. The two versions of fault-injected
circuits are described as follows:
– CF represents a locked circuit where all the key lines

(K) are injected with logic 1 (or logic 0) faults. We
call it the circuit with faulty key registers for differ-
ential fault analysis (DFA).

– CA represents the same locked circuit in which (K−
1) key lines are injected with the same logic 1 (or
logic 0) faults, leaving one key line fault-free. We
denote this circuit as a fault-free circuit for DFA.

For any given circuit, we assume the primary inputs (PI)
of size |PI|, primary outputs (PO) of size |PO|, and se-
cret key (K) size of K. We also use key lines or key reg-
isters alternatively throughout this paper as their effects
are the same on a circuit.

– Stuck-at fault (saf): For any circuit modeled as a com-
bination of Boolean gates, stuck-at fault is defined by
permanently setting an interconnect to either 1 or 0 in or-
der to generate a test vector to propagate the fault value
at the output. Each connecting line can have two types
of faults, namely, stuck-at-0 (sa0) and stuck-at-1 (sa1).
Stuck-at faults can be present at the input or output of
any logic gates [18].

– Injected fault: A fault is injected at the key register using
a fault injection method (see details in Section 2).

Note that saf is an abstract representation of a defect to
generate test patterns, whereas an injected fault is the mani-
festation of a faulty logic state due to fault injection.

Circuit with

Faulty Key

Registers (CF)

Fault-Free

Circuit (CA)

y0

yn-1

y1

x0
x1

xm

Key (K)

k0k1kK -1

Key (K)

k0k1kK -1

Fig. 3: The abstract representation of our DFA attack.

3.2 Differential Fault Analysis (DFA) Attack Methodology

This fault injection attack relies on differential fault analysis.
The captured output response of the circuit with faulty key
registers with the corresponding fault-free circuits can reveal
the key. Applying any fault injection methods (see the de-
tails in Section 2.2), the attacker can create the faulty chip/-
circuit. Figure 3 shows an abstract representation of DFA.
The fault-free circuit (CA) is an unlocked chip (CO) bought
from the market whose key bits need to be retrieved. Except
for the key-bit targeted to be extracted, all remaining key
registers are fixed to a particular faulty value of either 0 or
1 corresponding to the selected fault. A circuit with faulty
key registers (CF) uses the same chip, and it is injected with
a particular fault to keep all the key registers or intercon-
nects to a faulty value of logic 1 or 0. One input pattern is
first applied to CA, and its response is collected. The same
input pattern is then applied to the CF to collect the faulty
response. By XORing the corresponding circuit response,
any output discrepancy between fault-free circuit (CA) and
the circuit with faulty key registers (CF) is revealed. If both
the circuits differ in their responses, the XORed output will
be 1; otherwise, it will be 0. If we find an input pattern that
produces a conflicting result for both CA and CF only for
one key bit, the key value can be predicted. The key value is
the same as the injected fault value if the XORed output is
of logic 0; otherwise, the key value is a complement to the
injected fault.

The attack can be described as follows:

– Step-1: The first step is to select an input pattern that pro-
duces complementary results for the fault-free (CA) and
faulty (CF) circuits. The input pattern needs to satisfy the

8 Yadi Zhong1 et al.

following property – it must sensitize only one key bit to
the primary output(s). In other words, only the response
of one key bit is visible at the PO, keeping all other key
bits at logic 1s (or 0s). If this property is not satisfied, it
will be impractical to reach a conclusion regarding the
value of a key bit. Now the question is, how can we find
if such a pattern exists in the entire input space (ξ).

To meet this requirement, our method relies on stuck-
at faults (saf) based constrained ATPG to obtain the spe-
cific input test patterns (see details in Section 3.4). Con-
sidering the fact that the adversary has access to the locked
netlist, it can generate test patterns to detect sa1 or sa0 at
any key lines and add constraints to other key lines (logic
1 and 0 for sa1 and sa0, respectively). A single fault, ei-
ther sa0 or sa1 on a key line, is sufficient to determine
the value of that key bit. Therefore, we have selected
sa1, and the following subsections are explained con-
sidering this fault only. This process is iterated over all
the key bits to obtain K test patterns. The algorithm to
generate the complete test pattern set is provided in Al-
gorithm Section 3.4.

– Step-2: The complete set of generated test patterns is ap-
plied to the fault-induced functional circuit with faulty
key registers (CF). The circuit is obtained by injecting
logic 1 fault on the key registers if sa1 is selected in the
previous step; else, the circuit is injected with logic 0
faults for sa0. The responses are collected for later com-
parison with fault-free responses. For CA, test patterns
are applied such that it matches the fault modifications in
the circuit. For example, the test pattern for the first key
is applied to the circuit when the circuit instance does
not pertain to any fault on its corresponding key regis-
ter and holds the correct key value while the remaining
key registers are set to logic 1 (for sa1) or 0 (for sa0).
For the next key-bit, (CA) instance is created by exclud-
ing this selected key bit from any fault while keeping all
other key registers to logic 1 (for sa1) or 0 (for sa0). This
process is repeated for all key bits, and their responses
are collected for comparison in the subsequent step.

– Step-3: The adversary will make the decision regarding
the key value from the observed differences in the output
responses of (CA) and (CF). For any test pattern corre-
sponding to a particular key bit, when the outputs from
both circuits are the same, it implies that the injected
fault on the key lines in a CF circuit is the same as the
correct key bit; only then will the outputs of both ICs be
same. Otherwise, when CF and CA differ in their output
response, it concludes the correct key bit is a comple-
ment to the induced fault. This process is repeated for all
key bits. In this manner, the key value can be extracted
by comparing the output responses of both circuits for
the same primary input pattern.

3.3 Example

We choose a combinational circuit as an example for sim-
plicity to demonstrate the attack. The attack is valid for se-
quential circuits, as well, as it can be transformed into a
combinational circuit in the scan mode, where all the in-
ternal flip-flops can be reached directly through the scan-
chains [18].

sa1

1

0

x0

x1

k1

x2

x3

x4

k0

y0

G1

G2

Gk1

G3

Gk0

n1
n2

n3

n4

X

1

D1

1

DD

0
0

1 n5

DD

DD
G4

1

x5

k2

y1
G5 Gk2

X

1

n6

Fig. 4: Test pattern generation considering a sa1 at key
line k0 with constraint k1 = 1 and k2 = 1. Test pattern,
P1 = [11010X] can detect a sa1 at k0.

Figure 4 shows the test pattern generation on a circuit
locked with a 3-bit secret key, where the propagation of k0
is dependent on k1 and vice versa. First, we target to find out
the value of k0. A test pattern P1 is generated to detect a sa1
fault at k0 with constraint k1 = 1 and k2 = 1 (adding faults
on all the key lines except the target key bit). As the value
of k1 is known during the pattern generation, the effect of
the sa1 at k0 will be propagated to the primary output y0.
For a fault value D at k0, if [x0 x1] = [1 1] then D propagates
to n2. To propagate the value at n2 to the output of G3, its
other input (n4) needs to attain logic 1. Since k1 = 1 due
to injected fault which is set as a constraint in ATPG tool,
n4 = 1 for n3 = 0 which implies [x2 x3] = [0 1]. At last, x4 =

0 propagates D propagates the value at n5 to the primary
output y0. The output y0 can be observed as D for the test
pattern P1 = [1 1 0 1 0 X]. Finally, to perform the DFA,
this pattern P1 needs to be applied to both CA and CF to
determine the value of k0. Similar analysis can be performed
for the other two key bits, k1 and k2.

3.4 Test Pattern Generation

To generate the test pattern set, an automated process rely-
ing on constrained ATPG is performed. The detailed steps
to be followed are provided in Algorithm 1. Synopsys De-
sign Compiler [85] is utilized to generate the technology-
dependent gate level netlist and its test protocol from the

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 9

Algorithm 1: Test pattern generation for con-
strained ATPG in DFA

Input : Locked gate-level netlist (CL), test protocol (T), and
standard cell library

Output: Test pattern (P) set

1 Read the locked netlist (CL) ;
2 Read standard cell library ;
3 Run design rule check with test protocol generated from

design compiler ;
4 Determine key size K from CL ;
5 for i← 0 to (K−1) do
6 Add a sa1 fault at key line ki ;
7 for j← 0 to (K−1) do
8 if i 6= j then
9 Add constraint at k j to logic 1 ;

10 end
11 end
12 Run ATPG to detect the fault ;
13 Add the test pattern, Pi to the pattern set, P ;
14 Remove all faults ;
15 Remove all constraints ;
16 end
17 Report the test pattern set, P ;

RTL design. A test protocol is required for specifying sig-
nals and initialization requirements associated with design
rule checking in Synopsys TetraMAX [86]. Automatic test
generation tool TetraMAX generates the test patterns for the
respective faults along with constraints for the locked gate
level netlist.

The inputs to the algorithm are the locked gate-level
netlist (CL), Design Compiler generated test protocol (T),
and the standard cell library. The algorithm starts with read-
ing the locked netlist and standard cell library (Lines 1-2).
The ATPG tool runs the design rule check with the test pro-
tocol obtained from the Design Compiler to check for any
violation (Line 3). Only upon the completion of this step is
the fault model environment set up in the tool. The size of
the key (K) is determined by analyzing CL (Line 4). The re-
maining key lines are selected one by one to generate test
patterns (Line 5). A stuck-at-1 fault is added at the ith key
line to generate Pi (Line 6). The ATPG constraints (logic 1)
are added to other key lines (Lines 7-11). A test pattern Pi is
generated to detect the sa1 at the ith key line (Lines 12-13)
and added to the pattern set, P. All the added constraints and
faults are removed to generate the (i+1)th test pattern (Lines
14-15). Finally, the algorithm reports all the test patterns, P
(Line 17).

4 AFIA: ATPG-guided Fault Injection Attack

The objective of an adversary is to reduce the number of
injected faults to launch an efficient attack. The DFA pre-
sented in Section 3.2 requires 2K− 1 faults to determine a
single key bit, where K denotes the secret key size. This
severely limits the adversary’s capability as injecting a large

y0 (LC0)

y1 (LC1)

yp (LCp)

yp-1 (LCp-1)

yN-1 (LCN-1)

Key (K)

k0 k1k1

k4k4
k3k3

k2k2
ki-1ki-1

kiki

kK -1

ki+1ki+1

x0
x1

xr-1

xr
xr+1

xs-1

xs
xs+1

xM-1

Locked Circuit (CL)

Functional Chip (CO)

Fig. 5: An abstract view of a locked circuit.

number of faults is challenging from the fault injection equip-
ment’s perspective. All these faults need to be injected when
applying the test pattern to evaluate one key bit. In this sec-
tion, we present an efficient attack and denoted as AFIA, an
ATPG-guided Fault Injection Attack based on key sensiti-
zation. This new attack only requires injecting the fault on a
key register if there is a dependency among keys. The threat
model remains the same as DFA. We consider an untrusted
foundry to have access to the gate-level netlist and can gen-
erate manufacturing test patterns.

4.1 Overall Approach

The proposed attack AFIA evaluates one key bit at a time
iteratively and can be summarized by the following steps:

– Step-1: First, AFIA analyzes the locked circuit CL and
its logic cones. Some cones are completely independent
(e.g., LC0 in Figure 5), some cones share few inputs
(e.g., LC1, . . . , LCp−1), and the others share the same in-
puts (e.g., LCp, . . . , LCN−1). It is necessary to determine
keys from cones that are a subset of other larger cones
(if any) first during the test pattern generation in order to
reduce the number of injected faults. For an independent
logic cone (say LC0), we can propagate the keys one at
a time without injecting faults at keys of other cones. If
the two cones are overlapped, it is beneficial to sensitize
keys to a cone with fewer unknown keys.

– Step-2: Similar to DFA, it requires an input pattern to
derive a correct key bit. We denote this key bit as the
target key bit. Constraints are set on the recovered key
lines, where no fault injections are needed. The attacker
performs fault injection (Step-3) solely on keys (in the
same cone) that block the propagation of the targeted key
bit. The blocking key set is determined by the returned
test patterns from ATPG TetraMAX [86]. Once a key

10 Yadi Zhong1 et al.

bit is determined, AFIA targets the next key bit of the
same cone by putting the previously obtained keys as
constraints during the test pattern generation.

– Step-3: The last step applies fault injections on func-
tional chip CO using the generated test patterns of Step-
2. The targeted key value can be extracted by comparing
the fault-injected output against the output pattern com-
puted by ATPG. When the value of all the targeted key
bits in one text pattern has been identified, we can con-
strain these bits with their actual values in ATPG in the
subsequent pattern.

AFIA is an iterative method, where Step-2 is performed
to generate test patterns, and Step-3 injects fault and applies
that pattern to determine the targeted key bit. Once this tar-
geted key is determined, it will be used as a constraint in
Step-2. The following subsections present these three steps
in detail.

4.2 Cone Analysis

The goal of this proposed attack is to apply minimal fault in-
jections to recover the complete key set. It is ideal for the ad-
versary to inject faults at key registers only when necessary.
In general, not all keys prevent the propagation of the tar-
get key bit, as many of the keys are often distributed across
the netlist and reside in different logic cones. A logic cone
is a part of the combinational logic of a digital circuit that
represents a Boolean function and is generally bordered by
an output and multiple inputs [18]. Thus, cone analysis can
effectively separate the dependence of different groups of
key bits, where one group does not block the propagation
of the key bits in other groups. We propose to analyze the
internal structure of the locked netlist CL by creating a di-
rected graph G from it. We denote that both the inputs and
logic gates’ outputs are nodes. A directed edge exists from
Node n1 to Node n2 if and only if they are associated with
a logic gate. Intuitively, a circuit with N outputs has N logic
cones, as in Figure 5. Note that the number of cones can be
only primary outputs (POs) for a combinational circuit or
the sum of POs and pseudo primary outputs (PPOs) for a
sequential circuit [18]. All the inputs and logic gates whose
logical values affect y j belong to logic cone LC j. The graph
representation of logic cone LC j with sink y j is a subgraph
of G.

Two possible scenarios might occur during the locking
of a netlist. Key bit(s) can be placed uniquely in a logic cone
and cannot be sensitized to any other POs/PPOs except the
cone’s output. Other key bits can be placed in the intersec-
tion of multiple cones and can be sensitized through any of
these. We observe that the majority of the key bits are inside
the intersections with multiple cones. What should be the
best strategy to propagate a key bit to one of the POs/PPOs

../DC_SYN_K/c432-RN320_gatelevel.v graph w/ Source-L, Sinks-R

N223
N329

Fig. 6: Directed graph of locked c432-RN320 netlist with a
32-bit key.

when there exist multiple sensitization paths? Our objective
is to reduce the number of faults to sensitize a key bit to a
PO/PPO, and it is beneficial to select a cone with the mini-
mum number of keys. Note that the keys in a cone can block
the propagation of a targeted key in that same cone only and
requires fault injection to set a specific value to these block-
ing keys. It is, thus, necessary to construct a key-cone asso-
ciation matrix A to capture the correlation between the logic
cones and the key bits. The matrix A not only provides in-
sight on which keys (and how many of them) are inside a
logic cone but also offers a structured view of whether a key
belongs to multiple logic cones, and is presented as follows:

A = [ai, j]K×N

=



LC0 LC1 ... LCN−1

k0 a0,0 a0,1 . . . a0,N−1
k1 a1,0 a1,1 . . . a1,N−1
k2 a2,0 a2,1 . . . a2,N−1
...

...
...

. . .
...

kK−1 aK−1,0 aK−1,1 . . . aK−1,N−1

,

where, ai, j ∈ {0,1}, and ai, j = 1 if key ki is present in cone
LC j, otherwise, ai, j = 0.

It is straightforward for the attacker that, if he/she picks
cone LC j and key bit ki (if its value is still unknown) in this
cone, only keys (other than ki) residing in LC j could po-
tentially impede the propagation of ki to the output y j. This
is advantageous to the attacker because the keys outside of
cone LC j would not, by any means, affect the propagation
of ki to y j. Thus, he/she can safely ignore these keys, and it
does not matter whether he/she already has the correct logi-
cal values for them or not.

For example, the directed graph representation of locked
netlist c432-RN320 with a 32-bit key [63] is shown in Fig-
ure 6. Output nodes are in red, key registers in green (at

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 11

the left-most level), key gates in cyan, remaining input (at
the left-most level), and gates in blue. The top two logic
cones with the fewest keys are LCN223 of output N223 and
LCN329 of output N329. Logic cone LCN223 has only one key
(keyIn 0 4, with key gate highlighted) (all other nodes and
edges are in magenta and light green). Logic cone LCN329
is the superset of LCN223, and it contains additional thirteen
keys (all other nodes and edges exclusively in LCN329 are in
purple and orange). With AFIA, the only key in LCN223 is
determined first, followed by the remaining thirteen keys in
LCN329. Because of the only key in LCN223, no fault injection
is necessary for this key’s propagation to N223.

4.3 Test Pattern Generation

Once the cone analysis is performed, it is required to gen-
erate test patterns so that a targeted key can be sensitized
to one of the PO/PPO. The test pattern generation process
is similar to the DFA presented in Section 3.2 except with
a much lesser number of ATPG constraints. We treat unde-
termined keys as inputs during the test pattern generation
and the recovered keys as ATPG constraints. As the secret
key remains the same in an unlocked chip, it is unnecessary
to inject faults at the recovered key bits as their values are
known during the test pattern generation. On the other hand,
we need to inject faults at unknown and yet to be determined
key lines. However, it is not necessary to inject faults at all
of them. We use the ATPG tool to determine whether one
or more unknown key bits do not block the propagation of
the targeted key bit. As we treat unknown keys as inputs,
the ATPG tool can generate a pattern that might contain X ′s
at some of the key lines (using set atpg -fill X [86]), and
we do not need to inject faults at these bits. This allows an
adversary to reduce the number of fault injections further.
Similar to DFA, a stuck-at fault, sa1 (or sa0), is placed on
the target key bit with constraints on recovered key bits dur-
ing the ATPG. When TetraMAX [86] returns a test pattern,
the attacker applies the pattern and injects faults (presented
in Section 4.4) to sensitize the target key bit at the PO/PPO.
After recovering one key bit, AFIA sets ATPG constraints
on the recovered key lines, generates another test pattern,
and applies it to sensitize the next key.

4.4 Fault Injection

The final step applies fault injections on functional chip CO
using generated test patterns from Section 4.3. Faults are
injected at the key registers with any appropriate fault injec-
tion techniques described in Section 2.2. No fault injection
is necessary at the key bits whose values are already deter-
mined as their values are no different from those already
programmed in the chip CO. If we receive a faulty response

Algorithm 2: AFIA: ATPG-guided Fault Injection
Attack.

Input : Locked gate-level netlist (CL)
Output: Secret key (KEY)

1 // ———————- Cone Analysis
——————————–

2 [K,Y,G]← netlist2Graph(CL);
3 Gflip← flipEdges(G);
4 A← [] ;
5 for each y j in Y do
6 [LK j , LC j]← extractCone(Gflip, K, y j);
7 A← append vector LK j as the last column ;
8 end

// ————- ATPG test pattern generation
————————

9 Recovered key bits from Step-3 of AFIA, KR←∅ ;
10 while (A != false) do
11 [KU

LC]← fConeWMinKeys(A,K) ;
12 if KU

LC! =∅ then
13 for l← 0 to (|KU

LC|−1) do
14 Add a sa1 fault at key line KU

LC[l] ;
15 Add constraints at recovered key bits to KR;
16 Test pattern Pl ← run ATPG (set atpg -fill X);
17 Remove all faults ;
18 Remove all constraints ;

// —————- Fault Injection
————————

19 Invoke Step-3 of AFIA with Pl ;
20 Add recovered key KU

LC[l] to KR ;
21 Assign false to all entries in key KU

LC[l]’s row in
A ;

22 end
23 end
24 end
25 Report the secret key, KEY ←{K,KR} ;

by applying the test pattern developed in Step-2, the value of
the secret key will be 1 as we have sensitized a sa1 fault dur-
ing the ATPG; otherwise, the secret key is 0. If we generate
a test pattern considering a sa0 fault, the faulty response re-
sults in the secret key of 0, and vice versa. Step-2 in Section
4.3 and Step-3 in Section 4.4 are repeated until the entire
secret key is found. Consequently, fewer faults are injected
compared with the DFA since injections happen only at key
locations (of the same logic cone) that block the propagation
of the to-be-determined key bits.

4.5 Proposed Algorithm for AFIA

Algorithm 2 describes the implementation details of AFIA.
The adversary first constructs a directed graph G from the
locked netlist CL (Line 1), as elaborated in Section 4.2. Aside
from converting netlist to graph, netlist2Graph(.) re-
turns the key list K and output list Y . By exploiting directed
graph structure, logic cone LC j can be easily extracted by
flipping all edges in graph G (Line 2) and run breadth-first-
search (BFS) or depth-first-search, (DFS) [23], on output
nodes y j. The key-cone association matrix A is declared as

12 Yadi Zhong1 et al.

an empty array, where the cone and key information will
be added (Line 3). Function extractCone(.) is imple-
mented with BFS. It returns the directed subgraph of logic
cone LC j and a logical (true/false) vector LK j of dimen-
sion K× 1. If key bit kq is inside cone LC j, LK j[q] = true;
else, LK j[q] = false. Matrix A is updated by concatenating
all vectors LK j’s together (Line 6) so that the complete A has
K rows and N columns, as explained in Section 4.2.

AFIA invokes fConeWMinKeys(.) (Line10) and ob-
tains a vector KU

LC of all unknown keys in the logic cone
with the fewest (positive) unknown keys. For simplicity, KU

LC
records the row indices of the unknown keys, as in matrix
A. For every key bit in KU

LC, the sa1 is set on the to-be-
determined key (Line 13). The recovered key values in KR

are appended as constraints (Line 14). Test pattern Pl (Line
15) is generated after invoking ATPG. All the stuck-at faults
(Line 16) and constraints (Line 17) are removed. When Pl
and fault injections (Line 18) are applied on the working
chip CO, KU

LC[l] bit is recovered by referencing the ATPG’s
predicted output of the corresponding Pl . Afterward, the cor-
rect bit value is added to the recovered key list KR (Line 19).
Since this bit is recovered, it is no longer an unknown key,
and AFIA updates the association matrix A to assign logi-
cal zero to all entries on key KU

LC[l]’s row (Line 20). This is
conceptually equivalent to deleting KU

LC[l] from the unknown
key list as fConeWMinKeys(.) will only count the num-
ber of non-zero entries per column. When all key bits in KU

LC
are determined, the adversary moves on to the subsequent
logic cone (Line 10). Finally, when all cones are covered,
the secret key KEY is returned (Line 24).

4.6 Example

Here, we use the same circuit as in Figure 4 as an example
to illustrate how AFIA works. The circuit has six inputs, two
outputs, and three key bits. With two outputs, this circuit has
two logic cones, as in Figure 7. The same D-Algorithm [18]
is applied to show the propagation of stuck-at-faults. Based
on cone analysis in Section 4.2, logic cone LC0 contains two
key bits, k0, k1, cone LC1 has only one key k2. Thus, the
association matrix A can be represented as:

A =


LC0 LC1

k0 1 0
k1 1 0
k2 0 1

.

AFIA picks a logic cone with the fewest number of un-
known keys to solve (Line 10, Algorithm 2). Since all keys
are unknown at this time, fConeWMinKeys(.) function
selects logic cone LC1 and returns KU

LC = [2]. This cone has
one key bit k2, to which we assign sa1. Using D-Algorithm,
fault value D is marked on this key line. Here, the output

y1 is directly connected to XOR key gate Gk2 , and we can
propagate this fault D to output y1 = D with logic 1 for the
other input of this XOR gate, as in Figure 7(a). Test pat-
tern P0 = [x0x1 . . .x5] = [XXXXX0] can detect sa1 for key k2.
Here, the value of the recovered key is 1 when the output is
faulty. Otherwise, the recovered key is 0 as we have sensi-
tized a sa1 fault during the ATPG. Note that no fault injec-
tion is necessary to determine this key. Matrix A is updated
with all zeros on the k2’s row,

A =


LC0 LC1

k0 1 0
k1 1 0
k2 0 0

.

In the next iteration (Line 10), there is only one logic cone
(also the cone with the least unknown keys), LC0, left in ma-
trix A that has unknown keys. Function fConeWMinKeys(.)
identifies LC0 and yields KU

LC = [0 1]T , which captured the
indices of unknown keys k0, k1. With two keys k0 and k1,
AFIA chooses k0 first randomly (Algorithm 2 Line 13). By
adding sa1 at k0, test pattern P1 = [x0x1 . . .x5] = [0X0X0X]
with logic 1 fault on k1 can propagate the faulty response
D in k0 to y0, as shown in Figure 7(b). Fault injection is
performed at k1 by setting its value to 1, and apply P1 to de-
termine k0. AFIA, then, flushes out all the entries on row k0
of matrix A,

A =


LC0 LC1

k0 0 0
k1 1 0
k2 0 0

.

After k0 is recovered, AFIA moves on to determining
the other key in LC0, k1, (Line 12). We add a sa1 at k1 (Line
13), along with constraining on k0, k2 to their determined
values (Line 14). If the correct logical value for k0 is 0 (i.e.,
the stored key), test pattern P2 = [x0x1 . . .x5] = [110X0X] can
sensitize the sa1 of k1 to the output y0. If the stored secret
key bit is k0 = 1, the test pattern P2 will be different, and
its value will be [0X0X0X], which one can verify using the
same D-Algorithm. Note that no fault injection is necessary
to determine k1.

Finally, the matrix A will be updated to all zeros and the
AFIA recovers the entire key.

4.7 AFIA Complexity Analysis

The average complexity of the AFIA attack is linear with
the key size (K). In this section, we show that AFIA is very
effective at breaking any logic locking technique. However,
the fault injection time may vary depending on the effec-
tiveness of the equipment. It is practically instantaneous to

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 13

y1

X

X

x0

x1

k1

x2

x3

x4

k0

y0G1
Gk0

X
X

X

x5

k2

0

(a)
sa1
X

1G5G5 Gk2Gk2

LC0

LC1

Gk1Gk1

G2

G3G3
G4G4

DD

DD
y1

X

X

x0

x1

k1

x2

x3

x4

k0

y0G1
Gk0

X
X

X

x5

k2

0

(a)
sa1
X

1G5 Gk2

LC0

LC1

Gk1

G2

G3
G4

D

D
y1

X

0

x0

x1

k1

x2

x3

x4

k0

y0G1

1

0
X

0

x5

k2

X

(b)

sa1
X

0

G5G5 Gk2Gk2

LC0

LC1

Gk1Gk1

G2

G3G3
G4G4

DD

y1

X

0

x0

x1

k1

x2

x3

x4

k0

y0G1

1

0
X

0

x5

k2

X

(b)

sa1
X

0

G5 Gk2

LC0

LC1

Gk1

G2

G3
G4

D

0

Gk0Gk0

1

DD

DD

DD

y1

X

0

x0

x1

k1

x2

x3

x4

k0

y0G1

1

0
X

0

x5

k2

X

(b)

sa1
X

0

G5 Gk2

LC0

LC1

Gk1

G2

G3
G4

D

0

Gk0

1

D

D

D

Fig. 7: Test Pattern Generations for AFIA. (a) Test Pattern P0 = [XXXXX0] for sa1 at k2. (b) Test Pattern P1 = [0X0X0X] for
sa1 at k0 with injected fault k1 = 1.

obtain the secret key once the responses are collected from
CO.

Lemma 1 One input pattern is sufficient to recover one key
bit.

Proof A single test pattern is sufficient to detect a saf if such
a fault is not redundant [18]. A redundant fault results from
a redundant logic that cannot be exercised from the inputs.
As the key gates are placed to modify the functionality, it
cannot be a redundant logic. As there exists one test pattern
to detect a saf at the key line, it can be used to recover one
key bit.

Theorem 1 AFIA recovers the entire secret key, K using at
most K number of test patterns, i.e.,

T PAFIA[fK(CL) = f (CO)]≤K. (1)

where fK() represents the functionality with K as the key.

Proof A CL with a K-bit key is injected with a saf fault on
every key line. As AFIA requires one test pattern to obtain
one key bit (see Lemma 1), the upper bound of the number
of test patterns is K. However, a single pattern can detect
two or more stuck-at faults on the key lines if their effect is
visible in different logic cones (e.g., different outputs). As
a result, the required number of test patterns to recover the
entire key (K) can be less than K.

Theorem 2 AFIA is applicable to strong logic locking [57],
where pairwise key gates are inserted to block the propaga-
tion of one key by the other.

Proof In strong logic locking, the propagation of one key is
blocked due to the other key. However, (K− 1) faults are
injected at (K− 1) key lines, worst-case scenario, except
for the one whose value needs to be determined. Once an
external fault is injected into the functional chip, the key
value is fixed and no longer remains unknown. Hence, AFIA
is applicable to strong logic locking.

Theorem 3 The worst-case complexity for the total number
of faults injected in AFIA is O(K2).

Proof Let us consider a circuit with a single logic cone locked
with a secret key vector {k0, . . . ,kK−1}. Suppose all key bits
are pairwise non-mutable convergent, i.e., the propagation
of one key bit depends on all the other keys. To sensitize the
1st key bit, we need to add K− 1 faults during the fault in-
jection process. The 2nd key bit requires K−2 faults as the
value of the 1st key bit is known. Similarly, the 3rd key bit
requires K− 3 faults, and so on. Thus, the total number of
faults is:

∑
K
i=1(K− i) = K·(K−1)

2 .
Thus, the worst-case complexity for the total number of

faults injected is O(K2).

Theorem 4 The average-case complexity for the total num-
ber of faults injected in AFIA is O(K).

Proof Consider a circuit with N logic cones, each cone LC j
has negligible or no overlap with its neighboring cones, LC j−1
and LC j+1, and K keys are evenly distributed (amortized)
among the N cones. For each cone, it has an average a = K

N
keys). Since negligible overlap between cones, there is no
preference between the order of execution on deciphering
keys in logic cones, and each cone needs to inject K/N·(K/N−1)

2
faults. Overall, by summing up all faults for every logic
cone, the required number of fault injections is N · K/N·(K/N−1)

2 .
Thus, the average-case complexity is N · K/N·(K/N−1)

2 =
a−1

2 ·K =O(aK) =O(K).

4.8 AFIA on Fault-Tolerant Circuit

Fault-tolerant circuits and circuits with redundancy may pre-
vent the injected faults from being revealed at the output.
However, it does not affect our proposed AFIA. As the ob-
jective of logic locking is to produce incorrect output for

14 Yadi Zhong1 et al.

wrong key combinations under certain input patterns, these
input patterns ensure the differential output behavior for keys.
Thus, the key cannot be inserted inside the region of redun-
dancy, where no input pattern can ever produce differential
output. Any key bit placed at these locations cannot corrupt
the output so that either logic 0 or logic 1 is its correct value.
The SoC designer would not place a key bit in such a way
that both logic values gives the correct output since it con-
tradicts the principle of logic locking. In summary, redun-
dancies are not a countermeasure against AFIA attack for a
well-designed locked circuit.

4.9 AFIA on Non-Functional-Based Locking Techniques

Our fault injection-based attack can also be extended to non-
functional logic locking techniques [42, 53]. The dynami-
cally obfuscated scan-chain (DOSC) technique [53] has three
secrets stored in the tamper-proof memory, which are the
functional obfuscation key, the LFSR seed, and the con-
trol vector. AFIA can break the functional obfuscation key
if the obfuscated scan-chain becomes transparent to the at-
tacker. To achieve that, the attacker needs to inject faults
at all the Scan Obfuscation Key registers directly to get a
known shift out state from the functional IP. For the routing-
based locking technique [42], our proposed attack is applica-
ble to breaking the key-configurable logarithmic-based net-
work (CLN) as the switch-boxes (SwB) consist of MUX-
based key gates. Once a fault is injected into a key register,
the selection path for the corresponding MUX is determined.
We can target these keys one at a time with test patterns gen-
erated from the ATPG tool and inject faults on dependent
key registers.

5 Experimental Results

This section provides the feasibility of fault injection to break
secure logic locking. Extensive simulations are performed
on different benchmarks with different locking techniques
to demonstrate the effectiveness of the proposed fault in-
jection attack for breaking a secure locking technique. We
have shown a significant reduction of total fault count for
AFIA compared to DFA, presented in our conference paper,
in breaking the same locked benchmark.

5.1 Laser Fault Injection

To demonstrate the laser fault injection attack, we selected a
Kintex-7 FPGA [96], which is used as the device-under-test
(DUT). Locked benchmark circuits are implemented in the
Kintex-7 FPGA, where faults are injected into key registers.
Figure 8 shows the laser fault injection (LFI) setup with a

Fig. 8: The FPGA board placed under the lens for laser-fault
injection at the target registers.

Hamamatsu PHEMOS-1000 FA microscope [2]. The equip-
ment consists of a diode pulse laser source (Hamamatsu
C9215-06) with a wavelength of 1064 nm. Three objective
lenses were used during this work: 5x/0:14 NA, 20x/0:4 NA,
50x/0:76 NA. The 50x lens is equipped with a correction
ring for silicon substrate thickness. The laser diode has two
operation modes – a) low power (200 mW) pulse mode, and
b) high power (800 mW) impulse mode. The high power
impulse mode can be used for laser fault injection. The laser
power can be adjusted from 2% to 100% in 0.5% steps.

Photon emission analysis [54] can be used to localize
the implemented locked circuitry in the DUT. Thereafter,
the DUT is placed under the laser source for LFI. A trig-
ger signal is fed to the PHEMOS-1000 to synchronize the
LFI with the DUT operation. Once the device reaches a sta-
ble state after power-on, the laser is triggered on the target
key registers. After the fault injection, we need to guarantee
that the device is still functioning as expected and has not
entered into a completely dysfunctional state. The laser trig-
gering timing can be checked by a digital oscilloscope for
greater precision.

5.2 Fault Count Comparison

The differential attack methodology (DFA) introduced in
Section 3 and in [36] requires K− 1 number of constraints
per test pattern. The total number of faults that need to be
injected to determine one key bit is 2K− 1, as CA and CF
require K− 1 and K faults, respectively. The total number
of faults required to decipher K key bits is (2K− 1) · K =

2K2−K. Compared to DFA, AFIA only requires injecting
faults to key registers if these key bits are interdependent,
where the propagation of one key is dependent on others.

Table 1 shows the number of faults to be injected for
both the DFA (Algorithm 1) and AFIA (Algorithm 2). To

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 15

Table 1: Comparison of Number of Injected Faults

Locked Benchmark
Key
Size DFA AFIA

(K) FT FT FT/K
c432-RN320 32 2016 48 1.5
c432-RN640 64 8128 165 2.58
c432-RN1280 128 32640 1085 8.48
c2670-RN1280 128 32640 520 4.06
c3540-RN1280 128 32640 268 2.09
c5315-RN1280 128 32640 282 2.20
c6288-RN1280 128 32640 268 2.09
c7552-RN1280 128 32640 334 2.61
c1355-SL1280 128 32640 1419 11.09
c1908-SL1280 128 32640 654 5.11
c5315-SL1280 128 32640 3469 27.10
c6288-SL1280 128 32640 368 2.88
c7552-SL1280 128 32640 188 1.47

b14 C k8 SFLL-hd 8 120 28 3.5
b14 C k16 SFLL-flex 16 496 120 7.5
b14 C k32 SFLL-flex 32 2016 496 15.5
b14 C k64 SFLL-flex 64 8128 2016 31.5
b14 C k128 SFLL-flex 128 32640 8128 63.5

c432 k8 SFLL-hd 8 120 28 3.5
c432 k16 SFLL-flex 16 496 120 7.5
c432 k32 SFLL-flex 32 2016 496 15.5
c880 k8 SFLL-hd 8 120 28 3.5

c880 k16 SFLL-flex 16 496 120 7.5
c880 k32 SFLL-flex 32 2016 496 15.5
SFLL rem k128 [71] 128 32640 8128 63.5

demonstrate the feasibility of the fault injection attack on
logic locking, we computed the number of faults after gen-
erating test patterns using constrained ATPG using the Syn-
opsys TetraMAX tool [86]. Note that the successful genera-
tion of test patterns using constrained ATPG guarantees the
successful attack on locking. We choose benchmark circuits
with random logic locking (added ‘-RL’ after the bench-
mark name) and strong logic locking (added ‘-SL’) from
TrustHub [63], SFLL-hd (added ‘SFLL-hd’), SFLL-flex (added
‘SFLL-flex’), and SFLL-rem (added ‘SFLL rem’) bench-
marks from [99], and GitHub [71]. Column 2 represents
the secret key size, whereas Columns 3 and 4 represent the
number of faults to determine the entire key for DFA and
AFIA, respectively. Data in Column 4 is collected under sa1
fault in test pattern generation (Algorithm 2). Finally, Col-
umn 5 shows the average number of faults to evaluate one
key bit under AFIA. For example, with locked benchmark
c432-RN320, the number of faults required for DFA is 2016,
whereas AFIA requires only 48 faults to extract the 32 key
bits, leading to 1.5 faults per key bit. For c1355-SL1280, the
number of faults increased significantly to 32,640 for DFA.
AFIA only requires 1,419 faults to determine the 128 key
bits, or 11.09 faults per key bit.

Based on Theorem 4, if keys are uniformly distributed
among logic cones, the number of fault injections for AFIA
is linear with respect to key size, O(aK) =O(K), with vari-
able a indicating the average key size per logic cone. If hav-

ing the same key size, an RLL circuit with more logic cones,
or a smaller a, (provided that the size of all logic cones are
about the same), should, generally, has fewer fault injections
than one with fewer logic cones. This is equivalent to hav-
ing fewer injected faults in an RLL-based circuit that con-
tains more output than the ones without (see definition of
the number of logic cones in 4.2). Benchmark c432-RN1280
has a larger a than other 128-bit RLL circuits, for c432 has
only seven outputs, while c2670 has 140 outputs, c3540 has
22, c5315 has 123, c6288 has 32, c7552 has 108 outputs
respectively. (Note, not all logic cones will have keys in-
side, but the circuit with more output usually has more key-
embedded cones than those with fewer outputs.) This is the
reason that c432-RN1280 requires considerably more fault
injections in total, 1085, than other locked netlist with same
key size, where c2670-RN1280 needs 520 faults, c3540-
RN1280 has 268, c5315-RN1280 has 282, c6288-RN1280
has 268, c7552-RN1280 has 334, see Table 1.

RLL randomly picks a location in the original unlocked
circuit for key gate insertion, while SLL produces more block-
ing keys. In terms of theoretical complexity analysis, as long
as the key gates in RLL locked circuit are distributed uni-
formly, the number of fault injections for SLL should be
larger than RLL, under the same original unlocked bench-
mark and the same key size, e.g., c5315-RN1280 and c5315-
SL1280, c6288-RN1280 and c6288-SL1280. For SFLL-hd
and SFLL-flex, each locked circuit has a perturbation unit
and a restoration unit. All keys reside in the functionality
restoration unit, where every key passes through the out-
put of the restoration subcircuit to reach the primary out-
put [5, 78]. Because of this restoration unit, all key bits are
interdependent. Hence, all SFLL-flex and SFLL-hd circuits
belong to the worst-case scenario as in Theorem 3, in which
the number of injected faults is K·(K−1)

2 . We also evalu-
ated our proposed attack on the latest SFLL variant, SFLL-
rem [69, 70]. Although SFLL-rem does not have the added
perturb unit, the keys are present in the restoration unit only,
and our attack can still break it.

6 Future Work

Although AFIA targets combinational logic circuits or se-
quential ones with scan-chain access, it can be extended to
other clock-based and timing-based locking techniques that
target output corruptibility in a different clock cycle [10,52,
84]. These techniques require multiple clock cycles (typi-
cally two) to capture the key to a storage element and thus
observe its effect on the circuit behavior (i.e., output cor-
ruptibility). Fortunately, the same fault injection-based at-
tack proposed in this paper can be applied to these locking
techniques as well. We, however, need to consider transition
delay faults (TDFs) or path delay faults (PDFs) instead of

16 Yadi Zhong1 et al.

stuck faults to propagate the effect of the targeted key on
the output. The same Algorithm 2 can be applied to gen-
erate patterns to launch the attack. Note that the TDFs and
PDFs require multiple captures (typically 2). By controlling
the fault injection in a precise timing range, it is possible to
observe the key through launch on shift (LOS) and launch
on capture (LOC) schemes [18, 64].

7 Conclusion

This paper presents AFIA, a novel stuck-at fault-based fault
injection attack that undermines the security of any logic
locking technique. AFIA utilizes cone analysis to analyze
the dependency of keys. Faults are injected only at the inter-
dependent key bits, which is a significant improvement from
the previously published attack DFA [36], dropping the to-
tal number of faults to the linear multiple of key size. With
the automatic test pattern generation (ATPG) tool, we con-
structed a pattern set, which is used to apply to an unlocked
chip. Each pattern is sufficient to determine a one-bit key.
All key bits are derived by comparing collected responses
from fault injections and the predicted response from test
pattern generation. We performed laser fault injections on
Kintex-7 FPGA with various locked benchmark circuits and
state-of-the-art locking techniques, and our results have demon-
strated the effectiveness of the proposed AFIA scheme. Our
future work will focus on developing a locking technique to
prevent AFIA.

Funding: This work was supported by the National Science
Foundation under Grant Number CNS-1755733.

Data Availability: The authors declare that the data sup-
porting the findings of this study are available within the
article.

Declarations
Conflict of Interest/Competing Interest: The authors have
no conflicts of interest to declare that are relevant to the con-
tent of this article.

References

1. TestMAX DFT, Design-for-Test Implementation, Syn-
opsys, https://www.synopsys.com/content/
dam/synopsys/implementation&signoff/
datasheets/testmax-dft-ds.pdf

2. PHEMOS-1000 Emission microscope, HAMAMATSU,
https://www.hamamatsu.com/eu/en/product/
semiconductor-manufacturing-support-systems/
failure-analysis-system/C11222-16.html

3. Age Yeh: Trends in the global IC design service market. DIG-
ITIMES Research (2012)

4. Alkabani, Y., Koushanfar, F.: Active Hardware Metering for In-
tellectual Property Protection and Security. In: USENIX security
symposium, pp. 291–306 (2007)

5. Alrahis, L., Patnaik, S., Khalid, F., Hanif, M.A., Saleh,
H., Shafique, M., Sinanoglu, O.: GNNUnlock: Graph Neural
Networks-based Oracle-less Unlocking Scheme for Provably Se-
cure Logic Locking. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 780–785. IEEE
(2021)

6. Alrahis, L., Patnaik, S., Knechtel, J., Saleh, H., Mohammad, B.,
Al-Qutayri, M., Sinanoglu, O.: UNSAIL: Thwarting oracle-less
machine learning attacks on logic locking. IEEE Transactions on
Information Forensics and Security 16, 2508–2523 (2021)

7. Alrahis, L., Yasin, M., Limaye, N., Saleh, H., Mohammad, B.,
Alqutayri, M., Sinanoglu, O.: ScanSAT: Unlocking Static and
Dynamic Scan Obfuscation. Transactions on Emerging Topics
in Computing (2019)

8. Azar, K.Z., Kamali, H.M., Homayoun, H., Sasan, A.: SMT At-
tack: Next Generation Attack on Obfuscated Circuits with Capa-
bilities and Performance Beyond the SAT Attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems pp.
97–122 (2019)

9. Azar, K.Z., Kamali, H.M., Homayoun, H., Sasan, A.: From Cryp-
tography to Logic Locking: A Survey on the Architecture Evolu-
tion of Secure Scan Chains. IEEE Access 9, 73133–73151 (2021)

10. Azar, K.Z., Kamali, H.M., Roshanisefat, S., Homayoun, H.,
Sotiriou, C.P., Sasan, A.: Data flow obfuscation: A new paradigm
for obfuscating circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 29(4), 643–656 (2021)

11. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M.,
Pelosi, G.: Low voltage fault attacks to AES. In: Int. Sym. on
Hardware-Oriented Security and Trust (HOST), pp. 7–12 (2010)

12. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G.: A fault
induction technique based on voltage underfeeding with applica-
tion to attacks against AES and RSA. Journal of Systems and
Software pp. 1864–1878 (2013)

13. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault
Injection Attacks on Cryptographic Devices: Theory, Practice,
and Countermeasures. Proceedings of the IEEE pp. 3056–3076
(2012)

14. Baumgarten, A., Tyagi, A., Zambreno, J.: Preventing IC Piracy
Using Reconfigurable Logic Barriers. IEEE Design & Test of
Computers 27(1), 66–75 (2010)

15. Beerel, P., Georgiou, M., Hamlin, B., Malozemoff, A.J., Nuzzo,
P.: Towards a formal treatment of logic locking. Cryptology
ePrint Archive (2022)

16. Blömer, J., Seifert, J.P.: Fault based cryptanalysis of the advanced
encryption standard (AES). In: International Conference on Fi-
nancial Cryptography, pp. 162–181. Springer (2003)

17. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of
Checking Cryptographic Protocols for Faults. In: Int. conf. on
the theory and applications of cryptographic techniques, pp. 37–
51 (1997)

18. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits, vol. 17.
Springer Science & Business Media (2004)

19. Canivet, G., Maistri, P., Leveugle, R., Clédière, J., Valette, F.,
Renaudin, M.: Glitch and Laser Fault Attacks onto a Secure AES
Implementation on a SRAM-Based FPGA. Journal of cryptology
pp. 247–268 (2011)

20. Castillo, E., Meyer-Baese, U., Garcı́a, A., Parrilla, L., Lloris, A.:
IPP@HDL: Efficient Intellectual Property Protection Scheme for
IP Cores. IEEE Trans. on VLSI (TVLSI) pp. 578–591 (2007)

21. Chakraborty, R.S., Bhunia, S.: Hardware protection and authenti-
cation through netlist level obfuscation. In: Proc. of IEEE/ACM
International Conference on Computer-Aided Design, pp. 674–
677 (2008)

22. Charbon, E.: Hierarchical watermarking in IC design. In: Proc.
of the IEEE Custom Integrated Circuits Conference, pp. 295–298
(1998)

https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/testmax-dft-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/testmax-dft-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/testmax-dft-ds.pdf
https://www.hamamatsu.com/eu/en/product/semiconductor-manufacturing-support-systems/failure-analysis-system/C11222-16.html
https://www.hamamatsu.com/eu/en/product/semiconductor-manufacturing-support-systems/failure-analysis-system/C11222-16.html
https://www.hamamatsu.com/eu/en/product/semiconductor-manufacturing-support-systems/failure-analysis-system/C11222-16.html

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 17

23. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to
Algorithms. Computer science. MIT Press (2009)

24. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromag-
netic Transient Faults Injection on a Hardware and a Software
Implementations of AES. In: Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 7–15 (2012)

25. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analy-
sis on AES. In: Int. Conf. on Applied Cryptography and Network
Security, pp. 293–306 (2003)

26. Duvalsaint, D., Jin, X., Niewenhuis, B., Blanton, R.: Character-
ization of Locked Combinational Circuits via ATPG. In: IEEE
International Test Conference (ITC), pp. 1–10 (2019)

27. Duvalsaint, D., Liu, Z., Ravikumar, A., Blanton, R.D.: Charac-
terization of locked sequential circuits via ATPG. In: 2019 IEEE
International Test Conference in Asia (ITC-Asia), pp. 97–102.
IEEE (2019)

28. Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J., Bassham,
L.E., Roback, E., Dray Jr, J.F., et al.: Advanced Encryption Stan-
dard (AES) (2001)

29. El Massad, M., Garg, S., Tripunitara, M.: Reverse engineering
camouflaged sequential circuits without scan access. In: 2017
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), pp.
33–40. IEEE (2017)

30. Fukunaga, T., Takahashi, J.: Practical Fault Attack on a Crypto-
graphic LSI with ISO/IEC 18033-3 Block Ciphers. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 84–92
(2009)

31. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N., Pacalet, R.:
Silicon-level Solutions to Counteract Passive and Active Attacks.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 3–17 (2008)

32. Guin, U., Shi, Q., Forte, D., Tehranipoor, M.M.: FORTIS: A
Comprehensive Solution for Establishing Forward Trust for Pro-
tecting IPs and ICs. ACM Transactions on Design Automation
of Electronic Systems (TODAES) p. 63 (2016)

33. Guin, U., Zhou, Z., Singh, A.: A Novel Design-for-Security
(DFS) Architecture to Prevent Unauthorized IC Overproduction.
In: VLSI Test Symposium (VTS), pp. 1–6 (2017)

34. Guin, U., Zhou, Z., Singh, A.: Robust Design-for-Security Archi-
tecture for Enabling Trust in IC Manufacturing and Test. Trans.
on Very Large Scale Integration (VLSI) Systems pp. 818–830
(2018)

35. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault Injection Techniques
and Tools. Computer pp. 75–82 (1997)

36. Jain, A., Rahman, T., Guin, U.: ATPG-Guided Fault Injection
Attacks on Logic Locking. In: IEEE Physical Assurance and
Inspection of Electronics (PAINE), pp. 1–6 (2020)

37. Jain, A., Zhou, Z., Guin, U.: TAAL: tampering attack on any key-
based logic locked circuits. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES) 26(4), 1–22 (2021)

38. Jarvis, R.W., McIntyre, M.G.: Split manufacturing method for
advanced semiconductor circuits (2007). US Patent 7,195,931

39. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S.,
Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.:
Constraint-based watermarking techniques for design IP protec-
tion. IEEE Transactions on CAD of Integrated Circuits and Sys-
tems pp. 1236–1252 (2001)

40. Kamali, H.M., Azar, K.Z., Farahmandi, F., Tehranipoor, M.: Ad-
vances in Logic Locking: Past, Present, and Prospects. Cryptol-
ogy ePrint Archive (2022)

41. Kamali, H.M., Azar, K.Z., Gaj, K., Homayoun, H., Sasan, A.:
LUT-Lock: A Novel LUT-based Logic Obfuscation for FPGA-
Bitstream and ASIC-Hardware Protection. In: 2018 IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), pp. 405–
410. IEEE (2018)

42. Kamali, H.M., Azar, K.Z., Homayoun, H., Sasan, A.: Full-lock:
Hard distributions of sat instances for obfuscating circuits using

fully configurable logic and routing blocks. In: Proceedings of
the 56th Annual Design Automation Conference 2019, pp. 1–6
(2019)

43. Kamali, H.M., Azar, K.Z., Homayoun, H., Sasan, A.: Inter-
lock: An intercorrelated logic and routing locking. In: 2020
IEEE/ACM Int. Conf. On Computer Aided Design (ICCAD), pp.
1–9. IEEE (2020)

44. Karmakar, R., Chatopadhyay, S., Kapur, R.: Encrypt Flip-Flop:
A Novel Logic Encryption Technique For Sequential Circuits.
arXiv preprint arXiv:1801.04961 (2018)

45. Lee, C.Y., Xie, J.: High capability and low-complexity: Novel
fault detection scheme for finite field multipliers over gf (2 m)
based on mspb. In: 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 21–30. IEEE
(2019)

46. Lee, J., Tebranipoor, M., Plusquellic, J.: A low-cost solution for
protecting IPs against scan-based side-channel attacks. In: 24th
IEEE VLSI Test Symposium, pp. 6–pp. IEEE (2006)

47. Limaye, N., Sengupta, A., Nabeel, M., Sinanoglu, O.: Is Ro-
bust Design-for-Security Robust Enough? Attack on Locked
Circuits with Restricted Scan Chain Access. arXiv preprint
arXiv:1906.07806 (2019)

48. Paar, C., Pelzl, J.: Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media
(2009)

49. Piret, G., Quisquater, J.J.: A Differential Fault Attack Tech-
nique against SPN Structures, with Application to the AES and
KHAZAD. In: Int. workshop on cryptographic hardware and
embedded systems, pp. 77–88 (2003)

50. Pouget, V., Douin, A., Lewis, D., Fouillat, P., Foucard, G., Peron-
nard, P., Maingot, V., Ferron, J., Anghel, L., Leveugle, R., et al.:
Tools and methodology development for pulsed laser fault injec-
tion in SRAM-based FPGAs. In: Latin-American Test Workshop
(LATW). (2007)

51. Qu, G., Potkonjak, M.: Intellectual Property Protection in VLSI
Designs: Theory and Practice. Springer Sc. & Business Media
(2007)

52. Rahman, M.S., Guo, R., Kamali, H.M., Rahman, F., Farahmandi,
F., Abdel-Moneum, M.: O’Clock: Lock the Clock via Clock-
gating for SoC IP Protection. In: Design Automation Conf.
(DAC), pp. 1–6 (2022)

53. Rahman, M.S., Nahiyan, A., Rahman, F., Fazzari, S., Plaks, K.,
Farahmandi, F., Forte, D., Tehranipoor, M.: Security Assessment
of Dynamically Obfuscated Scan Chain against Oracle-guided
Attacks. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 26(4), 1–27 (2021)

54. Rahman, M.T., Asadizanjani, N.: Backside Security Assessment
of Modern SoCs. In: International Workshop on Microproces-
sor/SoC Test, Security and Verification (MTV), pp. 18–24 (2019)

55. Rahman, M.T., Rahman, M.S., Wang, H., Tajik, S., Khalil, W.,
Farahmandi, F., Forte, D., Asadizanjani, N., Tehranipoor, M.:
Defense-in-depth: A recipe for logic locking to prevail. Inte-
gration 72, 39–57 (2020)

56. Rahman, M.T., Tajik, S., Rahman, M.S., Tehranipoor, M.,
Asadizanjani, N.: The Key is Left under the Mat: On the Inap-
propriate Security Assumption of Logic Locking Schemes. In:
2020 IEEE International Symposium on Hardware Oriented Se-
curity and Trust (HOST), pp. 262–272. IEEE (2020)

57. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis
of logic obfuscation. In: Proc. of Annual Design Automation
Conference, pp. 83–89 (2012)

58. Rajendran, J., Zhang, H., Zhang, C., Rose, G.S., Pino, Y.,
Sinanoglu, O., Karri, R.: Fault Analysis-Based Logic Encryption.
IEEE Transactions on computers pp. 410–424 (2015)

59. Rajski, J., Tyszer, J., Kassab, M., Mukherjee, N.: Embedded De-
terministic Test. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 23(5), 776–792 (2004)

http://arxiv.org/abs/1801.04961
http://arxiv.org/abs/1906.07806

18 Yadi Zhong1 et al.

60. Roshanisefat, S., Mardani Kamali, H., Sasan, A.: SRCLock:
SAT-Resistant Cyclic Logic Locking for Protecting the Hard-
ware. In: Proceedings of 2018 Great Lakes Symposium on VLSI,
pp. 153–158 (2018)

61. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: Ending Piracy of
Integrated Circuits. In: Proceedings of the conference on Design,
automation and test in Europe, pp. 1069–1074 (2008)

62. Roy, J.A., Koushanfar, F., Markov, I.L.: Ending Piracy of Inte-
grated Circuits. Computer pp. 30–38 (2010)

63. Salmani, H., Tehranipoor, M.: Trust-Hub (2018). [Online]. Avail-
able: https://trust-hub.org/home

64. Savir, J., Patil, S.: Broad-side delay test. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
13(8), 1057–1064 (1994)

65. Schmidt, J.M., Hutter, M.: Optical and EM fault-attacks on CRT-
based RSA: Concrete results (2007)

66. Selmane, N., Guilley, S., Danger, J.L.: Practical Setup Time Vio-
lation Attacks on AES. In: Seventh European Dependable Com-
puting Conference, pp. 91–96 (2008)

67. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA Protected AES
by Simultaneous Laser Fault Injections. In: Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 36–46 (2016)

68. Sengupta, A., Ashraf, M., Nabeel, M., Sinanoglu, O.: Cus-
tomized Locking of IP Blocks on a Multi-Million-Gate SoC. In:
Int. Conf. on Computer-Aided Design (ICCAD), pp. 1–7 (2018)

69. Sengupta, A., Nabeel, M., Limaye, N., Ashraf, M., Sinanoglu,
O.: Truly stripping functionality for logic locking: A fault-based
perspective. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39(12), 4439–4452 (2020)

70. Sengupta, A., Nabeel, M., Yasin, M., Sinanoglu, O.: ATPG-based
cost-effective, secure logic locking. In: VLSI Test Symposium
(VTS), pp. 1–6 (2018)

71. SFLL rem: https://github.com/micky960/SFLL_
fault

72. Shakya, B., Xu, X., Tehranipoor, M., Forte, D.: Cas-lock: A
security-corruptibility trade-off resilient logic locking scheme.
IACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 175–202 (2020)

73. Shamsi, K., Li, M., Plaks, K., Fazzari, S., Pan, D.Z., Jin, Y.: IP
Protection and Supply Chain Security through Logic Obfusca-
tion: A Systematic Overview. Trans. on Design Automation of
Electronic Systems (TODAES) p. 65 (2019)

74. Shamsi, K., Pan, D.Z., Jin, Y.: IcySAT: Improved SAT-based at-
tacks on cyclic locked circuits. In: 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–7. IEEE
(2019)

75. Shamsi, K., Pan, D.Z., Jin, Y.: On the Impossibility of
Approximation-Resilient Circuit Locking. In: 2019 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST), pp. 161–170. IEEE (2019)

76. Shannon, C.E.: Communication theory of secrecy systems. The
Bell system technical journal 28(4), 656–715 (1949)

77. Shen, H., Asadizanjani, N., Tehranipoor, M., Forte, D.: Nanopy-
ramid: An Optical Scrambler Against Backside Probing At-
tacks. In: Proc. Int. Symposium for Testing and Failure Anal-
ysis(ISTFA), p. 280 (2018)

78. Sirone, D., Subramanyan, P.: Functional Analysis Attacks on
Logic Locking. IEEE Transactions on Information Forensics and
Security 15, 2514–2527 (2020)

79. Sisejkovic, D., Merchant, F., Reimann, L.M., Leupers, R.: De-
ceptive logic locking for hardware integrity protection against
machine learning attacks. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2021)

80. Skarin, D., Barbosa, R., Karlsson, J.: GOOFI-2: A tool for exper-
imental dependability assessment. In: IEEE/IFIP Int. Conf. on
Dependable Systems & Networks (DSN), pp. 557–562 (2010)

81. Skorobogatov, S.: Optical Fault Masking Attacks. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 23–29
(2010)

82. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction At-
tacks. In: Int. workshop on cryptographic hardware and embed-
ded systems, pp. 2–12 (2002)

83. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of
logic encryption algorithms. In: IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 137–143
(2015)

84. Sweeney, J., Zackriya, V.M., Pagliarini, S., Pileggi, L.: Latch-
Based Logic Locking. In: 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 132–141.
IEEE (2020)

85. Synopsys: Design Compiler Graphical: Create
a Better Starting Point for Faster Physical Im-
plementation (2021). URL https://www.
synopsys.com/implementation-and-signoff/
rtl-synthesis-test/design-compiler-graphical.
html

86. Synopsys: TetraMAX ATPG: Automatic Test Pat-
tern Generation (2021). URL https://www.
synopsys.com/implementation-and-signoff/
test-automation/testmax-atpg.html

87. Tehranipoor, M., Wang, C.: Introduction to Hardware Security
and Trust. Springer Science & Business Media (2011)

88. Torrance, R., James, D.: The State-of-the-Art in IC Reverse Engi-
neering. In: International Workshop on Cryptographic Hardware
and Embedded Systems, pp. 363–381 (2009)

89. Tsai, T., Iyer, R.: FTAPE-A fault injection tool to measure fault
tolerance. In: Computing in Aerospace Conference, p. 1041
(1995)

90. Vashistha, N., Lu, H., Shi, Q., Rahman, M.T., Shen, H., Woodard,
D.L., Asadizanjani, N., Tehranipoor, M.: Trojan Scanner: Detect-
ing Hardware Trojans with Rapid SEM Imaging combined with
Image Processing and Machine Learning. In: Proc. Int. Sympo-
sium for Testing and Failure Analysis, p. 256 (2018)

91. Wang, X., Zhang, D., He, M., Su, D., Tehranipoor, M.: Secure
Scan and Test Using Obfuscation Throughout Supply Chain.
Trans. on Computer-Aided Design of Integrated Circuits and
Systems pp. 1867–1880 (2017)

92. Wu, H., Ferranti, D., Stern, L.: Precise nanofabrication with mul-
tiple ion beams for advanced circuit edit. Microelectronics Reli-
ability pp. 1779–1784 (2014)

93. Xie, Y., Srivastava, A.: Anti-SAT: Mitigating SAT Attack on
Logic Locking. In: International Conference on Cryptographic
Hardware and Embedded Systems, pp. 127–146 (2016)

94. Xie, Y., Srivastava, A.: Delay Locking: Security Enhancement
of Logic Locking against IC Counterfeiting and Overproduction.
In: Proceedings of the 54th Annual Design Automation Conf.,
pp. 1–6 (2017)

95. Xie, Y., Srivastava, A.: Anti-SAT: Mitigating SAT Attack on
Logic Locking. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 38(2), 199–207 (2019)

96. Xilinx: Xilinx Kintex-7 FPGA KC705 Evaluation Kit
(2021). URL https://www.xilinx.com/products/
boards-and-kits/ek-k7-kc705-g.html

97. Yasin, M., Mazumdar, B., Rajendran, J.J., Sinanoglu, O.: SAR-
Lock: SAT attack resistant logic locking. In: IEEE International
Symposium on Hardware Oriented Security and Trust (HOST),
pp. 236–241 (2016)

98. Yasin, M., Rajendran, J.J., Sinanoglu, O., Karri, R.: On Improv-
ing the Security of Logic Locking. Trans. on Computer-Aided
Design of Integrated Circuits and Systems pp. 1411–1424 (2015)

99. Yasin, M., Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran,
J.J., Sinanoglu, O.: Provably-Secure Logic Locking: From The-
ory To Practice. In: Proceedings of ACM SIGSAC Confer-

https://github.com/micky960/SFLL_fault
https://github.com/micky960/SFLL_fault
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html
https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html
https://www.synopsys.com/implementation-and-signoff/test-automation/testmax-atpg.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking 19

ence on Computer and Communications Security, pp. 1601–1618
(2017)

100. Zhang, J., Yuan, F., Wei, L., Liu, Y., Xu, Q.: VeriTrust: Verifica-
tion for Hardware Trust. Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems pp. 1148–1161 (2015)

101. Zhang, Y., Cui, P., Zhou, Z., Guin, U.: TGA: An Oracle-less and
Topology-Guided Attack on Logic Locking. In: Proceedings of
the 3rd ACM Workshop on Attacks and Solutions in Hardware
Security Workshop, pp. 75–83 (2019)

102. Zhang, Y., Jain, A., Cui, P., Zhou, Z., Guin, U.: A novel topology-
guided attack and its countermeasure towards secure logic lock-
ing. Journal of Cryptographic Engineering pp. 1–14 (2020)

103. Zhong, Y., Guin, U.: Complexity Analysis of the SAT Attack on
Logic Locking. arXiv preprint arXiv:2207.01808 (2022)

Yadi Zhong is currently pursuing her Ph.D. in Computer
Engineering from the Department of Electrical and Com-
puter Engineering, Auburn University, AL, USA. She re-
ceived her B.E. degree from the same university in 2020. Her
research interest are logic locking, fault injection and hard-
ware security, and post-quantum cryptography. She received
Auburn University Presidential Graduate Research Fellow-
ships in 2020.

Ayush Jain received his M.S. Degree from the Department
of Electrical and Computer Engineering, Auburn Univer-
sity, AL, USA in 2020. He is currently working as SoC De-
sign Engineer at Intel Corporation. He received his B.Tech
degree from the Electrical Engineering Department, Pandit
Deendayal Petroleum University, Gujarat, India, in 2018.
His current research interests include hardware security, VLSI
design, and testing.

M Tanjidur Rahman received his Ph.D. degree in electri-
cal and computer engineering in 2021 from University of
Florida. He obtained his BS (with honors) and MS in elec-
trical and electronic engineering from Bangladesh Univer-
sity of Engineering and Technology (BUET) in 2012, and
2014, respectively. His research interests include hardware
security and trust, physical assurance, configurable security
architecture, and reliable VLSI design. Dr. Rahman has au-
thored 7 technical journal and 8 conference papers. He has
also published one book and one book chapter on physi-
cal assurance and chip backside security assessment. He has
two patent applications under review.

Navid Asadizanjani received the Ph.D. degree in Mechani-
cal Engineering from University of Connecticut, Storrs, CT,
USA, in 2014. He is currently an Assistant Professor with
the Electrical and Computer Engineering Department at Uni-
versity of Florida, Gainesville, FL, USA. His current re-
search interest is primary on “Physical Attacks and Inspec-
tion of Electronics”. This includes wide range of products
from electronic systems to devices. He is involved with coun-

terfeit detection and prevention, system and chip level re-
verse engineering, Anti reverse engineering, etc. Dr. Asadizan-
jani has received and nominated for several best paper awards
from International Symposium on Hardware Oriented Se-
curity and Trust (HOST) and International Symposium on
Flexible Automation (ISFA). He was also winner of D.E.
Crow Innovation award from University of Connecticut. He
is currently the program chair of the PAINE conference and
is serving on the technical program committee of several
top conferences including International Symposium of Test-
ing and Failure Analysis (ISTFA) and IEEE Computing and
Communication Workshop and Conference (CCWC).

Jiafeng (Harvest) Xie received the M.E. and Ph.D. from
Central South University and University of Pittsburgh, in
2010 and 2014, respectively. He is currently an Assistant
Professor in the Department of Electrical & Computer En-
gineering, Villanova University, Villanova, PA. His research
interests include cryptographic engineering, hardware secu-
rity, post-quantum cryptography, and VLSI implementation
of neural network systems. Dr. Xie has served as technical
committee member for many reputed conferences such as
HOST, ICCD, and ISVLSI. He is also currently serving as
Associate Editor for Microelectronics Journal and IEEE Ac-
cess. He was serving as Associate Editor for IEEE Trans-
actions on Circuits and Systems-II: Express Briefs. He re-
ceived the IEEE Access Outstanding Associate Editor for
the year of 2019. He also received the Best Paper Award
from HOST’19.

Ujjwal Guin received his PhD degree from the Electrical
and Computer Engineering Department, University of Con-
necticut, in 2016. He is currently an Assistant Professor in
the Electrical and Computer Engineering Dept. of Auburn
University, Auburn, AL, USA. He received his B.E. degree
from the Dept. of Electronics and Telecommunication Engi-
neering, Bengal Engineering and Science University, Howrah,
India, in 2004 and his M.S. degree from the Dept. of Electri-
cal and Computer Engineering, Temple University, Philadel-
phia, PA, USA, in 2010. He has developed several on-chip
structures and techniques to improve the security, trustwor-
thiness, and reliability of integrated circuits. His current re-
search interests include Hardware Security & Trust. He has
authored several journal articles and refereed conference pa-
pers. He serves on the organizing committees of HOST, VTS,
and PAINE, and technical program committees of DAC, HOST,
VTS, PAINE, VLSID, GLSVLSI, ISVLSI, and Blockchain.
He is an active participant in the SAE International G-19A
Test Laboratory Standards Development Committee and G-
32 Cyber-Physical Systems Security Committee. He is a mem-
ber of ACM and a senior member of IEEE.

http://arxiv.org/abs/2207.01808

	1 Introduction
	2 Prior Work
	3 Background
	4 AFIA: ATPG-guided Fault Injection Attack
	5 Experimental Results
	6 Future Work
	7 Conclusion

