
J Intell Inf Syst (2012) 38:601–644
DOI 10.1007/s10844-011-0170-7

Modeling temporal dimensions of semistructured data

Carlo Combi · Barbara Oliboni · Elisa Quintarelli

Received: 24 June 2010 / Revised: 11 May 2011 / Accepted: 29 June 2011 /
Published online: 21 July 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper we propose a graph-based generic model able to uniformly
represent semistructured data and their temporal aspects. In particular, we start from
a generic and expressive model proposed in the database literature and consider
in a formal and systematic way both valid time and transaction time, together
with the set of temporal constraints needed to correctly manage the semantics
of the represented time dimension. We then propose operations, which allow the
incremental management of the proposed model satisfying the introduced temporal
constraints. Moreover, we also deal with the possibility of managing together the
two classical time dimensions of valid and transaction times, and formalize the set
of constraints needed to correctly handle these temporal aspects together. Some
examples taken from a medical scenario will be used to describe the introduced
concepts.

Keywords Temporal databases · Semistructured data · Valid time ·
Transaction time · Data modeling · Temporal constraints · Clinical databases

C. Combi (B) · B. Oliboni
Dipartimento di Informatica, Università degli Studi di Verona, Ca’ Vignal 2,
Strada le Grazie 15, 37134 Verona, Italy
e-mail: carlo.combi@univr.it

B. Oliboni
e-mail: barbara.oliboni@univr.it

E. Quintarelli
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Via Ponzio 34,
20133 Milano, Italy
e-mail: quintare@elet.polimi.it

602 J Intell Inf Syst (2012) 38:601–644

1 Introduction

Often data are stored according to different formats, with different structures, or
even with missing or implicit structures. It is the case, for example, of the different
forms filled by physicians and nurses during their daily clinical routine for patient
lab results, patient visits, patient history, and so on: the structure of the form is
recorded with data. A further example from the medical domain is that of the
discharge report, which is often written in natural language style, even though some
common basic structures could be retrieved. Moreover, slightly different formats and
different record structures could be used in different domains and organizations: it
arises the need of integrating these heterogeneous data to be able to access them
in a unified way. To this regard, in the past years the database research community
has concentrated on the introduction of methods for representing and querying semi-
structured data, i.e., neither raw data nor strictly typed data with an absolute schema
fixed in advance (Abiteboul 1997). In several domains semistructured data are used
to represent information having some temporal dimension (Dyreson and Grandi
2009). For example, in the medical domain semistructured data could represent the
evolution of patient health status through time; on the other side, semistructured
data should allow one to be aware of the clinical information known by a physician
in different past situations.

A lot of work has been done in order to represent semistructured data by using
data models based on directed labeled graphs without considering any temporal di-
mension (see, for example, OEM (Papakonstantinou et al. 1995), UnQL (Buneman
et al. 1996), STRUDEL (Fernandez et al. 1997), GraphLog (Consens and Mendelzon
1990), G-Log (Paredaens et al. 1995) and XML-GL (Ceri et al. 1999)). All these
proposals organize data in graphs where nodes denote either objects or values, and
edges represent relationships between them. As for the classical database field, also
in the semistructured data context it has been considered the possibility of extending
previously proposed models in order to take into account the evolution of data
through time (see for example Amagasa et al. 2000; Chawathe et al. 1999; Oliboni
et al. 2001). Again, the development of methods for representing and querying
changes in semistructured data have been often founded on graph-based data models
(see, for example Amagasa et al. 2000; Chawathe et al. 1998, 1999; Dyreson et al.
1999; Oliboni et al. 2001; Rizzolo and Vaisman 2008). Even though the well-known
concepts of valid and transaction times (Jensen et al. 1998) have been considered
as a starting point, these proposals focus on different aspects and propose different
strategies to deal with temporal dimensions of information.

To complete the sketched scenario, it is worth mentioning that semistructured
data are often used and accessed through web sites: to this regard, it has been
recognized and emphasized that time is an important aspect to consider in designing
and modeling (data-intensive) web-sites (Atzeni 2002; Rizzolo and Vaisman 2008).

We feel that the temporal aspect of data is not an outdated topic, and semi-
structured temporal data models could became a reference for the logical design of
(data-intensive) web sites, when considering information that require an effective
management of time-varying perspectives (as a matter of fact, a widely accepted
model for the logical design of data-intensive web sites, such as the relational data
model in the classical database field, has not yet been proposed). In particular, a very

J Intell Inf Syst (2012) 38:601–644 603

interesting issue to tackle is the complete formalization of constraints related to the
considered temporal dimensions. This aspect is important both for semistructured
temporal data models, and for the temporal relational models (Jensen and Snodgrass
1999) considered in the classical temporal database area.

In this work we start from the proposal described in Dyreson et al. (1999), which,
in our opinion represents an expressive and generic model suitable to represent
various perspectives of semistructured data (not only of XML documents): in
Dyreson et al. (1999), the authors focus on the definition of (i) a general semistruc-
tured graph-based data model and of (ii) suitable operators for managing queries
on such graphs. By adopting and extending the approach proposed in Dyreson et al.
(1999), we propose a graph-based generic model able to uniformly represent semi-
structured data and their temporal aspects: we thoroughly analyze the definition,
formalization, and management of constraints specifying the semantics of either valid
or transaction time temporal dimensions. More precisely, in the semistructured data
context, our main contributions are:

– representation of valid time, transaction time, or both the two dimensions;
– specification of the main constraints needed to correctly manage the semantics

of the considered time dimension;
– definition of suitable operations for a correct handling of each of these two

temporal aspects.

Even if the data model proposed in Dyreson et al. (1999) is general enough
for representing temporal aspects of semistructured data, the definition of the
constraints for modeling either transaction or valid times is outside the main goal
of that work. Moreover, we differ from our previous work (Combi et al. 2004) by
proposing a formal and complete analysis of the possible temporal dimensions on
semistructured data.

The structure of the paper is as follows: in Section 2 we give some basic notions
and definitions, and introduce the clinical domain we will use as a motivating example
for our proposal, while in Section 3 we briefly report related work. In Section 4 we
introduce the Property-based Semistructured Temporal Data Model (PSTDM) by
describing and discussing constraints when dealing with transaction time and valid
time, separately. Sections 5 and 6 discuss about operations and related algorithms
for an incremental construction of valid time and transaction time PSTDM graphs,
respectively. Section 7 deals with managing transaction and valid times together. In
Section 8, we discuss pros and cons of PSTDM, while in Section 9 we sketch some
conclusions and possible lines for future work.

2 Background and motivation

In this section we provide some basic notions useful for the comprehension of the
proposal. Moreover, we introduce the motivation of the work, the issues we deal
with, and the example we use as case study.

In the past years, in the classical database context, the representation of time-
varying information was studied and extensions of data models considering the

604 J Intell Inf Syst (2012) 38:601–644

given (valid/transaction) time dimension were proposed in the literature (Jensen
et al. 1998; Jensen and Snodgrass 1999). We recall here that the valid time (VT),
which is user-provided, represents the time when a fact is true in the considered
domain, while transaction time (TT), which is system-generated, represents the
time when a fact is current in the database and may be retrieved (Jensen et al.
1998; Jensen and Snodgrass 1999). In the literature different temporal data types
have been considered. They are time instants, time intervals, and temporal elements.
A time instant is a particular point on the time line. A time interval [ts, te] is
the time period between the two instants ts and te (with ts ≤ te): TT is usually
represented through time intervals. A temporal element {[t1, t2], [t3, t4], ..., [tk−1, tk]}
is a finite set of disjoint time intervals. In this work, we represent the valid time
dimension by means of temporal elements, because they allow more expressiveness,
for example in describing the valid time of entities and relations in consecutive
snapshots.

In the relational database context, there was a natural extension of temporal
data models to bitemporal ones, since valid and transaction times are fundamental
dimensions that, if taken into account in the same data representation, allow one to
recover (and query on) past states of both the domain and the database (Jensen and
Snodgrass 1999). In order to give an exhaustive treatment of issues deriving from the
bitemporal representation of data, we study time-related semantics of semistructured
data by proposing constraints and operations related to the representation and
manipulation of semistructured information considering their valid and transaction
time dimensions together.

At the best of our knowledge, the issue related to the definition of the set
of constraints needed to manage together and in a correct way both transaction
and valid times has not been yet extensively considered in the literature, and the
few papers dealing with the consistency of temporal XML documents (Campo and
Vaisman 2006; Rizzolo and Vaisman 2008) focused on transaction time.

The need of considering constraints on transaction and valid times of semistruc-
tured databases stems from two different requirements: from a first point of view,
we want that a temporal semistructured database is consistent with respect to the
real world history it represents. An example of constraint considering this kind of
consistency is that any property of a given entity cannot be valid when the entity itself
is not valid. We call this first kind of consistency real-world consistency. From another
point of view, we want that the temporal semistructured database is consistent with
respect to the database history, it represents. This kind of consistency (database
consistency) deals, for example, with the fact that, after any data insertion, any
property of an entity cannot have at the same time two distinct values, if we are not
allowing multivalued properties in our data model. It is worth noting that the same
reasons motivated several research efforts in the temporal database community,
focusing on temporal extensions both to the relational data model (Snodgrass 2000)
and to the entity-relationship data model (Combi et al. 2008; Gregersen and Jensen
1999): as an example, we mention here the introduction of the concepts of temporal
key and of the sequenced semantics both for valid and transaction times (Snodgrass
2000) for relational databases.

In the following, we will show that such needs related to real-world and database
consistencies for semistructured databases generate, differently from what happens
for structured data models (as the relational, the entity-relationship, and the object-
oriented ones), not only constraints dealing with specific data values, but also

J Intell Inf Syst (2012) 38:601–644 605

constraints related to the maintenance of some basic structural properties of the
database. We then propose an approach to verify the consistency of semistructured
data in an incremental way: more precisely, we propose some algorithms which
guarantee that data insertion/modification/update on a consistent semistructured
temporal database produce another consistent semistructured temporal database.
Throughout the paper, we will use some real-world examples to describe and discuss
the introduced concepts; in particular we will consider a medical scenario related
to patients suffering from chronic stable angina, a cardiological pathology (Gibbons
et al. 1999).

Stable angina corresponds to (predictable) chest pain or discomfort that typically
occurs with activity/stress and is a type of chest discomfort caused by poor blood
flow through the blood vessels (coronary vessels) of the heart muscle. The most
common cause of angina is coronary artery disease (CAD). Chronic stable angina
is caused by a chronic narrowing of coronary arteries. The narrowing may be usually
observed through angiography. As coronary arteries are narrowed, the myocardial
tissue perfused by the considered arteries will not receive adequate blood flow
because of the limited flow capacity. This results in an occurrence of relative ischemia
when the oxygen demand increases, leading to anginal pain, for example during
physical exertion, large meal or emotional stress. CAD has different levels of severity
according to the number of significantly diseased vessels and/or to the degree of
obstruction of arteries.

Chronic stable angina is most commonly treated with drugs that reduce oxygen
demand. Drugs include beta-blockers, calcium-channel blockers, nitrodilators. They
act by decreasing heart rate, contractility, afterload and preload. The most commonly
used drug to treat angina is nitroglycerin: it is a vasodilator, thus making more oxygen
available to the heart muscle. Beta-blockers and calcium channel blockers act to
decrease the heart’s workload, and thus its requirement for oxygen.

Non-pharmaceutical treatments are balloon angioplasty and coronary bypass
surgery: as for angioplasty, a balloon is inserted at the end of a catheter and inflated
to widen the arterial lumen. Stents are often used to maintain the arterial widening.
On the other hand, coronary bypass surgery consists in bypassing constricted arteries
with venous grafts. This is much more invasive than angioplasty.

The main goals of treatment in angina pectoris are relief of symptoms, slowing
progression of the disease, and reduction of future events, especially heart attacks
and, of course, death.

According to this scenario, patients with chronic stable angina undergo a follow-
up regimen, made of pharmaceutical therapies, angiographies, rest and exercise
electrocardiograms, chest x-rays, possible interventions: to assess the evolution of
CAD and to suitably manage the patient’s health status, (historical) data about the
follow-up regimen and the patient’s symptoms have to be properly acquired and
analyzed by physicians. It is widely known in the literature that temporal representa-
tion and reasoning in medicine is a key issue to support medical decision making
(Combi and Pozzi 2006). Indeed, different medical tasks are based on temporal
clinical data processing; among the others, we mention here decision support for
diagnosis, advice on therapy, clinical data summarization, intensive care unit (ICU)
monitoring, and epidemiological studies (Combi et al. 2010). In the following, we will
focus in particular on the semistructured nature of these temporal data, as they come
from different sources, are often given through forms containing natural languages
sentences, and may be characterized by different, coexisting, levels of detail.

606 J Intell Inf Syst (2012) 38:601–644

3 Related work: temporal data models

Recently, some research contributions are concerned with temporal aspects in
semistructured databases. While they share the common goal of representing
time-varying information, they consider different temporal dimensions and adopt
different data models and strategies to capture the main features of the considered
notion of time (Ali and Pokorný 2006; Amagasa et al. 2001; Chawathe et al. 1998,
1999; Dyreson 2001; Dyreson and Grandi 2009; Dyreson et al. 2006; Grandi and
Mandreoli 2000; Grandi et al. 2005; Li et al. 2010; Mandreoli et al. 2006; Mendelzon
and Rizzolo 2004; Noh et al. 2008; Oliboni et al. 2001; Rizzolo and Vaisman 2008;
Rosado et al. 2007; Wang and Zaniolo 2002; Wang et al. 2008; Wang and Zaniolo
2008).

The Delta Object Exchange Model (DOEM) proposed in Chawathe et al.
(1998, 1999) is a temporal extension of the Object Exchange Model (OEM)
(Papakonstantinou et al. 1995), a simple graph-based data model, with objects
as nodes and object-subobject relationships represented as labeled arcs. Change
operations (i.e., node insertion, update of node values, addition and removal of
labeled arcs) are represented in DOEM by using annotations on nodes and arcs
of an OEM graph for representing the history. Intuitively, annotations are the
representation of the history of nodes and edges as it is recorded in the database.
This proposal takes into account the transaction time dimension of a graph-based
representation of semistructured data. DOEM graphs (and OEM graphs as well) do
not consider labeled relationships between two objects (actually, each arc is labeled
with the name of the unique pointed node).

The Temporal Graphical Model (TGM) (Oliboni et al. 2001) is a graphical
model for representing semistructured data dynamics. This model uses temporal
elements, instead of simple intervals, to keep trace of different time intervals when
an object exists in the reality. In Oliboni et al. (2001) the authors consider only some
preliminary issues (e.g. admitted operations and queries) related to the valid time
representation.

The Graphical sEmistructured teMporal data model (GEM), proposed in Combi
et al. (2004), is a data model based on labeled graphs and allows one to represent in
a uniform way semistructured data and their temporal aspects by considering trans-
action time. In the GEM data model, differently from other proposals (Chawathe
et al. 1999; Dyreson et al. 1999), labels are associated both to edges and to nodes:
this way, a more compact, graph-based representation of semistructured databases is
possible. In Combi et al. (2004) a first formalization of the set of constraints needed
for correctly managing transaction time is given.

Focusing more closely on contributions dealing with temporalities in XML data
and queries, different approaches have been proposed in the last years trying to
extend the XML data model, the XPath data model and query language, and
several further XML-based methodologies and technologies. Some proposals start
from XPath (World Wide Web Consortium 1999) and extend it to manage time
dimensions (Amagasa et al. 2001; Dyreson 2001; Zhang and Dyreson 2002). The
Temporal XPath Data Model (Amagasa et al. 2001) is an extension of the XPath
Data Model (World Wide Web Consortium 1999) capable of representing history
changes of XML documents. In particular, this approach introduces the valid time
label only for edges in the XPath model. An extension of XPath for supporting

J Intell Inf Syst (2012) 38:601–644 607

transaction time is presented in Dyreson (2001). The proposed extension allows the
representation of the history of an XML document as a sequence of XML documents
representing the versions of the considered XML document. According to the data
model extension, the author extends the query language to query with respect to
transaction time. At this aim several new axes, node tests, and temporal constructs
are added. Another extension of XPath is proposed in Zhang and Dyreson (2002),
where the authors extend the XPath data model and query language to include valid
time. In particular, they extend the XPath data model by adding to each node a
superset of disjoint intervals or instants representing valid time, and impose that the
valid time of a node is constrained to be a subset of the valid time of the node parent.
Moreover, a valid-time axis, with a suitable syntax, is added to the query language to
retrieve nodes according to a valid time view. The valid-time axis of a node allows
one to refer to the valid-time information of the node itself.

In Dyreson (2001), the authors propose to extend Web servers in order to deal
with transaction time (i.e., modification time) of resources, such as XML documents.
In Grandi and Mandreoli (2000), Wang and Zaniolo (2002) some proposals devoted
to represent and query histories of XML documents are introduced. In Hunter
(2002), Hunter proposes a framework for merging potentially inconsistent (semi)
structured text using temporal knowledge. In Buneman et al. (2002), the authors pro-
pose an archiving tool for XML data which provides meaningful change descriptions
and is able to support different basic functions concerning the evolution of data. For
example, it is possible to retrieve a specific version of data from the archive and to
query the temporal history of any element.

In Grandi et al. (2005), the authors present an XML-based temporal data model
for the representation and management of versioned normative texts. The model
supports multiple temporal dimensions, all involved in the law application lifecy-
cle: publication time, validity time, efficacy time, and transaction time. Versioned
texts are represented through XML documents, allowing one to manage different
temporalities. Law texts are represented through a tree-like structure, where the
temporal pertinence of a sub-tree may be contained in the temporal pertinence of
the overall tree. The dynamics management and temporal querying of normative
texts are then faced; in particular, a suitable temporal extension of XQuery is
discussed. In Mandreoli et al. (2006), the authors propose a solutions for supporting
temporal slicing when querying temporal XML documents, where XML documents
are represented as trees made of timestamped nodes. No specific constraints are
specified for the (generic) temporal dimensions on nodes.

In Dyreson et al. (2006), the issue of providing the XML data evolution by web
servers is faced: in particular, the authors present a system to build a temporal
data collection, which records the history of each published datum and not only its
current state. A temporal schema mediates the interaction between the publisher
and the reader in exchanging temporal data. The schema describes how to construct
a temporal data collection by merging individual states into an integrated history.
Temporalities of XML elements are provided through timestamping attributes and
through different versions of the same element holding on different intervals. The
considered scenario is that of NCBI databases managing data on genes and proteins
in the biological domain.

In Noh and Gadia (2006), the authors face a different issue, namely that of
managing parametric temporal data through an XML encoding. Parametric temporal

608 J Intell Inf Syst (2012) 38:601–644

data are mainly temporal relations with attribute timestamping. Timestamping is
obtained through temporal elements (i.e., sets of non overlapping intervals) rather
than intervals, to provide a more compact and set-theoretic representation of the
temporal dimension. Two different approaches are thus compared to this regard,
based on XQuery and on an extension of SQL, respectively. Then, in Noh et al.
(2008), a complete XML-based methodology is proposed for parametric temporal
database model implementation: a temporal database system is built on top of an
original XML storage system.

In Ali and Pokorný (2006) a number of temporal XML data models are considered
and their comparison is provided according to (i) time dimension (valid time,
transaction time), (ii) support of temporal elements and attributes, (iii) querying
possibilities, (iv) association to XML Schema/DTD, and (v) influence on XML
syntax. The authors conclude that the considered approaches to the management
of temporal information using XML mostly do not require changes of current XML
standards. No attention is paid to possible constraints among temporal dimensions
of different XML elements, as the document hierarchy corresponds usually to a
containment relationship of the temporal dimensions of the considered elements.

In Rosado et al. (2007), the authors deal with the issue of branching in versions
for (versioned and temporal) XML documents. Suitable XML representations are
provided both for versioned XML documents, their version history, and the history of
changes to the original XML document. Versions of XML documents are considered
also in Wang and Zaniolo (2008): efficient techniques for managing multi-version
document histories and supporting powerful temporal queries on such documents are
proposed. The authors show that the data definition and manipulation framework of
XML and XQuery can effectively support temporal models and historical queries
without requiring extensions to the current standards.

In Wang et al. (2008), the authors propose an XML-based approach for managing
transaction time in temporal databases. In particular, they design an architecture
using XML to support the representation of the database history, and XQuery to
retrieve temporal information. In this proposal, XML is used to represent history
by using a temporally grouped approach where the values of each attribute are
related to a set of time intervals denoting their temporal dimension: for each value
of the attribute, the corresponding transaction time interval is represented. This
approach allows the user to express temporal queries in XQuery without requiring
the introduction of new temporal constructs in the language.

Recently, the support of temporal queries on XML keyword search engines
has been considered in Manica et al. (2010): the authors’ proposal is based on
identifying temporal constraints in a keyword query and intercepting the query
processing, executed by a conventional XML search engine, in order to evaluate
those constraints.

In Li et al. (2010), the authors introduce TempXTQ, a pattern-based temporal
XML query language, with a Set-based Temporal XML (STX) data model which uses
hierarchically-grouped data sets to uniformly represent both temporal information
and common XML data. TempXTQ deploys various patterns equipped with certain
pattern restructuring mechanisms to present requests on extracting and constructing
temporal XML data. It is worth noting that in the STX data model, the usual tem-
poral integrity constraint is assumed to hold for every temporal XML element: the
temporal dimension of a node contains the (possibly different) temporal dimensions
of its children nodes.

J Intell Inf Syst (2012) 38:601–644 609

A further proposal for the management of valid time for XML document is
described in Mendelzon and Rizzolo (2004), Vaisman et al. (2004): the authors
consider several aspects of the topic, ranging from data modeling and query lan-
guages, to the implementation of indexing structures. In Vaisman et al. (2004),
the authors introduce in an informal way some consistency conditions for graphs
representing temporal XML documents. Consistency is mainly based on the fact
that each snapshot graph (i.e., the graph composed by nodes valid at a given time)
must be a rooted tree. The authors’ approach for modeling valid time consistency
of XML data is limited to manage a sequenced semantics (Snodgrass 2000) of XML
data: a graph representing a temporal XML document is a compact representation
of several snapshot graphs, each of them representing the XML document valid at
a specific time point. In this direction, in Campo and Vaisman (2006), the authors
deal with inconsistencies in temporal XML documents where transaction time is
represented: more precisely, they consider how to manage inconsistencies arising
from temporal XML documents, when transaction times of containment edges are
not able to properly represent time varying (well formed) XML documents. In a
recent work (Rizzolo and Vaisman 2008), the authors propose a data model for rep-
resenting temporal information in XML documents and study the related temporal
constraints. They also present algorithms for validating XML documents with respect
to the defined constraints and methods for fixing inconsistent documents. In the
proposed data model, they represent XML documents by means of labeled graphs
with temporal annotated edges. The time dimension they consider is transaction time
and the type of temporal data is the temporal element, even though in the paper
they deal with some abstract representation of temporal XML documents where
the difference between valid and transaction times is not adequately highlighted;
moreover they actually work with single intervals, instead of temporal elements.

Few proposals explicitly consider bitemporal semistructured models (Amagasa
et al. 2001; Dyreson et al. 1999; Wang and Zaniolo 2004). In Dyreson et al. (1999)
the authors propose a graph-based model which uses labeled graphs to represent
semistructured databases and the peculiarity of these graphs is that each edge label
is composed by a set of descriptive properties, i.e., meta-data (e.g. name, transaction
time, valid time, security properties of relationships). Edges may have different
properties: a property may be present in an edge and missing in another one. This
proposal is very general and extensible: any property may be used and added to
adapt the model to a specific context. In particular, the model allows one to represent
temporal aspects and to consider only a temporal dimension or multiple temporal
dimensions: to this regard, some examples of constraints which need to be suitably
managed to correctly support semantics of the time-related properties are provided,
both for querying and for manipulating graphs. We can state that in principle this
proposal can be used as a bitemporal model, although some other constraints must
be specified in order to guarantee the consistency of the specific concepts included in
the set of labels of the model itself. This last issue has not been completely addressed
by the authors and is outside the main goal of that work; in this perspective our
work can be considered complementary to that in Dyreson et al. (1999). A work
proposing a solution to the problem of representing valid and transaction times in
XML document is Amagasa et al. (2001): the Bitemporal XML Data Model is an
extension of the XPath Data Model capable of representing the history of both the
domain and the database of XML documents. In particular, this approach introduces
the pair of valid time, transaction time labels only for edges in the XPath model. In this

610 J Intell Inf Syst (2012) 38:601–644

work, no formalization of the set of constraints required to guarantee the consistency
of bitemporal documents is provided. Finally, in Wang and Zaniolo (2004), the
XML-based bitemporal data model XBiT is proposed: the authors show that valid-
time, transaction-time, and bitemporal databases can be naturally viewed in XML
using temporally-grouped data models. Similarly to the approach proposed in Noh
and Gadia (2006), here the focus in on the representation of temporally-grouped
data: in these models tuples are composed by non-atomic multivalued timestamped
attributes but all the attributes of a tuple have the same overall timespan. Then,
authors show that complex historical queries, that would be very difficult to express
in SQL on relational tables, may be easily expressed in standard XQuery on such
XML-based representations.

4 The property-based semistructured temporal data model

In this section we introduce a graph-based data model (PSTDM: Property-based
Semistructured Temporal Data Model), which is inspired by the one described in
Dyreson et al. (1999), with the aim of representing in a uniform way semistructured
information by considering also their time dimensions.

In Dyreson et al. (1999) the authors proposed an extensible data model general
enough to represent multiple aspects of semistructured data, such as security and
temporal properties. Such aspects are represented in labeled graphs by means of
sets of descriptive properties, where each property is a kind of meta-data denoted as
property_name: property_value.

As defined in Dyreson et al. (1999), a semistructured database DB =
(V, E, &root, �) (hereinafter DBJ), is a graph where V is a set of nodes, E is a
set of labeled directed edges, &root is a single root node, and � is a collection of
property operations that determine the semantics of properties, when querying data.
An edge in E, from a node v to a node w, has a label L, composed by a set of m pairs
{(p1 : x1), . . . , (pm : xm)}, where each pi is the name of a property and xi a value in
the property domain. Each property name is unique; moreover, a required property
pi is denoted as (!pi : xi) property. Property operations exist in � for each pi: i.e., for
each property pi, operations collapse, match, coalesce, and slice on property values
should be specified in �. These operations are needed to accommodate properties in
queries.

In this paper, we focus only on properties that represent temporal aspects of
semistructured data, by considering the classical notions of valid and transaction
times studied in the past years in the context of temporal databases (Jensen et al.
1998; Jensen and Snodgrass 1999); these notions will be represented as required
properties. However, the model and algorithms we propose are general enough
to be applied also in scenarios when other properties are considered. Moreover,
we explicitly formalize all the temporal operations and constraints needed to
guarantee the consistency of the model; as we do not focus on queries on semi-
structured databases, in the proposed data model we will not consider the set of
operations �.

J Intell Inf Syst (2012) 38:601–644 611

To motivate our proposal, we point out some limitations of the DBJ model and
our extensions to overcome them:

– DBJ graphs have property labels only on edges, because in the authors’ opinion
nodes are completely described by the paths that lead to them. This limitation
does not allow one to represent general relationships (different from the con-
tainment) between nodes, unless introducing ad-hoc nodes representing the se-
mantics of the relationships. For example, for expressing validity of relationships
between people, as it happens in ontological representations, both nodes and
edges may be labeled with the valid time property; in this case with edges it is
possible to represent different relationships, such as parent_of, friends_of, and
so on. Our choice is to use a higher-level graph-based model with (required)
properties both on nodes and edges.

– Valid time both for nodes and edges is not entirely redundant: indeed, intro-
ducing valid time only on edges, and computing the validity of a node as the
union of the lifetime of the incoming edges, does not allow one to represent the
situation when a node exists at times other than times of its relationships. For
example, if we consider to represent facts related to a conference organization,
the organization activity, modeled by a relation Organizes can be naturally
performed and completed before the beginning of the conference. This situation
is modeled in a labeled graph, by introducing two nodes representing the
organization committee and the considered conference and the Organizes edge
between them with a validity that is not included in the valid time interval of the
Conference node (the valid time of the edge is before the one of the Conference
node w.r.t. the Allen’s relationships (Allen 1983)).

– We use as domain of the valid time property the set of temporal elements.
We recall that a temporal element {[t1, t2], [t3, t4], ..., [tk−1, tk]} is a finite set of
disjoint time intervals, that is closed under the set theoretic operations of union,
difference and intersection, as defined in Garani (2006).

– Our model is coalesced, a term coined in Böhlen et al. (1996) for relational
databases, to indicate that all pairs of distinct tuples from a relation r are either
not value-equivalent, or, if they are value-equivalent, then they must be non-
adjacent and non-overlapping. We will see that our operations explicitly enforce
coalescing on update and insertion of paths.

Formally, a PSTDM graph is a rooted, acyclic, connected, directed, and labeled
graph 〈N, E, r〉, where:

1. N is a (finite) set of labeled nodes (actually, N is the set of node identifiers
ni). In VT PSTDM graphs (i.e. PSTDM graphs representing the Valid Time
dimension), each node ni ∈ N has as label a set composed by three required de-
scriptive properties, of the form {(!name : node_namei), (!content : ci), (!vt :
ti)}, where the value node_namei is the name of the node, ci its content, and ti the
value for the temporal dimension vt, respectively. Nodes of TT PSTDM graphs
(i.e. PSTDM graphs representing the Transaction Time dimension) have labels
composed by the properties {(!name : node_namei), (!content : ci), (!tt : ti)}
representing the name of the node, its content, and the value for the temporal
dimension tt, respectively.

612 J Intell Inf Syst (2012) 38:601–644

The domains for the properties are: domain(name) = S (where S is the set
of strings), domain(content) = S ∪ {⊥} (where ⊥ represents the undefined
value), domain(vt) = T E (where T E is the set of temporal elements), and
domain(tt) = CI (where CI is the set of closed intervals).
To make the formalization more readable, we introduce the node labeling
function � that, given a node, returns its set of descriptive properties. � can
be seen as the composition of three single-valued functions �N : N −→ S , �C :
N −→ S ∪ {⊥} and �Tvt : N −→ T E (or �Ttt : N −→ C I), which return, for a
given node, the value of the name, content, and vt (tt) property, respectively.

2. E is a set of labeled edges. Each edge e j ∈ E has as label a set of two re-
quired properties of the form {(!name : edge_name j), (!vt : t j)} and {(!name :
edge_name j), (!tt : t j)} respectively for VT and TT PSTDM graphs; edge_name j

is the name representing the semantics of the edge, and t j the value for the
represented temporal dimension: domain(name) = S , domain(vt) = T E , and
domain(tt) = CI . Edges have no identifiers: an edge can be identified by its
label and by the two connected nodes, because between two nodes we suppose
to have only one edge with a particular name and a particular value for the
represented temporal dimension.

3. r ∈ N is the unique root of the graph and is introduced in order to guarantee that
all the other nodes can be reached (starting from the root).

There are some general constraints for a PSTDM graph: indeed, we impose
internal nodes to have a not defined value as content (the ⊥ value is admissible
for the content property); on the other hand, a (primitive) content can be only in
leaves. Thus, for example, a VT PSTDM graph must satisfy the following constraints:

1. ∀n ∈ N((∃e ∈ E(e = 〈(n, m), {(!name : namee), (!vt : timee)}〉)) → �C(n) =⊥).
2. ∀n ∈ N((�C(n) �=⊥) → ¬∃e ∈ E(e = 〈(n, m), {(!name : namee), (!vt : timee)}〉)).

Hereinafter, we will call complex nodes those representing complex objects with-
out a value for the content property, and simple nodes the other ones, i.e. leaves
representing atomic features.

In the following sections we will focus on constraints we have to introduce on
PSTDM graphs, to suitably represent the different semantics related to the VT
dimension, to the TT dimension, and VT and TT dimensions together. We preferred
to adopt a semistructured data model, instead of dealing directly with XML: this
way, as mentioned in the introduction and according to other proposals (Chawathe
et al. 1999; Dyreson et al. 1999; Oliboni et al. 2001), the proposed solution can
be considered as a logical model for temporal semistructured data, which can be
translated into different XML-based languages/technologies. Moreover, we do not
focus on data structures and algorithms to store and manage (PSTDM) graphs in
an efficient way: our main aim is the definition of the semistructured temporal data
model, the needed constraints to manage time in a consistent way, and the operations
required to (correctly) modify PSTDM graphs.

5 Managing valid time with PSTDM

In this section we consider the issues related to the management of VT in the
semistructured data context. In this case, the considered temporal dimension is given

J Intell Inf Syst (2012) 38:601–644 613

by the user, being valid time related to the description of the considered real world.
Thus, a VT PSTDM graph represents complex objects and their valid times through
complex nodes; temporal relations between objects are represented through suitable
labeled edges between complex nodes. Simple (temporal) properties of complex
objects are represented through labeled edges between complex nodes and leaf
nodes, which contain the property values. Valid times of properties are represented
through the valid time of the corresponding edges, while valid times of simple (leaf)
nodes are derived from all the valid times of their ingoing edges.

Thus, constraints and operations must be able to guarantee that the history of the
given application domain is consistent.

5.1 Constraints for valid time

The following constraints on a PSTDM graph allow us to explicitly consider the
features of semistructured data timestamped by the valid time. When considering
the valid time dimension, we define the validity of a node (edge) with respect to
the time, in the represented domain. Thus, a node (edge) is considered as valid in the
time period represented by its related time intervals (the ones composing its temporal
element).

1. The temporal element of an edge between a complex node and a simple node
must be related to the temporal element of the complex node.

∀e j ∈ E
((

e j = 〈(nh, nk) ,
{(!name : edge_name j

)
,
(!vt : T j

)}〉
∧ �Tvt (nh) = Tnh ∧ �C(nk) �=⊥)

→ ∀ [
t js, t je

] ∈ T j ∃ [
tnhs , tnhe

] ∈ Tnh

(
t js ≥ tnhs ∧ t je ≤ tnhe

))

We suppose that a complex node is connected to its properties (simple nodes)
during its temporal elements, i.e. when it is valid. Thus, the valid time of the
edge between a complex node and a simple node must be contained in the valid
time of the complex node. This means that each time interval of the edge cannot
start before and cannot end after a valid time interval of the temporal element
related to the complex node.

2. The valid time of each simple node is related to the valid times of all its ingoing
edges:

∀nh ∈ N
((

�C (nh) �=⊥ ∧�Tvt (nh) = Tnh

) → Tnh =
⋃ {

Te j|∃e j ∈ E

(
e j = 〈(nk, nh) ,

{(!name : e_namee j

)
,
(!vt : Te j

)}〉)}
)

Tnh is the union of temporal elements (Garani 2006) of the ingoing edges for the
considered node nh, which are closed w.r.t. the union operation, thus, Tnh is itself
a temporal element. This is due to the fact that simple nodes represent properties
of complex nodes, and thus the valid time of a simple node must be related to the
valid times of all its ingoing edges. This represents the fact that in the reality, a
property can be present only if it is related to an entity.
In the case of VT this constraint is specified, and thus holds, only for simple
nodes: indeed, while the valid time of a simple node is constrained by the fact
that the given node represents a simple property of some complex node, the

614 J Intell Inf Syst (2012) 38:601–644

valid time of a complex node is not related to the VT of its incoming edges,
as it represents the intervals of time over which the represented entity holds.
More complex valid time semantics for complex nodes and related edges can be
specified, as discussed in the following.

3. When representing valid time we impose to have unique simple node labels:

∀n ∈ N
(
�C(n) �=⊥→ ¬∃n′ ∈ N

(
n′ �= n ∧ �N

(
n′) = �N(n) ∧ �C

(
n′) = �C(n)

))

4. When representing valid time we impose to have unique edge labels between
each pair of nodes:

∀e ∈ E
(
e = 〈(n, m), {(!name : namee) , (!vt : Te)}〉 → ¬∃e′

∈ E
(
e′ = 〈(n, m), {(!name : namee) , (!vt : Te′)}〉 ∧ Te �= Te′

))

5. Other possible optional constraints can be introduced, according to the modeled
domain. Let us consider the constraints for imposing restrictions on the temporal
element of an edge connecting two complex nodes. These constraints are strictly
related to the semantics of represented objects and relationships. For example,
when considering the relation Is_descendant between two Person nodes, we can
assume that the relation cannot be established before that both nodes are valid in
the considered domain, but it can be maintained after the end of one (or both) of
the connected nodes. The relation Is_descendant represents a family tie which
is still valid after the end (death) of the considered people. In this case, the
following formula holds:1

∀e j ∈ E
((

e j = 〈
(nh, nk) ,

{
(!name : Is_descendant) ,

(!vt : {[
t js, _

]})}〉

∧ �N (nh) = Person ∧ �Tvt (nh) = {[ths, _]}
∧ �N (nk) = Person ∧ �Tvt (nk) = {[tks, _]}) → t js = max (ths, tks)

)

On the other hand, if we consider to represent future events, as, for example,
the information about a conference organization, we could consider a constraint
imposing that the relation Organizes between a Person node and a Conference
node cannot be established before that the Person node is valid in the considered
domain, and cannot continue after the end of the Person node (in this example
the validity of the edge is not related to the validity of the Conference node, and
the validity of the Person node is related to its life).

1Hereinafter, in the formulae we will use a prolog-like notation: each part of a node/edge label
which could have any value in the formula is represented by the “do not care” symbol “_” in the
corresponding position in the label.

J Intell Inf Syst (2012) 38:601–644 615

If we assume that the organization activity of a conference ends at most at the
beginning of the conference, then the following formula must hold:

∀e j ∈ E
((

e j = 〈
(nh, nk) ,

{
(!name : Organizes) ,

(!vt : {[
t js, t je

]})}〉

∧ �N (nh) = Person ∧ �Tvt (nh) = {[ths, the]}
∧ �N (nk) = Conference ∧ �Tvt (nk) = {[tks, _]})

→ (
t js ≥ ths ∧ t je ≤ min (the, tks)

))

Otherwise, if we assume that the organization activity may go on also during the
conference time and ends at most at the end of the conference, then it must hold:

∀e j ∈ E
((

e j = 〈
(nh, nk) ,

{
(!name : Organizes) ,

(!vt : {[
t js, t je

]})}〉

∧ �N (nh) = Person ∧ �Tvt (nh) = {[ths, the]}
∧ �N (nk) = Conference ∧ �Tvt (nk) = {[tks, tke]})

→ (
t js ≥ ths ∧ t je ≤ min (the, tke)

))

Otherwise, if we assume that the organization activity may go on also after the
end of the conference, then it must old:

∀e j ∈ E
((

e j = 〈
(nh, nk) ,

{
(!name : Organizes) ,

(!vt : {[
t js, t je

]})}〉

∧ �N (nh) = Person ∧ �Tvt (nh) = {[ths, the]}
∧ �N (nk) = Conference ∧ �Tvt (nk) = {[tks, tke]})

→ (
t js ≥ ths ∧ t je ≤ the

))

Another (general) option is that we could choose to adopt an approach similar,
in some sense, to the sequenced semantics of relational temporal databases
(Snodgrass 2000). In this semantics, the history of the represented world is
perceived (and managed through queries, updates, and so on) as a temporal
sequence of states, which are in our case (disjoint) atemporal graphs. According
to this view, we have to impose that the relations between complex nodes may
be valid only in the intersection of the time intervals of the nodes. Thus, the
following formula will hold:

∀e j ∈ E
((

e j = 〈
(nh, nk) ,

{
(!name : e_name) ,

(!vt : T E j
)}〉

∧ �Tvt (nh) = T Enh ∧ �C (nk) =⊥ ∧�Tvt (nk) = T Enk

)

→ ∀ [
t js, t je

] ∈ T E j∃ [ths, the] ∈ T Enh∃ [tks, tke]

∈ T Enk

(
t js ≥ max (ths, tks) ∧ t je ≤ min (the, tke)

))

In this perspective, user-defined constraints for VT PSTDM graphs could allow
one to represent different kinds of temporal information, as those proposed, for
example, in Terenziani and Snodgrass (2004), where the distinction of point-based vs
interval-based semantics when associating a fact to a temporal dimension is discussed
within the context of temporal databases. A more refined classification of temporal
propositions according to their temporal features has been proposed in Shoham
(1987) and widely considered in the AI area. In Combi (2000), the author proposes

616 J Intell Inf Syst (2012) 38:601–644

Fig. 1 A PSTDM database
dealing with valid time

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]})} {(!name:Demo),
(!vt:{[10/01/04;08:00,now]})}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]})}

different semantics for temporal facts associated to multimedia data in the context of
multimedia object-oriented temporal databases.

5.2 Example: managing VT with PSTDM

On January 10, 2004, at 8:00 a.m., the physician visits for the first time Ron Dalton
who becomes, from this moment, his patient. Thus, we have to insert into the PSTDM
database the node Patient with the related node Name having as content “Ron
Dalton”. The temporal element of this portion of database is {[10/01/04;08:00, now]}.2

This portion of PSTDM database is represented in Fig. 1 and it does not matter when
data insertion happened.

From February 1, 2004, at 22:00 p.m. to February 2, 2004, at 02:00 a.m. Ron Dalton
suffered from chest pain and the physician diagnosed this symptom as Angina. Thus,
we have to insert into the PSTDM database the node Symptom, with the related
node Description having as content “Angina”. Moreover, we have to insert the
relations P_Situation between Patient and Symptom and S_Name between Symptom
and Description. The temporal element of these nodes and edges are {[01/02/04;22:00,
02/02/04;02:00]}, i.e., the interval of the symptom. Figure 2 shows the database after
the above operations.

For this situation the physician diagnoses the correct pathology named CAD
(Coronary Artery Disease) with a low severity on February 2, 2004, at 08:00 a.m.,
specifying that this pathology is related to the reported symptom. Thus, we have
to insert into the PSTDM database the node Pathology with the related nodes
Name (having as content “CAD”) and Severity (having as content “Low”) with
temporal element {[02/02/04;08:00, now]}. Moreover, we have to insert the relations
Diagnosis between Patient and Pathology, P_Name between Pathology and Name,
and P_Severity between Pathology and Severity, with the same temporal element.
Then we have to insert the relation Related_to between Pathology and Symptom,
with temporal element {[02/02/04;08:00, now]}. Managing valid time it is possible to
insert an edge between a node having a past valid time and another one which has
a valid time still current: in this example, the time interval of the edge Related_to
starts after the end of the temporal element of Symptom, i.e., {[01/02/04;22:00,
02/02/04;02:00]}. Figure 3 shows the PSTDM graph, after adding the new information.

2In the following we will use the notation DD/MM/YY;HH:Mi (i.e., day, month, year, hour, and
minute) for timestamps.

J Intell Inf Syst (2012) 38:601–644 617

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]})}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

Fig. 2 Adding symptom information to the PSTDM database

On February 2, 2004, at 08:05 a.m., the physician prescribes the therapy to
the patient advising to assume Nitroglycerin. Thus, we have to insert into the
PSTDM database the node Drug and the related node Name with temporal element
{[03/05/01; 08:00, now]}, which represents the time interval during which the drug is
at disposal. Moreover, we have to insert the relation Therapy between Patient and
Drug, with temporal element {[02/02/04;08:05, now]}, as in Fig. 4.

On February 10, 2004, at 11:00 a.m., the pathology of Ron Dalton gets worse
and the severity changes from low to intermediate. Thus, we have to change the
temporal element of the node Severity, from {[02/02/04;08:00, now]} to {[02/02/04;
08:00, 10/02/04;10:59]}, and the same for the temporal element of the edge P_Severity.

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]})}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:Pathology),
(!content:⊥),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Diagnosis),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Name),
(!content:CAD),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,now]})}

{(!name:P_Name),
(!vt:{[02/02/04;08:00,now]})}

{(!name:P_Severity),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Related_to),
(!vt:{[02/02/04;08:00,now]})}

Fig. 3 Adding diagnosis information to the PSTDM database

618 J Intell Inf Syst (2012) 38:601–644

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]})}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:Pathology),
(!content:⊥),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Diagnosis),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Name),
(!content:CAD),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,now]})}

{(!name:P_Name),
(!vt:{[02/02/04;08:00,now]})}

{(!name:P_Severity),
(!vt:[02/02/04;08:00,now])}

{(!name:Related_to),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Drug),
(!content:⊥),

(!vt:{[03/05/01;08:00,now]})}

{(!name:Therapy),
(!vt:{[02/02/04;08:05,now]})}

{(!name:Name),
(!content:Nitroglycerin),

(!vt:{[03/05/01;08:00,now]})}

{(!name:D_Name),
(!vt:{[03/05/01;08:00,now]})}

Fig. 4 Adding therapy information to the PSTDM database

Moreover, we have to insert into the PSTDM database the node Severity (having as
content “Intermediate”) and the relation P_Severity between Pathology and Severity.
The new Severity and new P_Severity temporal elements are {[10/02/04;11:00, now]}.
Figure 5 shows the PSTDM graph after these updates.

On February 10, 2004, at 11:30 a.m., the physician decides to interrupt the therapy
with the Nitroglycerin for nearly two days, thus prescribes to the patient to suspend
the drug from February 10, 2004, at 11:30 a.m. to February 12, 2004, at 08:00
a.m., and then to start it again. Thus we have to change the temporal element of
the edge Therapy, from {[02/02/04;08:05, now]} to {[02/02/04;08:05,10/02/04;11:29],
[12/02/04;08:00, now]}, Fig. 6 shows the final PSTDM graph after the last update.

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]})}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:S_Name),
(!vt:[01/02/04;22:00,02/02/04;02:00])}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Description),
(!content:Angina),

(!vt:[01/02/04;22:00,02/02/04;02:00])}

{(!name:Pathology),
(!content:⊥),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Diagnosis),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Name),
(!content:CAD),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,10/02/04;10:59]})}

{(!name:P_Name),
(!vt:{[02/02/04;08:00,now]})}

{(!name:P_Severity),
(!vt:{[02/02/04;08:00,10/02/04;10:59]})}

{(!name:Related_to),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Drug),
(!content:⊥),

(!vt:{[03/05/01;08:00,now]})}

{(!name:Therapy),
(!vt:{[02/02/04;08:05,now]})}

{(!name:Name),
(!content:Nitroglycerin),

(!vt:{[03/05/01;08:00,now]})}

{(!name:D_Name),
(!vt:{[03/05/01;08:00,now]})}

{(!name:Severity),
(!content:Intermediate),

(!vt:{[10/02/04;11:00,now]})}

{(!name:P_Severity),
(!vt:{[10/02/04;11:00,now]})}

Fig. 5 Updating the pathology information of the PSTDM database

J Intell Inf Syst (2012) 38:601–644 619

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]})}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]})}

{(!name:S_Name),
(!vt:[01/02/04;22:00,02/02/04;02:00])}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]})}

{(!name:Description),
(!content:Angina),

(!vt:[01/02/04;22:00,02/02/04;02:00])}

{(!name:Pathology),
(!content:⊥),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Diagnosis),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Name),
(!content:CAD),

(!vt:{[02/02/04;08:00,now]})}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,10/02/04;10:59]})}

{(!name:P_Name),
(!vt:{[02/02/04;08:00,now]})}

{(!name:P_Severity),
(!vt:{[02/02/04;08:00,10/02/04;10:59]})}

{(!name:Related_to),
(!vt:{[02/02/04;08:00,now]})}

{(!name:Drug),
(!content:⊥),

(!vt:{[03/05/01;08:00,now]})}

{(!name:Therapy),
(!vt:{[02/02/04;08:05,10/02/04;11:29]

[12/02/04;08:00,now]})}

{(!name:Name),
(!content:Nitroglycerin),

(!vt:{[03/05/01;08:00,now]})}

{(!name:D_Name),
(!vt:{[03/05/01;08:00,now]})}

{(!name:Severity),
(!content:Intermediate),

(!vt:{[10/02/04;11:00,now]})}

{(!name:P_Severity),
(!vt:{[10/02/04;11:00,now]})}

Fig. 6 Updating the validity of the therapy in the PSTDM database

5.3 Operations on PSTDM graphs for managing valid time

In this section we define the set of operations to build VT PSTDM graphs and
manage valid time.

We define two groups of operations: basic operations and complex operations.
Basic operations are applied by the system and are properly combined in order to
implement complex operations in a correct way; they are not available to the user,
while complex operations are, and allow her to modify incrementally VT PSTDM
graphs. Without loss of generality, we may assume that complex operations are
supported by the system and the final user (as, for example, the physician or a
nurse in our case) may access it through an ad-hoc (graphical) interactive software
application that uses complex operations as the basic way to interact with the
semistructured temporal database.

In Section 5.1 we briefly introduced the constraints needed to manage in a correct
way the valid time dimension; now we formally define the operations required
to (correctly) change VT PSTDM graphs. In particular we adopt an incremental
approach to build VT PSTDM graphs: we assume to start with a (correct) VT
PSTDM graph and our goal is to be able to verify that any allowed operation on this
graph produces another (correct) VT PSTDM graph. This incremental approach is
obtained by defining ad-hoc algorithms which guarantee that any complex operation
(i.e., a sequence of basic operations) produces only (correct) VT PSTDM graphs.

By considering operations producing correct effects on VT PSTDM graphs, i.e.,
the result of each operation is a VT PSTDM graph which satisfies the constraints
defined in Section 5.1, we also guarantee that any sequence of the defined complex
operations is consistent with respect to our model, thus we avoid the problem of
having incorrect sequences of operations (Chawathe et al. 1999).

In the following, we will present basic operations and then we will introduce the
complex ones.

620 J Intell Inf Syst (2012) 38:601–644

Basic operations consist mainly in inserting/deleting nodes and edges.

1. Insert a node
TE_insert-node(G, Nname, Ncontent, TEn, rootf lag) inserts in a graph G a node
with label {(!name : Nname), (!content : Ncontent), (!vt : T En)} and gives as
result the identifier na assigned to the added node together with the resulting
graph . If the boolean variable rootf lag has value true, the added node is the root
of the resulting graph.

2. Insert an edge
TE_insert-edge(G, nfrom, nto, Ename, TEe) inserts the edge e j = 〈(n from, nto),

{(!name : Ename), (!vt : T Ee)}〉 between the nodes n from and nto in the graph
G, and returns the resulting graph.

3. Delete a node
TE_delete-node(G, nd) removes the node nd from the graph G.

4. Delete an edge
TE_delete-edge(G, nfrom, nto, Ename) removes from the graph G the edge be-
tween nodes n from and nto, labeled Ename. We remark that for valid time, the
temporal element is not necessary to identify an edge between two nodes; indeed,
for constraint 4 in Section 5.1, given two nodes, there is at most one edge between
them with a specific label.

Let us now consider the set of available complex operations to modify a VT
PSTDM graph. As we did not introduce any basic operation for node/edge updates,
complex operations involving the update of some property of nodes return a graph
where the modified nodes have new identifiers, as node identifiers are considered as
internal features of a PSTDM graph used to manage in a proper way the structure of
the graph itself. In the following, each introduced complex operation on VT PSTDM
graphs will be identified by the prefix CVT- (Complex Valid Time).

1. Add the root node
CVT-add-root-node(Nname, T Er) creates a new graph G with a root node
having label {(!name : Nname), (!content :⊥), (!vt : T Er)} by using the basic
operation TE_insert-node, and gives as result the node identifier nr and the new
graph G. We suppose the user chooses this operation as the first one to build
a new VT PSTDM graph; any node added to an existing VT PSTDM graph in
a second moment by means of a CVT-add-node operation will be directly, or
indirectly, reachable from the root node.

2. Add a node
CVT-add-node(G, Nname, Ncontent, T En, np, Ename, T Ee) adds a suitable
node to the graph G, connected through a given edge to an existing node np,
if it is possible.
This operation is implemented by the algorithm reported in Fig. 7: the first
if construct verifies whether the node to be added is complex. If the node is
complex, the algorithm has to verify that the (optional) user-defined constraints
would be satisfied by the modified graph; if it is the case, the new node is added
by the suitable basic operations (lines 5 and 6 in Fig. 7).
More complex checks have to be done when the node to be added is a simple
one. In this case, before the insertion of the new node, the algorithm has to
verify that valid intervals of the new node and edge are the same (end of line
14) and that the valid temporal element of the new edge is contained in the valid

J Intell Inf Syst (2012) 38:601–644 621

Fig. 7 The algorithm for adding a node in a valid time PSTDM graph

temporal element of the specified parent node np (line 14), to guarantee that the
added simple node properly represents a property (with respect to the temporal
dimension) of the parent node np (see also constraints 1 and 2 for VT PSTDM
graphs). Otherwise, the operation fails and the graph G is returned without any
change (line 27). In case the new node is suitable for the addition to graph G, the
algorithm has to verify the existence of another simple node nh with the same
name Nname and the same content Ncontent in the graph G: in the positive case
the operation reduces to adding an edge from np to this node nh, and modifying
(if needed) its temporal element according to constraint 2 for VT. Otherwise, the
algorithm simply adds the new simple node and edge (lines 22 and 23).

3. Add an edge
CVT-add-edge(G, np, nh, Ename, T Ee) checks that there are no other edges
between nodes np and nh, with the same Ename (see the constraint 4 of VT);
furthermore, it checks the validity of the constraint (if any) with respect to the
user-defined semantics of the represented relation; if any constraint is violated

622 J Intell Inf Syst (2012) 38:601–644

the operation fails. Otherwise, if nh is a complex node the operation is realized
by calling the basic operation TE_insert-edge(G, np, nh, Ename, TEe). If nh is a
simple node, before adding the required edge, the operation has to verify that
the valid time of the parent node np contains the valid time of the considered
edge; if it is the case, the algorithm adds the new edge by the basic operation
TE_insert-edge, otherwise it fails. The algorithm has to suitably modify the valid
time of the simple node nh, according to Constraint 2 for Valid Time.

4. Modify the temporal element of a complex node
CVT-modify-complex-time(G, nc, NewTE) checks (i) that the new valid time of
the complex node is still consistent with valid times of relations with its simple
nodes (i.e., valid times of edges to simple nodes must be contained in or equal
to the new valid time of the complex node), and (ii) that optional user-defined
constraints are satisfied by the new valid time. If all these constraints are satisfied,
the operation modifies the valid time of the node nc to NewTE. Basic operations
are used to create a new complex node with the suitable label, to “move” all
the edges pointing to/from the node to be modified to the new one (see lines 21
and 22 of the algorithm in Fig. 7 for a similar situation), and to delete the node
with the old label. This operation is used even when an update of the temporal
element of the node is needed: indeed, in this case NewTE = oldTE ∪ [ts, te],
where oldTE is the temporal element before the update and [ts, te] is the interval
to add to oldTE.

5. Modify the temporal element of an edge
CVT-modify-edge-time(G, np, nh, Ename, NewTE) modifies the valid time of an
edge, only if the new valid time does not introduce a violation of the VT
constraints. More specifically, if the edge to be modified is connecting a complex
node to a simple one, the new valid time temporal element has to be contained in
the temporal element of the connected complex node np (see constraint 1 for VT
PSTDM graphs). The algorithm reported in Fig. 8 implements this operation. As
for the previous operation, CVT-modify-edge-time is also used for updating the
temporal element of an edge.

6. Modify the content of a node
CVT-modify-value(G, nh, NewContent) modifies the old content of nh to the
new content NewContent. If a simple node nk with label NewContent exists in G,
then the operation is implemented by “moving” all the incoming edges of nh to nk

and by modifying, if it is necessary, the temporal element of nk. Otherwise, basic
operations are used to create a new node with the suitable content, to “move” all
the edges pointing to the node to be modified to the new one, and to delete the
node with the old content.

7. Remove a node
CVT-remove-node(G, nr) removes the node nr, if it exists. First, the operation
removes all the ingoing edges of the node nr through the basic operation
delete-edge. Then, it removes also all the outgoing edges (if any) by calling
the complex operation CVT-remove-edge, detailed in the following. Finally, it
removes the node nr by calling the basic operation delete-node(nr).

8. Remove an edge
CVT-remove-edge(G, nh, nk, Ename) removes the edge labeled Ename between
nodes nh and nk, if it exists. In order to avoid that the output VT PSTDM graph
contains nodes that are not reachable from the root, the operation first removes
the node nk, if it is linked to the root only through paths containing the edge

J Intell Inf Syst (2012) 38:601–644 623

Fig. 8 The algorithm for modifying the valid time of an edge

to remove, by calling the operation CVT-remove-node(G, nk). Finally, the basic
operation TE_delete-edge is called. If nk is a simple node and it has not to be
deleted, it could be the case that the valid time of nk must be properly modified,
to be the minimal temporal element containing all the valid times of its ingoing
edges (see constraint 2 for VT PSTDM graphs in Section 5.1).
It is worth noting that these two last operations, which are recursively inter-
twined, avoid that the output VT PSTDM graph contains nodes that are not
reachable from the root, by recursively removing all the nodes and edges, which
were linked to the root only through paths containing the node or the edge to be
removed, respectively.

6 Managing transaction time with the PSTDM data model

Transaction time (TT) allows us to maintain the graph evolutions due to operations,
such as insertion, deletion, and update, on nodes and edges. From this point of view,
a TT PSTDM graph represents the changes of a (atemporal) graph, i.e., it represents
in a compact way a sequence of several atemporal graphs, each of them obtained
as result of some operations on the previous one. In this context, the current graph

624 J Intell Inf Syst (2012) 38:601–644

represents the current facts in the semistructured database, and is composed by nodes
and edges which have the transaction time interval ending with the special value uc
(until changed).

Our idea is that operations on nodes and edges of a TT PSTDM graph must have
as result a rooted, connected PSTDM graph. Thus, the current graph, composed
by current nodes and edges, must be a rooted connected graph. Changes in a TT
PSTDM graph are timestamped by TT in order to represent the graph history which
is composed by the sequence of intermediate graphs resulting from the operations.
Each operation on the graph corresponds to the suitable management of temporal
labels of (possibly) several nodes and edges on the PSTDM graph.

6.1 Constraints for transaction time

The following constraints on a PSTDM graph 〈N, E, r〉 allow us to explicitly consider
the append-only feature of semistructured data timestamped by an interval repre-
senting transaction time.

1. The transaction time interval of a generic edge connecting two nodes must be
related to their time intervals. Intuitively, a relation between two nodes can be
established and maintained only in the time interval in which both the related
nodes are present in the graph.

∀e j ∈ E
((

e j = 〈
(nh, nk) ,

{
_,

[
t js, t je

]}〉

∧ �Ttt (nh) = [ths, the] ∧ �Ttt (nk) = [tks, tke]
)

→ (
t js ≥ max (ths, tks) ∧ t je ≤ min (the, tke)

))

2. The time interval of each node is related to the time interval of all its ingoing
edges. More particularly, for a given node but the root, the union of time intervals
of all ingoing edges must be a (convex) interval. Indeed, a gap in the union of
these intervals would mean that there are time points where the considered node
is not reachable (which is not allowed).
Let us assume the following function In(n) where n ∈ N is a generic node:

In(n) = {[ts, te] | ∃e ∈ E(e = 〈(_, n), {(!name : Ename), (!tt : [ts, te])}〉)}
The constraints can be expressed by the following formula:

∀nk ∈ N
(

(�Ttt (nk) = [tks, tke]) →
⋃

[t js,t je]∈In(nk)

[t js, t je] = [tks, tke]
)

Intuitively, a node (different from the root) can be maintained in the graph only
if it is connected to at least one current complex node by means of an edge.

3. At a specific time instant, between two nodes it cannot exist more than one edge
with the same name Ename.
Let be

eCnctd(n1, n2, Ename)

= {[ts, te] | e ∈ E(e = 〈(n1, n2), {(!name : Ename), (!tt : [ts, te])}〉)}
Note that all the considered edges have the same name Ename.

J Intell Inf Syst (2012) 38:601–644 625

The constraint is represented through the following formula:

∀En ∈ S ∀nh ∈ N ∀nk ∈ N
(⋂

[t js,t je]∈eCnctd(nh,nk,En)

[t js, t je] = ∅
)

This is due to the fact that an edge represents a relationship between two nodes,
thus it makes no sense representing with two edges the same relationship.

6.2 Example: managing TT with PSTDM

On March 12, 2004, at 08:00 a.m., the physician stores into the database some infor-
mation about the patient Ron Dalton and his symptom of chest pain. Thus, on March
12, 2004, at 08:00 a.m. the complex node Patient with its simple node Name (having
as content “Ron Dalton”), and the complex node Symptom, with its simple node
Description (having as content “Angina”) are inserted into the PSTDM database.
Moreover, the edges Demo between Patient and Name, P_Situation between Patient
and Symptom and S_Name between Symptom and Description are inserted. It is
worth noting that the time intervals of all these nodes and edges are [12/03/04;08:00,
uc]. Figure 9 shows the PSTDM graph after these insertions.

On March 12, 2004, at 08:05 a.m., the physician stores into the database also
the diagnosis of low coronary artery disease (CAD). Thus, on March 12, 2004,
at 08:05 a.m., the complex node Pathology with its simple nodes Name (having
as content “CAD”) and Severity (having as content “Low”) are inserted into the
PSTDM database. Moreover, the relations Diagnosis between Patient and Pathology,
P_Name between Pathology and Name and P_Severity between Pathology and
Severity are inserted. The time intervals of these nodes and edges are [12/03/04;08:05,
uc]. Figure 10 shows the PSTDM graph after these insertions.

On March 12, 2004, at 08:30 a.m., the physician stores in the database the drug
prescription. Thus, on March 12, 2004, at 08:30 a.m., the complex node Drug with its
simple node Name (having as content “Nitroglycerin”) are inserted into the PSTDM
database. Moreover, the relation Therapy between Patient and Drug, D_Name

Fig. 9 The PSTDM database
after data insertions on March
12, 2004 at 08:00 a.m

{(!name:Patient),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:Demo),
(!tt:[12/03/04;08:00, uc])}

{(!name:Symptom),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!tt:[12/03/04;08:00, uc])}

{(!name:Description),
(!content:Angina),

(!tt:{[12/03/04;08:00, uc])}

626 J Intell Inf Syst (2012) 38:601–644

{(!name:Patient),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:Demo),
(!tt:[12/03/04;08:00, uc])}

{(!name:Symptom),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!tt:[12/03/04;08:00, uc])}

{(!name:Description),
(!content:Angina),

(!tt:{[12/03/04;08:00, uc])}

{(!name:Pathology),
(!content:⊥),

(!tt:[12/03/04;08:05, uc])}

{(!name:Diagnosis),
(!tt:[12/03/04;08:05, uc])}

{(!name:Name),
(!content:CAD),

(!tt:[12/03/04;08:05, uc])}

{(!name:Severity),
(!content:Low),

(!tt:[12/03/04;08:05, uc])}

{(!name:P_Name),
(!tt:[12/03/04;08:05, uc])}

{(!name:P_Severity),
(!tt:[12/03/04;08:05, uc])}

Fig. 10 The PSTDM database after data insertions on March 12, 2004 at 08:05 a.m

between Drug and Name are inserted. The time intervals of these nodes and edges
are [12/03/04;08:30, uc]. Figure 11 shows the PSTDM graph after these insertions.

On March 21, 2004, at 10:00 a.m., the physician corrects the insertion mistake
about the pathology severity, which is actually “Intermediate”. Thus, on March
21, 2004, at 10:00 a.m., the simple node Severity is removed from the graph: its
time interval changes from [12/03/04;08:05, uc] to [12/03/04;08:05, 21/03/04;09:59] in
the PSTDM graph, and the same is for the time interval of the edge P_Severity.

{(!name:Patient),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:Demo),
(!tt:[12/03/04;08:00, uc])}

{(!name:Symptom),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!tt:[12/03/04;08:00, uc])}

{(!name:Description),
(!content:Angina),

(!tt:{[12/03/04;08:00, uc])}

{(!name:Pathology),
(!content:⊥),

(!tt:[12/03/04;08:05, uc])}

{(!name:Diagnosis),
(!tt:[12/03/04;08:05, uc])}

{(!name:Name),
(!content:CAD),

(!tt:[12/03/04;08:05, uc])} {(!name:Severity),
(!content:Low),

(!tt:[12/03/04;08:05, uc])}

{(!name:P_Name),
(!tt:[12/03/04;08:05, uc])}

{(!name:P_Severity),
(!tt:[12/03/04;08:05, uc])}

{(!name:Drug),
(!content:⊥),

(!tt:[12/03/04;08:30, uc])}

{(!name:Therapy),
(!tt:[12/03/04;08:30, uc])}

{(!name:Name),
(!content:Nitroglycerin),

(!tt:[12/03/04;08:30, uc])}

{(!name:D_Name),
(!tt:[12/03/04;08:30, uc])}

Fig. 11 The PSTDM database after data insertions on March 12, 2004 at 08:30 a.m

J Intell Inf Syst (2012) 38:601–644 627

Moreover, the simple node Severity (having as content “Intermediate”) and the
relation P_Severity between Pathology and Severity are inserted into the PSTDM
database. The new Severity and P_Severity time intervals are [21/03/04;10:00, uc];
from this moment the new simple node Severity, with content “Intermediate” is
current. The physician does not modify the therapy. Figure 12 represents the PSTDM
database resulting from these last operations.

6.3 Operations on PSTDM graphs for managing transaction time

Now we introduce basic and complex operations to deal with transaction time. In
particular, we point out the main differences with the operations introduced in
Section 5.3 for the valid time dimension.

When managing transaction time, the time interval of nodes and edges of a
PSTDM graph is system-generated. In the following, each introduced complex
operation on TT PSTDM graphs will be identified by the prefix CTT- (Complex
Transaction Time). Moreover, basic operations differs from those introduced for
VT only for the domain of the temporal property (i.e. !tt), that is the set of time
intervals; thus, we explicitly introduce only the operation for inserting a node, for the
others we remind their name. Since the domain of the temporal dimension is the set
of time intervals, basic operations will be identified by the prefix I_.

Let us start with the basic operations, directly managed by the system.

1. Insert a node
I_insert-node(G, Nname, Ncontent, [ts, te], rootf lag) inserts in a graph G a node
with label {(!name : Nname), (!content : Ncontent), (!tt : [ts, te])} and gives as
result the identifier na assigned to the added node together with the resulting
graph, as shown by the pseudocode in Fig. 13. If the boolean variable rootf lag
has value true, the added node is the root of the resulting graph.

{(!name:Patient),
(!content:⊥),

(!tt:[12/03/04;08:00,uc])}

{(!name:Demo),
(!tt:[12/03/04;08:00, uc])}

{(!name:Symptom),
(!content:⊥),

(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!tt:[12/03/04;08:00, uc])}

{(!name:Description),
(!content:Angina),

(!tt:{[12/03/04;08:00, uc])}

{(!name:Pathology),
(!content:⊥),

(!tt:[12/03/04;08:05,
uc])}

{(!name:Diagnosis),
(!tt:[12/03/04;08:05, uc])}

{(!name:Name),
(!content:CAD),

(!tt:[12/03/04;08:05, uc])}

{(!name:Severity),
(!content:Low),

(!tt:[12/03/04;08:05, 21/03/04:09:59])}

{(!name:P_Name),
(!tt:[12/03/04;08:05, uc])}

{(!name:P_Severity),
(!tt:[12/03/04;08:05,
21/03/04:09:59])}

{(!name:Drug),
(!content:⊥),

(!tt:[12/03/04;08:30, uc])}

{(!name:Therapy),
(!tt:[12/03/04;08:30, uc])}

{(!name:Name),
(!content:Nitroglycerin),

(!tt:[12/03/04;08:30, uc])}

{(!name:D_Name),
(!tt:[12/03/04;08:30, uc])}

{(!name:Severity),
(!content:Intermediate),

(!tt:[21/03/04;10:00, uc])}

{(!name:P_Severity),
(!tt:[21/03/04:09:59, uc])}

Fig. 12 The PSTDM database after the mistake correction on March 21, 2004 at 10:00 a.m

628 J Intell Inf Syst (2012) 38:601–644

2. Insert an edge
I_insert-edge(G, nfrom, nto, Ename, [ts, te]) inserts the edge e j = 〈(n from, nto),

{(!name : Ename), (!tt : [ts, te])}〉 between the nodes n from and nto in the graph
G, and returns the resulting graph.

3. Delete a node
I_delete-node(G, nd) removes the node nd from the graph G.

4. Delete an edge
I_delete-edge(G, nfrom, nto, Ename, [ts, te]) removes from the graph G the edge
between nodes n from and nto, labeled Ename and having as value for the
temporal property the interval [ts, te].

Let us now consider complex operations, built on top of the basic ones.

1. Add the root node
CTT-add-root-node(Nname, Ncontent) at time ta creates a new empty graph G =
〈∅, ∅,⊥〉 and calls the basic operation I_insert-node(G, Nname, Ncontent, [ta, uc],
true). This operation returns the new graph G and the node identifier of the
added root.
We suppose the user chooses this operation as the first one to build a new
PSTDM graph; any node added to an existing PSTDM graph in a second moment
by means of a CTT-add-node operation will be directly, or indirectly, reachable
from the root node.

2. Add a node
CTT-add-node(G, Nname, Ncontent, np, Ename) at time ta adds to the graph G
a new node having the node np as parent and connected to it by an edge named
Ename. The operation is implemented by means of the algorithm reported in
Fig. 14. The first if construct verifies whether the parent node np is current (line
1). If the parent node is not current, the algorithm does not modify the input
graph, otherwise two main cases are considered.

Fig. 13 The algorithm for the operation I_insert-node

J Intell Inf Syst (2012) 38:601–644 629

Fig. 14 The algorithm for adding a node at time ta in a transaction time PSTDM graph

(a) For adding a complex node, the two basic operations, I_insert-node and
I_insert- edge are called (lines 7 and 8). This complex operation does not
violate any constraint; in particular, constraint 1 of TT imposing that the
time interval of an edge is related to the time intervals of the two connected
nodes is satisfied, because the added edge has the same time interval of the
added node, and the time interval of this node starts after the time interval
of its parent np. For the same reason, constraint 2 of TT imposing that the

630 J Intell Inf Syst (2012) 38:601–644

time interval of each node is related to the time interval of all its ingoing
edges is satisfied.

(b) For adding a simple node, the operation first checks whether there is
another current simple node nh with the same name and the same parent
np, and a different content. In this case there are two possible situations: the
node np is not the unique complex node pointing to nh (line 19), thus the
algorithm changes the time interval of the edge connecting np to nh (lines 22
and 23). Otherwise, if the node np is the unique complex node pointing to nh

(lines 18 and 19), the algorithm changes the time interval of nh (lines from
25 to 28), in order to avoid the possibility of storing for a given node two
properties with the same label at the same time (as specified by constraint
3 of TT). As it is shown in the pseudocode of the algorithm, updating time
intervals of nodes and edges consists of inserting and deleting suitable nodes
and edges. As as example, in Fig. 14 lines 25 and 28 substitute a current
node with a corresponding non-current one, having the time interval ending
at the insertion time ta − 1. At the end, the complex operation calls the
basic ones I_insert-node and I_insert-edge to add the new simple node to
the PSTDM graph.

3. Add an edge
CTT-add-edge(G, n from, nto, EName) at time ta first checks whether the nodes
n from and nto to be connected, are current. When at least one of the two nodes
is not current, the operation fails and returns the boolean value false. Moreover,
when there is already a current edge Ename between the two considered
nodes, then this operation fails and returns the boolean value false, as it is not
meaningful to have two nodes connected by two edges with the same name at
the same time (see also constraint 4 for transaction time PSTDM graphs). In the
other cases, CTT-add-edge calls the basic operation I_insert-edge(G, n from, nto,

Ename, [ta, uc]).
4. Remove a node

CTT-remove-node(G, nr) at time tr is implemented according to the following
criteria: if nr is not current, the operation fails and returns the boolean value
false; otherwise, it logically removes the node nr, its ingoing current edges,
and its outgoing current edges. Removing logically nodes and ingoing edges is
performed by basic operations I_insert-node and I_delete-node, I_insert-edge and
I_delete-edge, respectively. Outgoing current edges are removed by suitable calls
of the operation CTT-remove-edge detailed the following. As for the non-current
ingoing and outgoing edges of the removed node, they modified to point to/from
the new non-current node inserted instead of nr.

5. Remove an edge
CTT-remove-edge(G, nh, nk, Ename) at time tr checks whether there is a current
edge labeled Ename between the nodes nh and nk. If not, the operation fails,
otherwise it calls the basic operations I_insert-edge(G, nh, nk, Ename, [tes, tr −
1]) and I_delete-edge(G, nh, nk, Ename, [tes, uc]). At the end, if the node nk

has no ingoing current edges, the complex operation CTT-remove-node(nk) is
called. The intertwined and recursive use of the operations CTT-remove-node
and CTT-remove-edge guarantee that the obtained PSTDM graph is a rooted,
connected graph, the operation CTT-remove-node is recursively applied on each

J Intell Inf Syst (2012) 38:601–644 631

current child of the removed node nr, which has no current ingoing edges (see
also constraints 1 and 2 for TT PSTDM graphs).

6. Modify the name of a node
CTT-modify-name-node(G, nh, NewName) is used to modify the name of a node
at time tm, if it is current, otherwise the operation fails and returns false. This
operation is realized by calling the basic operation insert-node, which adds to
G at time tm the new (complex or simple) node nk with name NewName,
without any ingoing edge, with the same content and type of the modified node
nh. For each ingoing and outgoing (if any) current edge connected to nh, a
corresponding edge is added at time tm, connected to nk instead of to nh. For
example, for each current edge 〈(ni, nh), {(!name : Ename), (!tt : [tes, uc])}〉, the
corresponding edge 〈(ni, nk), {(!name : Ename), (!tt : [tm, uc])}〉 is added.
At the end, the operation calls CTT-remove-node(nh) which removes the
modified node and its ingoing and outgoing edges. The operation does not
remove the nodes originally connected to the node nh because they are now
related to the new (added) node. This operation is composed by a set of basic
and complex operations and thus we suppose that the transaction time is the
same for all the composing operations, and that if there is at least one violation
(in one of the composing operations) the operation CTT-modify-name-node fails
and does not change the graph G.
The user employs this operation to modify the name of a node; actually the result
of the operation is a graph containing the old node (which becomes non current)
and the new node (with the new name). The new node is not related to the old
one, because we do not represent their relationship and do not maintain the
relation between their identifiers.

7. Modify the content of a node
CTT-modify-content-node(G, nm, NewContent) modifies the content of a node
at time tm, if it is current, otherwise the operation fails. The behavior of this
operation is similar to that of the previous CTT-modify-name-node, but it works
on the content, instead of the name of the node.

8. Modify the name of an edge
CTT-modify-name-edge(G, nh, nk, OldEname, NewEname) modifies the name
of an edge at time tm, if the edge is current, otherwise the operation fails.
This operation first checks if there is another current edge labeled NewEname
between nh and nk and in this case fails, to avoid the presence of two
distinct current edges with the same name (i.e., NewEname) between two
nodes (see constraint 3 for TT PSTDM graphs). In the other cases, it calls
the basic operation I_insert-edge(G, nh, nk, NewEName, [tm, uc]), which inserts
at time tm the modified edge, and the complex operation CTT-remove-
edge(nh, nk, OldEname), which removes at time tm the old edge 〈(nh, nk),

{(!name : OldEname), (!tt : [tes, uc])}〉.
We assume to represent PSTDM graphs by means of unordered sets of nodes

and edges, and thus the algorithms we propose to define the operations are not the
most efficient ones. For example, when dealing with transaction time, the rough
complexity of the algorithm of Fig. 14 for adding a node to a PSTDM graph is
O(nN × nE) (with nN the number of nodes and nE the number of edges in the graph)
because the procedure has to consider each node in the set and for each node it has

632 J Intell Inf Syst (2012) 38:601–644

to evaluate each edge of the graph (see lines 14 and 15). The algorithm complexities
can be reduced by using ad-hoc data structures and algorithms (Cormen et al.
2001).

7 Extending PSTDM to manage valid and transaction times together

Bitemporal models are more expressive than temporal ones because they consider
the capability of representing when the facts were valid in the considered reality,
as well as when the facts were current in the database. Even though valid and
transaction times are two orthogonal time dimensions (Jensen and Snodgrass 1999),
i.e., they can be assigned independently one from each other, the presence of both
the temporal dimensions for stored data involves more complex (and intertwined)
constraints with respect to the simple “merge” of temporal constraints related to
valid and transaction times, separately. In other words, the temporal consistency
of information stored into the semistructured database can be verified only by
considering together valid and transaction times: indeed, we are representing into
the same semistructured database a collection of real-world histories, each of them
identified by a given transaction time. The overall consistency of this collection of
histories can be guaranteed only if we take into account also transaction time, when
checking the real-world consistency of the collection and, on the other side, only if we
explicitly consider the valid time dimension, when checking the database consistency
of the collection.

In order to manage valid time and transaction times together, we need to extend
a PSTDM graph, which becomes bitemporal, by representing two temporal prop-
erties; indeed a node ni will have a label �(ni) = {(!name : Nnamei), (!content :
Ncontenti), (!vt : Nvtimei), (!tt : Nttimei)}, and an edge e j = 〈(nh, nk), {(!name :
Ename j), (!vt : Evtime j), (!tt : Ettime j)}〉. Thus, in a bitemporal (BT) PSTDM
graph the two temporal dimensions are explicitly reported both on node and edge
labels and are described by means of a temporal element and a closed interval,
respectively.

In this section we define the set of constraints needed to support in a correct way
the semantics of the considered time dimensions together, and then the operations
to manipulate the bitemporal PSTDM graphs. For each operation we highlight the
constraints that have to be checked in order to guarantee the time-related correctness
of the operation itself.

In order to apply operations on bitemporal graphs we introduce the notion of
snapshot for a bitemporal PSTDM graph, with respect to the transaction time.

Definition 1 Given a time instant t and a bitemporal PSTDM graph G = 〈N, E, r〉,
the snapshot of G at time t (named St) is the bitemporal PSTDM graph G′ =
〈N′, E′, r′〉 such that, ∀ni ∈ N′(t ∈ �Ttt (ni)) and ∀e j = 〈(nh, nk), {(!name : Ename j),

(!vt : Evtime j), (!tt : Ettime j)}〉 ∈ E′(t ∈ Ettime j).

Informally, given a time instant t, the snapshot St is the bitemporal PSTDM sub-
graph G′ of G with all the nodes and edges containing t in the transaction time
interval.

J Intell Inf Syst (2012) 38:601–644 633

7.1 Constraints for valid and transaction times together

In the previous subsections temporal dimensions were not taken into account
together and thus the set of constraints was related to the single modeled temporal
dimension. In this subsection we deal with constraints, which must consider both
valid and transaction times together. As for database consistency, we have to guar-
antee that each snapshot of a bitemporal PSTDM graph is still a bitemporal PSTDM
graph, i.e., a connected, rooted graph, as outlined in the Definition 1. The first and
second constraints defined for the PSTDM model with respect to the transaction time
dimension must hold in the bitemporal context as well:

1. the TT time interval of an edge cannot start before neither end after the TT
intervals of the connected nodes, and

2. the TT interval of each node is related to the TT intervals of all its ingoing
edges. However, when considering the last two constraints with respect to the
transaction time, we have to properly manage also the real-world consistency, by
modifying the constraints as in the following.

3. At a given transaction time, for a complex node it is not possible to simultane-
ously store more than one valid property, i.e., more edges, connected to simple
nodes, with the same name label and valid time intervals having an intersection.

∀Ename ∀Nname ∀nh ∈ N ∀nk ∈ N ∀nl ∈ N ∀e j ∈ E ∀ei

∈ E ((e j = 〈(nh, nk), {(!name : Ename), (!vt : Evtime j),

(!tt : [tt js, tt je])}〉
∧ei = 〈(nh, nl), {(!name : Ename), (!vt : Evtimei),

(!tt : [ttis, ttie])}〉
∧nk �= nl ∧ �N (nk) = Nname ∧ �N (nl) = Nname)

→ ((Evtime j ∩ Evtimei �= ∅) → ([tt js, tt je] ∩ [ttis, ttie] = ∅)))

4. At a given transaction time, between two nodes it cannot exist more than one
edge with the same name Ename, valid at a time instant.

∀Ename, ∀nh ∈ N ∀nk ∈ N ∀e j ∈ E ∀ei

∈ E ((e j = 〈(nh, nk), {(!name : Ename), (!vt : Evtime j),

(!tt : [tt js, tt je])}〉
∧ ei = 〈(nh, nl), {(!name : Ename), (!vt : Evtimei),

(!tt : [ttis, ttie])}〉
→ ((Evtime j ∩ Evtimei �= ∅) → ([tt js, tt je] ∩ [ttis, ttie] = ∅)))

In general, for the real-world consistency we have also to guarantee that each
real-world history is consistent with the data modeling choices adopted in describing
real-world concepts and objects: for all time instants t, the snapshot St must satisfy

634 J Intell Inf Syst (2012) 38:601–644

the general constraints defined for the PSTDM model with respect to valid time
dimension (i.e., the non optional constraints from 1 to 4 defined in Section 5.1).
Moreover, as discussed in the previous section, it is possible to define other optional
constraints for imposing restrictions related to the (domain dependent) semantics of
the represented information.

7.2 Example: managing VT and TT together with PSTDM

On January 10, 2004, at 8:00 a.m., the physician visits for the first time Ron Dalton
who becomes, from this moment, his patient and on March 12, 2004, at 08:00 a.m.,
the physician stores into the database his information (but reporting the surname as
“Dallton”) and the symptom the patient reports. In Fig. 15 we show the bitemporal
PSTDM graph representing the stored data.

On March 12, 2004, at 08:02 a.m., the physician immediately corrects the mistake
in the patient surname. In Fig. 16 we report the mistake correction: the transac-
tion time interval of the old name property change from [12/03/04;08:00, uc] to
[12/03/04;08:00,12/03/04;08:01], while the new name property has the transaction time
interval equal to [12/03/04;08:02, uc]. Note that the valid time interval is the same for
the two nodes (but their transaction time intervals are disjoint).

On February 2, 2004, at 08:00 a.m., the physician diagnoses the correct pathology
named CAD (Coronary Artery Disease) with a low severity. On March 12, 2004,
at 08:05 a.m., the physician stores into the database this new information. Figure 17
shows the bitemporal PSTDM graph after these insertions.

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
 (!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dallton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

Fig. 15 The bitemporal PSTDM database after data insertions on March 12, 2004 at 08:00 a.m

J Intell Inf Syst (2012) 38:601–644 635

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00, uc])} {(!name:Demo),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00,12/03/04;08:01])}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dallton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00,12/03/04;08:01])}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:02, uc])}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]}),

(!tt:[12/03/04;08:02, uc])}

Fig. 16 The bitemporal PSTDM database after the correction of a mistake

On February 2, 2004, at 08:05 a.m., the physician prescribes the therapy to the pa-
tient advising to have Nitroglycerin, which we assume is at disposal since May 3, 2001
at 08:00 a.m. On March 12, 2004, at 08:30 a.m., the physician stores in the database the
drug prescription. On February 10, 2004, at 11:00 a.m., the pathology of Ron Dalton

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]}),

(!tt:[12/03/04;08:00,12/03/04;08:01])}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dallton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00,12/03/04;08:01])}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:02, uc])}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]}),

(!tt:[12/03/04;08:02, uc])}

{(!name:Pathology),
(!content:⊥),

(!vt:{[02/02/04;08:00,now]}),
(!tt:[12/03/04;08:05, uc])}

{(!name:Name),
(!content:CAD),

(!vt:{[02/02/04;08:00,now]}),
(!tt:[12/03/04;08:05, uc])}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,now]}),
(!tt:[12/03/04;08:05, uc])}

{(!name:P_Name),
(!vt:{[02/02/04;08:00,now]}),

(!tt:[12/03/04;08:05, uc])}

{(!name:P_Severity),
(!vt:{[02/02/04;08:00,now]}),

(!tt:[12/03/04;08:05, uc])

{(!name:Related_to),
(!vt:{[02/02/04;08:00,now]}),

(!tt:[12/03/04;08:05, uc])}

Fig. 17 The bitemporal PSTDM database after new data insertions on March 12, 2004 at 08:05 a.m

636 J Intell Inf Syst (2012) 38:601–644

gets worse and the severity changes from low to intermediate. On March 21, 2004, at
10:00 a.m., the physician stores the evolution about the pathology severity, which is
currently “Intermediate”. In Fig. 18 we represent the bitemporal PSTDM database
resulting from these last operations: the severity property with “Low” value has been
removed (its transaction time interval ends at [21/03/04;09:59]), the other severity
property with “Low” value has been added to highlight that this information was
actually valid in the time interval [02/02/04;08:00,10/02/04;10:59]. The current severity
property with “Intermediate” value has been inserted. Moreover, the complex node
Drug, with valid time [03/05/01;08:00, now] and the edge Therapy with valid time
interval [02/02/04;08:05, now] and transaction time interval [12/03/04;08:30, uc] have
been inserted.

7.3 An incremental approach to build bitemporal PSTDM graphs

As we have discussed for transaction and valid times, managing bitemporal PSTDM
graphs also requires the definition of operations to insert nodes (either complex
or simple), insert edges, remove nodes, and so on, and each operation includes
the checks of the previously defined constraints, needed to efficiently guarantee
the consistency of bitemporal PSTDM graphs after each update operation. In this
context the user provides only the temporal element for the valid time property,
while the transaction time interval is system-generated.

{(!name:Patient),
(!content:⊥),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]}),

(!tt:[12/03/04;08:00,12/03/04;08:01])}

{(!name:Symptom),
(!content:⊥),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:P_Situation),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:S_Name),
(!vt:{[01/02/04;22:00,02/02/04;02:00]}),

(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dallton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:00,12/03/04;08:01])}

{(!name:Description),
(!content:Angina),

(!vt:{[01/02/04;22:00,02/02/04;02:00]}),
(!tt:[12/03/04;08:00, uc])}

{(!name:Name),
(!content:Ron Dalton),

(!vt:{[10/01/04;08:00,now]}),
(!tt:[12/03/04;08:02, uc])}

{(!name:Demo),
(!vt:{[10/01/04;08:00,now]}),

(!tt:[12/03/04;08:02, uc])}

{(!name:Pathology),
(!content:⊥),

(!vt:{[02/02/04;08:00,now]}),
(!tt:[12/03/04;08:05, uc])}

{(!name:Name),
(!content:CAD),

(!vt:{[02/02/04;08:00,now]}),
(!tt:[12/03/04;08:05, uc])}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,now]}),
(!tt:[12/03/04;08:05, 21/03/04;09:59])}

{(!name:P_Name),
(!vt:{[02/02/04;08:00,now]}),

(!tt:[12/03/04;08:05, uc])}

{(!name:P_Severity),
(!vt:{[02/02/04;08:00,now]}),

(!tt:[12/03/04;08:05,
21/03/04;09:59])

{(!name:Related_to),
(!vt:{[02/02/04;08:00,now]}),

(!tt:[12/03/04;08:05, uc])}

{(!name:Drug),
(!content:⊥),

(!vt:{[03/05/01;08:00,now]}),
(!tt:[12/03/04;08:30, uc])}

{(!name:Therapy),
(!vt:{[02/02/04;08:05,now]}),

(!tt:[12/03/04;08:30, uc])}

{(!name:Name),
(!content:Nitroglycerin),

(!vt:{[03/05/01;08:00,now]}),
(!tt:[12/03/04;08:30, uc])}

{(!name:D_Name),
(!vt:{[03/05/01;08:00,now]}),

(!tt:[12/03/04;08:30, uc])}

{(!name:Severity),
(!content:Low),

(!vt:{[02/02/04;08:00,10/02/04;10:59]}),
(!tt:[21/03/04;10:00, uc])}

{(!name:Severity),
(!content:Intermediate),

(!vt:{[10/02/04;11:00,now]}),
(!tt:[21/03/04;10:00, uc])}

{(!name:P_Severity),
(!vt:{[10/02/04;11:00,now]}),

(!tt:[21/03/04;10:00, uc])

{(!name:P_Severity),
(!vt:{[02/02/04;08:00,10/02/04;10:59}),

(!tt:[21/03/04;10:00, uc])

Fig. 18 The resulting bitemporal PSTDM database

J Intell Inf Syst (2012) 38:601–644 637

As an example, in this section we report only the procedural definition and
the algorithm of the complex operation required to remove a node, using in their
definition a slightly extended version of basic operations (having names starting
with “B_”) to manage two temporal dimensions. Indeed, PSTDM graphs managing
both temporal dimensions have the vt and tt property labels. The other complex
operations are similar to the ones defined for the other time dimensions.

1. Remove a node
CBT-remove-node(G, nr) removes at time tr the node nr, if it is current and if the
user-defined, VT-related constraints will be satisfied in the resulting BT PSTDM
graph; otherwise the operation fails.
Figure 19 shows the algorithm realizing this operation. This operation has mainly
to modify the transaction time of the node to be removed, through the basic
operations that we will call B_insert-node and B_delete-node; afterwards, the
operation has to properly manage all the ingoing and outgoing edges of the
given nodes: all the current edges have to be removed, by calling the operation
CBT-remove-edge for all the outgoing edges (see line 24 in Fig. 19) and the basic
operations B_insert-edge and B_delete-edge for the ingoing current edges (see
lines 8 and 9 in Fig. 19). As for the non current edges, they have only to be
updated to connect the modified (i.e., no more current) node (see lines 11, 12
and 26, 27 in Fig. 19).

2. Remove an edge
CBT-remove-edge(nh, nk, Ename, VTime) removes at time tr the given edge, if
it is current and the user-defined VT-related constraints will be satisfied in the
resulting BT PSTDM graph; otherwise the operation fails. In order to avoid
that the output PSTDM graph contains nodes that at some (transaction) times
are not reachable from the root, the operation first removes the node nk, if
it is currently linked to the root only through paths containing the edge to
remove, by calling the operation CBT-remove-node. Finally, the basic operations
B_insert-edge and B_delete-edge are called, to properly modify the transaction
time of the considered edge. If nk is a simple node and it has not to be removed,
it could be the case that the valid time of nk must be properly modified, to be
the minimal interval containing all the valid times of its ingoing current edges
(see constraint 2 for VT PSTDM graphs in Section 5.1): in case of bitemporal
PSTDM graphs, it means that the node nk is first copied in another node n′

k,
which is the same of nk but the transaction time, ending at time tr − 1. Another
copy n′′

k is then created which is the same of nk but the transaction time, which
is [tr, uc] and the valid time, which is the minimal one containing the valid time
of all the current edges connected to nk; before deleting nk, all the remaining
current edges connected to nk are modified and copied to represent connections
to n′

k up to (transaction) time tr − 1 and connections to the node n′′
k since time tr.

It is worth noting that these two operations, which are recursively intertwined,
avoid that the output PSTDM graph contains at any transaction time nodes that
are not reachable from the root, by recursively removing all the nodes and edges,
which were linked to the root only through paths containing the node or the edge
to be removed, respectively. Moreover, these operations guarantee that the valid
time of simple nodes are always consistent.

638 J Intell Inf Syst (2012) 38:601–644

Fig. 19 The algorithm for removing at time tr a node

8 Discussion

In our proposal, we use rooted, connected, directed, acyclic, and labeled graphs to
represented semistructured temporal information. We avoid cyclic graphs to simplify
the evaluation of constraints in the graphical matching. It means that relations
between objects, which correspond to PSTDM edges, have to be suitably represented
in some unidirectional way, i.e., without cycles.

J Intell Inf Syst (2012) 38:601–644 639

In this work, we consider general semistructured data, such as, for example, data
coming from heterogeneous data sources, instead of XML data; thus we do not deal
with ordered and mixed nodes, that are a main feature of XML documents. Our
approach is database-oriented, and thus we do not propose a model able to represent
ordered nodes, but the defined node and edge labels can be easily extended to
represent this property as well. At this aim, we could extend either the nodes labels,
or the edges labels. In the former case we could represent absolute order between
nodes with respect to their position in the graph, while in the latter case we could
represent the relative order of nodes (children) with respect to the common node
representing their parent.

To the best of our knowledge, the only other work which explicitly addresses
the issue of time-related semantics for general semistructured data is Dyreson
et al. (1999). As already discussed in the previous section, in Dyreson et al. (1999), the
authors propose a framework for semistructured data, where graphs are composed
by nodes and labeled edges representing different properties. The focus of that work
is on the definition of suitable operators (i.e., collapse, match, coalesce, and slice),
which allow one to determine the (different) semantics of properties for managing
queries on such graphs. As for the temporal aspects, even though in Dyreson
et al. (1999) some examples are provided about special semantics for update to
accommodate the transaction time, a detailed and complete examination of all the
constraints for modeling either transaction or valid times is missing and is outside the
main goal of that work. Moreover, the authors claim that they “leave open the issue
of how these constraints are enforced on update” (Dyreson et al. 1999). With respect
to the proposal described in Dyreson et al. (1999), we thus explicitly focus on the
semantics of temporal aspects and do not consider the semantics of other properties;
this way, even though we are less general than the authors in Dyreson et al. (1999),
we are able to provide a complete treatment of the constraints when representing
either transaction or valid times, facing some important aspects which have not been
completely considered in Dyreson et al. (1999), such as, for example, the problem
of the presence of nodes/subgraphs which could become unreachable from the root
of the graph after some updates. Moreover, another novel feature of our work is
that we explicitly address the issue of providing users with powerful operators for
building PSTDM graphs consistent with the given temporal semantics. Summarizing,
with respect to Dyreson et al. (1999), the original aspects of our proposal are: the
definition of a more compact data model for semistructured data, by labeling both
nodes and edges and by using temporal elements for valid times; the constraint-
based specification of the semantics of temporal semistructured databases supporting
valid time, transaction time, and both valid and transaction times, respectively;
the proposal of operations and of related algorithms allowing the user to build
consistent temporal semistructured databases according to the supported temporal
dimension(s).

Other proposals (Amagasa et al. 2000; Campo and Vaisman 2006; Rizzolo and
Vaisman 2008; Wang and Zaniolo 2002, 2003) consider issues related to the time in
the XML context. In particular, in Campo and Vaisman (2006), Rizzolo and Vaisman
(2008) the authors also deal with the problem of tackling consistency in tempo-
ral XML documents. XML documents are semistructured in nature, but present
different features to deal with. XML elements, in an XML document, are related
by the containment relationship, thus temporal data models for XML documents do
not allow one to represent general relationships (different from the containment)

640 J Intell Inf Syst (2012) 38:601–644

between XML objects. Moreover, in their graphical representation they use trees
instead of graphs. Even if we focus on general semistructured data instead of XML
data, we compare our proposal with Amagasa et al. (2000) and Rizzolo and Vaisman
(2008).

In Amagasa et al. (2000) the authors propose a logical data model for representing
histories of XML documents. The proposed model extends the XPath data model, by
enabling edges to have a label that represents their valid time. Moreover, the authors
propose a set of operations to modify the represented XML documents, by extending
the original DOM API (World Wide Web Consortium 2000). The model proposed
in Amagasa et al. (2000) considers the valid time dimension, and is based on trees
composed by four kinds of nodes and labeled edges. The kinds of nodes are: root,
element, text, and attribute nodes. Edges between nodes represent the containment
relationship, and their labels represent the valid time interval. To manage in a correct
way the valid time dimension, the authors define the notion of consistent temporal
XML document. At this aim, they impose the following two conditions: (i) the union
of the valid time intervals of the children of a given node must be contained in the
valid time interval of the node itself (parent), and (ii) the intersection of the valid
time intervals of the children of the root node must be empty. These constraints
do not cover issues possibly related to the semantics of representing objects and
relationships, as those we describe for our model in Section 5.1. This is due to the fact
the model described in Amagasa et al. (2000), being an XML data model, does not
allow the representation of general relationships between objects. Considering valid
time, which is a user-defined time dimension, operations must explicitly consider
time values, to give the user the possibility to manage/modify the time dimension of
the objects representing the considered reality. In Amagasa et al. (2000), time values
are not explicitly considered as parameters of operations, and moreover operations
to modify the valid time interval of an object are not introduced. In our proposal we
provide a set of operations explicitly dealing with valid time (see Section 5.3).

The model proposed in Rizzolo and Vaisman (2008) considers the transaction
time dimension, and is based on graphs with three types of nodes: value, attribute,
and element nodes, more a distinguished node for the root, and two types of
edges: containment and reference edges. Temporal labels are used only on edges
for representing the time period of the containment relationship. This means that
nodes do not have their own temporal information. Since this work deals with XML
documents, i.e. documents where nodes are related only by means of a containment
relationship, issues related to valid time could be addressed in an analogous way.
In general, valid and transaction time dimensions are different in nature and thus
are usually managed in different ways. Our proposal allows the representation of
general relationships between nodes, and thus the management of either transaction
or valid times (or both) requires different precautions, as we discuss in Sections 5,
6 and 7. In Rizzolo and Vaisman (2008), the authors define the set of conditions
an XML document must satisfy to be a temporal XML document (with respect to
transaction time). The condition stating that the temporal labels of the containment
edges incoming to a node are consecutive implies the user do not use temporal
elements and thus they cannot represent situations, related to non-consecutive facts,
in a plain way. Aspects related to the consistency of temporal XML documents
are faced in Rizzolo and Vaisman (2008) by studying algorithms for consistency

J Intell Inf Syst (2012) 38:601–644 641

checking, while in our proposal we suppose to verify the temporal consistency of
each update result.

The set of constraints that temporal labels must satisfy in order to guarantee
that (i) a PSTDM graph, after each operation, is still a rooted connected graph
and (ii) each atemporal graph composing the PSTDM graph is a rooted connected
graph, was preliminarly introduced in Combi et al. (2004) for a generic graph-
based model. In Combi et al. (2004), we defined a generic graph-based data model
starting from scratch, while in this work we start from the data model proposed
in Dyreson et al. (1999) and focus on the properties for representing temporal
aspects of semistructured data. Moreover, in Combi et al. (2004) we considered
only the transaction time dimension and defined the set of constraints needed for
managing in a correct way that dimension by using the graphical formalism proposed
in Damiani et al. (2003). Thus, in Combi et al. (2004), a constraint was composed by a
graph, which was used to identify the subgraphs (i.e. the portions of a semistructured
database) where the constraint was to be applied, and a set of formulae representing
restrictions imposed on those subgraphs. In summary, with respect to the present
work, in Combi et al. (2004) we (i) defined and used a different, simpler data model,
(ii) focused only on the transaction time, and (iii) defined constraints by using a
graphical formalism.

9 Conclusions

In this paper we have proposed a graph-based model (called PSTDM) for semistruc-
tured data that allows us to model in a homogeneous way (temporal) properties of
data. More particularly we discussed in some detail constraints and operations on
PSTDM graphs dealing with either transaction or valid times, the two well-known
time dimensions of data (Jensen et al. 1998). We showed how a PSTDM graph can
represent a sequence of timestamped atemporal graphs, when the transaction time
is considered; on the other side, the overall PSTDM graph encodes the real-world
history represented by valid time timestamped data.

We extended PSTDM to represent semistructured data by considering together
the two classical time dimensions of valid and transaction times. We defined op-
erations for manipulating bitemporal PSTDM graphs, and formalized the set of
constraints needed to correctly handle these temporal aspects together.

As for future work, different approaches, such as the logic-based or the algebraic
ones, will be considered and studied in order to provide the PSTDM data model with
a language for querying, viewing, and “transforming” PSTDM graphs. Furthermore,
as PSTDM may be considered as a logical data model for XML database design,
it could be the basis for a sound methodology supporting the design of temporal
XML databases. To this regard, next steps will be devoted to the design of an overall
methodology and to the implementation of related software tools (for example,
either based on XML-native database systems or based on XML-enabled extensions
of relational database systems). To this regard, a suitable user-based evaluation
of the efficacy of the proposed methodology/tools will be considered for both
the expressiveness and the performances in representing and managing real world
(clinical) temporal semistructured data.

642 J Intell Inf Syst (2012) 38:601–644

References

Abiteboul, S. (1997). Querying semi-structured data. In Proceedings of the international conference
on database theory. Lecture notes in computer science (Vol. 1186, pp. 262–275).

Ali, K. A., & Pokorný, J. (2006). A comparison of XML-based temporal models. In E. Damiani,
K. Yétongnon, R. Chbeir, & A. Dipanda (Eds.), SITIS. Lecture notes in computer science
(Vol. 4879, pp. 339–350). Springer.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM,
26, 832–843.

Amagasa, T., Yoshikawa, M., & Uemura, S. (2000). A data model for temporal XML documents.
In Database and expert systems applications, 11th international conference, DEXA 2000. Lecture
notes in computer science (Vol. 1873, pp. 334–344). Berlin: Springer.

Amagasa, T., Yoshikawa, M., & Uemura, S. (2001). A bitemporal XML data model. In IPSJ SIG-
Notes dataBase systems (Vol. 125).

Amagasa, T., Yoshikawa, M., & Uemura, S. (2001). Realizing temporal XML repositories using
temporal relational databases. In Proceedings of the third international symposium on cooperative
database systems and applications (pp. 63–68). IEEE Computer Society.

Atzeni, P. (2002). Time: A coordinate for web site modelling. In Advances in databases and infor-
mation systems, 6th east European conference, ADBIS 2002. Lecture notes in computer science
(Vol. 2435, pp. 1–7). Berlin: Springer.

Böhlen, M. H., Snodgrass, R. T., & Soo, M. D. (1996). Coalescing in temporal databases. In
VLDB’96, proceedings of 22th international conference on very large data bases (pp. 180–191),
3–6 September 1996, Mumbai (Bombay), India. Morgan Kaufmann.

Buneman, P., Davidson, S. B., Hillebrand, G. G., & Suciu, D. (1996). A query language and optimiza-
tion techniques for unstructured data. In Proceedings of the 1996 ACM SIGMOD international
conference on management of data (pp. 505–516). ACM Press.

Buneman, P., Khanna, S., Tajima, K., & Tan, W. C. (2002). Archiving scientific data. In SIGMOD
conference.

Campo, M., & Vaisman, A. A. (2006). Consistency of temporal XML documents. In S. Amer-Yahia,
Z. Bellahsene, E. Hunt, R. Unland, & J. X. Yu (Eds.), XSym. Lecture notes in computer science
(Vol. 4156, pp. 31–45). Springer.

Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., & Tanca, L. (1999). XML-GL: A
graphical language for querying and restructuring XML documents. Computer Network, 31
(11–16), 1171–1187.

Chawathe, S. S., Abiteboul, S., & Widom, J. (1998). Representing and querying changes in semi-
structured data. In Proceedings of the fourteenth international conference on data engineering
(pp. 4–13). IEEE Computer Society.

Chawathe, S. S., Abiteboul, S., & Widom, J. (1999). Managing historical semistructured data. Theory
and Practice of Object Systems, 5(3), 143–162.

Combi, C. (2000). Modeling temporal aspects of visual and textual objects in multimedia databases.
In Proceedings of the seventh international symposium on temporal representation and reasoning
(TIME-00) (pp. 59–68).

Combi, C., Degani, S., & Jensen, C. S. (2008). Capturing temporal constraints in temporal ER
models. In Q. Li, S. Spaccapietra, E. S. K. Yu, & A. Olivé (Eds.), ER. Lecture notes in computer
science (Vol. 5231, pp. 397–411). Springer.

Combi, C., Keravnou-Papailiou, E., & Shahar, Y. (2010). Temporal information systems in medicine
(1st ed.). Springer.

Combi, C., Oliboni, B., & Quintarelli, E. (2004). A graph-based data model to represent transac-
tion time in semistructured data. In Database and expert systems applications. Lecture notes in
computer science (Vol. 3180, pp. 559–568). Berlin: Springer.

Combi, C., & Pozzi, G. (2006). Temporal representation and reasoning in medicine. Artif icial Intel-
ligence in Medicine, 38(2), 97–100.

Consens, M. P., & Mendelzon, A. O. (1990). Graphlog: A visual formalism for real life recursion.
In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems (pp. 404–416). ACM Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms
(2nd ed.). MIT press.

Damiani, E., Oliboni, B., Quintarelli, E., & Tanca, L. (2003). Modeling semistructured data by using
graph-based constraints. In OTM workshops proceedings. Lecture notes in computer science
(pp. 20–21). Berlin: Springer.

J Intell Inf Syst (2012) 38:601–644 643

Dyreson, C. (2001). Towards a temporal world-wide web: A transaction-time web server. In Pro-
ceedings of the Australian Database Conference (ADC ’01) (pp. 169–175).

Dyreson, C. E. (2001). Observing transaction-time semantics with TTXPath. In Proceedings
of the 2nd international conference on Web Information Systems Engineering (WISE’01)
(pp. 193–202).

Dyreson, C. E., Böhlen, M. H., & Jensen, C. S. (1999). Capturing and querying multiple aspects of
semistructured data. In VLDB’99, proceedings of 25th international conference on very large data
bases (pp. 290–301). Morgan Kaufmann.

Dyreson, C. E., & Grandi, F. (2009). Temporal XML. In L. Liu & M. T. Özsu (Eds.), Encyclopedia
of database systems (pp. 3032–3035). Springer US.

Dyreson, C. E., Snodgrass, R. T., Currim, F., & Currim, S. (2006). Schema-mediated exchange of
temporal XML data. In: D. W. Embley, A. Olivé, & S. Ram (Eds.), ER. Lecture notes in computer
science (Vol. 4215, pp. 212–227). Springer.

Fernandez, M., Florescu, D., Kang, J., Levy, A., & Suciu, D. (1997). STRUDEL: A web site manage-
ment system. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD Record (Vol. 26,2, pp. 549–552). ACM Press.

Garani, G. (2006). A generalised temporal algebra. Data and Knowledge Engineering, 57(3),
283–310.

Gibbons, R., et al. (1999). ACC/AHA/ACP-ASIM guidelines for the management of patients with
chronic stable angina. Journal of American College of Cardiology, 33, 2092–2197.

Grandi, F., & Mandreoli, F. (2000). The Valid Web: An XML/XSL infrastructure for temporal man-
agement of web documents. In Advances in information systems, f irst international conference,
ADVIS 2000. Lecture notes in computer science (Vol. 1909, pp. 294–303). Berlin: Springer.

Grandi, F., Mandreoli, F., & Tiberio, P. (2005). Temporal modelling and management of normative
documents in XML format. Data & Knowledge Engineering, 54(3), 327–354.

Gregersen, H., & Jensen, C. S. (1999). Temporal entity-relationship models—a survey. IEEE Trans-
actions on Knowledge and Data Engineering, 11(3), 464–497.

Hunter, A. (2002). Merging structured text using temporal knowledge. Knowledge and Data Engi-
neering, 41(1), 29–66.

Jensen, C. S., Dyreson, C. E., et al. (1998). M. H. B.: The consensus glossary of temporal database
concepts—february 1998 version. In Temporal databases: Research and practice. The book grow
out of a Dagstuhl seminar, 23–27 June 1997. Lecture notes in computer science (Vol. 1399,
pp. 367–405). Springer.

Jensen, C. S., & Snodgrass, R. (1999). Temporal data management. IEEE Transactions on Knowl-
edge and Data Engineering, 11(1), 36–44.

Li, X., Liu, M., Ghafoor, A., & Sheu, P. C. Y. (2010). A pattern-based temporal XML query language.
In L. Chen, P. Triantafillou, & T. Suel (Eds.), WISE. Lecture notes in computer science (Vol. 6488,
pp. 428–441). Springer.

Mandreoli, F., Martoglia, R., & Ronchetti, E. (2006). Supporting temporal slicing in XML databases.
In Y.E. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Böhm, et al.
(Eds.), EDBT. Lecture notes in computer science (Vol. 3896, pp. 295–312). Springer.

Manica, E., Dorneles, C. F., & de Matos Galante, R. (2010). Supporting temporal queries on XML
Keyword Search Engines. JIDM, 1(3), 471–486.

Mendelzon, A., & Rizzolo, F. (2004). A.V.: Indexing temporal XML documents. In VLDB’04,
proceedings of 30th international conference on very large data bases (pp. 216–227). Morgan
Kaufmann.

Noh, S. Y., & Gadia, S. K. (2006). A comparison of two approaches to utilizing XML in parametric
databases for temporal data. Information & Software Technology, 48(9), 807–819.

Noh, S. Y., Gadia, S. K., & Ma, S. (2008). An XML-based methodology for parametric temporal
database model implementation. Journal of Systems and Software, 81(6), 929–948.

Oliboni, B., Quintarelli, E., & Tanca, L. (2001). Temporal aspects of semistructured data. In Proceed-
ings of the eighth international symposium on temporal representation and reasoning (TIME-01)
(pp. 119–127). IEEE Computer Society.

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object exchange across hetero-
geneous information sources. In Proceedings of the eleventh international conference on data
engineering (pp. 251–260). IEEE Computer Society.

Paredaens, J., Peelman, P., & Tanca, L. (1995). G–Log: A declarative graphical query language.
IEEE Transactions on Knowledge and Data Engineering, 7(3), 436–453.

Rizzolo, F., & Vaisman, A. A. (2008). Temporal XML: Modeling, indexing, and query processing.
VLDB Journal, 17(5), 1179–1212.

644 J Intell Inf Syst (2012) 38:601–644

Rosado, L. A., Márquez, A. P., & Gil, J. M. (2007). Managing branch versioning in ver-
sioned/temporal XML documents. In D. Barbosa, A. Bonifati, Z. Bellahsene, E. Hunt, &
R. Unland (Eds.), XSym. Lecture notes in computer science (Vol. 4704, pp. 107–121). Springer.

Shoham, Y. (1987). Temporal logics in AI: Semantical and ontological considerations. Artif icial
Intelligence, 33(1), 89–104.

Snodgrass, R. T. (2000). Developing time-oriented database applications in SQL. Series in data
management systems. Morgan Kaufmann.

Terenziani, P., & Snodgrass, R. T. (2004). Reconciling point-based and interval-based semantics in
temporal relational databases: A treatment of the telic/atelic distinction. IEEE Transactions on
Knowledge and Data Engineering, 16(5), 540–551.

Vaisman, A., Mendelzon, A. O., Molinari, E., & Tome, P. (2004). Temporal XML: Data model,
query language and implementation. Technical Report. http://www.cs.toronto.edu/∼avaisman/
papers.html.

World Wide Web Consortium (2000). Document Object Model (DOM) level 2 core specification.
http://www.w3C.org/TR/DOM-Level-2-Core/.

World Wide Web Consortium (1999). XML path language (XPath) version 1.0. http://www.w3.org/
TR/xpath.html. W3C Reccomendation 16 November 1999.

Wang, F., & Zaniolo, C. (2002). Preserving and querying histories of XML-published relational
databases. In Proceedings of the second international workshop on evolution and change in data
management. Lecture notes in computer science (Vol. 1909, pp. 26–38). Berlin: Springer.

Wang, F., & Zaniolo, C. (2003). Publishing and querying the histories of archived relational data-
bases in XML. In Proceedings of the 4th international conference on Web Information Systems
Engineering (WISE 2003) (Vol. 1909, pp. 93–102). IEEE Computer Society.

Wang, F., & Zaniolo, C. (2004). XBiT: An XML-based bitemporal data model. In P. Atzeni, W. W.
Chu, H. Lu, S. Zhou, & T. W. Ling (Eds.), ER. Lecture notes in computer science (Vol. 3288, pp.
810–824). Springer.

Wang, F., & Zaniolo, C. (2008). Temporal queries and version management in XML-based document
archives. Data & Knowledge Engineering, 65(2), 304–324.

Wang, F., Zaniolo, C., & Zhou, X. (2008). ArchIS: An XML-based approach to transaction-time
temporal database systems. The VLDB Journal, 7(6), 1445–1463.

Zhang, S., & Dyreson, C. E. (2002). Adding valid time to XPath. In Databases in networked infor-
mation. Lecture notes in computer science (Vol. 2544, pp. 29–42).

http://www.cs.toronto.edu/~avaisman/papers.html
http://www.cs.toronto.edu/~avaisman/papers.html
http://www.w3C.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath.html

	Modeling temporal dimensions of semistructured data
	Abstract
	Introduction
	Background and motivation
	Related work: temporal data models
	The property-based semistructured temporal data model
	Managing valid time with PSTDM
	Constraints for valid time
	Example: managing VT with PSTDM
	Operations on PSTDM graphs for managing valid time

	Managing transaction time with the PSTDM data model
	Constraints for transaction time
	Example: managing TT with PSTDM
	Operations on PSTDM graphs for managing transaction time

	Extending PSTDM to manage valid and transaction times together
	Constraints for valid and transaction times together
	Example: managing VT and TT together with PSTDM
	An incremental approach to build bitemporal PSTDM graphs

	Discussion
	Conclusions
	References

