J Intell Inf Syst (2008) 30:55-92
DOI 10.1007/510844-006-0023-y

Measuring the structural similarity among XML
documents and DTDs

Elisa Bertino - Giovanna Guerrini - Marco Mesiti

Received: 24 September 2004 / Revised: 16 February 2006 /
Accepted: 22 February 2006 / Published online: 27 January 2007
© Springer Science + Business Media, LLC 2006

Abstract Measuring the structural similarity between an XML document and a
DTD has many relevant applications that range from document classification and
approximate structural queries on XML documents to selective dissemination of
XML documents and document protection. The problem is harder than measuring
structural similarity among documents, because a DTD can be considered as a
generator of documents. Thus, the problem is to evaluate the similarity between a
document and a set of documents. An effective structural similarity measure should
face different requirements that range from considering the presence and absence of
required elements, as well as the structure and level of the missing and extra elements
to vocabulary discrepancies due to the use of synonymous or syntactically similar
tags. In the paper, starting from these requirements, we provide a definition of the
measure and present an algorithm for matching a document against a DTD to obtain
their structural similarity. Finally, experimental results to assess the effectiveness of
the approach are presented.

Keywords H.3.2 Information storage - H.3.3 Information search and retrieval -
H.3.5.f XML/XSL/RDF - 1.5.3.b Similarity measure

E. Bertino
Purdue University, USA

G. Guerrini
University of Genova, Italy

M. Mesiti ()
University of Milano, Italy
e-mail: mesiti@dico.unimi.it

@ Springer

56 J Intell Inf Syst (2008) 30:55-92

1 Introduction

XML (eXtensible Markup Language) (W3C, 1998) is a markup language that has
emerged as the most relevant standardization effort for document representation and
exchange on the Web. Since XML provides data description features that are very
similar to those of advanced data models, XML is today supported either as native
data model or on top of a proprietary data model by several database management
systems. As a result, XML databases on the Web are proliferating. The availability of
structural and schema information is crucial in providing efficient and effective XML
data handling with classical database functionalities.

A major goal is now to make such databases able to easily interoperate in order
to enable information and knowledge sharing across the Web. The use of a common
data representation model, like XML, greatly simplifies the task of interoperation
and integration among heterogeneous data management systems. However, we can-
not reasonably expect XML to solve all the issues related to semantic heterogeneity
of data. The highly dynamic nature of the Web and of the information sources
available on it, together with the large number of these sources, make it impossible
for a site to fully agree in advance on the schema with all possible data sites
with which exchanges may take place, despite the efforts towards the development
of standardized schemas (XML.org, 2003). Thus, a source may contain a schema
describing the structure of a certain kind of documents, and it may happen to handle
documents of this kind that, however, do not exactly conform to the schema. There
is therefore a strong need for methodologies and tools able to model and evaluate
the structural similarity between an XML document and a DTD in order to check
whether the structure of a document is similar enough to a DTD to be considered a
weak instance of it, and to identify their common and divergent components.

In our work we focus on data centric documents (Bourret, 1999), that is, docu-
ments presenting a possibly highly nested structure and representing specific data
(e.g., department employees, financial records, movie information, etc.). Thus, the
DTD order constraint is not relevant in our context. Note that, keeping order
into account reduces the complexity of evaluating the similarity between the two
structures, thus, disregarding order, we are addressing a more difficult problem.

As discussed in Bertino, Guerrini, and Mesiti (2004a); Mesiti (2002), several
relevant applications can be devised for such a structural similarity measure. The
measure can be applied for the classification of a document D against a set of
DTDs in order to identify the DTD structure closer to D. Whenever such a DTD is
identified, all policies and data structures defined on the DTD for document storage,
access, and protection can be applied to D. The measure can also be applied for the
evaluation of schema-based queries over sources of XML documents. A query can be
represented as a DTD in which content constraints are specified against data content
elements, and the measure is employed for identifying the documents that closely
address the query constraints and ranking them relying on the similarity degree.
A further application of the measure is for the selective dissemination of XML
documents (Bertino, Guerrini, & Mesiti, 2004b; Stanoi, Mihaila, & Padmanabhan,
2003) relying on user profiles. Selective information dissemination is obtained by
matching each document in the continuous incoming data stream against the DTD(s)
modeling the user profile, and distributing the document to a user if it is similar
enough to her profile. A final application of the measure is in the protection of

@ Springer

J Intell Inf Syst (2008) 30:55-92 57

sources of XML documents (Bertino, Castano, Ferrari, & Mesiti, 2002). Security
policies specified on a DTD can be propagated on the parts of a document that match
against it. This approach simplifies the work of a security officer that should protect
a massive amount of information arriving from external sources.

Measuring this kind of structural similarity is not, however, a trivial task. Many
factors should be taken into account in the evaluation, like the hierarchical and
complex structure of XML documents and DTDs, and the tags used to label
their elements. The measure should thus be developed taking into account several
requirements, extensively discussed and motivated in Bertino et al. (2004a).

1. Maximization of common features. The measure should give more relevance
to the common features between a document and a DTD. Since more than
one structure can be generated starting from the same DTD, the measure
must choose the structure that, having the same number of common features,
minimizes the different features.

2. Levels at which common and different features are detected. Common and differ-
ent features at higher levels in the hierarchical structure of the documents are
more relevant than the ones deeply nested in the document structures.

3. Structure of elements that are not in common between the two structures. The lack
(or the extra presence) of an element with a complex structure should have a
higher impact than an element with a simpler structure.

4. Optional and repeatable elements. In case of repeatable elements (i.e., elements
marked by the * or +), the similarity measure should identify the best number
of repetitions, that is, the one that maximizes common features and minimizes
different features. Note that a higher number of repetitions can result in every
element in the document matching with an element in the DTD but, however, it
can increase the unmatched elements in the DTD.

5. Irrelevance of order. Taking order into account leads to prefer matches with
a lower number of common elements, in the same order, to matches that
maximize common elements, but in a different order. This is not acceptable in
our application contexts.

6. Level by level matches. The measure should determine, level by level, elements
that are in common between the document and the DTD and it should not allow
matches among elements in different positions in the hierarchical structure. Such
kind of matches are not allowed for semantic and efficiency reasons (Wang,
DeWitt, & Cai, 2003): the element context in an XML document strongly
contributes to determine which information that element models.

7. Tag equality vs. tag similarity. Since the structural constraints a DTD imposes
on the document structure are weakened, it does not make sense to require tag
names in the document to exactly coincide with those of the DTD. A document
element could be valid with respect to a DTD specification, except for its tag.
The two tags can be different but can still represent the same information: they
can be synonyms (e.g., movie and film), or syntactically similar according to a
string edit distance function (e.g., chtitle and title).

Different relative relevance can be assigned to different requirements, that can be
set by users depending on the application domain in which the measure is employed.

This is realized relying on parameters that state the relevance of divergent elements

@ Springer

58 J Intell Inf Syst (2008) 30:55-92

with respect to common elements, of a level with respect to the underlying level, of
similar tags with respect to equal tags.

Starting from these requirements, in this paper we define and formalize a struc-
tural similarity measure between an XML document and a DTD and provide
an algorithm for its computation. Note that, being XML documents and DTDs
represented as trees, the problem can be seen as an extension of the tree editing
problem (Zhang & Shasha, 1989). We indeed compute the (structural) similarity
between a tree and an intensional representation of a set of trees (generated from
the DTD). This result could be achieved through an extensional approach: the set of
document structures described by the DTD is made explicit and for each document
structure the tree edit distance is computed, choosing the document structure that
minimizes the distance. This approach is alternative to our intensional approach,
which is specialized, offers better performance for unordered trees.

Specifically, the contributions of the paper can be summarized as follows:

— Formalization of the requirements. The requirements, emerged in Bertino et al.
(2004a) and extended with tag similarity, are formalized here through the
definition of a mapping relationship.

— Formalization of the solution. The algorithm for computing the similarity mea-
sure is formally defined and its complexity is discussed by identifying the con-
ditions—the most common in practice—under which the algorithm is polynomial
and by proposing techniques for reducing the execution time in the worst case.

— Experimental evaluation. The requirements have been validated and the paper
reports the results of this evaluation. Moreover, an experimental validation of
the measure is presented that shows the applicability of the measure in practice.

The paper is organized as follows. Section 2 formally states the problem and pos-
sible approaches to face it. Section 3 presents the intensional approach for evaluating
the structural similarity. Section 4 formally defines the structural similarity measure
and its properties. Some experiments performed for assessing the effectiveness and
efficiency of our approach are discussed in Section 5. In Section 6 a comparison with
related work is provided. Finally, concluding remarks are presented in Section 7.
Appendix I contains some details of the matching algorithm, whereas Appendix II
includes proof sketches.

2 Problem statement

In this section we formally state the problem of measuring the structural similarity
between an XML document and a DTD, addressing the requirements outlined in the
Introduction. We first introduce our representation of XML documents and DTDs.
Then, we define a structural similarity measure between documents. Relying on such
a document to document measure, we state the problem of measuring similarity
between a document and a DTD and outline our approach for its solution.

2.1 Documents and DTDs as labeled trees

Documents and DTDs are represented as labeled trees. Our definitions are based on
the ones developed in Bertino et al. (2004a). A labeled tree is a tree T associated with

@ Springer

J Intell Inf Syst (2008) 30:55-92 59

<a>]
3 <ELEMENT a ((b,c)*,(e|£).b?)> ’
<c>5</c> <ELEMENT b (#PCDATA)> AND b
7 <ELEMENT c (#PCDATA)>
<c>9</c> b
<e>11</e> <ELEMENT e (#PCDATA)> #PCDATA #PCDATA #PCDATA
 <ELEMENT f (#PCDATA)> #PCDATA #PCDATA

(a) ©) (d)

Fig. 1 Examples of XML document and DTD (a,c) and their tree representations (b,d)

a node labeling function ¢. Let N be a set of nodes and A a set of labels, a labeled
tree is inductively defined as follows: v € N is a labeled tree with ¢(v) € A;if Cisa
set of labeled trees (C = [T, ..., T,]), (v, C) is a labeled tree with ¢(v) € A.

Attributes are modeled as special data content elements and no longer considered.
The labels used for labeling a document are from a set EN of element tags, and a
set V of #PCDATA values. By contrast, the labels used for labeling a DTD are from
the set ENUET U OP, where £T = (#PCDATA, ANY} is the set of basic types for
elements, and OP = {AND, OR, ?, *, +} is a set of operators. The EMPTY type is not
considered because it is a special case of the #PCDATA type with empty content.
The AND operator represents a sequence of elements, the OR operator represents
an alternative of elements (at least one of the alternatives must be selected), the ?
operator represents an optional element, whereas the * and + operators represent
repeatable elements (with the usual meaning). The root label belongs to EN (it is
the name of the main element of documents the DTD describes) and there is a single
subtree of the root. Moreover, the out-degree of a node can be greater than one, only
if the node tag is AND or OR.

Examples of an XML document and DTD and their tree representations are
shown in Fig. 1. Given a document/DTD tree D and a node x of D, Table 1 reports
the notations used for its representation as a labeled tree. We remark that, when x is
an element of a DTD, children(x) is the set of subelements of x, independently from
the operators used for binding them.

Table 1 Notations

children(x) The subelements of x

DCE(x) True, if x is a data content element
root(D) The root of D

(D) The label of the root of D

1(x) The label (or content) of x

levp(x) The nesting level of x in D

n(D) The maximal level of element nesting in D
parent(x) The parent of x

Vertex(D) The set of vertices of D

|D| Cardinality of Vertex(D)

deg(D) Maximal out-degree of D

@ Springer

60 J Intell Inf Syst (2008) 30:55-92

Example 1 Let D be the document in Fig. 1b and T = (v, C) the DTD in Fig. 1d,
with v the root and C the children of T. I(T) = a, n(T) = 3, levr(v) = 1, | D| = 13,
deg(D) = 5.

2.2 Structural similarity between documents

We now present a structural similarity measure between documents that takes
into account our requirements. The definition is based on the concept of mapping
between the nodes of the tree representation of documents.

2.2.1 Tag similarity

Two tags are similar if they are identical, or they are synonyms relying on a given
Thesaurus, or they are syntactically similar relying on an edit distance function (Rice,
Bunke, & Nartker, 1997).!

Definition 2.1 (). Let [;,, € EN, I} ~ 1, iff one of the following conditions is
verified: (1) /; = [, or (2) [is a synonym of [, or (3) /; and [, are syntactically similar.

Whenever the tags are not identical a penalty should be applied for taking the
tag differences into account. In our measure we consider the § and n parameters
(8,1 €10, 1]) which represent penalties applied when the tags are not identical.
We remark that two tags are “more similar” if they are synonyms rather than
syntactically similar. Thus, penalty 5 should be higher than §.

Definition 2.2 (Tag similarity) Let l;,l, € EN. Tag similarity between [y, I is ex-
pressed as:

1 ifth =0

1 — ¢ if/; is a synonym of /,

1 — n if [is syntactically similar to /,
0 otherwise

6(117 12) =

2.2.2 Mapping among documents

A mapping between a pair of XML documents is a relationship among their vertices
that takes documents’ tags into account. Moreover, vertices with data content match
when the corresponding elements match. Our definition relies on the mapping
definition proposed by Nierman and Jagadish (2002). However, our definition differs
from the one proposed in Nierman and Jagadish (2002) because we do not require
that root labels be identical. In this way we handle the presence of artificial root labels
(e.g., root, top) in the documents. Moreover, tag similarity is allowed.

I Two tags are syntactically similar if the string edit function returns a number of edit operations
less than a given threshold.

@ Springer

J Intell Inf Syst (2008) 30:55-92 61

relevance factors

(b)

Fig.2 Examples of mapping between two XML documents

Definition 2.3 (Mapping) Let D, D, be two documents, and M C Vertex(D;) x
Vertex(D,) be a correspondence between vertices of D, and D,. A triple (Dy,
D,, M) is a mapping from D, to D, if a set M of pairs of vertices exists such that:

— (root(Dy),root(D,)) € M,

— Foreach (x1, x2), (y1, ¥2) € M, x; = y; iff x, = y, (one-to-one correspondence);

— If (x1,x2) € M, then (parent(x;), parent(x,)) € M and (I(x;) ~ I(x;) or I(xy),
[(xy) € V) (prefix closed).

Figure 2 shows two examples of mapping. Note that, vertices with data content
match whenever their corresponding elements match. When no ambiguity arises,
we use M instead of (D, D,, M). m;(M) denotes the set of vertices extracted from
component i (i € {1, 2}) of the pairs in M.

2.2.3 Evaluation of a mapping

The mapping allows the identification of a prefix tree of D; and D;, namely the
portions of the trees for which a correspondence has been established by M. The
vertices in the prefix tree, as well as the vertices for which no correspondence
has been established, should be evaluated according to the level at which they are
located. A factor y is introduced for quantifying the relevance of elements of a
level with respect to those of the underlying level.? For this reason we associate
each element x of Dy (D,, respectively), with a relevance factor p(x) s.t. p(x) =
ymax[n(D|),n(D2)}—levD] (x)+1 (,O(X) — J/ma)c{n(Dl),n(Dg)}—levDZ()c)+1’ respectively); the same
relevance is given to vertices of D and D, at the same level by max{n(D,), n(D;)}.
A mapping M between D, and D, partitions their vertices as follows:

— The set of common elements, that is, the elements in D, that match against the
ones in Dy (m(M) or mp(M)). The value ¢ =3 .\ p(x1)-€U(x1),[(x2))
is the relevance of this set. If [(x)),[(xy) € V, €(l(xy),[(x»2)) = 1, otherwise
€(l(x)),I(x2)) = €((x1),l(x2)), that is, the tag similarity as specified in
Definition 2.2.

— The set of plus elements, that is, the elements in D; that do not match against
elements in D, (Vertex(D;) \ 71(M)). The relevance of this set is expressed as

pP= Zx1¢n|(M) p(xy).

2 If y = 1 all the elements have the same relevance, if y = 2 each level has double relevance w.r.t.
the underlying level.

@ Springer

62 J Intell Inf Syst (2008) 30:55-92

— The set of minus elements, that is, the elements in D, that do not match against
elements in Dy (Vertex(D,) \ m2(M)). The relevance of this set is expressed as

M= gmty P(X2)-

These three values p,m, c are combined through an evaluation function that
rates the mapping. The evaluation function we choose is function £ (Bertino et al.,
2004a) that is based on the ratio model (Tversky, 1977). Let p, m, ¢, o, B € R U {0}.
Function & is defined as follows:

0 if (p,m, ¢) =(0,0,0)

E(p,m,c) = { ¢ Otherwise
ap+c+ Bm

This function computes the ratio between the evaluation ¢ of the common
elements (i.e., elements in the “intersection” between the two structures) and the
evaluation p +m + c of all the elements in the two structures (i.e., elements in
the “union” between the two structures). The obtained value is a real number in the
range [0,1]. Plus and minus elements are weighted according to « and 8 parameters.
Depending on the values assigned to these parameters, more relevance can be given
to plus elements than to minus elements, or vice-versa. For example, if « = 0 and
B =1 plus elements are not taken into account. Therefore, a document with only
extra elements with respect to the ones specified in the DTD has a similarity degree
equal to 1. In the following example, whenever not specified, we assume o« = 8 = 1
and y = 2.

Eval(M) is defined as E(p, m, ¢), where (p, m, c) is the triple of values representing
the evaluation of plus, minus, and common elements resulting from the mapping M.

Example 2 Consider the mapping M, in Fig. 2a between document D (left hand
side) and D; (right hand side). Four common elements (evaluated 18), nine plus
elements (evaluated 22), and three minus elements (evaluated 8) are identified. The
similarity is Eval(M;) = Eval (22, 8, 18) = % = 0.375. Consider now the mapping M,
in Fig. 2b between the same document D and D;. Eight common elements (evaluated
30), three plus elements (evaluated 10), and five minus elements (evaluated 8) are
identified. The similarity is Eval(M,) = Eval(10, 8, 30) = 3% = 0.625. D is thus more

8=
similar to D, than to D;.

2.2.4 Structural similarity between documents

Several mappings can be established between a pair of XML documents. Since we
are interested in a mapping that maximizes the common elements, we introduce the
notion of maximal prefix mapping, that is, a mapping in which the number of common
elements is maximal.

Definition 2.4 (Maximal prefix mapping) Let Dy, D, be two documents, and M be
the set of possible mappings between D; and D,. A maximal prefix mapping between
Dy and D,, M"™(D, D), is a mapping M* € M such that the cardinality of M* is
greater than or equal to the cardinality of any other mapping M in M (i.e., |M*| >
IM|,¥ M € M).

@ Springer

J Intell Inf Syst (2008) 30:55-92 63

More than one maximal prefix mapping can be identified between two documents.
In the evaluation of the structural similarity between two documents, we consider
the maximal prefix mapping that maximizes the £ function (i.e., minimizes plus and
minus elements). The two mappings in Fig. 2 are maximal.

Definition 2.5 (Structural similarity between XML documents). Let Dy, D, be two
documents, the structural similarity between D; and D, is evaluated as:

Spp(Dy, Dy) = max {Eval(M™(Dy, D,))|M"** (D, D)

is a maximal prefix matching}
Proposition 2.6 Let Dy, D; be two documents, Spp(Dy, D) = Spp(Dy, Dy).
This proposition directly follows from the definition of Spp function.

2.3 Problem definition and approaches

In order to introduce the structural similarity measure between a document and a
DTD, the set of document structures generated from a DTD must be introduced.
The document structures generated from a DTD are documents with no content for
textual elements.

Definition 2.7 (Set of document structures G;). Let T be a DTD. G4(T) is the set of
distinct document structures that can be generated from 7. Each D € G4(T) is valid
with respect to 7.

The problem of measuring the structural similarity between D and T can be
formulated as the problem of identifying the highest structural similarity between
D and documents in G4(T).

Definition 2.8 (Extensional structural similarity between a document and a DTD).
Let D be a document, 7 be a DTD, the extensional structural similarity between D
and T is defined as:

Spr(D, T) = max{Spp(D, D) D' € Ga(T))

Example 3 Given the DTD T in Fig. 1d, Fig. 3a,b,c show document structures
D, D,, D3 belonging to G4(T), whereas Fig. 3d shows a document D not conforming
to T. D; is the structure with the maximal similarity among those generated from 7.
Therefore, S5,.(D, T) = Spp(D, D,) = Eval(10, 8,22) = 0.625.

The above definition precisely characterizes the notion of structural similarity. It
also provides an approach for its computation (referred to as extensional approach)
which is based on the generation of document structures. This approach, however,
is not efficient because the set G,(7) can be infinite when the */+ operators are
employed. By taking the document D into account, only a finite subset G;(7, D)
of G4(T) is considered. This follows from the intuition that repeatable elements of a
DTD can be repeated until there are elements in the document that can be matched;

@ Springer

64 J Intell Inf Syst (2008) 30:55-92

(a) (b) (©) (d

Fig. 3 Structures (a,b,c) are generated from DTD in Fig. 1d, whereas document (d) is not generated
from such a DTD

further repeating is useless. The cardinality of G,(T, D) is however still exponential
in the number of elements of 7 when the OR, *, and + operators are used.

For this reason we present another approach (referred to as intensional approach)
in which a Match algorithm between the document and the DTD is employed. The
DTD is exploited as descriptor of a set of document structures without generating the
set of document structures. The grammar rules, specified for constraining the element
contents, are exploited for determining the best match. The approach is based on
the idea of locally determining the best structure of a DTD element, for elements
containing alternatives or repetitions, as soon as the structure of its subelements in
the document is known. The Match algorithm thus identifies a “best structure” by
matching the element structure against the DTD specification.

3 The intensional matching approach

In this section we present the Match algorithm, an example of its execution, and,
finally, its complexity analysis.

3.1 The matching algorithm

The Match algorithm is employed for measuring the structural similarity between
a document and a DTD. Since our approach works level-by-level, here we specify

Input: E; element of the document, E; DTD element specification
Output: Triple (p, m,c¢) Var: R =0

1) If (E; is a basic type definition) return Basic Eval(Ey, [(children(E;)))

2) For each x € children(E;), for each y € children(E;), if [(x) ~I(y) R < RU
{(x, y, Match(x, y))}

3) If (x, y,e1), (x, z,€2) € Rexists.t. y # z,

identify configurations in R s.t. each node in 771 (R) is associated with at most one
node in mp(R)

4) For each configuration R compute M (R, children(E;), F) and choose the triple
(p, m, ¢) with maximal £(p, m, ¢)

5) Compute P/ = erchildren(Ed).x¢7r1(R) dehl(x)

6) Return (p + p', m, p(Ey) - €(I(Eg), l(E)) + ¢)

Fig. 4 Steps of the Match algorithm
@ Springer

J Intell Inf Syst (2008) 30:55-92 65

Fig. 5 Motivating example for
the use of configurations

b]T bQ’I‘
a {bip,b2n}]
{bip} {b2p}
{ban} {bip}
0 {b1p,ban}

(b)

the behavior for a single element. The application of the algorithm to the roots of
the document and the DTD allows the evaluation of similarity between the entire
structures.

Figure 4 shows the Match algorithm for the root element E,, of the document
in Fig. 3d, and E; of the DTD in Fig. 1d. The algorithm returns a triple (p, m, c)
containing the evaluation of common and different features considering the entire
structures of subelements. For the sake of clarity, the subscript D, (respectively, T)
is used when we refer to an element of the document, (respectively, DTD). Sibling
elements with similar tags are numbered from left to right.

First, the algorithm checks whether E; is the declaration of a basic type element
(#PCDATA, ANY), or it is the declaration of an element with subelements. In the
first case (handled through function BasicEval in Fig. 6), if E, is a #PCDATA
element and Ej is a data content element, the match is perfect. By contrast, if £,
contains subelements, then the algorithm evaluates the missing of the #PCDATA
content and the exceeding presence of subelements of E;. If E, is an ANY type, the
subelements of E; perfectly match this type. In the second case, the one reported
in Fig. 5a, the algorithm identifies the subelements of £, that match (because they
have similar labels) the subelements of E;, independently from the operators used
in the declaration of E,. In Fig. 5a, a dashed line has been drawn between the
matching nodes. The identified matches are collected in the set of correspondences
R. Moreover, the Match algorithm is recursively applied on the pairs of subelements
to determine their similarity.

The algorithm then considers the correspondences in R. Each correspondence
can associate a subelement of E,; with a single subelement of E,. By contrast, a
correspondence can associate a subelement of E, with more than a subelement of
E,; only when it is declared repeatable (a subelement of E; is repeatable when the
* /+ operator is specified for it or for a AND/OR group of elements it belongs to).
Therefore, in the example, element b . can be associated both with 1) and b%,, and
b1 can be associated either with b). or 5. For this reason, the possible subsets of R,
named configurations, in which each node in 7; (R) is associated with at most a node
in m,(R) are considered. In the example, the four configurations in Fig. 5b should be

(0,0, p(Ty)) if / = #PCDATA and DCE(Ty) =T
BasicEval(Ty, {I}) = § Weight(Ty), p(Ty),0) if | = #PCDATA and DCE(Ty) = F
(0,0, Weight(T,)) if/ = ANY

Fig. 6 Function Basic Eval
@ Springer

66 J Intell Inf Syst (2008) 30:55-92

considered. They represent the different ways of distributing the two b p elements
against the two b 7 elements.

Element declarations in which two subelements have similar tags rarely occur in
real DTDs modeling data-centric documents and mainly occur because of a bad DTD
design. Indeed, in the declaration of an element, there is no need to specify twice the
same subelements (or similar ones). Thus, the evaluation of a single configuration is
required in most common situations. However, for sake of completeness, we discuss
the general situation.

In Step 4, function M is applied as many times as the number of configurations.
Each recursive call returns the evaluation of the match between the content of Ep
and the specification of E7 by taking the operators employed and the distribution
of the elements specified in the configuration into account. Among the computed
evaluations, the maximal one is then selected as the highest evaluation of similarity
between Ep and E7 subelements. In the example, the best match corresponds to the
first configuration. Details of the M function are in Appendix I.

After that, the subelements of E; not matched against a subelement of E; are
evaluated as plus elements. This is obtained through function Weight which returns
the value p’ representing the relevance of plus subelements. Minus subelements of E,
are evaluated by function M also employing function Weight. In both cases, function
Weight has the purpose to evaluate the lack (or the extra presence) of an element
depending on its structure and its relevance factor. Since plus elements are elements
of a document, their evaluation is performed by adding the relevance of their
children/descendants. By contrast, since minus elements are DTD specifications,
their evaluation is a little more complex. In this case, the simplest structures the
DTD can generate for those DTD portions need to be identified. Thus, optional
and repeatable elements should not be considered and, in case of alternatives, the
alternative with the simplest structure must be chosen. Finally, the relevances of all
elements of the structure identified in this way are added. Details on function Weight
can be found in Appendix L.

Once the evaluation (p, m, c) of plus, minus, and common subelements of E,4
and E, is obtained as specified so far, the evaluation of similarity of E; and E; is
performed as follows. Common elements between E,; and E; are evaluated by adding
the relevance factor of the root of £; and the root of E; to c. Plus elements are
evaluated by adding the value p’ to p. The evaluation of minus elements is m itself.
Note that when the Match algorithm is applied on the roots of a document and DTD
and the roots do not have similar labels, the relevance factor of the roots is zero. That
is, they do not contribute in the evaluation of similarity (artificial roots), whereas the
evaluation of their children does.

3.2 Execution example of the Match algorithm

Consider the document D in Fig. 3d and the DTD T in Fig. 1d. The Match algorithm
identifies the subelements of D (i.e., elements tagged b, c, d) and those of T (i.e.,
elements tagged b, c, e, £) that are bound by the =~ relationships (i.e., elements
tagged b, c). The possible matchings depicted in Fig. Sa are identified. For each
matching, the Match algorithm is hence invoked and a triple (p, m, ¢) containing its
evaluation is returned. For example, Match(b',, b 1) = (0, 0, 6) because the element
perfectly matches the basic specification of b 7 (i.e., the labels are identical and the

@ Springer

J Intell Inf Syst (2008) 30:55-92 67

b}) content is a textual content); Match(c%, ct) = (3, 2, 4) because the two elements
have the same label, but ¢%, has a plus content (evaluated 3 by function Weight)
whereas cr requires a textual content which is missing. In summary, the recursive
calls of the Match algorithm returns the set {(b},, b, (0,0,6)) , (b3, b}, (0,0,6)),
(b, b%.(0,0,6)), (b%.5%.(0,0,6)), (ch.cr,(0,0,6)), (ch,cr, (3,2,4))}. We re-
mark that, even if two b elements are used in ar, their structures are always identical
and thus they are evaluated only once.

Since the specification of T contains two elements with the same label (i.e., b),
different configurations are extracted and used in the M function to deter-
mine and evaluate the missing and exceeding subelements of D, by exploit-
ing the matchings depicted in Fig. 5b. Consider, for example, the configuration
R={(b}. 0% 0,0,6), (b2.b%,0,0,6), (ch, cr, (0,0,6)), (c3, cr, (3,2,4)} in
which the two b p subelements are associated with b }.. The recursive calls of function
M trace the operators that are used in the specification of ar. By taking the triples
generated in R into account, on return from the recursive calls, the operators and
the repeatability of a node are considered in order to select the best choice among
the possible ones for binding together subelements. For what concerns the non-
repeatable AND operator the following evaluations are performed.

— For the repeatable AND operator that binds elements b and ¢, function M
composes the triples in the configuration R obtained for the underlying ele-
ments in order to evaluate the repetitions of the two subelements. Such an
evaluation is (0, 0, 12) for the first occurrence of the AND operator (obtained
from (b}, b}, (0,0,6)) + (c}. c7,(0,0,6))), and (3,2,10) for the second one
(obtained from (b7, b, (0,0, 6)) + (¢}, cr. (3,2, 4))). The two triples are then
summed in the evaluation of the * operator (i.e., (3, 2, 22)).

— For the OR operator that binds two missing subelements, function M evaluates
its lack by choosing the alternative with less impact in the evaluation (i.e.,
(0, 6,0)).

— For the ? operator, the lack of matching with b2T is evaluated (0, 0, 0) because it
is allowed that no elements match against it.

The sum of the so obtained evaluations, i.e., (3, 8,22), is the evaluation of the
non-repeatable AND operator that concludes the evaluation of function M for
configuration R. The other configurations, outlined in Fig. 5b, return triples with a
similarity smaller than that of (3, 8, 22). Thus, the algorithm uses this triple to obtain
the similarity between D and 7. The algorithm evaluates the plus elements (p’ =7
for the extra presence of element dp) and the perfect match of the root element
tags (8). Then, the triple (10, 8,30) is returned by the algorithm. The similarity
degree between D and T is thus 30/48 = 0.625. Note that, this is the same evaluation
obtained in Example 2. The structure in Fig. 3b is the most similar to D among the
ones generated from 7.

3.3 Complexity of the Match algorithm

The complexity of the Match algorithm strictly depends on function M and on
the number of configurations. Function Weight, for determining the complexity of
Match, can be thought as pre-computed for each node of the document and the DTD
and associated with this node (at a cost of O(|D| + |T|) which does not affect the

@ Springer

68 J Intell Inf Syst (2008) 30:55-92

overall complexity. We remark that in our context we normally have to deal with a
single configuration. However, for the sake of completeness, we specify the maximal
number of configurations and discuss some techniques to reduce this number and
thus improve the overall execution time.

3.3.1 Complexity of function M

Given a configuration R, representing the correspondences among the subelements
of E; and E,, the number of operations function M performs on R depends on
the cardinality of R. Indeed, function M evaluates the operators and combines
the evaluations obtained on the common elements between the two structures
(contained in the configuration R) with the evaluation of plus and minus elements
(obtained by function Weight).

Proposition 3.1 Let 7, be a subtree of a DTD specification E; and 7 be the
cardinality of the configuration R. The cost Op(t) of the operations performed
on the 7 correspondences depends on the label / of the root of 7;. Specifically: if
[€ (#PCDATA, ANY, ?}, Op(z) € O(1);ifl € EN, Op(r) € O(z - log(x));if | € {*, +},
Op(r) € O(1);ifl € {AND, OR}, Op(1) € O(7?).

From Proposition 3.1, it follows that in the worst case, the cost of the operations
performed on a configuration is quadratic in the number of correspondences. More-
over, the number of recursive calls of function M on the operators used in the DTD
is linear in the number of nodes of the two structures. The complexity of function M
is thus the product of these two quantities.

Proposition 3.2 Let I' be the maximal cardinality of a configuration between an
element of a document D and an element of a DTD 7. The complexity of M is
O@?- (ID|+|T)).

The cardinality of a configuration is limited by the number of subelements of an
element of the document D. Therefore, the complexity of M can also be specified as
O(deg(D)* - (|D| +|T)).

3.3.2 Configurations

If m is the number of subelements with similar labels in £;, and » is the number of
subelements of E; that are in correspondence with them, the number of configura-
tions that should be checked is m", that is, the number of ways the n subelements of
E,; can be distributed among the m subelements of E,.

The number of configurations can be reduced by taking into account that elements
with similar labels of E, can be non repeatable and thus only an element of the
document can be associated with them. Moreover, there are configurations that lead
to the same similarity degree and, therefore, can be skipped. Finally, it is possible to
define some “rewriting rules” that allow one to rewrite a DTD T into another DTD
T, in which the number of elements with similar labels is reduced. These techniques

@ Springer

J Intell Inf Syst (2008) 30:55-92 69

can be applied independently. In the discussion we will refer to the document and
DTD in Fig. 7a,b. Without applying our techniques, the number of configurations
that should be considered is 27. We now show how to reduce this number.

— Repeatable elements. Whenever a subelement of E; is not repeatable, at most
one of the subelements of E; can match it. By contrast, if the subelement is
repeatable the number of elements that can be matched against it depends on
the other operators appearing in the declaration of E,. Therefore, once the
elements to be matched against the non-repeatable elements are determined,
the remaining elements should be distributed among the repeatable elements.
Consider, for example, the document and DTD in Fig. 7a,b. Configurations in
Fig. 7c should be checked. The number of configurations to be checked decreases
from 27 to 8, because the second and third b in the DTD are not repeatable.

— Evaluation of the elements in the document. The evaluation of the b elements
of E, against one of the b elements of E; is already computed and included
in the correspondence R. This information can lead to a further optimization.
Indeed, if the match of the b elements against the by element generates triples
for which function £ returns an identical value, there is no need to consider which
b is matched against the b’s in the DTD, but just their number. The number of
configurations decreases by a factor n! because only the number of subelements
of E, assigned to a subelement of E, is considered. This number is expressed as
m buckets disregarding which item falls in a bucket (i.e., considering only the
number of items that fall in a bucket). Consider, for example, the document and
the DTD in Fig. 7a,b. Since the evaluations of the bp elements against one of
the b elements are identical, the number of configurations is Q3 3 = 10. Taking
also the repeatability of the b subelements of a into account, the configurations
reduces to 4: the first, second, fourth, and last row of Fig. 7c.

e Normalization of the DTD. Another technique for reducing the configurations
consists in the identification of rules for translating element declarations, having
subelements with similar tags, into equivalent ones with less subelements with
similar tags. Sometimes the user can also be interested in rules that translate
the DTD in a less constraining DTD (details in Bertino, Guerrini, and Mesiti

that is, the number of ways for distributing n items in

bir bar b3t

R {bip,b2p,bsp} 0]

? {b2p,b3p} {bip}]

a 2B QR {b1p,bsp}t | {bap} | O
bI/bm Toeels {bip.bap} | fbap} | 0
) {b2p,bsp} 0 {bip}
78 9 . {bin, bsn} 0 | {bon}
b {bln,bQD} 0 {bgn}
@ ® {bin} {bon} | {bsn)

()

Fig. 7 A document and DTD having subelements with similar tags (a,b) and the corresponding
configuration table (c)

@ Springer

70 J Intell Inf Syst (2008) 30:55-92

(2004c)). A consequence is that non-valid documents for the original DTD
could become valid for the rewritten DTD. However, there are two reasons
for considering less constrained DTDs. First, the user could be interested in
obtaining an answer more quickly, even if this is less accurate. Second, the less
constrained DTD can be used as a filter for quickly eliminating documents that
are really dissimilar with respect to the DTD. Then, the selected documents
can be compared against the original DTD for obtaining the correct similarity
degree.

4 Similarity measure
The similarity measure computed exploiting the DTD rules is defined as follows.

Definition 4.1 (Intensional structural similarity between a document and a DTD). Let
D be a document and 7 a DTD. The intensional structural similarity between D and
T is defined as

Shr(D, T) = E(Match(D, T))

We now state the relationship between S5, (Definition 2.8) and S}, (Defini-
tion 4.1).

Proposition 4.2 Let D be a document and T a DTD. S5,(D, T) = S5,(D, T).

By means of this result, there are two distinct, but equivalent, approaches for
evaluating the structural similarity between a document and a DTD. The intensional
approach, however, determines the similarity in polynomial time in the most com-
mon situations even if the OR, *, and + operators are used. The extensional approach
could be employed whenever the number of configurations to be checked is high. As
future work we plan to investigate whether it is better to follow the intensional or
the extensional approach in presence of DTD declaration with sibling elements with
similar tags.

We now state the relationship between validity and the structural similarity
measure.

Proposition 4.3 Let D be a document and 7 a DTD. The following properties hold:

— If D is valid with respect to T, then S5, (D, T) = 1,
—~ If 8§,(D, T) =1 then D is valid with respect to T, disregarding the order of
elements.

5 Experimental results

The Match algorithm has been implemented in Java, using the DOM libraries.
Several experiments have been carried out in order to assess the similarity measure
and the matching algorithm both from the correctness and the efficiency viewpoints.
First, we tested whether the requirements we identified actually correspond to the

@ Springer

J Intell Inf Syst (2008) 30:55-92 71

“common feeling” of similarity between an XML document and a DTD. Then, we
considered both real and synthetic data and classified them against a set of DTDs
in order to verify that the algorithm correctly ranks documents according to the
similarity measure. Some performance evaluations have been also carried out to
show that the algorithm is reasonably efficient to be used in practice. Finally, we
checked whether semantic tag similarity can be used for XML documents gathered
from the Web.

5.1 Validation of the requirements

In order to verify that the requirements we identified actually correspond to the
“common feeling” of similarity between an XML document and a DTD, we asked
twenty people to evaluate the similarity between fifteen documents and a DTD.
They had to give a mark between 0 and 10 to the similarity of each document with
respect to the DTD. The DTD is about reimbursements of business trips. The twenty
people that participated in the experiment have different levels of familiarity with
XML, ranging from basic knowledge to common use for work, no knowledge of our
approach, and different levels of familiarity with the application domain to which the
documents refer. Documents range from valid documents to documents that do not
correspond at all to the DTD. We do not report here the documents and the DTD,
also because they are in Italian; however, we summarize their characteristics with
respect to the DTD in Table 2a. Table 2b reports the average evaluation obtained
by each document. Documents are ranked based on our similarity measure. The only
case in which the evaluation of the matching algorithm is lower than the average
mark is document 13. The outermost element tag of this document is different from
the one required in the DTD. This document received a really low average mark
because it does not have any common element with the DTD. Our algorithm returns
0, which we think it is the right structural similarity because the document deals with
a very different topic. We remark that even if the differences between the average
mark and the value our algorithm returns is high, it can be mitigated by choosing
higher values of & and B. Actually, if we choose & = 3 and 8 = 3 (instead of @ = 1
and B = 1) the standard deviation moves from 3.3 to 1.6.

Some further considerations should be made on the results for document 12. It
is perfectly valid except for the outermost element (the document element) which
is different. Some people did not realize that the element tag was different, thus
they assigned 10 to the document. However, even among those who found out this
difference, some assigned a high value (e.g., 7, or 8), whereas others marked it 0.
Actually, in such a situation stating that the document is completely different from
the DTD is too strong. Our algorithm assigns 8.5 as similarity degree. This value is
computed taking into account that the internal structure of the document perfectly
matches the DTD specification but the roots are different.

Another important result of this experiment is the validation of the requirements.
Indeed, in the 15 documents we have generated, there are groups of documents
stressing a particular requirement. For example:

— Documents 4, 10, 3 have minus elements at different levels of the document
structure. People ordered them giving more relevance to missing elements at

@ Springer

72

J Intell Inf Syst (2008) 30:55-92

Table 2 (a) Characteristics of

higher level than missing elements at lower level. Indeed, document 4, having
two missing elements at the bottom level, has a higher mark than document 3,
which misses an element at the second level.

Documents 9, 11, 5 have plus elements at different levels of the document
structure. As for minus elements, people ranked them according to the level.
Documents 8 and 11 have the same number of plus elements at the same
level, but document 11 has more common elements. Actually, people found that
document 11 is more similar than document 8 because it has more “common
elements” than document 8.

Documents 10 and 11 have plus and minus elements at a high level, whereas
documents 4 and 9 have plus and minus elements at a low level. Actually, people
gave to these pairs of documents a similar evaluation. Therefore, the presence of

the documents and Doc. Characteristics

(b) comparison of the -

similarity degree computed 172 Valid documents

by our algorithm and the 3 One missing structured element at second level

average mark. 4 Two missing #PCDATA elements at low level

5 Optional structured element repeated three times

6 Wrong binding of two alternative elements (the DTD
Requires (a, b) | (¢, d) but the doc. contains a, d)

7 Missing level in the hierarchical structure

8 Two plus #PCDATA elements at third level

9 Two plus #PCDATA elements at bottom level

10 Two missing #PCDATA elements at third level

11 As document 8 with more common elements

12 Valid document, but different outermost element

13 Completely different document

14 Structured element instead of #PCDATA element

15 #PCDATA element instead of structured element

Doc. Match Average Diff

1 10 10 0

2 10 10 0

4 9.9 7.45 2.45

9 9.7 7.74 1.96

11 9.3 7.58 1.72

10 9.3 6.81 2.49

6 9.1 6.64 2.46

8 8.9 7.15 1.75

14 8.6 5.94 2.66

12 8.5 5.53 297

5 8.1 6.87 1.23

15 79 5.66 2.24

3 7.8 4.88 2.92

7 49 3.73 1.17

13 0 0.18 -0.18

@ Springer

J Intell Inf Syst (2008) 30:55-92 73

extra elements or the absence of the same number of elements at the same level
received the same importance.

— Document 3 misses a structured element, whereas document 10 misses two data
content elements, one of which at a high level. The evaluation of document 3 is
worse, thus the weight of the missing portion of document has been considered.

5.2 Experiments on real and synthetic data

To validate the proposed technique we have performed some experiments over
“real data,” gathered from the Web, and “synthetic data,” randomly generated.
In what follows, we briefly report the most interesting experiments. As remarked
in Yao, Ozsu, and Keenleyside (2002) we still lack large repositories of data centric
XML documents.® Thus, also in the case of “real data” we started from HTML
documents and we extracted XML documents from them. Data come from two
sources of related documents on the Web. These sources contain HTML documents
describing software products and their features. By means of structure extraction
tools we obtained 345 documents from the first source and 473 documents from the
second one. Since there was no common DTD for all the documents, we randomly
extracted some small groups of documents and we manually generated the DTDs
representing the structure of documents in each group. Each of the generated
DTD thus expresses the structure of a subset of documents in the source. We then
applied the similarity measure to all the documents in the source for identifying the
DTD in which most documents were classified. Synthetic data were generated by
means of a random generator we have developed. We generated 10,000 documents
containing elements arbitrarily chosen from the Dublin Core element set (DCI).
Each element, representing information about a resource (e.g., title, creator,
subject), is optional, repeatable, and may appear in any order. Moreover, they
can have qualifiers, that is, subelements, refining their meaning. For example, the
creator element can have the personalName subelement specifying the name of
the creator. We have then specified three DTDs using subsets of the Dublin Core
element set.

In both the experiments, by matching all the documents in the sources against the
DTDs, we have obtained that for each document D, and for each pair of DTDs 7, T,
such that D is valid neither for Ty nor for T,, whenever S§,(D, Ty) > S1.(D, T»),
the document D is more similar to 7 than to 75, according to an actual analysis of
the document and the DTD. This analysis has been carried out by us with the help
of some students, and relies on the requirements identified in the introduction and
validated in Section 5.1.

The previous experiments have been carried out by fixing e =8 =1, y =2.
Some additional experiments have been carried out by fixing « = 0. In this case, the
matching process can be seen as a method to evaluate the structural query that allows

3 The need of sources of XML documents is also considered by the INEX organization (Fuhr &
Lalmas, 2004). Indeed, in 2004, it has identified a new track for the definition of heterogeneous
sources of XML documents in order to test new retrieval approaches.

@ Springer

74 J Intell Inf Syst (2008) 30:55-92

one to retrieve the documents that contain the elements specified in the DTD. The
documents with similarity degree equal to 1 are those containing all the elements
required by the DTD, and potentially additional elements.

5.3 Performance evaluation

In order to analyze the behavior of our algorithm, we considered the simple doc-
ument in Fig. 8a and the DTD in Fig. 8b. The DTD is characterized by different
combinations of subtrees labeled by operators and of repeatable subtrees. Starting
from this document and DTD we defined other documents and DTDs with a higher
number of levels by replicating the same structure for each terminal node of the two
structures. Figure 8c reports their sizes.

The number of elements in a document depends on the number of levels and
varies between 11, for the document in Fig. 8a with a single level, and 11,111, for
the document with four levels obtained from document in Fig. 8a. The performance
evaluation has been carried out on a Pentium III, 833 Mhz, 512 MB of RAM, with
Windows NT as operating system.

5.3.1 Matching valid documents

Function Weight can be computed in different ways. It can be pre-computed with
the returned value stored in each node of the DTD/document structure (a-priori);
computed on the fly, that is, computed when a minus or plus element is found;
materialized, that is, computed on the fly the first time it is needed and its value
stored in the corresponding node of the document (or DTD), and used for further
requests.

In order to analyze how these three alternatives affect the performance of the
Match algorithm, we implemented three versions of the Match algorithm. The
execution times expressed in milliseconds are reported in the table in Fig. 9a. This
table points out three important results. First, even if from the complexity view point
pre-computing or materializing the weight does not affect the general complexity of
the algorithm, from the point of view of performance there is a big impact. Indeed,
when the number of calls to function Weight is very low, as in the case of valid
documents, the execution time of the a-priori version of the algorithm increases three

. b AND Levels | Doc. size | DTD size

r ° b o I ED #PCDATA #PCDATA #PCDATA’ ? 1 208 b 878 b
AT vl ? oconth ¢ 1 2 1.79Kb | 153 Kb
T . L 3 | 203Kb | 297.0Kb
e et 8 14 4 | 227.0Kb | 521 Mb

#PCDATA

(@) (b)

(©)

Fig.8 Firstlevel of the document (a) and DTD, (b) for evaluating performance, and (¢) variation of

the size depending on the number of levels

@ Springer

J Intell Inf Syst (2008) 30:55-92 75

2500 —

materialized weight ——""
on the fly-computed weight --rx-“-
pre-computed weight .- -

2000 -

1500 [

Weight g
elem. | onthe fly | a-priori [materialized " oo}
I 181 1.07 0.66 T
111 8.00 12.59 6.18 ol e
1111 80 175 70.31 e
11111 873 2502 784 e
o Number of elements H“‘
(@) (b)

Fig.9 Performance of the algorithm when matching valid documents

times. By contrast, computing the weight on the fly or materializing it has a little
impact on the performance of the algorithm when the document is valid. Actually,
it is better to materialize the weight. This last result can also be visualized from
the graphs in Fig. 9b which shows that the materialized version of the algorithm is
the best. Finally, the execution time of the algorithm linearly grows with respect to
the number of nodes of the two structures. Indeed, considering only the number of
nodes of the document, the one-level document has 11 elements, whereas, the four-
level document has 11,111 elements.

5.3.2 Matching documents with plus and minus elements

In order to analyze the matching algorithm when the document is not valid, we
carried out three kinds of experiment.

In the first experiment, we analyzed the influence of missing elements from the
document with respect to the DTD. The documents considered in the previous
experiments have been progressively pruned of from 10 to 50% their elements. The
execution times of the algorithm, expressed in milliseconds and reported in Fig. 10a,
decrease as the number of minus elements increases. The execution times are the

1level —— 1200 " & 1level —— 1
600 2level -x-— 2level ---x-
3level ---x- o 3 level -
1level @ level o
a 1000
500
“ 800
400 |-
£ g
2 © 600
£ 300 E
200 | 400
100 4 200
e oo S . S, S — e
10 20 30 40 10 20 30 40
% of minus elements % of plus elements
() (b)

Fig. 10 Performance of the algorithm when matching documents with (a) minus and (b) plus
elements at different levels (materialized version of the algorithm)

@ Springer

76 J Intell Inf Syst (2008) 30:55-92

result of the execution of the materialized version of the algorithm. However, from
the experiments, we observed that the other two versions of the algorithm have the
same behavior. Therefore, the presence of minus elements does not increase the
execution time of the algorithm, rather it decreases it because in presence of minus
elements, no recursive calls of the Match algorithm is applied, rather only function
Weight is called.

In the second experiment, we analyzed the influence of plus elements in the
document with respect to the DTD. The documents have been progressively en-
hanced with additional elements. The new elements have been randomly generated
by copying previous elements of the document or by creating new elements. The
execution times of the algorithm, expressed in milliseconds and reported in Fig. 10a,
progressively increase. Note that for the document with four levels the performance
decreases of ~ 35% while the number of nodes increases of 50%.

5.3.3 Matching D TDs with subelements with the same tags

As pointed out in the discussion of the matching algorithm the presence in the
DTDs of sibling elements with the same/similar tags changes the complexity of
the algorithm from polynomial to exponential. In order to analyze the behavior
of the algorithm in this situation, we carried on some more experiments. We
considered the DTD in Fig. 7 and the DTD obtained from this DTD by applying
the rewriting rules as shown in Section 3.3. Note that the latter DTD does not
have subelements with the same tags. Moreover, we considered two valid documents
with respect to these DTDs: one having 10 subelements tagged b, the other having
20 subelements tagged b. For these documents and the DTDs we obtained other
documents and DTDs with a higher number of levels. The execution times, expressed
in milliseconds, are reported in Table 3. As the reader can see, also for documents
with few elements, the execution time of the algorithm is heavily affected. The
performance of the enhanced version of the algorithm is, however, good.

5.4 Syntactic vs semantic tag similarity

Exploiting semantic information for the matching of a document with respect to a
DTD is an important feature for the similarity measure we developed. Semantic
information can be achieved by means of dictionaries, Thesauri, or specific tailored
Ontologies. Wordnet (Miller, 1995) is a linguistic Thesaurus that allows to associate
each English term with the list of synonyms (synset) that can be used as interpretation
of the term.

Table 3 Performance in

presence of elements with the Lev. # of b elements
same label 10 20
Basic Enhanced Basic Enhanced
1 8 0.21 4.55 0.37
2 130 2.32 1,822 8.16
3 12,939 27.66 721,077 179

@ Springer

J Intell Inf Syst (2008) 30:55-92 77

In order to verify whether the use of Wordnet can be useful for determining the
meaning of tags or it is better to exploit the syntactic similarity among tags, we
gathered 30 XML documents from the Web and we considered their tags (around
600 distinct tags). It turned out that around 30% of the tags were not present in the
Thesaurus because tags were not nouns. Often a tag was a combination of lexemes
(e.g., ProductList, SigmodRecord, Act number), a shortcut (e.g., coverpg,
CC), a single letter word (e.g., P for paragraph, V for verse), a preposition or a
verb (e.g., from, to, related). For the remaining tags a synset has been found
in the Thesaurus and was useful to improve the similarity measure in around 20% of
the developed tests. These results motivate our decision to consider, in addition to
semantic tag similarity, also syntactic tag similarity to cope with the cases in which it
is not possible to identify synsets.

These results are quite modest because tags are quite different from textual
contents in which Wordnet is usually applied. We are currently working on the devel-
opment of an approach for learning an Ontology on the basis of tags extracted from
a set of documents in the same spirit of Ontology Learning from text approaches
(Buitelaar, Cimiano, & Magnini, 2005) but tailored to XML tags.

6 Related work

Approximate matching and structural (and content) similarity for semi-structured
data have been investigated at three different levels: (a) among data or between data
and a pattern; (b) between data and a schema; (c) among schemas. In the remainder
of this section, we first introduce basic approaches dealing with tree similarity, then
briefly discuss the main approaches for each of the above levels, and discuss their
relationships with our approach. Further details on the approaches presented in this
section can be found in Guerrini, Mesiti, and Bertino (2006); Guerrini, Mesiti, and
Sanz (2006)

6.1 Tree similarity: Basics

The problem of computing the distance between two trees 7 and 75, also known as
tree editing problem, is the generalization of the problem of computing the distance
between two strings (Rice et al. , 1997) to labeled trees. The editing operations
available in the tree editing problem are changing, deleting, and inserting a node.
To each of these operations a cost is assigned, that depends on the labels of the
nodes involved. The problem is to find a sequence of such operations (i.e., an edit
script) transforming 7 into 7, with minimum cost. The distance between 7 and
T, is then defined to be the cost of such a sequence. Many approaches generalizing
string edit distance to trees have been proposed (Lu, 1979; Selkow, 1977; Tai,
1979; Tanaka & Tanaka, 1988) and the best known result for ordered trees is by
Zhang and Shasha (1989). Given two ordered trees 77 and 75, their algorithm
finds an optimal edit script in time O(|T| x |T>| x min{depth(T), leaves(T})} X
min{depth(T,), leaves(T,)}), where |T| denotes the number of nodes in a tree T,
depth(T) denotes the depth of a tree T, and leaves(T) denotes the number of leaves

@ Springer

78 J Intell Inf Syst (2008) 30:55-92

of a tree 7. Edit distance for unordered trees has been investigated by Zhang,
Statman, and Shasha (1992). Specifically, they have proved that the problem for
unordered trees is NP-complete. Zhang (1993) has also proposed a polynomial time
algorithm based on a restriction that matching is only allowed between nodes at the
same level.

The approaches to tree edit distance measure the (structural and content) sim-
ilarity between two trees. Our intensional approach, by contrast, as discussed in
Section 2.3, computes the (structural) similarity between a tree and an intensional
representation of a set of trees (the DTD). Thus, our matching algorithm, while
computing the structural similarity, also needs to determine which tree, among those
described by the DTD, maximizes the structural similarity. Such a result could be
achieved, relying on tree edit distance, through an extensional approach: the set of
document structures described by the DTD is made explicit and for each document
structure the tree edit distance is computed, choosing the document structure that
minimizes the distance. This approach is alternative to our intensional approach,
which is specialized, offers better performance for unordered trees and addresses
our requirements.

Some approaches for approximate tree matching have also been proposed
(Zhang, Shasha, & Wang, 1994). Approximate tree matching means matching a tree
against a pattern, that is, a tree containing a wildcard (VLDC) that can match with
any path/subtree in the other tree. Approximate tree matching with VLDC:s is still
different (and easier) than the problem we address: a VLDC can match with any
path/subtree whereas a DTD is a concise representation for a set of different (but
not arbitrary) subtree structures. An element declaration in the DTD, indeed, poses
some constraints on the structures allowed for the element in the document.

6.2 Similarity at data level

The approaches along this direction, discussed in Amer-Yahia, Koudas, and
Srivastava (2003), can further be distinguished in:

— Approaches for document structural clustering, that is, for assembling together
documents with a similar structure. This requires to quantify the structural
similarity between XML documents, only focusing on document structure, disre-
garding their content.

— Approaches for document change detection, that is, for detecting and represent-
ing changes to hierarchically structured information. The changes are detected
by comparing the old and new versions of the documents. This approaches do not
employ the general tree edit distance algorithm; instead, they develop different
algorithms to achieve better performance.

— Approaches for approximate queries, that is, for identifying query answers
that partially match the query constraints. These approaches share the goal of
integrating structural conditions typical of database queries with weighted and
ranked approximate answers typical of information retrieval.

Table 4 outlines the characteristics of the most relevant approaches along the
three directions. The first column contains the name of the approach, whereas the

@ Springer

79

J Intell Inf Syst (2008) 30:55-92

pringer

Ns

S S [9qe[ar ‘21a[ap “Jrosuy N (100 “1opar1yds) TOXOo1dde
q q [oqe[y N (000T ‘wnIA % P[EQOAYL) TXX Surkronb
d S [oqe[y A (100 ‘uueyolssorn 2 1yng) TOUIX orewrxorddy
q [0qE[a1 *239[oP ‘}Iosu] N (€007) Te 10 Suepy
QAI,919[AP DI JIASUI ‘DAL SAON
q ‘[oqe[a1 ‘919[ap ‘JIasu] N (L661) BUI[OJN-BIOIRD) pUR dUjeMEBYD)
QAL PAOIN uondajap
El q ‘[oqeax ‘d30[op ‘Jresu] X (9661) 'Te 12 oy1RMEYD) o3uey)
q A (2002) T 10 BISAL]
QAI,919[ApP DI IdSU] Surrosnpo
q ‘[oqe[aI “9)19[ap ‘JIasuy A (Z007) ysipese[pue UBULIdIN Teinjonng
Sel, judIuo) suoneradQ 1pg I9pIO

[9A9] Biep 1B soyorordde Ajrequrs Suowe uostredwod v § d[qe],

80 J Intell Inf Syst (2008) 30:55-92

second column states whether the approach considers order among sibling elements.
The third column lists the edit operations considered in tree matching. The fourth
and fifth columns specify the relationship among data content and tags, respectively,
which can be equality (E) or semantic similarity (S).

These approaches measure the similarity between two XML documents; thus
their goal is substantially different from ours, which measures the similarity between
a tree (the document) and a set of trees, intensionally represented by a DTD.
Thus, as discussed above, some of these approaches, specifically those for document
clustering, could be adopted to measure the structural similarity between a document
and a DTD through an extensional approach.

6.3 Similarity between data and schema

For what concerns similarity between data and schema, existing approaches either
address approximate conformance of data to a schema or the extraction of schema
information from data relying on their structural similarities.

— Approximate conformance: the problem is to detect whether a data instance
approximately conform to a schema. The only approaches in this direction are
by Grahne and Thomo (2001)and by us, Bertino, Guerrini, Merlo, and Mesiti
(1999). None of them, however, has been developed for XML documents and,
moreover, in Grahne and Thomo (2001) allowed deviation from the schema are
explicitly stated.

— Schema extraction: the problem is to discover schema information (in the form
of a data guide (Nestorov, Abiteboul, & Motwani, 1998; Wang & Liu, 1998) or
of a DTD (Garofalakis, Gionis, Rastogi, Seshadri, & Shim, 2000; Moh, Lim, &
Ng, 2000)) from a set of documents. Those approaches do not address how the
structure extraction mechanisms can exploit some a-priori knowledge on data
schemas. We remark that this knowledge, that we assume in our approach, is
often available in practice, for instance when integrating semi-structured data,
discovered on the Web, with data having a known structure. Moreover, those
approaches work by examining a set of documents at a time, and extracting the
schema from these documents. It is not specified whether and how the insertion
of new data, once the schema is set, can result in schema modifications. The
application of the matching algorithm to the classification of documents we
propose is not alternative to those techniques, rather it can complement them.
For instance, those techniques can be used to extract, from an initial set of
documents, a set of DTDs with respect to which all the documents are then
classified by means of our matching algorithm.

Table 5 presents a comparison of the approaches for measuring structural sim-
ilarity at the data-schema level. The first and second columns report whether the
approach has been specifically tailored to XML or it has been developed for semi-
structured data (SSD). Then, the representation of data and schema is reported in
the third column, together with the main approach followed in solving the problem.
The fourth column reports whether the approach considers the order of sibling
elements. The fifth column states the relationship holding between data and schema:

@ Springer

81

J Intell Inf Syst (2008) 30:55-92

Kyreprwars $991) UGAM}q Yojew

D/d (wos/uAs) UOI}09SIo U] N /991) pa[oqe] OpON alra TNX 1oy
SO[NI UOTIBIOOSSE+ SONSLINAY

O/d Kyirenby uondasIau] N /89911 po[oqe] 9pON aLra TNX (ep00¢) Te 30 ounog
SOATJRUIO}E 190npsuer)

av + Kypenbyg poutejuo) N /yders pojoqey 93pa spm3ejeq ass (1007) owoy L, pue duyeIn
SIUQWA JO sauanbaiy

O/ Ayenbyg paurejuo) A /yders Suruueds + s2a1) paj2qe[SPON ala TNX (0002) 'Te 32 Yo
ordiounid TN + sonsunay

o/ Arenbg paurejuo) A /suolssa1dxo 1en3ar + soouonbog ara TINX (0002) ‘Te 19 spye[ejOIRD)
pIeoprim suo1ssa1dxa 9a1 Jo seuonboy

O/ + Kyrenbyg Surejuo)) yog Juorssardxa oa1], apm3ereq ass (8661) nr] pue Suep
sonuewes jurodxy fewrxew

D/d Aenbg UO1}03SIo) U] N /S9INI QOUIIOJUL pUE SOk} Fo[eIe apmsereq ass (8661) ‘Te 19 A0I0ISON

REN Sel, uorsnjouy I9pI0 yoeoidde/uonjejuosardoy BUWAYOS e

BUIOYDS PUB BJEp U0om1aq soyoeordde Ajureqruurs Suowre uostredwod v § 3[qe],

pringer

Ns

82 J Intell Inf Syst (2008) 30:55-92

contained means that all the elements appearing in data are also present in the
schema, contains means that all the elements appearing in the schema are present
in data, intersection means that data can contain elements that do not appear in the
schema and the schema can contain elements not present in data. The relationship
among tags, namely, equality, similarity, or equality extended with the possibility
to specify alternatives or use wildcards, is specified in the sixth column. Finally, the
last column states whether the father-children (F//C) relationship is preserved or it is
relaxed, i.e., only ancestor-descendant relationship (A/D) is preserved.

6.4 Similarity at schema level

Structural similarity at schema level has been extensively investigated in the context
of heterogeneous data integration (Batini, Lenzerini, & Navathe, 1986; Parent &
Spaccapietra, 1998) and, recently, for DTD clustering (Lee, Yang, Hsu, & Yang,
2002).

In heterogeneous data integration, corresponding components in different
schemas need to be identified, keeping both the names and the structures of schema
elements into account. In automatic schema matching existing solutions can be dif-
ferentiated in schema-and-instance level, element-and-structure level, and language-
and-constraint-based matching approaches (Do, Melnik, & Rahm, 2003; Rahm &
Bernstein, 2001). Prototypes of data integration systems supporting XML schema
matching include Cupid, LSD, and COMA. Cupid (Madhavan, Bernstein, & Rahm,
2001) considers both tag names and the hierarchical structure of schemas. Similarity
between elements relies on the similarity of their components, thus the name
and data type similarities of leaf elements is emphasized. LSD (Learning Source
Description) (Doan, Domingos, & Halevy, 2001) is based on machine learning
techniques and requires a training phase which can incur a substantial manual effort.
COMA (Do & Rahm, 2002) provides an extensible library for the application of
different approaches and supports various ways for combining matching results.

Despite their differences, those approaches map the original schema (expressed
as a DTD or an XML Schema) into an internal schema, more similar to a data
guide for semi-structured data than to a DTD. Thus, in performing the structural
match, constraints on the occurrences of an element or group of elements are not
considered. In our matching algorithm, by contrast, optional and repeatable elements
as well as alternative of elements are considered. Moreover, the matching algorithm
we propose considers the match between a value (in the document) and a type (in
the DTD) and the presence of ANY and EMPTY types.

In Lee et al. (2002) XClust, an integration strategy that involves the clustering
of DTDs, is presented. A matching algorithm based on the semantic, immediate
descendent, and leaf-context similarity of DTD elements is developed. The algorithm
tries to identify possible matches among direct subelements by examining each
single element, and considers the element cardinalities (that is, optionality and
repeatability) and the similarity of their tags. The internal representation of DTDs
is more sophisticated than the ones adopted by the integration systems discussed
above. However, DTDs specifying alternative elements are not considered, whereas
they are handled by the matching algorithm we propose.

@ Springer

J Intell Inf Syst (2008) 30:55-92 83

7 Conclusions

Starting from the lack of a structural similarity measure for computing the similarity
between a document and a schema, expressed as a DTD, in this paper we have
defined such a measure and proposed a matching algorithm to compute it. The
proposed algorithm is polynomial in significant cases, very common in practice, and
it substantially improves over the extensional approach of evaluating the structural
similarity among the document and the document structures intensionally described
by the DTD. In the paper, we formally defined the structural similarity measure,
presented the algorithm, discussed its time complexity, and presented experimental
results that allowed us both to validate the requirements we started with and to
show the practical effectiveness of the approach. The proposed measure relies on
the requirements of “irrelevance of order” and “level-by-level” matches. These
requirements have been motivated in the paper. However, order can be integrated in
the measure and considered as a weak constraint in measuring structural similarity.
That is, among the matches that maximize common elements we can privilege the
ordered one. For space constraints we do not report here how order can be handled,
rather we refer to Bertino et al. (2004c) that shows how this weak order constraint
can be integrated in our similarity measure. Note, however, that order, as a weak
constraint, does not reduce the complexity of the algorithm. As for order also
matches at different levels can be integrated in our measure. However, for space
constraints, we refer to Bertino et al. (2004c) for its treatment.

We plan to extend the work presented in this paper along several directions. A
first direction concerns the use of some “domain dependent” information where
the measure is employed. In this way, it is possible to consider in the evaluation
of similarity whether two tags, even if not similar (relying on our definition) are
interchangeable (e.g., zip and PostalCode), or two different structures can be
used for describing the same kind of data (e.g., the date element can be a #PCDATA
element or contains the subelements day, month, and year). A second direction
concerns the adoption of XML Schema instead of DTDs. In this shift, the major
challenge concerns the possibility XML Schema gives to define hierarchies of types.
A third direction concerns the development of an approach for the optimization of
the matching phase between a document and a set of DTDs. By considering some
properties of the DTDs it is possible to quickly identify the DTDs that will return an
high structural similarity with respect to the documents, without applying the Match
algorithm against all the DTDs.

Appendix I: Matching algorithm

In this section we present the main characteristics of the Weight and M functions of
our matching algorithm.

A Function Weight

In functions Match and M a single function, called Weight, has been defined for
evaluating the relevance of plus and minus elements starting from the relevance

@ Springer

84 J Intell Inf Syst (2008) 30:55-92

factor of each node Bertino et al. (2004a). Let 7 be a subtree of a document or a
DTD D, function Weight is defined as:

p(T) ifl(T)=VUET
Weight(T') if(T)=+and T = (v, [T'])
0 it I(T) e {*,7)
Weight(T) = { > _ Weight(T)) it (T)=ANDand T= v, [T, ..., Tal)

i=1

min}_ Weight(T;) if (T)=0Rand T= v, [Ty, ..., T,])

p(v)—l—ZWeight(T,-) otherwise,where T'= (v, [T}, ..., Tx])

im1
B Function M

Function M evaluates the operators employed in the specification of E, in order to
identify the best match between the subelements of E; and the element specification
E,. This means that for each subelement (or group of subelements) bound by:

— The * (or +) operator: the function determines the right number of repetitions;

— the ? operator: the function determines whether it is better to consider the
optional element (or group of elements) present or absent;

— the OR operator: the function determines the best alternative among the possible
ones;

— the AND operator: the function evaluates the elements that form the sequence.

Function M evaluates the operators employed in the specification of E; in order to
identify the best match between the subelements of £, and the element specification
E,. Function M relies on the (recursive) evaluations obtained from the configuration
R identified among the subelements of E; and E,. The parameters of function M
are: the configuration R identified at step 3 of the Match algorithm, a subtree 7; of
E,, and a flag r indicating the repeatability of 7. If a node is tagged */+, then the
direct subelements that it leads are considered repeatable (i.e., several elements of
E, are allowed to match against it). The repeatability flag is initially set to F and it
switches to T when a * or + operator is used in E; in the description of the allowed
content of E,.

In the general case, Function M returns lists of triples (p, m, ¢). Each triple in
the list is the evaluation of a possible configuration between the subelements of E,4
and E,. In other words, each triple represents the evaluation of a repetition of the
operator/subelement of E, against subelements of E,. In the following we detail
function M.

Base cases

Base cases (whose formal description is reported in Fig. 11) arise when the label
[of T, is an operator but none of the elements it binds corresponds to a child
of E; (formally Vx € children(T,), x € m,(R)) or [is an element name but none
of the children of E; is in correspondence with it (formally, T, ¢ m>(R)). The

@ Springer

J Intell Inf Syst (2008) 30:55-92 85

[(0, Weight(T;), 0)] if I(T;) € {OR, AND, +}, and Vx € children(T;), x € m2(R)
M(R,{T;},r) =13 [(0,0,0)] if [(Ty) € {*, ?} and Vx € children(Ty), x € m2(R)
[(0, Weight(T,), 0)] if I(T,) € EN and T, & m2(R)

Fig. 11 Function M: base cases

returned triple represents the evaluation of the lack of 7, in E,. If the label requires
at least an occurrence of T, (I € {OR, AND, +}U EN), then the returned triple is
(0, Weight(Ty), 0), denoting that no common and plus elements have been detected
between the subelements of E; and 7;, and T, is missing in E,;. By contrast, if the
operator states that 7} is optional (/ € {*, ?}), then the triple (0, 0, 0) is returned (the
absence of T is allowed).

Element tag

When T, is labeled by a tag, the algorithm checks in R the subelements of E,
that correspond to 7;. The evaluations, previously computed, are employed for
determining the number of repetitions of the element (this case is formally reported
in Fig. 12). Depending on the repeatability of 7, the list of triples to return is
determined. If r = F the DTD requires just one of the matched elements, whereas
the others are plus elements. Therefore, the best triple, among the detected ones, is
selected. The evaluation of the exceeding elements is obtained by adding the plus and
common components of the remaining triples to the plus component of the selected
triple. If r = T, by contrast, the best number of repetitions cannot be determined at
this level of the structure because it depends on the * /+ operator that marked the
subtree repeatable. Therefore, the function returns a list of triples ordered relying on
function £.

*/+ Operator

When T7; is labeled by the * or the + operator, the evaluation of the match is the
value returned by the application of function M to (the only) child 7} of T}, with
the repeatability parameter set to T (this case is formally reported in Fig. 13). The
presence of the */+ operator results in setting the repeatability of the subtree. In this
way function M allows more than one match for the elements the operator binds.
The meaning of the list of triples depends on the label I’ of T,. If I’ € EN each triple
is the evaluation of an occurrence of element /” as subelement of E,, whereas if I’ €
{AND, OR} the i triple in the list is the evaluation of i repetitions of 7). The triples
in the returned list are added if I/ € EA. In this way we obtain the evaluation of the
k subelements tagged I’ in E,4, where k is the cardinality of the list. By contrast, if

(5 (pi+e) —c,m,)] if r = Fand (p, m, ¢) = maxg[(p1. my, c1),
MR AT}, 1) = oo [Pl M,)]
Sorte([(p1,my,c1), ..., (pks Mg, cp)]) ifr =T
where, I(T}) € EN and {(T}, Ty, (p1.my, 1) ... (TX, Ty (pr. mi, cr)} € R.

Fig. 12 Function M: case label is an element tag

@ Springer

86 J Intell Inf Syst (2008) 30:55-92

_ [IEE pi. =k mi 2E o] itl e EN
M(Rv {Tt}v r) - {ma}lc‘g[(m,l’lnl, Cl)ﬂ .l_ . (Pk: my, Ck)] if // ¢ gN,l: */+
where: I(T;) =1=*/+, children(T;) ={T,},I(T)) =1 and [(pi,m1,c1), ..., (Pk, Mk, k)] =

MR AT}}. T)

Fig. 13 Function M: case label is a repeatable (*/+) tag

I" € {AND, OR}, a single triple is returned, which is the triple corresponding to the best
number of repetitions, that is, the number of repetitions that maximizes function £.

? operator

The ? operator is handled as the * operator, except for forcing the maximal number
of repetitions to one. Function M is applied to (the only) child 7} of T}, with the
r and R parameters unchanged. The application of function M could return just a
single triple (p, m, ¢) or a list of triples depending on the value of r. If r = F the triple
(p, m, ¢) is returned. If r = T the list is just returned and the evaluation is postponed
because it depends on the * /+ operator that marked the subtree repeatable.

AND/OR operator

The AND and OR operators are the only ones that allow more than one subtree as
children. In order to match the children of E; with one of these operators, we simply
consider the lists of triples returned by the application of function M to each of the
children of T,, leaving unchanged the r and R parameters (these cases are in Fig. 14).
If » = F, each application of function M returns a single triple. All the triples are
added if the operator is AND. Each triple represents the independent evaluation of a
subelement of E,, their sum evaluates that they appear together. By contrast, if the
operator is OR, just the best triple is chosen, whereas the other ones contribute to
the evaluation of plus elements. If » = T, depending on the operator, a list of triples,
containing the evaluation of the possible repetitions of the subtree ordered according
to &, needs to be computed. This is obtained through function Hayp or function
Hor, reported in the appendix for space limitation. The choice of the best number
of repetitions is postponed to the evaluation of the */+ operator that marked the
AND/OR operator repeatable.

Haxp/or (T, M(R AT}, 1), o (Th, M(RATLY, r)]) ifr =T
[(Elepi, Efl:]mi,E,-n:lCi)] if r = Fand [(T;) = AND
(L (pi+¢) —c,m, 0)] it » = F and I(T))
= ORand (p, m, ¢)
= maxg[(p1, mi, 1),
ooy (Pny My, cp)l

where: children(T;) = {T} ... T}} and (in the second and third case) [(p;, m;, ;)] = M(R,{T!},r),

1<i<n

MR AT}, 1) =

Fig. 14 Function M: case label is the AND/OR tag

@ Springer

J Intell Inf Syst (2008) 30:55-92 87

Figures 15 and 16 contain functions Hayp and Hog, respectively. In the remainder
of the section we present the behavior of function Hor because it is more complex,
and an illustrative example.

Function Her performs the following operations. First, it determines the plus
value, summing components of the triples of the lists 7y, ..., r,. The components to be
added depend on the label of the root of each T;, 1 < i < n. The plus value represents
the weight of the subtree in case none of the alternatives of the OR operator is chosen.
For determining the evaluation of one repetition of the OR operator the triples in
the first position in the lists 7y, ..., r, are selected. Among them, the triple (p, m, ¢),
which is the maximum according to the £ function, is extracted (let say it belongs to
list r,,, 1 < m < m). This way to select the triple ensures that we have identified the
subtree 77, of the OR that had the best match among the subelements of 7, according
to the & function. Therefore, among the possible alternatives of the OR operator, we
choose the one corresponding to the 77, subtree as first repetition of the OR operator.

Function Haxp (7 : list_of (T : tree, 7 : list_of(PMC))) : list_of(PMC)
begin /*ris of the form [(T1,r1), ..., (Ty,rp)1 %
IDmax = max;_ #r;;
fori = 1to rp,. do
begin
(p,m,c)=(0,0,0);
for j=1tondo
begin
Letr; = [(p{ ml/ c{) (p,’(m,’C c}{)], 1j the label of the root of T'j and k = #(r));

If (c{ =0and/; & {x, ?}) (p,m,c) = (p,m,c)+ (O,i*m{,O);
else case of (/;)
(lj € {AND, OR}) :
if (k> i) (p.m,c) = (p,m,c)+ (p{,mij»cf);
else (p,m,c) = (p,m, c) + (0, (i — k) * Weight(T}), 0) + last(r));
(I € {4+ o
(p.m.c) = (pom.) + (plom].])
(lj="0:/%T; of the form (v, [T}]) and l’,. the label of the root of T}*/
if (l/j € {AND, OR})
if (k > i) (p,m,c) = (p,m,c) + (P,/ mj, Ci]>;
else (p,m,c) = (p, m, c) + last(r);
else

if (k = 1) (p.m,©) = (p.m.) + iy (phomif cf) + (ko () +h) - 0.0);
else (p,m,c) = (p,m,c) + le;] (plj mii, c{);
;e EN):
if (k> i) (p.m,c) = (p.m.c) + Y _, <p,’;, mi, ci) + (Zﬁ‘,zm (ph+ c,]i) 0, o);
else (p,m, ¢) = (p,m, ¢) + (0, (i — k) = Weight(T)), 0) + >X | (p{, ml, c{);

end case
end
if (i = 1) list = [(p, m, ¢)]; else list = append(list, (p, m, ¢));
end
return /ist;
end

Fig. 15 Function Haxp
@ Springer

88 J Intell Inf Syst (2008) 30:55-92

Function Hog (7 : list_of(T : tree, 7 : list_of(PMC))) : list_of(PMC)
begin /*ris of the form ((T1,r1), ..., (Tn,rp)]) andl;is I(T)) */
"Pmax = Z?:l #ri;

plus = 0;
for j=1tondo
begin

Letr; = [(p{m{ c{) R (p,](m,’(c,’()] and k = #(r));
if (/; € {AND, OR}) begin

rj = Normalize(rj);

plus = plus + (p{ + c{);

end
else plus = plus + Zﬁzl (p;l + c;l);
end
fori = 1to rp;,y do
begin
Letr € {ry,...,ry} be the list s.t. /[1] = (p, m, ¢) = maxg([r1[1], ..., ru[11]);
delete Head(7);

If (i = 1) list = [(plus — ¢, m, ¢)]; else list = append(list, last(list) + (—c, m, ¢));
end
return /ist;
end

Fig. 16 Function Hor

The evaluation (plus — ¢, m, c) represents one repetition of the OR operator and it is
obtained by summing the (plus, 0, 0) triple (which represents zero repetitions of the
OR operator) to the triple (—c, m, c). In this way we remove from the plus component
the presence of 7%, and we consider the minus and common element matched with
T,. The list list is set to [(plus — ¢, m, ¢)]. Then, the triple (p, m, ¢) is removed from
r, because we have to consider the remaining triples for determining the evaluation
of the other repetitions of the OR operator. This process is performed until all the
ri, ..., I, lists become empty and /ist contains the triples representing all the possible
match found between the OR operator and the subelements of 7.

Appendix II: Proof sketches

Proof (of Proposition 3.1) If | € {#PCDATA, ANY, ?} the function runs in constant
time. If / € EN the operation with the highest complexity is the sort of the triples
based on the £ function. Since function £ is computed in constant-time, the com-
plexity depends on the number of configurations (in the worst case O(t - log(t))
using a merge sort). If / € {*, +}, the operation with the highest complexity is the
computation of the triple that maximizes the £ function. Since function £ is computed
in constant-time, the complexity of the operation depends on the size of the list
of triples (in the worst case O(t)). If [€ {AND, OR}, the operation with the highest
complexity is the computation of function Hoz. The complexity of Hog is O(z?),
because the number of triples it generates is bounded by ¢ and the second for-
clause in the function computes t times the maximum of the lists of triples in input
(i.e., O(r?) operations). Therefore, the complexity of the operation is O(z?). One
may think that the complexity of Hayp is higher than that of Hoz. However, this is
not true for two reasons. The first reason is that in the computation of the maximum

@ Springer

J Intell Inf Syst (2008) 30:55-92 89

number of repetitions, function Hayp considers the size of the list of triples with the
highest size, whereas function Hor sums the size of all the lists. The second reason
is that even if the computations of sum of triples, and sum of plus and common
components performed within two nested for-clauses, they can be pre-computed,
thus decreasing the complexity from O(t3) to O(z?). m]

Proof (of Proposition 3.2) >From Proposition 3.1 we have that for each recursive call
the maximum number of performed operations depends on the number of triples t
and is O(r?). Since T is the maximum 7 (i.e., the maximal number of configurations
that can be established between an element of the document and an element of the
DTD), we can conclude that the maximum number of operations on triples is O(T?).
Combining together these results we obtain that the complexity of function M is
OT? . (N + M)). m]

Proof (of Proposition 4.2) In the evaluation of S5,(D, T) among the document
structures generated from 7 those that have the highest number of common elements
are identified. Then, among them the structures that minimize plus and minus
elements are chosen. This task is performed starting from the root and moving down
level by level to the leaves. The choice of the minus/plus elements depends on the
evaluation function £.

In the evaluation of & l’)T(D, T) the set of document structures is not generated
but the same process is performed. For each element, the common subelements are
first identified and their structural similarity is (recursively) evaluated. Then, the
operators that bind together the subelements are evaluated. This operation can lead
a common element to become a plus or minus element (because of exceeding or
lacking repetitions of the */+ operators). However, this choice is performed on the
basis of the £ function (as done for the evaluation of S5,(D, T) in the generated
document structures).]

Proof (of Proposition 4.3) The first assertion follows from the fact that if a document
D is valid for a DTD T, this means that its structure is exactly one of the structures
described by the DTD. Thus, the document neither contains elements not appearing
in the DTD (thus, plus = 0), nor it misses elements the DTD requires (thus, minus
= 0). Therefore, when function £ is applied, the ratio between ¢ and 0+ 0+ ¢ is
computed, thus obtaining 1. The second assertion holds since the similarity value can
be 1 only if the two values of which we compute the ratio are equal. Since « and g are
not null, and the p, m, c values are natural, thus, non negative, this can happen only if
p = m = 0. This means that the document neither contains elements not appearing in
the DTD, nor it misses elements the DTD requires. Thus, according to the notion of
validity, if we disregard the order of elements, the document is valid for the DTD. 0O

References

Amer-Yahia, S., Koudas, N., & Srivastava, D. (2003). Approximate matching in XML. In Proceed-
ings of the International Conference on Data Engineering (p. 803). Los Alamitos, California:
IEEE Computer Society.

Batini, C., Lenzerini, M., & Navathe, S. (1986). A comparative analysis of methodologies for data-
base schema integration. ACM Computing Surveys, 18(4), 323-364.

@ Springer

90 J Intell Inf Syst (2008) 30:55-92

Bertino, E., Castano, S., Ferrari, E., & Mesiti, M. (2002). Protection and administration of XML data
sources. Data and Knowledge Engineering, 43(3), 237-260.

Bertino, E., Guerrini, G., Merlo, 1., & Mesiti, M. (1999). An approach to classify semi-structured
objects. In Proceedings of European Conference on Object-Oriented Programming, LNCS (1628)
(pp. 416-440). Berlin Heidelberg New York: Springer.

Bertino, E., Guerrini, G., & Mesiti, M. (2004a). A matching algorithm for measuring the structural
similarity between an XML document and a DTD and its applications. Information Systems,
29(1), 23-46.

Bertino, E., Guerrini, G., & Mesiti, M. (2004b). DiX'eminator: a profile-based selective dissemination
system for XML documents. In Proceedings of the International EDBT Workshop on Clustering
Information on the Web, (pp. 47-54). Berlin Heidelberg New York: Springer.

Bertino, E., Guerrini, G., & Mesiti, M. (2004c). Measuring the structural similarity among
XML documents and DTDs. Technical Report, University of Genova. http://www.disi.unige.
it/person/MesitiM/publications.html.

Bourret, R. (1999). XML and databases. http://www.rpbourret.com/xml/.

Buitelaar, P., Cimiano, P., & Magnini, B. (2005). Ontology learning from text: methods, evalu-
ation and applications. Frontiers in Artificial Intelligence and Applications Series, (pp. 3-12).
Amsterdam, The Netherlands: IOS Press.

Chawathe, S. S., & Garcia-Molina, H. (1997). Meaningful change detection in structured data. In
Proceedings of the International Conference on Management of Data (pp. 26-37). New York:
ACM.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., & Widom, J. (1996). Change detection in hierar-
chically structured information. In Proceedings of the International Conference on Management
of Data (pp. 493-504). New York: ACM.

Chinenyanga, T., & Kushmerick, N. (2002). An expressive and efficient language for XML informa-
tion retrieval. JASIST, 53(6), 438-453.

Cobena, G., Abiteboul, S., & Marian, A. (2002). Detecting changes in XML documents. In Proceed-
ings of the International Conference on Data Engeneering (pp. 41-52). Los Alamitos, California:
IEEE Computer Society.

DCI. Dublin Core, http://dublincore.org/.

Deutsch, A., Fernandez, M., & Suciu, D. (1999). Storing semistructured data with STORED. In
Proceedings of the International Conference on Management of Data (pp. 431-442). New York:
ACM.

Do, H.-H., Melnik, S., & Rahm, E. (2003). Comparison of schema matching evaluations. In Web,
Web-Services, and Database Systems, vol. 2593 of LNCS (pp. 221-237). Berlin Heidelberg New
York: Springer.

Do, H.-H., & Rahm, E. (2002). COMA - a system for flexible combination of schema matching
approaches. In Proceedings of the International Conference on Very Large Databases (pp. 610
621). San Mateo, California: Morgan Kaufmann.

Doan, A., Domingos, P., & Halevy, A. Y. (2001). Reconciling schemas of disparate data sources: A
machine-learning approach. SIGMOD Record, 30(2), 509-520.

Flesca, S., Manco, G., Masciari, E., Pontieri, L., & Pugliese, A. (2002). Detecting structural simi-
larities between XML documents. In Proceedings of the International Workshop on Web and
Databases (pp. 55-60). Madison, Wisconsin.

Fuhr, N., & Grossjohann, K. (2001). XIRQL: a query language for information retrieval in XML
documents. In Proceedings of the International Conference on Research and Development in
Information Retrieval (pp. 172-180). New York: ACM.

Fuhr, N., & Lalmas, M. (2004). Initiative for the evaluation of XML retrieval. http://inex.is.
informatik.uni-duisburg.de:2004/.

Garofalakis, M. N., Gionis, A., Rastogi, R., Seshadri, S., & Shim, K. (2000). XTRACT: A system for
extracting document type descriptors from XML documents. In Proceedings of the International
Conference on Management of Data (pp. 165-176). New York: ACM.

Grahne, G., & Thomo, A. (2001). Approximate reasoning in semi-structured databases. In Proceed-
ings of the International Workshop on Knowledge Representation Meets Databases, vol. 45 of
CEUR Workshop Proceedings. Rome, Italy: CEUR-WS.org.

Guerrini, G., Mesiti, M., & Bertino, E. (2006). Structural similarity measures in sources of XML
documents. In J. Darmont & O. Boussaid (Eds.), Processing and Managing Complex Data for
Decision Support (pp. 247-279). Hershey, Pennsylvania: Idea Group.

@ Springer

http://www.disi.unige.it/person/MesitiM/publications.html
http://www.disi.unige.it/person/MesitiM/publications.html
http://www.rpbourret.com/xml/
http://dublincore.org/
http://inex.is.informatik.uni-duisburg.de:2004/
http://inex.is.informatik.uni-duisburg.de:2004/

J Intell Inf Syst (2008) 30:55-92 91

Guerrini, G., Mesiti, M., & Sanz, I. (2006). An overview for clustering XML documents. In A. Vakali
& G. Pallis (Eds.), Web Data Management Practices: Emerging Techniques and Technologies
(pp. 56-78). Hershey, Pennsylvania: Idea Group.

Lee, M., Yang, L., Hsu, W., & Yang, X. (2002). XClust: Clustering XML schemas for effective
integration. In Proceedings of the International Conference on Information and Knowledge Man-
agement (pp. 292-299). New York: ACM.

Lu, S. Y. (1979). A tree to tree distance and its applications to cluster analysis. [EEE Transactions
on Pattern Analysis and Machine Intelligence, 1,219-224.

Madhavan, J., Bernstein, P., & Rahm, E. (2001). Generic schema matching with Cupid. In Pro-
ceedings of the International Conference on Very Large Databases (pp. 49-58). San Francisco,
California: Morgan Kaufmann.

Mesiti, M. (2002). A structural similarity measure for XML documents: theory and applications.
Ph.D. dissertation, University of Genova, Italy. http://www.disi.unige.it.

Mignet, L., Barbosa, D., Veltri, P. (2003). The XML web: a first study. In Proceedings of the
International Conference on WWW (pp. 500-510). New York: ACM.

Miller, A. (1995). WordNet: a lexical database for english. Communications of the ACM, 38(11),
39-41.

Moh, C,, Lim, E., & Ng, W. (2000). Re-engineering structures from web documents. In Proceedings
of ACM DL (pp. 67-76). New York: ACM.

Nestorov, S., Abiteboul, S., & Motwani, R. (1998). Extracting schema from semistructured data. In
Proceedings of the International Conference on Management of Data (pp. 295-306). New York:
ACM.

Nierman, A., & Jagadish, H. (2002). Evaluating structural similarity in XML documents. In Proceed-
ings of the International Workshop on Web and Databases (pp. 61-66). Madison, Wisconsin.
Parent, C. & Spaccapietra, S. (1998). Issues and approaches of database integration. Communications

of the ACM, 41(5), 166-178.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. VLDB
J., 10(4), 334-350.

Rice, S. V., Bunke, H., & Nartker, T. A. (1997). Classes of cost functions for string edit distance.
Algorithmica 18(2), 271-280.

Schlieder, T. (2001). Similarity search in XML data using cost-based query transformations. In
Proceedings of the International Workshop on Web and Databases (pp. 19-24). Santa Barbara,
California.

Selkow, S. M. (1977). The tree-to-tree editing problem. Information Processing Letters, 6(6),
184-186.

Stanoi, I., Mihaila, G., & Padmanabhan, S. (2003). A framework for the selective dissemination of
XML documents based on inferred user profiles. In Proceedings of the International Conference
on Data Engineering (pp. 531-542). Los Alamitos, California: IEEE Computer Society.

Tai, K.-C. (1979). The tree-to-tree correction problem. Journal of the ACM, 26(3), 422-433.

Tanaka, E., & Tanaka, K. (1988). The tree-to-tree editing problem. Journal of Pattern Recognition
and Artificial Intelligence, 2(2).

Theobald, A., & Weikum, G. (2000). Adding relevance to XML. In Proceedings of the International
Workshop on the Web and Databases, LNCS(1997) (pp. 105-124). Berlin Heidelberg New York:
Springer.

Tversky, A. (1977). Features of similarity. Journal of Psychological Review, 84(4), 327-352.

W3C. (1998). Extensible Markup Language (XML).

XML.org. (2003). XML.org focus areas. http://www.xml.org/xml/focus_areas.shtml.

Wang, K., & Liu, H. (1998). Discovering typical structures of documents: A road map approach. In
Proceedings of the ACM SIGIR (pp. 146-154). New York: ACM.

Wang, Y., DeWitt, D. J., & Cai, J.-Y. (2003). X-Diff: an effective change detection algorithm for
XML documents. In Proceedings of the International Conference on Data Engineering (pp. 574—
580). Los Alamitos, California: IEEE Computer Society.

Yao, B., Ozsu, M., & Keenleyside, J. (2002). XBench-a family of benchmarks for XML DBMSs. In
Proceedings of EEXTT and DiWeb 2002, vol. 2590 of LNCS (pp. 162-164). Berlin Heidelberg
New York: Springer.

Zhang, K. (1993). A new editing based distance between unordered labeled trees. In Proceedings
of the Symposium on Combinatorial Pattern Matching, vol. 684 of LNCS (pp. 110-121). Berlin
Heidelberg New York: Springer.

@ Springer

http://www.disi.unige.it
 http://www.xml.org/xml/focus_areas.shtml

92 J Intell Inf Syst (2008) 30:55-92

Zhang, K., & Shasha, D. (1977). Tree pattern matching. Pattern Matching Algorithms. London, UK:
Oxford University Press.

Zhang, K., & Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal of Computing, 18(6), 1245-1262.

Zhang, K., Shasha, D., & Wang, J.-L. (1994). Approximate tree matching in the presence of variable
length don’t cares. Journal on Algorithms, 16(1), 33—66.

Zhang, K., Statman, R., & Shasha, D. (1992). On the editing distance between unordered labeled
trees. Information Processing Letters, 42(3), 133-139.

@ Springer

	Measuring the structural similarity among XML documents and DTDs
	Abstract
	Introduction
	Problem statement
	Documents and DTDs as labeled trees
	Structural similarity between documents
	Tag similarity
	Mapping among documents
	Evaluation of a mapping
	Structural similarity between documents

	Problem definition and approaches

	The intensional matching approach
	The matching algorithm
	Execution example of the Match algorithm
	Complexity of the Match algorithm
	Complexity of function M
	Configurations

	Similarity measure
	Experimental results
	Validation of the requirements
	Experiments on real and synthetic data
	Performance evaluation
	Matching valid documents
	Matching documents with plus and minus elements
	Matching DTDs with subelements with the same tags

	Syntactic vs semantic tag similarity

	Related work
	Tree similarity: Basics
	Similarity at data level
	Similarity between data and schema
	Similarity at schema level

	Conclusions
	Matching algorithm
	Function Weight
	Function M
	Base cases
	Element tag
	[0pt]*/+ Operator
	? operator
	AND/OR operator

	Proof sketches
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

