J Intell Inf Syst (2009) 33:145-178
DOI 10.1007/s10844-008-0073-4

A join tree probability propagation architecture
for semantic modeling

C. J.Butz-H. Yao - S. Hua

Received: 29 September 2006 / Revised: 19 November 2007 /
Accepted: 22 August 2008 / Published online: 25 September 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We propose the first join tree (JT) propagation architecture that labels the
probability information passed between JT nodes in terms of conditional probability
tables (CPTs) rather than potentials. By modeling the task of inference involving
evidence, we can generate three work schedules that are more time-efficient for
LAZY propagation. Our experimental results, involving five real-world or bench-
mark Bayesian networks (BNs), demonstrate a reasonable improvement over LAZY
propagation. Our architecture also models inference not involving evidence. After
the CPTs identified by our architecture have been physically constructed, we show
that each JT node has a sound, local BN that preserves all conditional independencies
of the original BN. Exploiting inference not involving evidence is used to develop
an automated procedure for building multiply sectioned BNs. It also allows direct
computation techniques to answer localized queries in local BNs, for which the
empirical results on a real-world medical BN are promising. Screen shots of our
implemented system demonstrate the improvements in semantic knowledge.

Keywords Bayesian networks - Join trees - Probabilistic inference -
Conditional independence
1 Introduction

Bayesian networks (BNs) (Castillo et al. 1997; Cowell et al. 1999; Héjek et al. 1992;
Jensen 1996; Neapolitan 1990; Pearl 1988; Xiang 2002) are a clear and concise

C.J.Butz (X) - H. Yao - S. Hua
Department of Computer Science, University of Regina, Regina, S4S 0A2, Canada
e-mail: butz@cs.uregina.ca

H. Yao
e-mail: yao2Zhong@cs.uregina.ca

S. Hua
e-mail: huash111@cs.uregina.ca

@ Springer

146 J Intell Inf Syst (2009) 33:145-178

semantic modeling tool for managing uncertainty in complex domains. A BN consists
of a directed acyclic graph (DAG) and a corresponding set of conditional probability
tables (CPTs). The probabilistic conditional independencies (Wong et al. 2000)
encoded in the DAG indicate that the product of the CPTs is a joint probability
distribution (JPD). Although Cooper (1990) has shown that the complexity of exact
inference in BNs is NP-hard, several approaches have been developed that appar-
ently work quite well in practice. One approach, called multiply sectioned Bayesian
networks (MSBNs) (Xiang 1996, 2002; Xiang and Jensen 1999; Xiang et al. 2006,
2000, 1993), performs inference in sections of a BN. A second approach, called direct
computation (DC) (Dechter 1996; Li and D’ Ambrosio 1994; Zhang 1998), answers
queries directly in the original BN. Although we focus on a third approach called
join tree propagation, in which inference is conducted in a join tree (JT) (Pearl 1988;
Shafer 1996) constructed from the DAG of a BN, our work has practical applications
in all three approaches.

Shafer emphasizes that JT probability propagation is central to the theory and
practice of probabilistic expert systems (Shafer 1996). JT propagation passes infor-
mation, in the form of potentials, between neighbouring nodes in a systematic fash-
ion. Unlike a CPT, a potential (Héjek et al. 1992) is not clearly interpretable (Castillo
et al. 1997) as the probability values forming the distribution may have no recogniz-
able pattern or structure. In an elegant review of traditional JT propagation (Shafer
1996), it is explicitly written that while independencies play an important role in
semantic modeling, they do not play a major role in JT propagation. We argue that
they should.

By iterating between semantic modeling and computing the actual probability
distributions in computer memory, the JT propagation algorithm suggested by
Madsen and Jensen (1999), called LAZY propagation, is a significant advancement
in the study of JT propagation. Unlike traditional approaches, LAZY propagation
maintains structure in the form of a multiplicative factorization of the potentials at
each JT node and each JT separator. Thereby, when a node is ready to send its mes-
sages to a neighbour, the structure is modeled to remove irrelevant potentials from
the multiplicative factorization by exploiting barren variables (Shachter 1986) and
independencies induced by evidence. Next, physical computation is performed on
the relevant potentials. Performing semantic modeling before physical computation
improves the efficiency of inference, as the experimental results presented in Madsen
and Jensen (1999) explicitly demonstrate. With respect to the computational effi-
ciency at the sending node, any remaining independencies, in the relevant potentials,
are immaterial. On the contrary, by ignoring these independencies, LAZY propaga-
tion is not able to precisely articulate the probability information being passed from
one node to another. Passing potentials not only hinders the identification of barren
variables at the receiving node, but also blurs the exact probability information
remaining at each JT node when propagation finishes. More importantly, iterating
between semantic modeling and physical computation essentially guarantees that
LAZY performs JT probability propagation more slowly than necessary.

In this study, we propose the first JT propagation architecture for modeling two
tasks of inference, one involving evidence and the other not. Our architecture, itself,
does not construct the actual probability distributions stored in computer memory.
Instead, it labels the probability information to be propagated more precisely in
terms of CPTs. The notions of parent-set and elder-set are introduced in order to

@ Springer

J Intell Inf Syst (2009) 33:145-178 147

identify independencies that are not utilized in previous architectures. The identified
independencies are very useful, since they allow us to maintain a CPT factorization
after a variable is eliminated. When a JT node is ready to send its messages to a
neighbour, it calls the IdentifyCPTMessages (ICM) algorithm to determine the CPT
labels corresponding to the probability information to be sent to the neighbour, that
is, without building the actual probability tables in computer memory. We prove the
correctness of our architecture and also show that each JT node can identify its CPT
labels in polynomial time. Screen shots of our implemented system demonstrate the
improvements in semantic knowledge.

As discussed in Section 5, modeling the processing of evidence is beneficial as our
architecture is able to identify relevant and irrelevant messages faster than it takes
other propagation algorithms to construct the actual probability distributions in the
memory. In a real-world BN for coronary heart disease (CHD) (Hajek et al. 1992),
for instance, our architecture can identify all messages in the JT in less time than
it takes to physically construct the distribution for one message. We make use of
this semantic knowledge to generate three work schedules for LAZY propagation.
Our first work schedule identifies irrelevant non-empty messages. This information is
very useful, since LAZY’s lack of semantic knowledge could force a receiving node
to wait for the physical construction of a message that is irrelevant to its subsequent
message computation. Our second work schedule indicates the empty messages to
be propagated from non-leaf JT nodes. This has merit as LAZY could force a
receiving node to wait for the identification of an empty message that will not even be
constructed, let alone sent. Our third work schedule also helps LAZY finish sooner
by pointing out those variables that can be eliminated at a non-leaf node before the
node has received any messages. Thus, our three work schedules save time, which
is the measure used to evaluate inference methods in Madsen and Jensen (1999). As
reported in Tables 2, 3 and 4, our empirical results, involving processing the evidence
in five real-world or benchmark BNs, are encouraging.

Our architecture is also useful for modeling inference not involving evidence. As
shown in Section 6, after the CPTs identified by our architecture have been physically
constructed, say, by either of the methods in Madsen and Jensen (1999); Zhang
(1998), each JT node has a sound, local BN preserving all conditional independencies
of the original BN involving variables in this node. These local BNs are useful to the
MSBN and to the DC techniques. We show that our JT propagation architecture is
instrumental in developing an automated procedure for constructing a MSBN from
a given BN. This is a worthwhile result, since several problems with the manual
construction of a MSBN from a BN have recently been acknowledged (Xiang et al.
2000). We also suggest a method for exploiting localized queries in DC techniques.
Practical experience has demonstrated that queries tend to involve variables in close
proximity within a BN (Xiang et al. 1993). Our approach allows DC to process
localized queries in local BNs. As a result, the experimental results involving a real-
world BN for CHD show promise.

This paper is organized as follows. Section 2 contains definitions. Our semantic
architecture for JT probability propagation is given in Section 3. Complexity analysis
and the correctness of our architecture are established in Section 4. In Section 5, we
model the task of inference involving evidence and show its usefulness in practice.
In Section 6, we show the practical benefits of modeling inference not involving
evidence. The conclusion is given in Section 7.

@ Springer

148 J Intell Inf Syst (2009) 33:145-178

2 Definitions

Let U ={vy, va,...,v,} be a finite set of variables. Each variable v; has a finite
domain, denoted dom(v;), representing the values v; can assume. For a subset X C U,
we write dom(X) for the Cartesian product of the domains of the individual variables
in X. Each element x € dom(X) is called a configuration of X.

Definition 1 A potential (Hajek et al. 1992) on dom(X) is a function ¢ on dom(X)
such that ¢(x) > 0, for each configuration x € dom(X), and at least one ¢(x) is
positive.

For example, five potentials ¢ (D), ¢(f, g), ¢ (g, h), ¢(f) and ¢ (g) are illustrated in
Fig. 1.

Definition 2 For variable v;, a unity-potential 1(v;) is a potential 1 assigning value 1.0
to each configuration of v;. For a subset X C U, the unity-potential 1(X) is defined
as the product of the unity-potentials 1(v;), v; € X.

For brevity, we refer to a potential as a probability distribution on X rather than
dom(X), and we call X, not dom(X), its domain (Shafer 1996). Also, for simplified
notation, we may write a set {vy, va,..., vk} as vjvy--- v, and use XY to denote
XUY.

Definition 3 A JPD (Shafer 1996) on U, denoted p(U), is a potential on U that sums
to one.

Definition 4 Given X C U, a CPT (Shafer 1996) for a variable v ¢ X is a distri-
bution, denoted p(v|X), satisfying the following condition: for each configuration
x € dom(X), Y ¢ jomwy P(v=c| X =x)=10.

For example, given binary variables U = {a, b, ..., k}, CPTs p(a), p(bla), p(c),

p(dc), plelo), p(fld, e), p(glb, f), p(hlc), p(ilh), p(jig. h.i) and p(k|g) are depicted
in Fig. 2. The missing conditional probabilities can be obtained by definition, for
instance, p(a = 0) = 0.504 and p(b = 0la = 0) = 0.943.

Definition 5 The /abel of a probability distribution is the heading appearing above
the probability column.

For example, the five probability distributions in Fig. 1 can be more precisely
labeled as p(b), p(gl f), p(g, h), p(f) and p(g), respectively.

b o) f g 4L g h ¢@h 0)
0 0.910 0 0 0.910 0 0 0.435 0 0.835 0 0.760
1 0.090 0 1 0.090 0 1 0.325 1 0.165 1 0.240
1 0 0.000 1 0 0.137
1 1 1.000 1 1 0.103

Fig. 1 Five potentials ¢ (b), ¢(f. &), ¢(g. h), ¢([f) and ¢(g)

@ Springer

J Intell Inf Syst (2009) 33:145-178 149

a_ pa) ¢ pl d e [p(fld.e b f g plb, f) g h i j pQig h.i)
I 049 1 0423 00 1 0.027 0 0 1T 0.000 000T 0333
01 1 0123 0 1 1 1.000 0011 0.421
a b p(bla) ¢ d p(dlc) 1 0 1 o0.101 1 0 1 1.000 0101 0.406
0 1T 0.057 0 T 0.500 11 1 0408 1 1 1 1000 0111 0562
11 0.123 1 1 0.500 1001 0353
1011 0421
c e plelc) ¢ h p(hlc) h i p(lh) g k pklg) 1101 0.406
0 T 0.500 0 T 0421 0 T 036l 0 T 049 1111 0.562

1 1 0.500 1 1 0437 1 1 0381 1 1 0739

Fig. 2 CPTs p(a), p(bla), p(c), p(d|c), plelc), p(fld,e), p(glb,), p(hlc), p(lh), p(jlg, h,i) and
pklg)

Definition 6 Let x, y and z denote arbitrary configurations of pairwise disjoint
subsets X, Y, Z of U, respectively. We say X and Z are conditionally indepen-
dent (Wong et al. 2000) given Y under the JPD p(U), denoted I(X, Y, Z), if p(X =
x|Y=y,Z =27)=p(X =x|Y = y),whenever p(Y =y, Z =z) > 0. If Y = 9, then
we say X and Z are unconditionally independent. The independence /(X, Y, Z) can

be equivalently written as p(X, Y, Z) = %

Definition 7 A Markov blanket (Pearl 1988) of a variable v € U is any subset of
variables X C U with v ¢ X such that the independence /(v, X, U — X — v) holds
in p(U).

Definition 8 A BN (Pearl 1988) on U is a pair (D, C). Disa DAG on U. Cis a set
of CPTs defined as: for each variable v; € D, there is a CPT for v; given its parents.

Note that, for each CPT in the BN, there is a corresponding CPT labe. The family
of a variable in the DAG of a BN is the variable and its parents. We may use the
terms BN and DAG interchangeably, if no confusion arises.

Example 1 One real-world BN for CHD (Héjek et al. 1992) is shown in Fig. 3, where
the CPTs are given in Fig. 2. For pedagogical reasons, we have made the following
minor adjustments: edge (a, f) has been removed; edges (¢, f) and (g, i) have been
replaced with edges (c, d), (c, e), (d, f), (e, f) and (g, j), respectively, where d and e
are dummy variables.

Definition 9 A numbering < of the variables in a DAG is called ancestral (Castillo
et al. 1997), if the number corresponding to any variable v; is lower than the number
corresponding to each of its children v}, denoted v; < v;.

Definition 10 The moralization (Pearl 1988) of a DAG D is the undirected graph
obtained by making the family of each variable in D complete.

Given pairwise disjoint subsets of variables X, Y, Z in a DAG D, the indepen-
dence I(X,Y, Z) holds in D (Lauritzen et al. 1990), if Y separates X and Z in the
moralization of D', where D’ is the sub-DAG of D restricted to the edges (v;, v;) such
that v;, v; are in XY Z U An(XY Z), and where An(XY Z) denotes the ancestors

@ Springer

150 J Intell Inf Syst (2009) 33:145-178

Fig. 3 The coronary heart
disease (CHD) BN (Hdjek
et al. 1992) in Example 1

¢ (strenuous mental

a (strenuous
work)

physical work)

h (hypertension)

e (dummy)

b (angina
pectoris)

f (myocardial
infarction)

i (smoking)

k (family anamnesis

. j (high ratio of
of CHD) lipoproteins)

of XY Z in D. The independencies encoded in D indicate that the product of the
CPTs in Cis a JPD. For instance, the independencies encoded in the DAG of Fig. 3
indicate that the product of the CPTs in Fig. 2 isa JPD on U = {a, b, ¢, d, ..., k},
namely, p(U) = p(a) - p(bla) - p(c) - p(dc) - ... p(klg).

Probabilistic inference, also known as query processing, means computing p(X)
or p(X|E =e),where XN E=¢and X, E C U. The evidence in the latter query is
that FE is instantiated to configuration e, while X contains target variables. Barren
variables can be exploited in inference (Shachter 1986).

Definition 11 A variable is barren (Madsen and Jensen 1999), if it is neither an
evidence nor a target variable and either it has no descendants or (recursively) all
its descendants are barren.

As discussed in Section 6, probabilistic inference can be conducted directly in
an entire BN or in parts of a BN. It can also be conducted in a JT (Jensen et al.
1990; Lauritzen and Spiegelhalter 1988; Madsen and Jensen 1999; Shafer and Shenoy
1990).

Definition 12 A JT (Pearl 1988; Shafer 1996) is a tree having sets of variables as
nodes, with the property that any variable in two nodes is also in any node on the path
between the two. The separator (Shafer 1996) S between any two neighbouring nodes
Njand N;is S = N; N N;. AJT node with only one neighbour is called a leaf (Shafer
1996); otherwise it is a non-leaf node.

Constructing a minimal JT is NP-complete (Yannakakis 1981). The reader is
referred to (Becker and Geiger 2001; Kjaerulff 1990; Olesen and Madsen 2002) for
discussions on constructing a JT from a BN. For example, one possible JT for the
DAG in Fig. 3 is depicted in Fig. 4 (ignoring the messages for the moment). We label
the nodes of this JT as ab, bfg, cdefgh, ghij and gk. The separators of this JT are b,

fg,ghand g.

@ Springer

J Intell Inf Syst (2009) 33:145-178 151

Fig.4 LAZY propagates
potentials ¢(b), ¢(f. 8),
$(g. 1), ¢(f) and $(g)

{ @), pola)) { p(e). p(de), peele), p(ild.e). p(hle))

{ p(h), p(lgh.i) }

Although JT propagation can be performed serially, our discussion here is based
on parallel computation (Kozlov and Singh 1999; Madsen and Jensen 1999; Shafer
1996). We provide a quick overview of the Shafer-Shenoy (SS) architecture for
probability propagation in JTs (Shafer and Shenoy 1990; Shafer 1996). Each JT node
N has exactly one potential ¢ (N), which is defined by the product of the unity-
potential 1(N) and all of the BN CPTs assigned to N. The SS architecture allocates
two storage registers in each separator, one for a message sent in each direction. Each
node sends messages to all its neighbours, according to the following two rules. First,
each node waits to send its message to a particular neighbour until it has received
messages from all its other neighbours. Second, when a node »; is ready to send
its message to a particular neighbour N;, it computes the message ¢(N; N N;) by
collecting all its messages from other neighbours, multiplying its potential ¢ (N;) by
these messages, and marginalizing the product to N; N N;.

The LAZY architecture, proposed by Madsen and Jensen (1999), is more sophis-
ticated than the SS architecture, in that it maintains a multiplicative factorization of
potentials at each JT node and each JT separator. Modelling structure in this manner
leads to significant computational savings (Madsen and Jensen 1999). For ease of
exposition, evidence will not be considered here, but later, in Section 5. When LAZY
propagation terminates, the potentials at each JT node N are a factorization of the
marginal p(N) of p(U). Example 2 illustrates the messages passed in LAZY and the
probability information that remains after propagation.

Example 2 Consider the CHD BN in Fig. 3 and one possible JT with assigned CPTs
in Fig. 4. The distributions of the five potentials ¢ (b), ¢ ([, g), ¢ (g, h), ¢(f) and ¢(g)
in Fig. 4, passed in LAZY propagation, are illustrated in Fig. 1. After propagation
the marginal distribution at each node is:

pla,b) = p@-pbla),
pb.f.8) = p@lb, f)-¢®) - ¢(f),
ple.d.e, fig.h) = p(c)- pdlc) - plelc) - p(fld,e) - p(hlc) - ¢([. 8).
p(g hi, j) = pGlh) - p(jlg, h.i)-¢(g h),
p(g k) = pkig) - ¢(g).

@ Springer

152 J Intell Inf Syst (2009) 33:145-178

3 Modeling inference not involving evidence

In this paper, we are interested in identifying the probability information passed
during propagation and that which remains after propagation terminates. Although
LAZY propagation can efficiently compute the five distributions in Fig. 1, it does
not clearly articulate the semantics of the messages being propagated between JT
nodes. For instance, it can be verified that the potential ¢ (f, g) in Fig. 1 is, in fact,
the CPT p(g|f) of p(U). To address these problems, instead of developing yet
another architecture for probabilistic inference, our architecture models probabilistic
inference.

Our simple architecture identifies the probability information being passed
between JT nodes. It uses five rules, given below, for filling the storage registers in
the JT separators with CPT or unity-potential labels. The key to our architecture is
the ICM algorithm used in Rule 4. Before starting JT propagation, each CPT label
p(v|X) in the original BN is assigned to exactly one JT node N, where N contains
the variables in {v} U X.

Rule 1. For every variable in every separator, allocate two empty storage registers,
one for a label in each direction.

Rule 2. Fix an ancestral numbering < of the variables in the BN.

Rule 3. Each node N; waits to identify its label(s) to a given neighbour until all of
N;’s other neighbours have filled their storage registers to N;.

Rule 4. When a node N, is able to send the label(s) to a neighbour N, it calls the
ICM algorithm, passing its assigned CPT labels and all CPT labels received
by the storage registers from its other neighbours to N;, as well as the
variables N; — N to be eliminated.

Rule 5. For each CPT label p(vg| Px) returned by ICM, fill the storage register for
variable v from N; to N; with label p(vi|Pg). For any variable v; with a
storage register from N; to N; still empty, fill the register with the unity-
potential label 1(v)).

We illustrate Rules 1-3 with the following example.

Example 3 Consider the JT with assigned BN CPTs in Fig. 5. By Rule 1, the
separator gh in Fig. 4, for instance, has four storage registers in Fig. 5, which initially
are empty. For Rule 2, we fix the ancestral numberingasa < b < ... < k. According
to Rule 3, node bfg, for example, can only send labels to node ab after the message
labels have been received by the storage registers from its other neighbours to bfg,
namely, the storage registers from both nodes cdefgh and gk to bfg. In other words,
Rule 3 means leaf JT nodes are ready to identify their messages immediately.

The ICM algorithm is built upon the FindRelevantCPTs (FRC) and MaintainCPT-
Labels (MCL) algorithms.

Definition 13 Given a set C of CPT labels and a variable v; to be eliminated, the
FindRelevantCPTs (FRC) algorithm returns the set C’ of CPT labels in C involving
v;, where FRC first sorts the CPT labels in C’ according to < in Rule 2, say C' =
{p(vi| P}, p(vi|Py), ..., p(v| Px)}, where v; < v < ... < Ug.

@ Springer

J Intell Inf Syst (2009) 33:145-178 153

Fig. 5 Unlike Fig. 4, our { p@), poa) } { p(e), p(dle), p(ele), p(fld.e), p(hle) }
architecture precisely

articulates the probability
information being passed

cdefgh
between JT nodes

(ptke)} { p(h). plzh) }

Example 4 Suppose FRC is called with C = {p(c), p(d|c), p(elc), p(fld,e), p(h|c)}
and variable d is to be eliminated. By < in Example 3, FRC returns C' = {p(d|c),
p(fld,e)} andnot C' = {p(fld, e), p(d|c)}.

Definition 14 To eliminate wv;, suppose FRC returns {p(v;|P;), p(vi|Py), ...,
p(vi| Pr)}. Consider a variable v; € v;jv; - - - vg. The parent-set of v;is P;.

Example 5 To eliminate ¢, suppose FRC returns {p(c), p(e|c), p(flc, e), p(h|c)}. The
parent-sets of variables c, e, f and & are {}, {c}, {c, e} and {c}, respectively.

Definition 15 Suppose FRC returns {p(vi| P;), p(vi| P1), ..., p(vk| Px)} for eliminat-
ing variable v;. We call C; = {vy, ..., vk} the child-set of v;, where v; < ... < vg in
Rule 2.

Example 6 To eliminate c, suppose FRC returns {p(c), p(d|c), p(elc), p(h|c)}. Be-
sides p(c), variable c appears in the CPT labels for {4, d, e}. By < in Example 3, ¢ < h,
while d < e. By definition, the child-set of v; = cis C; = {v; = d, v, = e, v; = h}.

To eliminate v;, given that FRC returns {p(v;| P;), p(vi| P1), . .., p(vk| Px)}, those
CPT labels p(vi|Py), ..., p(vi|Px) of the variables v; € C; are modified. While
variable v; is deleted from P;, only certain variables preceding v; in < of Rule 2
may be added to P;.

Definition 16 To eliminate v;, suppose FRC returns {p(vi| P;), p(vi|P1), ..., p(vg
Py)}. Consider a variable v; € vv; - - - vg. The family-set, denoted Fj, of v; is v;P;.
Example 7 To eliminate c, suppose FRC returns {p(c), p(e|c), p(flc, e), p(h|c)}. The
family-sets of variables c, e, f and A are {c}, {c, e}, {c, e, f} and {c, h}, respectively.

Definition 17 Given aset of CPT labels {p(v(|Py), ..., p(vm| Pn)}, the directed graph

defined by these CPT labels, called the CPT-graph, has variables F; --- F,,, and a
directed edge from each variable in Py to v, k=1, ..., m.

@ Springer

154 J Intell Inf Syst (2009) 33:145-178

Fig. 6 The CPT-graph defined a

by the CPT labels in \
b
\ C d
\ \ £
>J\\\ //h
1 /

Example 8

Example 8 Consider the set of CPT labels {p(a), p(cla), p(d), p(elb), p(gld), p(h),
p(jlc.d, e), p(klc,d, e, h, j), pllc,d, e, h,i, j k), p(m|j)}. The CPT-graph is shown in
Fig. 6. Note that variables b and i do not have CPT labels in the given set.

Definition 18 To eliminate v;, suppose FRC returns {p(vi| P;), p(vi|P1), ..., p(vkl|
Py)}. The child-set C; = {vy, ..., vt} is defined by < in Rule 2. For each variable
vj € C;, the elder-set E/‘ isdefinedas E; = F; —v;, E, = (E1Fy) —v;, E3 = (E, F,) —
Vi, ...y B = (Ex—1 Fr—1) — v

For simplified notation, we will write (E;F}) — v; as E;F; — v;. Definition 18 says
that the elder-set E; of variable v; in C; is F; together with the family-sets of the
variables in C; preceding v;, with v; subsequently removed.

Example 9 Consider the set of CPT labels {p(a), p(cla), p(d), p(elb), p(flc, d),
p(gld)., p(h), p(jle.). p(kld. f.h)., pd| f.i). pm|j)}. The CPT-graph defined by
these CPT labels is shown in Fig. 7. Let us assume that < in Rule 2 orders this
subset of variables in alphabetical order. Consider eliminating variable v; = f. The
call to FRC returns {p(flc, d), p(jle, f), p(kld, f, h), p(| f,i)}. With respect to < in
Rule 2, the elder-set of each variable in the child-set C; = {v; = j, v, = k,v3 =1} is
E,={c,d}, E,={c,d,e, jland E; ={c,d, e, h, j, k}, as depicted in Fig. 7.

Fig. 7 With respect to variable
v; = f,illustrating the
elder-set Ey, E; and Ej for
each variable in the child-set
Ci={vi=jvmn=kuvy=I}in
Example 9. Note that one
Markov blanket of fis E3F3

@ Springer

J Intell Inf Syst (2009) 33:145-178 155

The MCL algorithm now can be introduced.

Algorithm 1 MCL(C")
Input: C' = {p(vi| P;), p(v1|P1), ..., p(vk| Pr)} from FRC for eliminating v;
Output: the modified CPT labels for all k variables v;in C; = {vy, ..., v}
begin
Determine the elder-set E; and parent-set P; for all k variables v; € C;
for j=k,...,1

P]' = (E]'P]')—Ui
return({p(vi|P1), ..., p(vk| P)})
end

For simplified notation, we will write (E;P;) — v; as E;P; — v;.

Example 10 To eliminate variable v; = f, suppose the set of CPT labels obtained
by FRC in Example 9 is passed to MCL. For < in Example 9, consider variable
v3 = [. By definition, E3 = {c, d, e, h, j, k} and Ps = {f, i}. Then p(l| f, i) is adjusted to
plc,d,e, h,i, j k),as EsPs —v;is{c, d, e, h, i, j, k}. Similarly, p(k|d, f, h) is changed
to p(klc,d, e, h, j),and p(jle, f)is modified to p(j|c, d, e). By Definition 17, the CPT-
graph defined by the CPT labels remaining after the elimination of variable f is
shown in Fig. 6.

Lemma 1 According to our architecture, let C" = {p(v{|Py), ..., p(vk| Px)} be the set
of CPT labels returned by the MCL algorithm. Then the CPT-graph defined by C" is
a DAG.

Proof For any BN CPT p(v;|P)), by Rule 2, v < v;, where v € P;. Moreover, by the
definition of elder-set, v < v;, where v € E;. Since the parent set P; of v; is modified
as P;E; — v;, for any CPT label p(v,| P;) returned by the MCL algorithm, it is still the
case that v < v;, where v € P;. Therefore, the CPT-graph defined by C” is acyclic,
namely, itis a DAG. O

We now present the ICM algorithm.

Algorithm 2 ICM(C, X)
Input: a set C of CPT labels,
the set X of variables to be eliminated from C
Output: the set C of CPT labels sent from a node to a neighbour
begin
for each variable v in X

{

C' = FRC(C,v)
C’" = MCL(C)
C = (C-CHucr
}
return(C)
end

@ Springer

156 J Intell Inf Syst (2009) 33:145-178

We use two examples to illustrate the subtle points of all five rules in our
architecture.

Example 11 Let us demonstrate how our architecture determines the CPT labels
p(g) and p(h|g) in the storage registers for g and & from cdefgh to ghij, shown in
Fig. 5. By Rule 2, we use < in Example 3. By Rule 4, cdefgh has collected the CPT
label p(gl| f) in the storage register of g from bfg to cdefgh, but not 1(f) as this is not
a CPT label, and calls ICM with C = {p(c), p(d|c), p(elc), p(fld,e), p(g|), p(hlc)}
and X = {c,d, e, f}. For pedagogical purposes, let us eliminate the variables in
the order d,c,e, f. ICM calls FRC, passing it C and variable d. FRC returns
{p(d|c), p(fld, e)}, which ICM initially assigns to C’" and subsequently passes to MCL.
Here vi=d,C;={vy = f}, Py ={d, e} and E, = {c}. As E|P; —v; is {c, e}, MCL
returns {p(flc, e)}, which ICM assigns to C”. Next, the set C of CPT labels under
consideration in ICM is adjusted to be C = {p(c), p(elc), p(flc, e), p(gl f), p(hlc)}.
For variable ¢, the call to FRC results in C' = {p(c), p(e|lc), p(flc,e), p(hlc)}.
To eliminate v; = ¢, the elder-set of each variable in the child-set C; = {v; =
e,v, = f,uis=nh}is E, ={}, E; ={e} and E; = {e, f}. Moreover, the parent-set
of each variable in the child-set is P; = {c}, P, ={c,e} and P; = {c}. In MCL,
then p(h|c) is adjusted to p(hle, f), as EsP3 —v; is {e, f}. Similarly, p(flc,e) is
changed to p(fle) and p(e|c) is modified to p(e). Therefore, MCL returns the set
{p(e), p(fle), p(hle,)} of CPT labels, which ICM assigns to C”. Then C is updated
to be C = {p(e), p(fle), p(glf), p(hle, f)}. After eliminating variable e, the set of
labels under consideration is modified to C = {p(f), p(glf), p(h|)}. Moreover,
after considering the last variable f, the set of labels under consideration is C =
{p(g), p(h|g)}. ICM returns C to cdefgh. By Rule 5, cdefgh places the CPT labels
p(g) and p(h|g) in the storage registers of g and % from cdefgh to ghij, respectively.

Example 12 Now let us show how our architecture determines the labels p(f) and
1(g) in the storage registers for f and g from cdefgh to bfg, shown in Fig. 5. By
Rule 2, we use < in Example 3. By Rule 4, cdefgh does not collect the unity-
potential labels 1(g) and 1(k) in the storage registers of g and & from ghij and
calls ICM with C = {p(c), p(d|c), p(elc), p(fld,e), p(hlc)} and X = {c, d, e, h}. For
simplicity, let us eliminate the variables in the order d, c, e, A. Similar to Example 11,
the set of CPT labels under consideration, after the elimination of variables c, d, e,
is C ={p(f), p(h| f)}. After eliminating the last variable A, the set of labels under
consideration is C = {p(f)}. ICM returns C to cdefgh. By Rule 5, cdefgh places the
CPT label p(f) in the storage register of f from cdefgh to bfg and places the unity-
potential label 1(g) in the empty storage register for variable g from cdefgh to bfg.

All of the identified CPT messages for Fig. 5 are illustrated in Fig. 8, which is a
screen shot of our implemented system. For simplified discussion, we will henceforth
speak of messages passed between JT nodes with the separators understood.

@ Springer

J Intell Inf Syst (2009) 33:145-178 157

o mesaes a5 ¢ CPT Message Identification

Sender | Receiver I CPT Message
ab bfg p(b)

bfg cdefgh plglf)

bfg gk p(g)

cdefgh bfg p(f)

cdefgh ghij plg)

cdefgh ghij p(hlg)

< |]

Example 13 Let us review Example 11 in terms of equations:

> p© - plo) - plelo) - p(fld, e) - p(glf) - phlc) (1)

cde. f

=Y "p@ElN-Y.> pl) - plelo)- pthle)- Y p(dic) - p(fld.e) (2)
f e ¢ d

=Y p@lH 3N p© - plele) - plhlo) - p(fle, o 3)
i e ¢

= ;p(glf) Y " pe)- p(fle)- p(hle, f)

=Y " p@lH - p(f) - phlf)
f

= p(g) - p(hlg).

The derivation of p(g) and p(h|g) is not correct without independencies. For
instance, the independencies 1(d, c,e) and I(f, de, c) are necessary when moving
from (2) to (3). In fact, without the unconditional independence I(b, %, f), the
message p(g| f), from bfg to cdefgh, used in (1), is not correct either:

pb. fg _ pb. 18
b)- b, = b) - _ .
Eb p®)-plb, f) Eb pb) 0.) E p) - ORI pglf)

Thus, the importance of showing that we can identify these independencies and
utilize them, as shown above, is made obvious.

@ Springer

158 J Intell Inf Syst (2009) 33:145-178

4 Complexity and correctness

Here we establish the time complexity of the ICM algorithm and the correctness of
our architecture for modeling inference not involving evidence.

Lemma 2 Let n be the number of CPT labels in C' given as input to the MCL
algorithm for eliminating variable v;. The time complexity of MCL is O(n).

Proof Let {p(v;| P;), p(v1|P1), ..., p(vy_1| Py—1)} be the input set C’' of CPT labels
given to MCL. The elder-sets Ej,..., E,—; and parent-sets Pi,..., P,_; can be
obtained in one pass over C'. Given that C’ has n labels, the time complexity to
determine the required parent-sets and elder-sets is O(n). Similarly, for each label
in {p(v1|Py), ..., p(vy—1| Py—1)}, the parent-set is modified exactly once. Hence, this
for-loop executes n — 1 times. Therefore, the time complexity of MCL is O(n). 0O

Our main complexity result, given in Theorem 1, is that the CPT labels sent from
a JT node can be identified in polynomial time.

Theorem 1 In the input to the ICM algorithm, let n be the number of CPT labels in C,
and let X be the set of variables to be eliminated. The time complexity of ICM is O(n?
log n).

Proof As the number of CPT labels in C is n, the maximum number of variables to
be eliminated in X is n. The loop body is executed n times, once for each variable in
X. Recall that the loop body calls the FRC and MCL algorithms. Clearly, FRC takes
O(n) time to find those CPT labels involving v;. According to < in Rule 2, these
CPT labels can be sorted using the merge sort algorithm in O(n log n) time (Cormen
et al. 2001). Thus, FRC has time complexity O(n log n). By Lemma 2, MCL has time
complexity O(n). Thus, the loop body takes O(n log n) time. Therefore, the time
complexity of the ICM algorithm is O(n? log n). O

We now turn to the correctness of our architecture. The next result shows that
certain independencies involving elder-sets hold in any BN.

Lemma 3 Let (D, C) bea BN defining aJPD p(U). Given the set C of CPT labels and
any variable v; € D, the FRC algorithm returns {p(v;|P;), p(vi|P1), ..., p(vr| Px)},
where the variables in the child-set C; = {vy, ..., vk} are written according to < in
Rule 2. For each vj € C; with elder-set Ej, the independencies I1(v;, E;, P;—v;) and
I(vj, P;, Ej) hold in the JPD p(U).

Proof Observe that the parents, children, and family of any variable v in D are
precisely the parent-set, child-set and family-set of v, which are defined by C’,
respectively. Let us first show that /(v;, P;, E}) holds for j=1,..., k. Pearl (1988)
has shown that /(v, P,, N,) holds for every variable v in a BN, where N, denotes
the set of all non-descendants of v in D. By definition, no variable in the elder-set E;
can be a descendant of v; in D. Thereby, E; € N;. By the decomposition axiom of
probabilistic independence (Pearl 1988; Wong et al. 2000), the JPD p(U) satisfying
I(vj, P;, N)) logically implies that p(U) satisfies I (v}, P;, E}).

@ Springer

J Intell Inf Syst (2009) 33:145-178 159

We now show that I(v;, E;, Pj—v;) holds, for j=1,..., k. According to
the method in Section 2 for testing independencies, we write I(v;, E}, P; — v;)
as I(v;, Ej, Pj—v; — E;) and determine the ancestral set of the variables in
I(v;, Ej, Pj—v; — Ej) as An(v;) U An(Ej) U An(P; — v; — E}), which is the same as
An(E;P)), since v; € P;. Note that vj, and any child of v; in D succeeding v; in < of
Rule 2, are not members in the set An(E;P;). Hence, in the constructed sub-DAG D’
of DAG D onto An(E;P)), the only directed edges involving v; are those from each
variable in P; to v; and from v; to every child preceding v;. By Corollary 6 in Pearl
(1988), E; is a Markov blanket of v; in D’. By definition, I(v;, E;, U — E; — v;) holds
in p(U). By the decomposition axiom, p(U) satisfies I(v;, £}, P; — v;). O

Let us first focus on the elimination of just one variable. We can maintain a CPT
factorization after v; € X is eliminated, provided that the corresponding elder-set
independencies are satisfied by the JPD p(U). Note that, as done previously, we
write (E;P)) — v, (E;Fy) —v; and (E;F;) — v;v;more simply as E;P; — v;, EjFy —v;
and E;F; — v;vj, respectively.

Lemma 4 Given the output {p(vi|P;), p(vi|P1), ..., p(vk| Px)} of FRC to eliminate
variable v; in our architecture. By Rule 2, vy < ... < v in the child-set C;=
{vi, ..., v} of vi. For each variable v; € C; with elder-set E, if the independencies
1(v;, Ej, Pj —v;) and I(Uj, P/', E]) hold in the JPD p(U), then

k
Y p@ilP) - pilP) ... pulP) = [P0 IEjP;—v).
Vi j:l

Proof We first show, by mathematical induction on the number k of variables in C;,
that the product of these relevant CPTs can be rewritten as follows:

k
Pl P) - p(ui|P1) - ... p(u|Pr) = p(ulExFx —vi) - l_[P(vleij —v).
=1
(Basic step: j = 1). By definition, E; = P;. Thus, p(vi| P;) - p(v1|P1) = p(vi| E1) -
p(vi| Py). By definition,
pwE) pi P
p(E)) p(P)
When j = 1, by assumption, /(v;, Ey, Py — v;) and I (v, Py, E1) hold. We can apply

these independencies consecutively by multiplying the numerator and denominator
of the right side of Eq. 4 by p(E, P; — v;), namely,

pwiE) pwiP)) _ piE)-p(EiPr—v) piPr)
p(Ey) p(P) — p(E)-p(E\Pi—v) p(P)
p(E\P) piP)
p(E\Py—v) p(P1)
p(vi P EY)
P(E(Py —v)

pilEy) - p(ui|P1) =

(4)

©)

@ Springer

160 J Intell Inf Syst (2009) 33:145-178

By definition,
pwiPE) pP(EF))
p(E1 Py —v;) p(E1Fi — vvy)
= pvi|E F1 — vivy). (6)

By the product rule (Xiang 2002) of probability, which states that p(X,Y|Z) =
p(X|Y, Z) - p(Y|Z) for pairwise disjoint subsets X, Y and Z, Eq. 6 is expressed as:

pwvi|E1Fy —viv)) = pWlEF —v) - p(u| E1Fi — vivy)
= pWlEFi —v) - pvi|E P —v)). (7)

By ()~(7),
pWilP) - puilP1) = pWilEiFi—v) - p(vilEr Py —v)). ®)

(Inductive hypothesis: j = k — 1, k > 2). Suppose

k-1
pi| P)p(ui| Py) - - p(uk—1| Pr—1) = pil Ex—1 Fr—1 — v;) l_[P E;P;—v;).

j=1

(Inductive step: j = k). Consider the following product

pil P)pilP1) ... pk| Pr) = p(uil P p(il P1) ... p(ur—1| Pk-) p(uk| Pr). - (9)

By the inductive hypothesis,

(pil PYp(i|Py) - ... p(uk—1|Pr—1)) - p(vk| Pr)

k—1
(p(vnElekl —v) [[pjIEP; - vi)) - pukl Pr)

=1
k-1
= pilEx1Feoy —v) - puil Po) - [| POJIE;Pj = vi). (10)
=1
Since Ey = Ex_1 Fx—1 — v;, (10) can be rewritten as
k-1
pil P p(ui|Py) - ...« p(uk| Pr) = p(vil Ex) p(uk| Pr) l_[P EjP; — v;). (11)
=1
It can easily be shown that
Pl Ex) - p(u| P) = pil ExFix —vi) - p(uk| Ex P — i), (12)

@ Springer

J Intell Inf Syst (2009) 33:145-178 161

by following (4)—(7) replacing j=1 with j= k. Substituting (12) into (11), the
desired result follows:

pi|P) - p(ui|P1) - ... - p(uk| Pk)
k—1
= pi|ExFx —vi) - p(ui| Ex Px — v;) - l_[P(Uleij -)
Jj=1
k
= pWilExFe—v) - [| pOjIE;Pj — v). (13)
j=1

Having rewritten the factorization of the relevant CPTs, we now consider the
elimination of variable v; as follows:

k
ZP(Ui|Eka —-v) - HP(Uleij —)
Vi j:l

K
= [[p@iEPj—v) > pilExFi —v;)

j=1 Vi

k
= []p@iE;iP;—v)-1.0
j=1

k
= l_lp(vleij — Ul'). (14)

j=1
By (13) and (14), we obtain the desired result

k
Y pilP) - pilP) . pil P = [Pl E;Pj—). (15)

v j=1

O

Equation (15) explicitly demonstrates the form of the factorization in terms of
CPTs after variable v; is eliminated. Hence, the right-side of (15) is used in the
MCL algorithm to adjust the label of the CPT for each variable in v;’s child-set.
That is,]_[I;:1 corresponds to the for-loop construct running from j=k, ..., 1, while
p(vj| E;jP; — v;) corresponds to the statement P; = E;P; — v; for one iteration of the
for-loop.

Example 14 Recall eliminating variable d in (2). By Example 11, v; = d, C; = {v| =
f}, Py =1{d,e} and E, = {c}. By Lemma 3, I(v;, E;, Pj —v;) and I(v}, P;, E;) hold,
namely, I(d,c,e) and I(f de,c). By Lemma 4,), p(d|c) - p(fld,e) is equal to
p(flc, e), as shown in (3).

We now establish the correctness of our architecture by showing that our messages

are equivalent to those of the SS architecture (Shafer and Shenoy 1990; Shafer 1996).
Since their architecture computes the probability distributions stored in computer

@ Springer

162 J Intell Inf Syst (2009) 33:145-178

memory, while our architecture determines labels, let us assume that the label in each
storage register of our architecture is replaced with its corresponding probability
distribution.

Theorem 2 Given a BN D and a JT for D. Apply our architecture and also the
SS architecture. For any two neighbouring JT nodes N; and N, the product of the
distributions in the storage registers from N; to Njin our architecture is the message in
the storage register from N; to N;in the SS architecture.

Proof When a JT node N; receives a message from a neighbour Nj, it is also
receiving, indirectly, information from the nodes on the other side of N; (Shafer
1996). Thus, without a loss of generality, let the JT for D consist of two nodes, N;
and N,. Consider the message from N, to N;. Let Z be those variables v,, of N,
such that the BN CPT p(v,,|P,,) is assigned to N,. The variables to be eliminated
are X = N, — N;.Let Y = N, — (X Z). Following the discussion in Section 2, the SS
message ¢ (N, N Np) from N, to N, is:

(N2 NN =D d(N2)
X

=Y 1N - [] pomlPw)
X

vn€Z

= Zl(Y) (X Z)- 1_[Dl P)
X

vu€Z

= 1)) [pnl P).

X vueZ

Consider the first variable v; of X eliminated from]_[UmE 7 P(Um|Pp). By Lemma 3,
for each v; € C;, the independencies I(v;, E;, P; — v;) and I(vj, P;, E;) hold in p(U).
By Lemma 4, the exact form of the CPTs is known after the elimination of v;.
By (Shafer 1996), the product of all remaining probability tables in the entire JT
is the marginal distribution p(U — v;) of the original joint distribution p(U). Let us
more carefully examine the remaining CPTs in the entire JT. First, each variable in
U — v; has exactly one CPT. It follows from Lemma 1 that the CPT-graph defined
by all CPT labels remaining in the JT is a DAG. Therefore, the CPTs for the
remaining variables U — v; are a BN defining the marginal distribution p(U — v;) of
the original JPD p(U). By the definition of probabilistic conditional independence,
an independence holding in the marginal p(U — v;) necessarily means that it holds
in the joint distribution p(U). Thereby, we can recursively apply Lemmas 1, 3 and 4
to eliminate the other variables in X. The CPTs remaining from the marginalization
of X from [], ., p(vm|Py) are exactly the distributions of the CPT labels output by
the ICM algorithm when called by N, to eliminate X from C = {p(v;u| Pp) | v € Z}.
In our architecture, the storage registers from N, to N; for those variables in Y
are still empty. Filling these empty storage registers with unity-potentials 1(v;),
v € Y, follows directly from the definition of the unity-potential 1(Y). Therefore, the
product of the distributions in the storage registers from N, to N, in our architecture
is the message in the storage register from N, to N, in the SS architecture. O

@ Springer

J Intell Inf Syst (2009) 33:145-178 163

Example 15 It can be verified that the identified CPTs shown in Fig. 5 are correct. In
particular, the SS message ¢ (f, g) from cdefgh to bfgis p(f) - 1(g).

Corollary 1 The marginal distribution p(N) for any JT node N can be computed by
collecting all CPTs sentto N by N’s neighbours and multiplying them with those CPTs
assigned to N.

5 Modeling inference involving evidence

Pearl (1988) emphasizes the importance of structure by opening his chapter on
Markov and BNs with the following quote:

Probability is not really about numbers; it is about the structure of reasoning.
- G. Shafer

In this section, we extend our architecture to model the processing of evidence and
show that it can still identify CPT messages. Modeling the processing of evidence is
faster than the physical computation needed for evidence processing. By allowing
our architecture to take full responsibility for modeling structure, we empirically
demonstrate that LAZY can finish its work sooner.

It is important to realize that the processing of evidence E = e can be viewed as
computing marginal distributions (Schmidt and Shenoy 1998; Shafer 1996; Xu 1995).
For each JT node N, compute the marginal p(NE), from whence p(N — E, E =e)
can be obtained. The desired distribution p(N — E|E = ¢) can then be determined
via normalization.

Rules 6 and 7 extend our architecture to model the processing of evidence.

Rule 6. Given evidence E = e. For each node N in the JT,set N = N U E. On this
augmented JT, apply Rules 1-5 of our architecture for modeling inference
not involving evidence.

Rule 7. For each evidence variable v € E, change each occurrence of v in an
assigned or propagated CPT label from v to v = ¢, where ¢ is the observed
value of v.

We now show the correctness of our architecture for modeling inference involving
evidence.

Theorem 3 Given a BN D, a JT for D, and observed evidence E = e. After applying
our architecture, extended by Rules 6 and 7 for modeling inference involving evidence,
the probability information at each JT node N defines p(N — E, E = e).

Proof Apply Rule 6. By Corollary 1, the probability information at each node N
is p(NE). By selecting those configurations agreeing with E =e in Rule 7, the
probability information at each node is p(N — E, E = e). O

Example 16 Consider evidence b = 0 in the real-world BN for CHD in Fig. 3. With

respect to the CHD JT in Fig. 5, the CPT messages to be propagated are depicted in
Fig. 9.

@ Springer

164 J Intell Inf Syst (2009) 33:145-178

The next example involves three evidence variables.

Example 17 Consider the JT with assigned BN CPTs in Fig. 10 (top). Given evi-
dence a =0,c =0, f =0, the LAZY potentials propagated towards node de are
shown (Madsen and Jensen 1999). In comparison, all CPT labels identified by our
architecture are depicted in Fig. 10 (bottom).

We can identify the labels of the messages faster than the probability distributions
themselves can be built in computer memory.

Example 18 Given evidence b =0 in Example 16, constructing the distribution
p(b =0) in memory for the message from node ab to bfg required 1.813 ms.
Identifying all CPT messages in Fig. 9 required only 0.954 ms.

Although semantic modeling can be done significantly faster than physical compu-
tation, the LAZY architecture applies these two tasks iteratively. The consequence,
as the next two examples show, is that semantic modeling must wait while the
physical computation catches-up.

Example 19 Madsen and Jensen (1999) Consider the BN (left) and JT with assigned
CPTs (right) in Fig. 11. Suppose evidence d = 0 is collected. Before node bcdef
can send its messages to node efg, it must first wait for the message ¢ (b, c) to be
physically constructed at node abc as:

¢(b.c) =Y p@ - pbla) - p(cla). (16)

a

Upon receiving distribution ¢ (b, c¢) at node bedef, LAZY exploits the independence
I(bc, d, ef) induced by the evidence d = 0 to identify that ¢ (b, c) is irrelevant to the
computation for the messages to be sent from bcdef to efg.

Fig. 9 Recall the real-world = "
BN for CHD in Fig. 3 and the CPT Message Ideut:ﬁcatmn

JT in Fig. 5. Given evidence

b = 0, the propagated CPT Sender |Receiver | CPT Message |
ab bfg p(b=0)
bfg cdefgh p(b=0)
bfg cdefgh p(g|b=0.f)
bfg gk p{b=0)
bfg gk p(g|b=0)
cdefgh bfg p(f)
cdefgh ghij p{b=0)
cdefgh ghij pig|b=0)
cdefgh ghij p(h|b=0,q)

@ Springer

J Intell Inf Syst (2009) 33:145-178

165

Fig. 10 Madsen and Jensen

(1999) A JT with assigned BN {p(fb.d) }

CPTs (top). Given evidence
a=0,c=0, f =0, this shows
the LAZY potentials
propagated towards node de.
In contrast to Fig. 10 (top), this
screen shot shows all identified
CPT labels given evidence
a=0,c=0, f=0 (bottom)

(D@ By p g oD p@=0)) L PED)

N{qﬁazo(b), 9(a = 0))

{ p(a), p(bla) }

CPT Message Identification

~
c=0(d) }

de

{ p(clb).p(dlc) }

Sender | Receiver |CPT Message

ab

ab

bed
bed
bdf
bdf
bdf
bdf
bdf
bdf
bdf
bdf
bdf

<

bdf
bdf
bdf
bdf
ab
ab
bed
bed
bed
de
de
de
de

p(a=0)
p(bla=0)
p(c=0|b)
p(d|c=0)
p(c=0|b)
p(f=0|b,c=0)
p(a=0)
p(b|a=0)
p(=0|b,d)
p(a=0)
p(c=0]a=0)
p(d|c=0)
p(f=0]a=0,c=0,d)
| 2]

In the exploitation of independencies induced by evidence, Example 19 explicitly
demonstrates that LAZY forces node bcdef to wait for the construction of the

irrelevant message ¢ (b, c).

Fig. 11 Madsen and Jensen
(1999) A BN (left) and aJT
with assigned CPTs (right).
LAZY exploits the
independence I(bc, d, ef)
induced by evidence d =0
only after the irrelevant
potential ¢ (b, c) has been
physically constructed at abc
and sent to bedef

{ p(dlb.c), p(eld), p(fld) }

{ p(a), p(bla), p(cla) } { p(gle.f) }

@ Springer

166 J Intell Inf Syst (2009) 33:145-178

Example 20 Madsen and Jensen (1999) Consider the BN (left) and JT with assigned
CPTs (right) in Fig. 12. Before node acde can send its messages to node ef, it must
first wait for the message ¢ (c, d|a) to be constructed in computer memory at node
abcd as:

¢(c.dla) = > p(bla)-p(cla.b) - p(dia,b). (17)
b

Upon receiving distribution ¢ (c, d|a) at acde, LAZY exploits barren variables ¢ and
d to identify that ¢ (c, d|a) is irrelevant to the computation for the messages to be sent
from acde to ef.

In the exploitation of barren variables, Example 20 explicitly demonstrates that
LAZY forces node acde to wait for the physical construction of the irrelevant
message ¢ (c, d|a). These unnecessary delays in Examples 19 and 20 are inherently
built into the main philosophy of LAZY propagation (Madsen and Jensen 1999):

The bulk of LAZY propagation is to maintain a multiplicative [factorization of
the CPTs] and to postpone combination of [CPTs]. This gives opportunities for
exploiting barren variables . . . during inference. . . . Thereby, when a message
is to be computed only the required [CPTs] are combined.

The notion of a barren variable, however, is relative. For instance, in Example 20,
variables ¢ and d are not barren at the sending node abcd, but are barren at the
receiving node acde. Thus, the interweaving of modeling structure and physical
computation underlay these unnecessary delays.

We advocate the uncoupling of these two independent tasks. More specifically, we
argue that modeling structure and computation of the actual probability distributions
in computer memory should be performed separately. As our architecture can model
structure faster than the physical computation can be performed, it can scout the
structure in the JT and organize the collected information in three kinds of work
schedules.

Our first work schedule pertains to non-empty messages that are irrelevant to
subsequent message computation at the receiving node, as evident in Examples 19
and 20. More specifically, for three distinct nodes N;, Njand N such that N; and N;
are neighbours, as are N; and N, our first work schedule indicates that the messages
from N; to N; are irrelevant in the physical construction of the messages to be sent
from N;to Ni.

Fig. 12 Madsen and Jensen
(1999) A BN (left) and aJT
with assigned CPTs (right).
LAZY exploits barren
variables ¢ and d only after the
irrelevant potential ¢ (c, d|a)
has been physically
constructed at abcd and sent to
acde

{ p(a), p(ela) }

{ p(bla), p(cla.b), p(dlab) } { p(fle) }

@ Springer

J Intell Inf Syst (2009) 33:145-178 167

Fig. 13 Given evidence d =0 . .
ingExample i9,eoure « Iﬂﬂlfﬂﬂﬂt CP T Idmt!ﬁlfﬂtlﬂﬂ

architecture can identify the

ibrcrsi]ecvant message from abc to Nﬂde 1 Node 2 Node 3

abc bcdef efg
< | 2|

Example 21 Given evidence d =0 in Example 19, the work schedule in Fig. 13
indicates that the messages from node abc are irrelevant to node bcdef in the
physical construction of the messages to be sent from bcdef to node efg. Now
reconsider Example 20. The work schedule in Fig. 14 indicates that the messages
from node abcd are irrelevant to node acde in the physical construction of the
messages to be sent from acde to node ef.

Our second work schedule indicates that an empty message will be propagated
from a non-leaf node to a neighbour. (As LAZY could begin physical computation
at the leaf JT nodes, we focus on the non-leaf JT nodes.) For instance, given evidence
b =0 in the extended CHD BN and JT with assigned CPTs in Fig. 15, the work
schedule in Fig. 16 indicates that bfg will send ab an empty message. Our second
work schedule saves LAZY time.

Example 22 Recall the extended CHD BN and JT in Fig. 15. Given evidence
b =0, LAZY determines that bfg will send ab an empty message only after
bfg receives the probability distributions ¢ (f) from cdefgh. Physically construct-
ing ¢(f) involves eliminating the four variables c, d, e, i from the five potentials
p(c), p(d|c), p(elc), p(fld,e), p(h|c). In less time than is required for this physical
computation, our architecture has generated the work schedule in Fig. 16. Without
waiting for LAZY to eventually consider bfg, node ab can immediately send its
messages {p(a|b = 0), p(b = 0)}to node al, which, in turn, can send its respective
messages {p(b = 0), p({|b = 0)} to node Im.

Last, but not least, our architecture can generate another type of beneficial work
schedule. This third work schedule indicates the variables that can be eliminated at
a non-leaf node with respect to the messages for a particular neighbour, before the
sending node has received any messages. Given evidence b = 0 in the CHD JT of
Fig. 5, the work schedule in Fig. 17 indicates that, for instance, non-leaf node cdefgh

Fig. 14 For Example 20, our

architecture can identify the Iﬂf!e'ﬂ ﬂ.ﬂt CPT Idmtiﬂcaﬂﬂu

irrelevant message from abcd
to acde

Node 1 Node 2 Node 3
abcd acde ef

< |

@ Springer

168 J Intell Inf Syst (2009) 33:145-178

{p(@), pbla) } { p(c), p(dic), p(elc), p(fid.e), p(hlc) }

{ pdla) }

{ p(glb.f) }

{ p(mll) } { p(klg) } { p(lh), p(lg,h.i) }

Fig. 15 An extended CHD BN (left) and a JT with assigned CPTs (right). Given evidence b =0,
LAZY forces node ab to wait for the identification of an irrelevant empty message from 4g

can immediately eliminate variables c, d, e in its construction of the message to ghij.
Assisting LAZY to eliminate variables early saves time, as the next example clearly
demonstrates.

Example 23 Given evidence b = 0 in the CHD JT of Fig. 5, consider the message
from cdefgh to ghij. LAZY waits to eliminate variables c, d, e, f at cdefgh until
cdefgh receives its messages {¢ (b = 0), ¢pp—o(f, g} from bfg, which, in turn, has to
wait for message ¢ (b = 0) from ab. Thus, LAZY computes the message from cdefgh
to ghij as:

> p(e) - pldic) - plele) - p(fld, e) - p(hlc) - ¢(b = 0) - oo (f, g). (18)

cdef

In contrast, the work schedule of Fig. 17 allows LAZY to immediately eliminate
variables ¢, d, e as:

¢(fh) = p(©)- pdo)- plelo) - p(fld.e) - p(hic).
c,d,e
The benefit is that when the LAZY messages {¢ (b = 0), ¢pp—o(f, g)} from bfg are
received, only variable f remains to be eliminated. That is to say, LAZY’s (18) is
simplified to

Y ¢(fh) b =0)-py_o(f.g). (19)
f

In our CHD example, LAZY will eliminate c, d, e twice at node cdefgh, once for
each message to bfg and ghij. This duplication of effort is a well-known undesirable

Fig. 16 Our architecture can

wenity allempty messages —— Epmprtyy Message Identification
sent by non-leal nodes given et i - =
evidence b = 0 in the

extended CHD JT of Fig. 15 Sender | Receiver | Message
(right)
bfg ab 1.0

@ Springer

J Intell Inf Syst (2009) 33:145-178 169

Fig. 17 Given evidence b =0

in the CHD JT of Fig. 5, our Pre-Message Elimination

architecture identifies those
variables that can be

eliminated at non-leaf nodes Sende r Rec elver Elimlnate

before any messages are

received cdefgh bfg
cdefgh bfg
cdefgh bfg
cdefgh bfg
cdefgh ghij
cdefgh ghij
cdefgh ghij

@ 0 0 o 00

property in JT propagation (Shafer 1996). Utilizing our third work schedule, such as
in Fig. 17, to remove this duplication remains for future work.

We conclude this section by providing some empirical results illustrating the
usefulness of our JT architecture. In particular, we provide the time taken for LAZY
propagation and the time saved by allowing our architecture to guide LAZY. The
source code for LAZY propagation was obtained from (Consortium 2002), as was the
code for generating a JT from a BN. Table 1 describes five real-world or benchmark
BNs and their corresponding JTs used in the experiments.

We first measure the time cost of performing inference not involving evidence.
Table 2 shows the time taken for : (i) LAZY propagation by itself, (ii) LAZY
propagation guided by our architecture, (iii) time saved by using our approach, and
(iv) time saved as a percentage. All propagation was timed in seconds using a SGI
R12000 processor. Note that our architecture lowered the time taken for propagation
in all five real-world or benchmark BNs. The time percentage saved ranged from
11.76% to 69.26% with an average percentage of 37.02%.

Next, we measure the time cost of performing inference involving evidence. As
shown in Tables 3 and 4, approximately nine percent and eighteen percent of the
variables in each BN are randomly instantiated as evidence variables, respectively.
Note that once again our architecture lowered the time taken for propagation
in all five real-world or benchmark BNs. In Table 3, the time percentage saved
ranged from 0.42% to 15.48% with an average percentage of 6.42%. In Table 4,

Table 1 Five real-world or benchmark BNs used in our experiments

BN Number of variables Number of Maximum number of
in the BN JT Nodes variables in a JT node

Alarm 37 85 5

CHD 11 24 4

Hailfinder 56 127 5

Insurance 27 64 9

Mildew 35 73 5

@ Springer

170 J Intell Inf Syst (2009) 33:145-178

Table 2 Experimental results on five BNs not involving evidence

BN LAZY propagation LAZY propagation time Time Percentage of
time guided by our architecture saved time saved

Alarm 0.758 0.233 0.525 69.26%

CHD 0.083 0.054 0.029 34.94%

Hailfinder 2.56 2.259 0.301 11.76%

Insurance 8.932 7.223 1.709 19.13%

Mildew 882.276 441.032 441.244 50.01%

the time percentage saved ranged from 1.86% to 14.89% with an average percentage
of 6.12%.

It is worth mentioning that our architecture is more useful with fewer evidence
variables. One reason for this is that the cost of physical computation is lowered with
collected evidence, since the probability tables to be propagated are much smaller.
For instance, LAZY takes over 882 s to perform propagation not involving evidence
on the Mildew BN, yet only takes about 15 s to perform propagation if 6 variables are
instantiated as evidence variables. Therefore, LAZY needs more help in the case of
processing no or fewer evidence variables and this is precisely when our architecture
is most beneficial.

6 Local BNs and practical applications

After applying our architecture, as described in Section 3, to identify the probability
information being passed in a JT, let us apply either method from (Madsen and
Jensen 1999; Zhang 1998) to physically construct the identified CPT messages.
That is, we assume that the label in each storage register of our architecture is
replaced with its corresponding probability distributions. Unlike all previous JT
architectures (Jensen et al. 1990; Lauritzen and Spiegelhalter 1988; Madsen and
Jensen 1999; Shafer and Shenoy 1990), in our architecture, after propagation not
involving evidence, each JT node N has a sound, local BN preserving all conditional
independencies of the original BN involving variables in N. Practical applications of
local BNs include an automated modeling procedure for MSBNs and a method for
exploiting localized queries in DC techniques.

Table 3 Experimental results on five BNs with 9% of the variables randomly instantiated as evidence
variables

BN LAZY propagation LAZY propagation time Time Percentage of
time guided by our architecture saved time saved

Alarm 0.556 0.496 0.06 10.79%

CHD 0.084 0.071 0.013 15.48%

Hailfinder 0.98 0.948 0.021 3.36%

Insurance 1.76 1.724 0.036 2.05%

Mildew 692.61 689.68 2.93 0.42%

@ Springer

J Intell Inf Syst (2009) 33:145-178 171

Table 4 Experimental results on five BNs with 18% of the variables randomly instantiated as
evidence variables

BN LAZY propagation LAZY propagation time Time Percentage of
time guided by our architecture saved time saved

Alarm 0.579 0.545 0.034 5.87%

CHD 0.047 0.040 0.007 14.89%

Hailfinder 0.783 0.762 0.021 2.68%

Insurance 0.453 0.429 0.024 5.29%

Mildew 15.03 15.00 0.028 1.86%

Lemma 5 Given a BN D and a JT for D, apply Rules 1-5 in our architecture. For
any JT node N, the CPTs assigned to N, together with all CPTs sent to N from N’s
neighbours, define a local BN D y.

Proof As previously mentioned, when a JT node N; receives a message from a
neighbour N, it is also receiving, indirectly, information from the nodes on the other
side of N; (Shafer 1996). Thus, without a loss of generality, let the JT for D consist
of two nodes, N; and N,. We only need focus on variables in the separator N; N N,.
Consider a variable v, in N; N N, such that the BN CPT p(v,,| Py,) is assigned to
N;. Thus, v, is without a CPT label with respect to N,. In N;’s call to ICM for
its messages to N,, variable v, is not in X = N; — N,, the set of variables to be
eliminated, Thus, ICM will return a CPT label for v,, to N;. By Rule 5, N, will place
this CPT label in the empty storage register for v,, from N; to N,. Therefore, after
propagation, variable v,, has a CPT label at node N,. Conversely, consider N,’s call
of ICM for its messages to N,. Since the BN CPT p(v,,| Py,) is assigned to Nj, there
is no CPT label for v,, passed to ICM. Thus, ICM does not return a CPT label for
v to Np. By Rule 5, N, fills the empty storage register of v, from N, to N; with
the unity-potential label 1(v,,). Therefore, after propagation, both N; and N, have
precisely one CPT label for v,,. Moreover, for each node, it follows from Lemma 1
that the CPT-graph defined by the assigned CPTs and the message CPTs is a DAG.
By definition, each JT node N has a local BN Dy. O

Example 24 Recall the JT with assigned CPTs in Fig. 5. Each JT node has a local
BN after propagation not involving evidence, as depicted by a screen shot of our
implemented system in Fig. 18.

Theorem 4 Given Lemma 5. If an independence 1(X, Y, Z) holds in a local BN Dy
foraJT node N, then (X, Y, Z) holds in the original BN D.

Proof We will show the claim by removing variables in the JT towards the node N.
Let v; be the first variable eliminated in the JT for D. After calling MCL, let D’ be
the CPT-graph defined by the CPTs remaining at this node, together with the CPTs
assigned to all other nodes. It follows from Lemma 1 that D’ is a DAG. We now
establish that /(X, Y, Z) holding in D" implies that /(X, Y, Z) holds in D. Note that
since v; is eliminated, v; ¢ XY Z. By contraposition, suppose I(X, Y, Z) does not
hold in D. By the method for testing independencies in Section 2, let D,, be the
moralization of the sub-DAG of D onto XY Z U An(XY Z). There are two cases

@ Springer

172 J Intell Inf Syst (2009) 33:145-178

Fig. 18 Local BNs after

propagation not involving
evidence for the CHD BN

. s

to consider. Suppose v; ¢ An(XY Z). In this case, I(X, Y, Z) does not hold in D’ as
D,, is also the moralization of the sub-DAG of D' onto XY Z U An(XY Z). Now,
suppose v; € An(XY Z). Let D), be the moralization of the sub-DAG of D’ onto
XY Z U An(XY Z). By assumption, there is an undirected path in D,, from X to Z,
which does not involve Y. If this path does not involve v;, this same path must exist
in D), as the MCL algorithm only removes those edges involving v;. Otherwise, as
v; € XY Z, this path must include edges (v, v;) and (v;, v'), where v, v' € P;C;. Since
the moralization process will add an undirected edge between every pair of variables
in P;, and since the MCL algorithm will add a directed edge from every variable
in P; to every variable in C; and also from every variable v; in C; to every other
variable v; in C; such that v; < v in Rule 2, it is necessarily the case that (v, v') is
an undirected edge in the moralization D), of D’. As there is an undirected path
in D), from X to Z not involving Y, by definition, /(X, Y, Z) does not hold in
D'. Thus, every independence I(X, Y, Z) encoded in D’ is encoded in the original
BN D. Therefore, by recursively eliminating all variables v ¢ N, all conditional
independencies encoded in Dy are also encoded in D. O

Example 25 In Fig. 18, it is particularly illuminating that our architecture correctly
models I(g, c, h), the conditional independence of g and 4 given c, in the local BN for
cdefgh, yet at the same time correctly models /(g, 4, i), the conditional independence
of g and i given A, in the local BN for ghij.

Although unconditional independencies of the original BN might not be saved in
the local BNs, Theorem 5 shows that conditional independencies are.

Theorem 5 Given Lemma 5. If an independence [(X, Y, Z) holds in the original BN
D, where Y # (¢ and XY Z is a subset of a JT node N, then 1(X,Y, Z) holds in the
local BN Dy.

Proof Let v; € U be the first variable eliminated by our architecture. Suppose FRC
returns the set of CPT labels C' = {p(v;| P;), p(v1| P1), ..., p(vk| Px)}. By < in Rule 2,
the child-set of v; is C; = {vy, ..., vk}. The set of all variables appearing in any label
of C' is Ey F. Clearly, the CPT-graph D’ defined by C’ is a DAG. By Corollary 6

@ Springer

J Intell Inf Syst (2009) 33:145-178 173

in Pearl (1988), variable v; is independent of all other variables in U given Ej Fx — v;.
Thus, we only need to show that any conditional independence (X, Y, Z) holding
in D' with v; ¢ XY Z is preserved in D", where D” is the CPT-graph defined by
the set C” of CPT labels output by MCL given C’ as input. By Lemma 1, D" is
a DAG. By contraposition, suppose a conditional independence I(X, Y, Z) does
not hold in D”. According to the method for testing independencies in Section 2,
let D), be the moralization of the sub-DAG of D’ onto XY Z U An(XY Z). There
are two cases to consider. Suppose v; € An(XY Z). In this case, I(X, Y, Z) does
not hold in D’ as D), is also the moralization of the sub-DAG of D" onto XY Z U
An(XY Z). Now, suppose v; € An(XY Z). By definition, the moralization process
makes families complete. Observe that the family of each variable v, in D’ is, by
definition, the family-set of v, in the CPT label p(v,,| P,,) of C'. For every variable
v in the sub-DAG of D' onto XY Z U An(XY Z), v; is a member of the family-set
F,,. Therefore, there is an edge (v;, v) in D), between v; and every other variable v
in D),. Then, in particular, there is a path (x, v;), (v;, 2) from every variable x € X
to every variable z € Z. Since v; ¢ Y, by definition, /(X, Y, Z) does not hold in D’.
Hence, all conditional independencies on U — v; are kept. Therefore, by recursively
eliminating all variables v ¢ N, all conditional independencies on N are kept. That
is, by Lemma 5, all conditional independencies /(X,Y, Z) with XYZ C N are
preserved in the local BN Dy. O

Example 26 Recall the CPT-graphs in Figs. 7 and 6 defined by the CPT labels before
and after the elimination of variable v; = f, respectively, where C; = {v; = j, v, =
k,vs = 1}. It may seem as though some conditional independencies are lost due to
the additional directed edges like (c, /), (e,l) and (j,/), where c € P;, e € P; and
j. 1 € C;. On the contrary, although I(c, ejkhi, l), I(e, bcdhjk,l) and I(j, cde,l) do not
hold in Fig. 6, these independencies do not hold in Fig. 7 either. Some unconditional
independencies were lost, however, such as I(be, @, kl).

Our first practical application of local BNs concerns MSBNs (Xiang 1996, 2002;
Xiang and Jensen 1999; Xiang et al. 2006, 2000, 1993), which are formally defined as
follows.

Definition 19 A MSBN is a finite set { By, B>, ..., B,} of BNs satisfying the following
condition: Ny, N,, ..., N, can be organized as a join tee, where N; is the set of
variables in the local BN B;,i=1,2,...,n.

Before any inference takes place, a given BN needs first be modeled as a MSBN.
Several problems, however, with the manual construction of a MSBN from a BN
have recently been acknowledged (Xiang et al. 2000). We resolve this modeling
problem as follows.

Recently, Olesen and Madsen (2002) gave a simple method for constructing
a special JT based on the maximal prime decomposition (MPD) of a BN. One
desirable property of a MPD JT is that the JT nodes are unique for a given BN. We
favour MPD JTs over conventional JTs, since they facilitate inference in the LAZY
architecture while still only requiring polynomial time for construction (Olesen and
Madsen 2002). For example, given the CHD BN in Fig. 3, the JT shown in Fig. 5 is
the unique MPD JT.

@ Springer

174 J Intell Inf Syst (2009) 33:145-178

We now propose Algorithm 3 to introduce an automated procedure for construct-
ing a MSBN from a given BN.

Algorithm 3 Construct-MSBN(D)

Input: A BN D.

Output: A MSBN {By, B», ..., B,}.

begin

1. Construct a MPD JT with nodes {N;, N,, ..., N,} for the BN D.

2. Assign the CPTs of the BN D to the MPD JT nodes Ny, N,, ..., N, as usual.

3. Apply our architecture to label the messages to be propagated during JT
propagation.

4. Compute the distributions of the identified CPTs in Step 3 using any of the
available inference algorithms.

5. Define the local BN B; for each N; to be the CPTs assigned
and passed to N;.

6. Return the MSBN {By, B,, ..., B,}.

Example 27 We illustrate Algorithm 3 using the real-world CHD BN in Fig. 3.
The MPD JT with assigned BN CPTs is shown in Fig. 5. The CPTs identified by
our architecture are listed in Fig. 8. Apply any probabilistic inference algorithm to
physically construct these CPTs. By definition, Fig. 18 is a MSBN for the CHD BN.

We now establish the correctness of Algorithm 3.

Lemma 6 Given as input a BN D, the output {Bi, B,, ..., B,} of Algorithm 3 is a
MSBN.

Proof The claim holds immediately by Lemma 5. O

It is worth emphasizing that the local BNs have been shown in Theorems 4 and 5 to
possess two favourable features, namely, the local BNs are sound and they preserve
all conditional independencies of the original BN onto the context of the variables
in each JT node. Note that recursive conditioning (Allen and Darwiche 2003) can
also be used to build the CPTs in step 4 of Algorithm 3. Recursive conditioning
was recently introduced as the first any-space algorithm for exact inference in
BNs. Recursive conditioning finds an optimal cache factor to store the probability
distributions under different memory constraints. The experimental results in Allen
and Darwiche (2003) show that the memory requirements for inference in many large
real-world BNs can be significantly reduced by recursive conditioning. Therefore,
recursive conditioning allows for performing exact inference in the situations previ-
ously considered impractical (Allen and Darwiche 2003).

The significance of our suggestion is not aimed at an improvement in MSBN com-
putational efficiency. Instead, an automated procedure for the semantic modeling of
MSBNSs overcomes the recently acknowledged problems with manually constructing
MSBNs (Xiang et al. 2000).

Our second practical application of local BNs concerns DC (Dechter 1996; Li
and D’ Ambrosio 1994; Zhang 1998). MSBNs are well established in the probabilistic

@ Springer

J Intell Inf Syst (2009) 33:145-178 175

Table 5 The computation needed in DC to process five localized queries in the original CHD BN in
Fig. 3 versus the local BNs in Fig. 18

Localized Original BN Local BNs

query + X = X -
plalb =0) 1 2 2 1 2 2
pblf=0,g=0) 3 8 2 1 4 2
pldh =0) 3 6 2 3 6 2
pglh=0,i=0,j=0) 19 42 2 1 6 2
p(glk =0) 19 38 2 1 2 2

reasoning community due, in large part, to the presence of localized queries (Xiang
1996, 2002; Xiang and Jensen 1999). That is, practical experience has previously
demonstrated that queries tend to involve variables in close proximity within the
BN (Xiang et al. 1993). We conclude our discussion by showing how our semantic
architecture allows DC to exploit localized queries.

DC is usually better than JT propagation, if one only is interested in updating a
small set of non-evidence variables (Madsen and Jensen 1999), where small is shown
empirically to be twenty or fewer variables in Zhang (1998). However, DC processes
every query using the original BN. Therefore, it is not exploiting localized queries.

Our semantic architecture models the original BN as a set of local BNs, once
the actual probability distributions corresponding to the identified CPT labels have
been constructed in computer memory. Hence, DC techniques can process localized
queries in local BNs. The following empirical evaluation is styled after the one
reported by Schmidt and Shenoy (1998).

Example 28 We suggest that the CHD BN in Fig. 3 be represented as the smaller
local BNs in Fig. 18, after the physical construction of CPTs p(b), p(f), p(g), p(glf)
and p(h|g). Table 5 shows the work needed by DC to answer five localized queries
using the original CHD BN of Fig. 3 in comparison to using the local BNs of Fig. 18.

While it is acknowledged that our suggestion here is beneficial only for localized
queries, practical experience with BNs, such as in neuromuscular diagnosis (Xiang
et al. 1993), has long established that localized queries are a reality.

7 Conclusion

Unlike all previous JT architectures (Jensen et al. 1990; Lauritzen and Spiegelhalter
1988; Madsen and Jensen 1999; Shafer and Shenoy 1990), we have proposed the first
architecture to precisely model the processing of evidence in terms of CPTs. The
key advantage is that we can identify the labels of the messages significantly faster
than the probability distributions themselves can be built in computer memory. For
instance, in the medical BN for CHD, our architecture can identify all messages to
be propagated in the JT in less time than it takes to physically construct one message
(see Example 18). We can assist LAZY propagation (Madsen and Jensen 1999),
which interlaces semantic modeling with physical computation, by uncoupling these
two independent tasks. Treating semantic modeling and physical computation as
being dependent practically ensures that LAZY will perform probability propagation
unnecessarily slowly. When exploiting barren variables and independencies induced

@ Springer

176 J Intell Inf Syst (2009) 33:145-178

by evidence, Examples 19 and 20 explicitly demonstrate that LAZY forced a node
to wait for the physical construction of a non-empty message that was irrelevant to
its subsequent message computation. These irrelevant non-empty messages are iden-
tified by our first work schedule, as depicted in Figs. 13 and 14. Another advantage
of allowing semantic modeling to scout the structure in the JT is our second work
schedule, which presents the empty messages propagated from non-leaf JT nodes,
such as shown in Fig. 16. This second work schedule is beneficial as was demonstrated
in Example 22, where LAZY forced a receiving node to wait for the identification
of an empty message that would be neither constructed nor sent. Finally, to send a
message from one node to a neighbour, LAZY does not eliminate any variables at
the sending node until all messages have been received from its other neighbours (see
Example 23). Our third work schedule lists those variables that can be eliminated
before any messages are received, as the screen shot in Fig. 17 indicates. Besides the
real-world BN for CHD, we also evaluated our architecture on four benchmark BN,
called Alarm, Insurance, Hailfinder and Mildew. The experimental results reported
in Tables 2, 3 and 4 are very encouraging. The important point, with respect to JT
probability propagation, is that our architecture can assist LAZY by saving time,
which is the measure used to compare inference methods in Madsen and Jensen
(1999).

Even when modeling inference not involving evidence, our architecture still is
useful to the MSBN technique and to the DC techniques. We have shown that our
JT propagation architecture is instrumental in developing an automated procedure
for constructing a MSBN from a given BN. This is a worthwhile result, since several
problems with the manual construction of a MSBN from a BN have recently been
acknowledged (Xiang et al. 2000). We also have suggested a method for exploiting
localized queries in DC techniques. Practical experience, such as that gained from
neuromuscular diagnosis (Xiang et al. 1993), has demonstrated that queries tend to
involve variables in close proximity within a BN. Our approach allows DC to process
localized queries in local BNs. The experimental results in Table 5 involving a real-
world BN for CHD show promise.

In his eloquent review of three traditional JT architectures (Jensen et al. 1990;
Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990), Shafer (1996) writes that
the notion of probabilistic conditional independence (Wong et al. 2000) does not play
a major role in inference. More recently, the LAZY architecture has demonstrated
a remarkable improvement in efficiency over the traditional methods by actively
exploiting independencies to remove irrelevant potentials before variable elimina-
tion. However, LAZY propagation does not utilize the independencies holding in
the relevant potentials. In our architecture, we introduce the notions of parent-set
and elder-set in order to take advantage of these valuable independencies. Based on
this exploitation of independency information, we believe that the computationally
efficient LAZY method, and the semantically rich architecture proposed here,
serve as complementary examples of second-generation JT probability propagation
architectures.

Acknowledgements This research is supported by NSERC Discovery Grant 238880. The authors
would like to thank F.V. Jensen, Q. Hu, H. Geng, C.A. Maguire and anonymous reviewers, for
insightful suggestions.

@ Springer

J Intell Inf Syst (2009) 33:145-178 177

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Allen, D., & Darwiche, A. (2003). Optimal time-space tradeoff in probabilistic inference, In Proc.
18th international joint conference on artificial intelligence (pp. 969-975). Acapulco, Mexico.
Becker, A., & Geiger, D. (2001). A sufficiently fast algorithm for finding close to optimal clique trees.

Artificial Intelligence, 125(1-2) 3-17.
Castillo, E., Gutiérrez, J., & Hadi, A. (1997). Expert systems and probabilistic network models.
New York: Springer.
Consortium, E. (2002). Elvira: An environment for probabilistic graphical models. In Proceedings of
the 1st European workshop on probabilistic graphical models (pp. 222-230). Cuenca, Espana.
Cooper, G. F. (1990). The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42(2-3), 393-405.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. Toronto:
MIT.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks
and expert systems. New York: Springer.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic inference. In Proc.
12th conference on uncertainty in artificial intelligence (pp. 211-219). Portland, OR.

Hijek, P., Havrdnek, T., & Jirousek, R. (1992). Uncertain information processing in expert systems.
Ann Arbor: CRC.

Jensen, F. V. (1996). An introduction to Bayesian networks. London: UCL.

Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990). Bayesian updating in causal probabilistic
networks by local computations. Computational Statistics Quarterly, 4, 269-282.

Kjaerulff, U. (1990). Triangulation of graphs—algorithms giving small total state space, Research
Report R-90-09. Dept. of Math. and Comp. Sci., Aalborg University, Denmark.

Kozlov, A. V., & Singh, J. P. (1999). Parallel implementations of probabilistic inference. /[EEE
Computer, 29(12), 33-40.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society Series
B, 50(2), 157-244.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., & Leimer, H. G. (1990). Independence properties of
directed Markov fields. Networks, 20(5), 491-505.

Li, Z., & D’Ambrosio, B. (1994). Efficient inference in Bayes networks as a combinatorial optimiza-
tion problem. International Journal of Approximate Reasoning, 11(1), 55-81.

Madsen, A. L., & Jensen, F. V. (1999). LAZY propagation: A junction tree inference algorithm
based on lazy evaluation. Artificial Intelligence, 113(1-2), 203-245.

Madsen, A. L., & Jensen, F. V. (1999). Parallelization of inference in Bayesian networks. Research
Report R-99-5002, Dept. of Comp. Sci., Aalborg University, Denmark

Neapolitan, R. E. (1990). Probabilistic reasoning in expert systems. Toronto: Wiley.

Olesen, K. G., & Madsen, A. L. (2002). Maximal prime subgraph decomposition of Bayesian net-
works. I[EEE Transactions on Systems, Man and Cybernetics B, 32(1), 21-31.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San
Francisco: Morgan Kaufmann.

Schmidt, T., & Shenoy, P. P. (1998). Some improvements to the Shenoy-Shafer and Hugin architec-
tures for computing marginals. Artificial Intelligence, 102, 323-333.

Shachter, R. (1986). Evaluating influence diagrams. Operational Research, 34(6), 871-882.

Shafer, G., & Shenoy, P. P. (1990). Probability propagation. Annals of Mathematics and Artificial
Intelligence, 2, 327-352.

Shafer, G. (1996). Probabilistic expert systems. Philadelphia: STAM.

Wong, S. K. M., Butz, C. J., & Wu, D. (2000). On the implication problem for probabilistic condi-
tional independency. IEEE Transactions on Systems, Man and Cybernetics A, 30(6), 785-805.

Xiang, Y. (1996). A probabilistic framework for cooperative multi-agent distributed interpretation
and optimization of communication. Artificial Intelligence, 87(1-2), 295-342.

@ Springer

178 J Intell Inf Syst (2009) 33:145-178

Xiang, Y. (2002). Probabilistic reasoning in multiagent systems: A graphical models approach. New
York: Cambridge University Press.

Xiang, Y., & Jensen, F. V. (1999). Inference in multiply sectioned Bayesian networks with extended
Shafer-Shenoy and Lazy propagation, In Proc. 15th conference on uncertainty in artificial intelli-
gence (pp. 680-687). Stockholm, Sweden.

Xiang, Y., Jensen, F. V., & Chen, X. (2006). Inference in multiply sectioned Bayesian networks:
Methods and performance comparison. [EEE Transactions on Systems, Man and Cybernetics B,
36(3), 546-558.

Xiang, Y., Olesen, K. G., & Jensen, F. V. (2000). Practical issues in modeling large diagnostic systems
with multiply sectioned Bayesian networks. International Journal of Pattern Recognition and
Artificial Intelligence, 14(1), 59-71.

Xiang, Y., Pant, B., Eisen, A., Beddoes, M. P., & Poole, D. (1993). Multiply sectioned Bayesian
networks for neuromuscular diagnosis. Artificial Intelligence in Medicine, 5,293-314.

Xu, H. (1995). Computing marginals for arbitrary subsets from marginal representation in Markov
trees. Artificial Intelligence, 74(1), 177-189.

Yannakakis, M. (1981). Computing the minimal fill-in is NP-Complete. SIAM Journal on Algebraic
and Discrete Methods, 2, 77-79.

Zhang, N. L. (1998). Computational properties of two exact algorithms for Bayesian networks.
Applied Intelligence, 9(2), 173-184.

@ Springer

	A join tree probability propagation architecture for semantic modeling
	Abstract
	Introduction
	Definitions
	Modeling inference not involving evidence
	Complexity and correctness
	Modeling inference involving evidence
	Local BNs and practical applications
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

