
Integration operators for generating RDF/OWL-
based user defined mediator views in a grid 
environment
Abdel-Rahman H. Tawil · Adel Taweel · Usman Naeem · 
Matthew Montebello · Rabih Bashroush · Ameer
Al-Nemrat

Abstract Research and development activities relating to the grid have 
generally focused on applications where data is stored in files. However, 
many scientific and commercial applications are highly dependent on 
Information Servers (ISs) for storage and organization of their data. A data-
information system that supports operations on multiple informa-tion 
servers in a grid environment is referred to as an interoperable grid system. 
Different perceptions by end-users of interoperable systems in a grid 
environment may lead to dif-ferent reasons for integrating data. Even the 
same user might want to integrate the same distributed data in various ways 
to suit different needs, roles or tasks. Therefore multiple mediator views are 
needed to support this diversity. This paper describes our approach to 
supporting semantic interoperability in a heterogeneous multi-information 
server grid envi-ronment. It is based on using Integration Operators for 
generating multiple semantically rich RDF/OWL-based user defined mediator 
views above the grid participating ISs. These views support different 
perceptions of the distributed and heterogeneous data available. A set of grid 
services are developed for the implementation of the mediator views.

Keywords:
Integration operators for generating RDF/OWL-based user defined mediator 
views in a grid environment

mailto:atawil@uel.ac.uk
mailto:u.naeem@uel.ac.uk
mailto:rabih@uel.ac.uk
mailto:a.al-nemrat@uel.ac.uk
mailto:adel.taweel@kcl.ac.uk
mailto:matthew.montebello@um.edu.mt


1 Introduction

One way to support interoperability in a multi-ISs grid environment is to define a single 
centralized global view conforming all participating schemas of the individual ISs to a com-
mon data model, query language and management system. In this approach the integrated 
schema view is a consistent, non-redundant and a semantically complete representation of 
all the distributed and heterogeneous information available (Sheth and Larson 1990). How-
ever, a single view has a number of serious disadvantages. For example, the global schema 
may grow very large and becomes rigidly complex, especially if the participating ISs are 
numerous, with individually large schemas of structural and semantic heterogeneity. Also, 
the system integrator, not the users, normally identify and resolve all conflicts among all 
participating ISs even though some might never arise. As such, the creation of such a schema 
is complex, and is not suitable for users with diverse requirements nor for applications that 
requires frequent modifications to their local schemas and, consequently, to the composite 
global integrated schema. In a grid environment, conforming databases to a single seman-
tic interpretation of the underlying information, as is usually the case in the global schema 
approach, is rarely acceptable to grid end users. Different end users may have different rea-
sons for integrating data, and each user might wish to define his own mediator views of the 
underlying servers, without having to conform to some other user’s views.

In Tawil et al. (2002, 2008) we argue that a better, more flexible approach to support 
heterogeneous ISs interoperability would result from creating user defined mediator views 
above the distributed databases of the ISs - with each mediator view tailored towards a cer-
tain group of specific users’ requirements or application programs functionalities. These 
user-defined mediators are created by applying a set of semantically-rich integration oper-
ators, capable of reconciling the semantic and structural differences that are likely to arise 
when integrating distributed, heterogeneous and autonomous servers. The idea of mediat-
ing different heterogeneous ISs using local semantic relationships was explored in federated 
and interoperable multi-database approaches (e.g., Rivero et al. 2011a; Ricci et al. 2010; 
Koehler and Benkner 2009; Brezany et al. 2004; Chen  et  al . 2004; Halevy  et  al.  2003; Nejdl  
and Wolf 2002; Ludascher et al. 2001; Manolescu et al. 2001; Papakonstantinou et al. 1996; 
Arens et al. 1993). There, it is assumed that each mediator view in a multi-database environ-
ment provides integrated access to data stored in multiple autonomous and heterogeneous 
ISs and the focus is on mapping between the stored relations across the multi-databases. In 
a sense, a mediator is a view of data found in one or more ISs. Data does not exist at the 
mediator but one may query the mediator as if it is where the data is stored.

The Piazza peer data management system (Halevy et al. 2004) supports decentralized 
data management in a network of loosely coupled mappings between peers (nodes) schemas. 
Query processing is based on reformulating mediator queries and integrating query results 
using mapping rules. In the Edutella (Qu and Nejdl 2004) system, nodes can either agree 
to use the same schema or use different schemas. The Edutella mediator is responsible 
of handling mappings between the different schemas and uses them in order to translate 
queries from one schema to the other. However, as the semantics of the individual schemas 
are not explicitly defined mapping rules are difficult to maintain. When for example a new 
node joins the network, new mapping rules should be created and several current mapping 
rules should be changed. Similar problems appear in case a node leaves the network. The



SQPeer system (Kokkinidis and Christophides 2004) uses the Semantic Overlay Networks 
(SONs) technology, according to which peers sharing the same schema information about 
a community domain are clustered together to the same SON. The active schema of the 
peer is a subset (view) of a unique global SON schema for which all classes and properties 
are populated in the peer base. The system identifies peers that can answer a query by 
maintaining indexes on schema information on peers. Thus, query processing is not based 
on query reformulation. RDFSculpt (Kaoudi et al. 2005), introduces integration operators 
to manipulate RDF schemas. A key feature of their work is that such integration is based 
on set-like semantics. They define three binary operators (union, intersection, difference) 
that can be applied on existing RDF schema graphs as a whole, and produce new ones. A 
unary operator is also defined that can be applied on one RDF schema graph and return a 
part (subset) of it. Defined operators can be included in any RDF query language to support 
manipulation of RDF schemas as full-fledged objects. Recently, grids are emerging as the 
infrastructure and set of protocols that enables integrated, collaborative management and use 
of inter-connected hardware and software resources (Mukherjee and Watson 2012; Young-
Jin and Thottan 2011; Manuali and Grif 2011). This raises the question as to how ISs can be 
deployed and interoperate in such a new paradigm where a large amount of decentralized 
independently administrated sources can be involved in the grid-scale sharing cycle. Within 
a grid environment interoperable server systems are usually heterogeneous, this means that 
there are heterogeneity problems that needs to be resolved, where heterogeneity may arise at 
the hardware, operating system, data model, database management system, query language 
and also at the semantic interpretation of the stored information.

In our approach, data sources do not have to follow strict modeling restrictions imposed 
by the unique global schema. This is due to using integration operators capable of gener-
ating multiple semantically rich RDF/OWL-based user defined mediator views above the 
grid participating ISs. These views support different perceptions of the distributed and het-
erogeneous data available. Also, a set of grid services is developed for the implementation 
of the mediator views. Accordingly, this paper describes the design and implementation of 
a language for generating user defined mediator views based on a set of integration oper-
ators that are particularly suitable in grid-settings. The integration operators are built upon 
several semantic web standards and grid technologies and are capable of reconciling con-
flicting schema elements and constructing homogenized, customized and semantically-rich 
mediator views. It is the responsibility of the mediator to provide the service of going to its 
sources and find the answer to the query. The paper is organized in the following way. In 
the next section we describe a high level view of our prototype system (called MetaMed) 
service-based architecture, and a brief description of its components. Section 3 contains an 
in depth discussion of the integration language operator services required for semantic inter-
operability by our system. The predefined semantics of each integration operator service in 
terms of its inputs (e.g. local integration units) and outputs (global classes) are discussed, 
also the semantic preservation rules service for validating user decisions when applying 
these operators are defined. In Section 4, we present an integration scenario to show how 
our set of integration language services are used to define a mediator global schema, that is 
a mediator view of grid data stored in local ISs. Section 5 portrays how the system exploits 
the information on the global schema to enable “mediated access” services to data stored in 
Grid-enabled ISs. Lastly, Section 6 concludes this paper.



2 The MetaMed service-based architecture

The MetaMed mediation system provides integrated access via a general service-based
architecture approach (Fig. 1) that is common to many grid projects. A high level view of the
MetaMed system architecture shows that our system consists of the following three distinct
layers: the ISs layer, the grid services layer, the Ontology and mediation services layer:

• The information servers layer consists of (i) the local ISs which will eventually be
available to the end (global) users (ii) a set of low level application programming inter-
faces (i.e. JDBC/ODBC drivers (Orfali and Harkey 1996)) to provide direct access
to the underlying ISs, and (iii) wrappers designed to be used in an information grid
infrastructure that may initially rely upon the OGSA-DAI (Jackson et al. 2011) grid
middleware. Wrappers (also called translators) (Papakonstantinou et al. 1995) pro-
vide a common query language and common data model for extracting the information
needed to bring data uniformly back into the grid.

• The grid services layer consists of specific functionalities particularly related to grid
facilities, is provided by using the standard Globus Toolkit Services. The Open Grid
Services Architecture Data Access and Integration (OGSA-DAI) as well as grid func-
tionality and database services (Muppavarapu et al. 2010) offered by other flavours of

Ontology and Mediation Services Layer

Ontology Server

Integration view generation

service

Layer

Mediation

..

....

. .

Builder

ISCAs  establishment

Conflict detection and reconciliation

Descriptive meta-knowledge exploration

Global Schema

Query

Manager

Semantic optimisation

Query plan reformulation

(MGKM)

JDBC

Metadata Extraction Metadata Extraction

JDBC

.

Descriptive Meta-Knowledge

of the Source Semantic Content

Descriptive Meta-Knowledge

of the Source Semantic Content

Schematic/Structural
Representation

Schematic/Structural
RepresentationInterpretation

Semantic Semantic
Interpretation

OGSA-DAI

Layer

IS

..

Data Data

Wrapper
Ontology

service
Layer

OWL-API OWL-API OWL-API

SPARQLSPARQLSPARQL

Fig. 1 High level view of metamed system architecture



grid middleware is shown on this level. OGSA-DAI is a middleware product that allows
ISs, such as relational or XML databases, to be accessed in a data grid. Furthermore,
it provides some of the base capabilities that would be required to run higher-level
data integration services. Using OGSA-DAI interfaces disparate, heterogeneous data
resources may be accessed in a uniform manner. It is important to note though that the
underlying data model of each source is not hidden - a relational data resource remains
a relational resource and the semantic and structural heterogeneity across grid databases
will not masquerade. OGSA-DAI does not support database query languages hetero-
geneity and does not provide a query language that is not already supported by the data
resource or through some other third party application.

• The mediation services layer consists of the core system modules which collectively
provide the mediation services and it is composed of two main modules:

1. Global Schema Generator (GSG): this includes the set of modules which are
responsible for generating the global schema to be provided for the user, starting
from the source descriptive meta-knowledge formulated in terms of the generic
RDF/OWL-based domain model ontology (called the MGKM).1 The GSG pro-
vide the following services: (1) descriptive meta-knowledge exploration, (2) conflict
detection and (3) reconciliation, (4) interschema correspondence assertions estab-
lishment, (5) integration views generation. Moreover, the module performs (6)

semantic validation of integration decisions taken by the user during the building
of the integrated views. The result of the overall process is the so-called Mediator
Global Schema view (see Fig. 2).

2. Query Manager (QM): this is the query management module. It generates
OQLI3 (Hillairet et al. 2009) language queries to be sent to wrappers starting from
each query posed by the user on the global schema. The QM provides the service
of automatically optimising and reformulating global queries into a corresponding
set of sub-queries for the individual ISs.

• The ontology Services Layer: A major source of knowledge for mediation comes from
the ontology layer (Rivero et al. 2011b; Vidal et al. 2011). The MetaMed Ontology
services targets two basically different application requirements. First the grid itself
needs an ontology service. This service provides meta information about grid entities.
Secondly, the MetaMed network Terminology Server (MTS) provides common terms
(vocabulary) which are used to construct metadata descriptions that characterize the
underlying ISs semantic content or to specify an information request, refer to Tawil
et al. (1998) for a more detailed discussion about this layer. All interactions with this
layer are achieved via OWL API (Horridge and Bechhofer 2011) abstraction layer
which sits above an SPARQL/Jena query interface (Kollia et al. 2011).

Registered services at the grid layer are published in a registry. The grid middleware can
query the registry to discover information on behalf of applications. These services about
services are rather well known and deal with established web services concepts. A meta-
registry knows the technical aspects about other services and responds to questions about
their properties. Software modules at the mediation services layer communicates with both
the ontology and the ISs layers using OWL API calls and JDBC API calls respectively.
Wrappers convert data from each source into a common model. A wrapper for a particu-
lar source converts queries submitted in the common grid format and query language into

1MGKM stands for the MetaMed Generic Knowledge Model



(6)(5)

Operators

Validation

Semantic

of

Integration

Decisions

(2)

(4) Mediator

Global Schema

(1)
The

MetaMed

Ontology

Server

Descriptive Meta−Knowledge

Exploration

(A) (B) (N). . . .

Reconciliation (3)

Establishment
Of 

Application

Integration

ISCAs

Detection

Conflict 

Fig. 2 Mediator global schema generation

queries understandable by that source. The wrapper also receives the results from a source,
and converts them into a model understood by the application. Applications can access data
directly through wrappers, but they may also go through integrated views. In MetaMed
wrappers are used to make local ISs comply with the internal MGKM representation of
our system. Wrapping services act as transducers between the local ISs and the MetaMed
high level integration services and connect to the ISs through JDBC/ODBC drivers, and to
Ontology knowledge base services through OWL API-SPARQL drivers.

In the next section we describe the set of RDF/OWL-based representation format for our
integration operators used in generating user-defined mediator views. The generated global
views consist of virtual classes, that derives their instances from their corresponding local
integration units.

3 RDF/OWL-based integration operators for generating global views

RDF/OWL is being promoted as a standard for web-ontology language. Consequently, a
considerable number of ontologies are and will continue to be developed based on OWL.
The language was originally created to enable not only the representation of the data itself,
but also its interpretation, i.e. knowledge about its format, usage or embodiment in a specific
framework. This work aims at modelling the representation of both ISs data and schema
components for grid-enabled servers using integration operators mediation services based
on OWL. MetaMed uses a schema integration language capable of reconciling conflicting
schema elements and constructing homogenized, customized and semantically-rich inte-
grated views (Tian et al. 2008; Al-Mourad et al. 2003; Duwairi 1997). The language is based
on a small set of operators that support the creation of integrated schema views by manip-
ulating knowledge expressed in the MGKM formalism. The integration language supports
selectivity by allowing the integration expert to choose the information of interest (e.g. the
content of the integrated schema view), and customizability as the same local information
can be integrated differently in alternative user-defined integrated schema views to support
multiple semantics. Supporting multiple semantics through offering users selectivity and



customizability has several advantages as it reduces the complexity of the mediator genera-
tion process because only the relevant parts of the participating ISs schemas are integrated.
The size of a generated mediator view is smaller compared with the case when a single
global integrated schema is defined. This saves the user the burden of considering large
global schema to locate information from multiple distributed and heterogeneous servers.
Providing a schema integration language that aids in defining views with multiple seman-
tics saves users the effort of manually integrating the selected information to create his/her
views as is the case with the multidatabase language approach. Selectivity allows for infor-
mation to be mediated from a large number of participating grid ISs. While customizability,
on the other hand, means that the integrator can accurately indicate how to view selected
information, and provision multiple semantic perspectives of the participating ISs at the
mediator level.

Four major groups of integration operators are defined: Importation, Generalisation,Spe-
cialisation and Merger operators. In what follows Att is a function that returns the attributes
of its argument, Ext is function that returns the extension of its argument, D are a set of
derived (user defined) properties, that do not exist in the local classes but can be derived
based on existing attributes, Gc are global classes, Lc are their corresponding local classes.2

A detailed description of the generated interschema correspondence establishment rules
following the execution of the integration operators is given in Tawil et al. (2008).

3.1 Importation operator

This group consists of operators: ImportOne, ImportSubset, and ImportAll. It is responsible
for importing local classes into a global view without actually integrating them. Table 1
shows the services provided by each of the importation operators.

When a local class is imported, the set of attributes (Att) and all the descriptions asso-
ciated with that class are also imported. For example, in terms of the relational model,
it is possible to import a single table (ImportOne), a subset of a table (ImportSubset) or
a table and all other tables referenced by it (ImportAll). Also, the extension (Ext) of the
globally imported classes equals the extension of their local counterparts. The semantics of
the importation operators are described explicitly in an RDF/OWL-based operators (opt)
ontology. Below is the representation of the ImportOne operator:

<owl:ObjectProperty rdf:ID="ImportOne">

<rdfs:subPropertyOf rdf:resource="#ImportationOperator" />

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<modl:LocalClass rdf:about="#Lc" />

<modl:UserDefinedAttribute rdf:about="#D" />

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#GlobalClass" />

<owl:Restriction>

2The structural representation of our local and global schema views are specified internally in terms of the
MetaMed ODL (modl) ontology.



<owl:allValuesFrom rdf:resource="#Lc"/>

<owl:allValuesFrom rdf:resource="#D"/>

</owl:Restriction>

<rdfs:label xml:lang="en">ImportOne</rdfs:label>

<rdfs:comment xml:lang="en">Imports a single local class to a

global view.</rdfs:comment>

</owl:ObjectProperty>

Table 1 shows how this operator, ImportOne, could be used to import the enriched Pnem-
Patient class to the global user-defined level, (::) denotes the subclass relationship (e.g.
Pnemonia-Patient) and the (:) denotes the semantic types of the attributes (e.g. Patient-
Identity-Number, Person-Full-Name, Date-Of-Birth, ..). Both the subclass relationship and
the semantic types of the attributes are extracted from the MGKM semantic model.

Each imported class is represented internally using the functions Import-Class and Import-
Attribute relations of the Importation operator. The Import-Class function takes a local class
Pnem-Patient as input and generates a global one g-Pnem-Patient as its output, e.g.

<owl:class rdf:ID="g-Pnem-Patient">

<rdf:type rdf:resource="&opt;GlobalClass" />

<opt:Import-Class rdf:resource="#Pnem-Patient" />

<rdfs:subClassOf rdf:resource="&mgkm;Pneumonia-Patient" />

<opt:Imported-Attribute rdf:resource="#g-Pnem-Patientg.g-Id"/>

<modl:isIdentifiedBy>

<modl:PrimaryKey>

<modl:Attribute rdf:resource="#g-Pnem-Patientg.g-Id"/>

</modl:PrimaryKey>

</modl:isIdentifiedBy>

....

</owl:class>

The Import-Attribute function takes a local attribute Pnem-Patient.Id as input and
generates a global imported g-Pnem-Patient.g-Id attribute as output, e.g.

<owl:DatatypeProperty rdf:ID="g-Pnem-Patient.g-Id">

<rdf:type rdf:resource="&opt;GlobalAttribute" />

<rdfs:subPropertyOf rdf:resource="&mgkm;Person-Identity

-Number"/>

<opt:Import-Attribute rdf:resource="#Pnem-Patientg.Id" />

</owl:DatatypeProperty>

3.2 Generalisation operator

This group consist of operators: UnionOne, Union, and UnionAll. These integrate local
classes by linking them to a common superclass. The local classes have to be semantically
overlapping. Table 2 shows the services of each generalisation operator.

When a set of intentionally related3 local classes are Unioned three virtual classes are
created to the global view, namely: the generated superclass and its two subclasses. It is
possible to add only the generalised superclass (UnionOne) , the generated superclass and its

3Two local classes are considered to be intentionally equivalent when they represent the same concept



Table 1 Importation operator semantics

two subclasses (Union) or the generated superclass its two subclasses and all other classes
referenced by them (UnionAll). The set of attributes and the associated descriptions that
belong to the union of both local classes are upward-inherited by the generated superclass.
Below is the RDF/OWL representation of the UnionOne operator:

<owl:ObjectProperty rdf:ID="UnionOne">

<rdfs:subPropertyOf rdf:resource="#UnionOperator" />

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<modl:LocalClass rdf:about="#Lc1" />

<modl:LocalClass rdf:about="#Lc2" />

<modl:UserDefinedAttribute rdf:about="#D" />

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="&opt;GlobalClass" />

<owl:Restriction>

<owl:allValuesFrom rdf:resource="#Lc1"/>

<owl:allValuesFrom rdf:resource="#Lc2"/>

<owl:allValuesFrom rdf:resource="#D"/>

</owl:Restriction>

<rdfs:label xml:lang="en">ImportOne</rdfs:label>



<rdfs:comment xml:lang="en">A Table has a set of Columns.

</rdfs:comment>

</owl:ObjectProperty>

In the example of Table 2 the attributes g-Name, g-Age, g-Address are upward inherited,
and the description associated with the class g-Patient is that of patients suffering from
either Cancer or Pnemonia.

<owl:class rdf:ID="g-Patient">

<rdf:type rdf:resource="&opt;GlobalClass" />

<rdfs:subClassOf rdf:resource="&mgkm;Patient" />

<owl:oneOf rdf:parseType="Collection">

<mgkm:pathology rdf:about="&mgkm;Cancer" />

<mgkm:pathology rdf:about="&mgkm;Pnemonia" />

</owl:oneOf>

</owl:class>

Table 2 Generalisation operator semantics



The rest of the inherited global classes and attributes are imported to their respective
classes using the importation operator. Also, the extension of the generated superclass is the
union of the extension of both local classes. While the extension of the other global classes
(e.g. g-C-Patient and g-Pnem-Patient) is that of their local counterparts.

In the above example, the two property sets, namely: Id, Pat-Name, Dob, History,
Address and Id, Name, age, Address, Location which belong to the classes Pnem-Patient
and C-Patient respectively, may have semantic conflict. For instance, while g-Patient.g-Age
can be safely retrieved from the C-Patient.Age attribute, a function is required to calculate
the age of the patient from his date of birth when it is retrieved from Pnem-Patient.Dob.
Also, equivalent properties may disagree on their syntax as well. For instance, the Name
property maybe spelt Name in one class and Pat-Name in another. These conflicts are iden-
tified and delt with during the conflict detection and resolution phase (see Tawil et al. 2008)
of the global schema generation process. Establishing interschema correspondence relation-
ships and defining proper transformation to reconcile any heterogeneity is only possible
when the semantic description of each property is explicitly defined to our system and the
correspondence establishment rules to resolve conflicts are specified.

Another important issue that is demonstrated by the current example is establishing
the set of correspondences between instances from the extensions of classes C-Patient and
Pnem-Patient to determine the correct instances for the generated global class g-Patient.
This achieved by using global integrity constraints that are defined on both classes, since
primary keys (OIDs) are usually insufficient to determine this relationship. While primary
keys are sufficient to uniquely identify objects at the local schema they are insufficient to
determine relationships between retrieved instances from different distributed grid ISs at
the mediator level. In this example, a patient object of one database represents the same real
object of another if they have the same name, age and address:

( => ( =Ext C − PatientPnem − Patient)

(and( =V alue C − Patient.namePnem − Patient.name)

( =V alue C − Patient.age(Date − Of − Birth − To − AgePnem − Patient.Dob?age))

( =V alue C − Patient.addressPnem − Patient.address)))

In the above asserted OKBC knowledge => stands for implication, =Ext stands for
extension equivalence, =V alue stands for attribute values equivalence, and Date-Of-Birth-To-
Age is a function that calculates the age of a person from its date of birth. The generalised
(unioned) superclass is represented internally using the Union-Class and Union-Attribute
functions of the generalisation operator. The Union-Class function takes two local classes
as input Pnem-Patient, C-Patient and generates a global one g-Patient as its output, e.g.

<owl:class rdf:ID="g-Patient">

<rdf:type rdf:resource="&opt;GlobalClass" />

<opt:Union-Class>

<modl:LocalClass rdf:resource="#Pnem-Patient"/>

<modl:LocalClass rdf:resource="#C-Patient"/>

</opt:Union-Class>

<rdfs:subClassOf rdf:resource="&mgkm;Patient"/>

</owl:class>



While the Union-Attribute function takes two local attributes Pnem-Patient.Pat-Name,
C-Patient.Name as input and generates one global imported attribute g-Patient.g-Name as
output, e.g.

<owl:DatatypeProperty rdf:ID="g-Patient.g-Name">

<rdf:type rdf:resource="&modl;Attribute"/>

<rdfs:domain>

<opt:Union-Attribute>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<modl:LocalAttribute rdf:about="#Pnem-Patient.

Pat-Name" />

<modl:LocalAttribute rdf:about="#C-Patient.Name" />

</owl:unionOf>

</owl:Class>

</opt:Union-Attribute>

</rdfs:domain>

<rdfs:subClassOf rdf:resource="&mgkm;Person-Identity-Number"/>

<rdfs:range rdf:resource="#g-Name"/>

</owl:DatatypeProperty>

The associated global subclasses of the unioned superclass are mapped internally using
the importation operator relations as described above. In our semantic representations we
are trying to model real world concepts. In the real-world a concept can have multiple par-
ents and can inherit properties along multiple paths. While, polyhierarchies are difficult to
maintain, however when providing the correct set of axioms, an automated reasoner such
as (pellet) can be used to maintain such relationships. The effort is considerable requir-
ing richer axioms but worthwhile as the automated reasoner is able to maintain the whole
structure, avoiding errors. The more expressive axiomatization also enables richer queries.

3.3 Specialisation operator

This group consists of two operators: Intersect, and IntersectAll. These integrate a set
of overlapping classes by generating a common subclass. Table 3 shows the services
contributed by each operator of this group.

The Specialisation operator group integrates a set of intentionally related local classes
by specialising them into a common subclass. This adds three virtual classes to the grid
global view, these are the generated subclass and its two superclasses. The set of attributes
belonging to the two superclasses are imported from their respective local classes using
the Include operator. The attributes that belong to the generated subclass are downward-
inherited by the generated subclass. The extension of the generated global subclass is the
intersection of the extension of both local classes. While the extension of the other global
classes is that of their local counterparts.

Table 3 shows how the classes Doctor and C-Patient are integrated, using speciali-
sation operators to generate the class Doctors-With-Cancer of hospital doctors who are
suffering from cancer. To calculate the treatment expenses of doctors who are patients,
we need to override the g-Expenses property of the g-C-Patient class with a user-defined
property special expenses Spec-Expenses that has a computed expression equals to



Table 3 Specialisation operator semantics

(
g − C − Patient.g − Expenses-g−C−Patient.g−Expenses∗40

100

)
stating that these patients

gets a 40 % discount. The OKBC representation of this rule is:

(and = (User − Defined − Attributeg − Spec − Expenses)

(Attribute − Ofg − Spec − Expensesg − Doctor − With − Cancer)

(=value g − Spec − Expenses(−g − Expenses(∗0.4g − Expenses)))

The specialised subclass is represented internally using the Intersect-Class, and Intersect-
Attribute functions of the specialisation operator. The Intersect-Class function takes two
classes as input and generate an intersected subclass as output. The associated global super-
classes of the specialised subclass are mapped internally using the importation operator
relations.

3.4 Merger operator

This group consists of two operators: Merge, and MergeAll. The service offered by these
operators is to integrate equivalent local integration units by merging them into one global
class. Table 4 shows the effects of each of this group of operators.

The Merger operator group supports the integration of two intentionally equivalent local
classes, by taking those classes as input and generating a combined integrated global class
as output. The local integration units must be intentionally equivalent to be merged and the
extension of the combined global class is the union of the extension of the locally combined
classes. Table 4 shows how the classes C-Patient and Pnem-Patient are merged together to
generate a single global class, namely the class g-Hospital-Patient. The concepts description



Table 4 Merger operator semantics

of the global class is the union of the descriptions associated with its local merged from
classes. Accordingly, the description of the g-Hospital-Patient class is that of patients who
are either suffering from Pnemonia or Cancer, or from both.

Finally, the combined global class is represented internally using the Merge-Class and
Merge-Attribute functions of the merger operator. The Merge-Class function takes two local
classes Pnem-Patient, C-Patient as input and generate one global class g-Hospital-Patient
as its output.

<owl:class rdf:ID="g-Hospital-Patient">

<rdf:type rdf:resource="&opt;GlobalClass" />

<opt:Merge-Class>

<modl:LocalClass rdf:resource="#Pnem-Patient"/>

<modl:LocalClass rdf:resource="#C-Patient"/>

</opt:Merge-Class>

<rdfs:subClassOf rdf:resource="&mgkm;Pneummonia-Patient"/>

<rdfs:subClassOf rdf:resource="&mgkm;Cancer-Patient"/>

</owl:class>

While the Merge-Attribute function takes two local attributes Pnem-Patient.Name, C-
Patient.Name as input and generates a global one g-Hospital-Patient.g-Name as its output.

<owl:DatatypeProperty rdf:ID="g-hospitaPatient.g-Name">

<rdf:type rdf:resource="&modl;Attribute"/>

<rdfs:domain>

<opt:Merge-Attribute>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">



<modl:LocalAttribute rdf:about="#Pnem-Patient

.Name" />

<modl:LocalAttribute rdf:about="#C-Patient.Name" />

</owl:unionOf>

</owl:Class>

</opt:Merge-Attribute>

</rdfs:domain>

<rdfs:subClassOf rdf:resource="&galen;Person-Full-Name"/>

<rdfs:range rdf:resource="#g-Name"/>

</owl:DatatypeProperty>

It is worth mentioning, here, that it is possible for the integration expert to override
any of the global attributes for a virtual class by overriding (customizing) global attributes
or processing the results of the retrieved values. This can be implemented in a variety of
ways: these range from simple arithmetic manipulations (e.g. defining a function to convert
degrees Centigrade to Fahrenheit) to complex operations which can only be realized using
external programs. The reason behind allowing for user-specified options is to give users
more control over the global view definition process and to support customizability.

3.5 Cost of integration operators

Open and dynamic grid environments pose additional challenges to the provision of cost-
related metadata, since cost models require cost-related information to be consistently
obtainable, i.e. over all data sources. In a grid environment quantitative cost estimates are
difficult to derive, when the data to be retrieved is computed by complex queries, that
retrieves and integrates data from different heterogeneous and grid distributed ISs. The cost
of both Union and Intersection operators in the grid depends on network cost of query exe-
cution time and the scale of data retrieved to be processed. Accordingly, we can find the
overall execution time by adding to the query execution cost the flat overheads. To over-
come the difficulties of cost-based query planning, we advocate a qualitative approach. We
assume that the cost to reformulation, query translation, and the system overheads are stable,
which entails that if the size of data to be processed is determined we are able to estimate
(with the help of a cost model, or based on previous experience) the execution time of each
integration operation.

We estimate the cost of a distributed plan purely in terms of its execution time. We also
assume that the execution time is dominated by the tuple transfer costs, and integration
operators used. Thus ignoring the local processing costs. Accordingly, the execution costs
are computed in terms of the response times offered by the various sources that makes up
the (distributed) plan. The response time of a server is proportional to the number of times
that server is called, and the expected number of tuples transferred over each call.

3.5.1 Case study

The experiment described in this subsection calculates the cost of using the integration
operators of the MetaMed system when evaluated against example queries on the mediator
global schema discussed in Fig. 4. Queries are run in various different configurations, and
with varied parameters to test the different operators including the Importation, Generalisa-
tion, Specialisation and Merger operators. For the purpose of this experiment only the query



response time was taken into consideration when calculating the cost of execution for each
operator.

The case study has been conducted on a homogeneous collection of dedicated MySQL
server machines with no direct user access at King’s College and University of Malta, while
the global mediator schema is run from the University of East London. All machines run-
ning Windows 7 operating system and had the same specifications (CPU 2.60 GHz, 4 GB
RAM). All three universities are connected via the (https://www.ja.net/products-services/
janet-connect/janet-connections!). Janet is high-speed network for the UK research and
education community. A connection to Janet gives a reliable and high bandwidth network.

The data (1 Gigabyte in total) is distributed over two volumes located on both sites. In
itself, then, these data can be accommodated in memory on any of the machines, so that the
execution time of a mediator calls should be dominated by CPU processing. The queries
submitted to the mediator global schema view are executed at the local server where the data
is located and retrieves tuples, from which part of the data are joined tuples across both sites,
some satisfies the aggregation criterion while other tuples required functional conversions.
Attributes are either generalized or specialized and the rest of the data is imported. As the
cost of calls to MetaMed is several orders higher than a normal query execution between
the two local sources, the query cost is expected to be dominated by the processing of
returned data when a standard MultiDatabase (MDB) approach is used as opposed to a
intelligent query planning and formulation when data are requested against the MetaMed
(MM) mediator schema.

In our case study, all machines have wrappers implemented with APIs that can sup-
port the MetaMed global mediator queries and are capable for translating from and to the
mediator global schema. The CPU cost of a MetaMed call for a given stored dataset varies
significantly depending on the operator’s required for specific query requests. Since the
CPU speeds and usage cost may vary, there is a range of options within a grid environ-
ment for increasing the parallelism in the operation calls. Two strategies for parallelizing
operators calls maybe considered in our integration context based on prior knowledge of
individual IS specification and network speed. One strategy could be to target high-speed
processors, the parallelization of the operation by the mediator through requesting larger
data sets from the fastest processor depending on the distance and network speed. A sec-
ond strategy may opt to target, slowest processor-first which could be adopted if the user is
charged for using Grid resources, and the cost of a resource depends on its power. However,
neither of these strategies are considered in our experiment.

Fig. 3 Union operator cost

https://www.ja.net/products-services/janet-connect/janet-connections!
https://www.ja.net/products-services/janet-connect/janet-connections!


Fig. 4 Intersect operator cost

Much of the cost of the integration process occurring is spent while enriching the local
schema and in the building of the integrated schema. The cost of using the importation
operator including all of it’s versions (ImportOne, ImportSubset and ImportAll) is equivalent
to executing a direct query request to the participating ISs as the data is not integrated when
using this operator.

The cost of the Generalisation operator depends on which version of the operator is used
(UnionOne, Union or UnionAll). The cost of the operator depends on the data retrieved by
the query when executed against the generalized classes of the MetaMed mediator global
schema and is evaluated by executing several Multi-database (MDB) queries (Smith et al.
2002; Lu et al. 1992) requesting data from the generalized class. In our mediator schema
example the Union operators were used and a superclass with the associated subclasses
are generated representing the integration of equivalent attributes. Any remaining attributes
are imported to their respective global mediator classes. The cost is determined based on
query execution time when the same results are requested using queries against the mediator
schema and then the same data is retrieved and integrated using MDB queries against the
individual ISs schemas, see Fig. 3.

The cost of the specialisation operator is evaluated based on the size of the intersected
data when integrated using either one of the operators (Intersect or IntersectAll). The query
execution time is significantly reduced when the data is actually imported from either one
of the local databases rather than filtering the data at the global schema. The same data is
retrieved and integrated using queries against the mediator global schema and also on MDB
queries against the individual ISs schemas, see Fig. 4.

Both Merger operators (Merge and MergeAll) significantly reduce the execution time.
Prior to query execution MetaMed identifies the server from which the data are to be
retrieves and complete the Merging of the data at the mediator global schema. The cost is
evaluated based on the size of the data retrieved that is part of the merged classes from the
global schema, see Fig. 5.

3.6 Verification of integration decisions

Each integration operator has predefined semantics in terms of its inputs and outputs, which
explicitly states its capabilities and grid integration services offered. A MetaMed integration
operator can only be applied if the semantics of the domain knowledge provided as input for
the operator are consistent with its predefined semantics and it is expected to produce legal
results (output). The decision of which operator to apply to a given set of integration units



Fig. 5 Merge operator cost

depends on the interschema semantic relationships among these units (e.g. equivalence,
overlap, .. etc), and user preferences, see (Li et al. 2010; Tawil et al. 2008; Li and Ling 2004).
Semantic preservation rules for validating user decisions have been defined. Based on the
description of the individual ISs, the interschema semantic relationships and the description
of the conditions under which the integration operators can be applied, the verification of
integration decisions can be validated using semantic preservation rules. The descriptions
of the data elements involved in the execution of an integration operator can either match
the integration rules associated with this operator or not. These are enforced implicitly by
controlling user choices, i.e. a user cannot make an erroneous selection because s/he is
presented with the valid set of properties to choose from. Whenever a choice is made by a
user at the grid level, all the properties that may create a conflict if they were to be chosen
during subsequent interactions are masked automatically by the system.

The domain (the concept(s) with which an operator is associated) and the range (the
type of values it can have) of the internal relations associated with each operator are explic-
itly defined (constrained) in the system. For example, the Import-class and Import-Attribute
relations of the importation operator can be described as follows:

( => (Import − Class ?Lc?Gc)

(and = (Interface ?Lc)

(Interface ?Gc)

( =Ext ?Gc ?Lc)

(or = (= Att(?Gc)Att(?Lc))

(Subset − Of Att(?Gc)Att(?Lc))).

The local class ?Lc can be imported to a global class ?Gc only if both ?Lc and ?Gc are
of type interface, and the associated attributes of ?Gc are equal to or are a subset of those of
?Lc, and the extension of the global imported classes ?Gc are equal to those of their local
counterparts ?Lc.

( => (Import − Attribute ?Att Lc?Att Gc)

(and = (Attribute ?Att Lc)

(Attribute ?Att Gc)

( =Ext ?Att Gc ?Att Lc))).



A local attribute ?Att Lc can only be imported to a global one ?Att Gc if both ?Att Lc and
?Att Gc are of type attribute, and the extension of the global attributes equals those of their
local counterparts. For the merger operator this translates to the following rules:

( => (Merge − Class ?Lc1 ?Lc2 ?Gc)

(and = (Interface ?Lcl)

(Interface ?Lc2)

(Interface ?Gc)

(Intentionally − Equivalent − With ?Lc1 ?Lc2)

( = Att(?Gc) (Union = Att(?Lc1)

Att(?Lc2))))).

The local classes ?Lc1 and ?Lc2 can be merged to a global class ?Gc only if ?Lc1, ?Lc2,
?Gc are of type Interface, both ?Lc1 and ?Lc2 are intentionally equivalent, and the associated
attributes of ?Gc are the union of the intentionally equivalent attributes of ?Lc1 and ?Lc2.

( => (Merge − Attribute (and (?Att Lc1) (?Att Lc2)) ?Att Gc)

(and = (Attribute ?Att Lc1)

(Attribute ?Att Lc2)

(Attribute ?Att Gc)

(Intentionally − Equivalent − With ?Att Lc1 ?Att Lc2)

( =Ext ?Att Gc (UnionExt = ?Att Lc1

?Att Lc2)))).

The local attributes ?Att Lc1 and ?Att Lc2 can be combined to a global attribute ?Att Gc
only if ?Att Lc1, ?Att Lc2, ?Att Gc are of type attribute, and both ?Att Lc1 and ?Att Lc2 are
intentionally equivalent. Also, the extension of global attributes ?Att Gc equals the union of
the extension of their local counterparts ?Att Lc1 and ?Att Lc2.

The use of MGKM in the integration process in grid-settings allows us to use the descrip-
tions associated with local classes to validate the user decisions (assertions) about concepts
to be integrated. In general, the descriptions of the data elements involved in the execution
of an integration operator can either match the integration rules associated with this operator
or not. Accordingly, three different situations are possible: an error message is signalled, a
warning is given, or the integration is granted.

Depending on both the situation and the kind of correspondence (see Table 5), the system
notifies the integration expert with one of the following messages:

Table 5 Cases in which the system can detect anomalies

A≡B A⊆B A∩B�= ∅ A∩B= ∅

Import Ignored Ignored Ignored Ignored

Generalise Error Warning Granted Error

Specialise Error Grant Warning Error

Merge Granted Warning Error Error



– Error Message, the interschema correspondence between the concepts description and
the predefined semantics of the integration operator are disjoint. For example, if the
database schemas Pnem-Patient (Stores information about patients suffering from a
pnemonia infection), and Lung-Tumor-Patient (Stores information about patients suf-
fering from lung tumor) are said to be merged, then an error is detected because their
interschema corresponding definition indicates that both schema concepts are intention-
ally related (both schemas are storing information about patients, but these patients
are suffering from different types of diseases). The merge operator group can only be
applied if both database concepts to be integrated are at least intentionally equivalent.

– Warning Message, the interschema correspondence between the concepts descriptions
and the predefined semantics of the integration operator can be matched, but the system
believes that a more accurate integration operator can be applied. For example, if the
schema concepts Cancer-Patient4 and Lung-Tumor-Patient5 are said to be merged by the
person responsible for integration using the merger operator, then a warning is detected
because the description of Cancer-Patient schema subsumes that of the Lung-Tumor-
Patient and therefore it seems that applying the generalisation operator would be a better
choice.

– Granted, the definition of the correspondence and the chosen integration operator match
perfectly, and the system cannot find a better operator to be used.

– Ignored, the definition of the correspondence does not make any new contribution.
For example, if the Importation operator is chosen then the definition of interschema
correspondences are ignored.

The integration process is semi-automatic and the integrator input is required to solve
conflicts. In case of an Error or a Warning message the enriched schema models are
exploited to assist the user (integration expert) during the integration process by automat-
ically identifying integratable schema concepts and validating user assertions about the
concepts to be integrated. The integration operators provide the integration expert with
the necessary tools to assist in designing the global schema and to resolve conflicts when
defining the mappings from the local ISs schemas to the global integrated schema.

4 Generation of the mediator global schema

In this section, we present an integration scenario to show how our integration language is
used to define a mediator global schema, that is a mediator view of data stored in local ISs.
In the scenario we examine the case when the integrator wishes to integrate two databases:
Lung-Infection-DB and Cancer-DB, see Fig. 6.

The process of generating global classes is interactive with the integrator
(Papakonstantinou et al. 1996; Sheth and Larson Levy et al. 1990; 1996). We assume that
both schemas are enriched with semantic knowledge extracted from the MGKM. Lets sup-
pose as a first step the integrator wishes to generalise the Pnem-Patient and the Patient
classes of the Lung–Infection-DB and Cancer-DB respectively, and to create a new Hospital-
Patient class as a superclass of the two classes. All three classes are added to the view. The
attributes belonging to the Hospital-Patient class corresponds to the union of the attributes of
the classes belonging to Pnem-Patient and Patient, where semantically equivalent attributes

4Stores information about patients suffering from Cancer.
5Stores information about patients suffering from lung tumor.



history:Patient−Family−History

pat−job:Job

job:Job
position:Doctor−Rank

date−of−birth:Date−Of−Birth

specialisation:Doctor−Specialisation

salary:Salary
address:Address

Physician::Doctor
doc−Id:Doctor−Identity−Number

address:Address
sex:Sex

rank:Doctor−Rank

name:Person−Full−Name

number:Patient−Identity−Number
name:Person−Full−Name

pat−Id:Patient−Identity−Number

Patient::Cancer−Patient
Doctor::Doctor

staff#:Doctor−Identity−Number

blood−group:Blood−Type

dob:Date−Of−Birth

first−name:Person−First−Name

wage:Salary

Lung−Infection−DB

Cancer−DB

doctor:set<Doctor>

dob:Date−Of−Birth
address:Address
sex:Sex

physician:set<Physician>
blood:Blood−Type

smoking−history:Patient−Smoking−History

1:M Attribute−Domain Relationship
Legend

last−name:Person−Last−Name
age:Age

name:Person−Full−Name

Pnem−Patient::Pneumonia−Patient

sex:Sex

speciality:Doctor−Specialisation

address:Address
address::Address

street:Street−Address
city:City−Address
zip−code:Postal−Address

Fig. 6 Enriched ISs schemas of Lung-Infection-DB and Cancer-DB

are automatically unified into unique global attributes in the Hospital-Patient class. Before
the integration process is initiated and based on the associated semantic domains with each
of the classes to be generalised the system infers (suggests) the following RDF/OWL-based
relationships:6

<owl:Class rdf:ID="#Pnem-Patient.number">

<mgkm:Is-Equivalent-With rdf:resource="#Patient.pat-Id" />

</owl:Class>

<owl:Class rdf:ID="#Pnem-Patient.name">

<mgkm:Is-Aggregation-Of>

<owl:unionOf rdf:parseType="Collection">

<modl:LocalAttribute rdf:about="#Patient.first-name" />

<modl:LocalAttribute rdf:about="#patient.last-name />

</owl:unionOf>

<mgkm:Is-Aggregation-Of>

</owl:Class>

<owl:Class rdf:ID="#Pnem-Patient.dob">

<mgkm:Has-Data-Representation-Conflict rdf:resource="#Patient

6The integrator is asked to accept/modify or reject the generated types of correspondences for the interschema
relationships among the local integration units



.age"/>

<owl:FunctionalProperty rdf:resourse="Date-Of-Birth-To-Age" />

</owl:Class>

<owl:Class rdf:ID="#Pnem-Patient.physician">

<mgkm:Is-Equivalent-With rdf:resource="#Patient.doctor" />

</owl:Class>

<owl:Class rdf:ID="#Pnem-Patient.smoking-history">

<mgkm:Is-Kind-Of rdf:resource="#Patient.history" />

</owl:Class>

.....

In the above interschema correspondence assertions, an Is-Equivalent-With assertion
is assigned when both schema elements are representing the same real-world concepts,
Is-Kind-Of assertion is assigned when two schema elements exists at different levels of
abstraction in two different databases, Is-Aggregation-of is assigned when the domain of
one schema element maps to a group, or collection of domains in another. The output
of this unification process for the Hospital-Patient class of Fig. 6, is the following set
of global attributes (g-name,g-dob,g-address,g-sex,g-blood,g-job,g-doctor), the associated
internal assertions include:

<opt:UnionClass rdf:ID="#g-hospital">

<owl:unionOf rdf:parseType="Collection">

<modl:LocalClass rdf:about="#Pnem-Patient" />

<modl:LocalClass rdf:about="#patient" />

</owl:unionOf>

</opt:UnionClass>

<opt:UnionAttribute rdf:ID="#g-hospital.name">

<owl:unionOf rdf:parseType="Collection">

<modl:LocalAttribute rdf:about="#Pnem-Patient.name" />

<modl:LocalAttribute>

<owl:unionOf rdf:parseType="Collection">

<modl:LocalAttribute rdf:about="#Patient.first-name" />

<modl:LocalAttribute rdf:about="#Patient.last-name" />

</modl:LocalAttribute>

</owl:unionOf>

</opt:UnionAttribute>

....

Of course additional information has to be provided for completing the grid level
global schema definition. In particular, MetaMed asks the designer to interactively supply
information regarding:

1. The global class name: the Global Schema Generator (GSG) of our system proposes a
set of candidate names for the global class, by exploiting terms in the MGKM ontol-
ogy that subsumes both classes to be integrated. Based on these names, the integrator
can decide the most suitable name for the generated global class or can even use a



completely different term. In our example, the designer decides to assign the name
g-Hospital-Patient to the global class generated from integrating g-Pnem-Patient and
g-Patient.

2. Mappings between the global attributes of the global class, and the corresponding
attributes of the local one. In particular, if a global attribute is obtained from integrat-
ing more than one local attribute, mapping information will be generated automatically
depending on the integration operator used, the resulting generated classes and their
internal representation:

• and mappings: this specifies that the value of a global attribute corresponds to the
union of the attributes of a given class. For example the global attribute name of
g-Hospital-Patient correspond to both first-name and last-name attributes of Pnem-
Patient. By specifying this mapping relationship for g-name, the integrator states
that the values of first-name, and last-name have to be considered when g-Hospital-
Patient.name is retrieved from the Pnem-Patient database.

• or mappings: this specifies that the value of a global attribute corresponds to
the value of at most one local attribute of a given class. g-Hospital-Patient.name
corresponds to the name attribute of the patient class.

3. default values to be assigned to global attributes in correspondence of a given class. A
default value is always verified for the global attribute when evaluated on the class. For
example, the integrator knows that the global attribute g-rank of g-Hospital-employees

Fig. 7 Mediator global schema of lung-infection-database and cancer-database



has values ‘Doctor’ or ‘Consultant’ when evaluated on the g-Doctor class, even if the
global g-rank attribute is not declared in any of the local ISs.

4. new attribute for the global class. The integration operator suggests a name assignment
that is constructed from the local integrated schema (which usually not very readable)
and provides the integrator with the option to manually change it.

The Doctor and Physician classes are integrated using the Merger operator to create the g-
Hospital-Doctor class, see Fig. 7. Furthermore, previously integrated views can participate
in further integration procedures. Accordingly, g-Hospital-Patient and g-Hospital-Doctor can
be furthur integrated using the same Merger operator to generate the g-Hospital-Person class
which groups information about all persons working in and/or treated at the hospital, again
refer to Fig. 7.

Global classes are specified in terms of the MetaMed ODLI3 knowledge representation
language7 and the information on attribute mappings and default values is represented in the
form of RDF/OWL-assertions. An example of MODLI3 specification for the global class
Hospital-Person is shown bellow:

<owl:Class rdf:ID="g-Hospital-Person" >

<rdf:type rdf:resource="&modl;Interface" />

<rdfs:subClassOf rdf:resource="&mgkm;Person" />

<modl:Has-Class-Extent>

<owl:oneOf rdf:parseType="Collection">

<modl:Interface rdf:about="#Pnem-Patient"/>

<modl:Interface rdf:about="#Patient"/>

<modl:Interface rdf:about="#Physician"/>

<modl:Interface rdf:about="#Doctor"/>

</owl:oneOf>

</modl:Has-Class-Extent>

<modl:isIdentifiedBy>

<modl:PrimaryKey>

<modl:hasAttribute rdf:resource="#g-Hospital-Person.g-

name"/>

</modl:PrimaryKey>

</modl:isIdentifiedBy>

...

</owl:Class>

<owl:DatatypeProperty rdf:ID="g-Hospital-Person.g-name">

<rdf:type rdf:resource="&modl;Attribute" />

<rdfs:domain rdf:resource="#g-Hospital-Person" />

<rdfs:range rdf:resource="&mgkm;Person-Full-Name" />

<rdfs:subPropertyOf rdf:resource="&mgkm;Has-Person-Name"/>

</owl:DatatypeProperty>

<opt:Maps-Class rdf:ID="g-Hospital-Person">

<modl:Interface rdf:resource="#g-Hospital-Patient" />

7MODLI3 (Tawil et al. 2008) is a declarative specification of the ODMG-93 Object Definition Language
(ODL) (Cattel 1996) that is based on the RDF/OWL knowledge representational language.



<modl:Interface rdf:resource="#g-Hospital-Doctor" />

</opt:Maps-Class>

<opt:Maps-Attribute rdf:ID="g-Hospital-Person.name">

<owl:oneOf rdf:parseType="Collection">

<owl:unionOf rdf:parseType="Collection">

<modl:Attribute rdf:resource="#Cancer-DB.Patient.first-

name" />

<modl:Attribute rdf:resource="#Cancer-DB.Patient.last-

name" />

</owl:unionOf>

<modl:Attribute rdf:resource="#Lung-Infection-DB.Pnem-

Patient.name" />

<modl:Attribute rdf:resource="#Cancer-DB.Doctor.full-name"

/>

<modl:Attribute rdf:resource="#Lung-Infection-DB.Physician.

Name />

</owl:oneOf>

</opt:Maps-Attribute>

...

As we can see from the specification, for each attribute, in addition to its declaration,
mapping rules are defined, specifying both information on how to map the attribute on the
corresponding attributes of the local classes and on possible default values defined for it
on local classes. For example, for the global attribute name, the mapping rule specifies the
attributes that have to be considered in each of the classes to which it corresponds. Mapping
rules are automatically generated by scanning the mapping relationships associated with the
operator history.

The global grid-level schema of the mediator is composed of the global classes
generated/defined by the user using the provided integration operators.

4.1 External schema specification module

Part of the customizability philosophy adopted in our design is to enable end users of our
system to view the global integrated schema in their preferred DDL. Once the internal
mediator schema view is defined, the user can decide on how s/he is interested in viewing
that schema. The External Schema Specification Module enable end users to specify tem-
plates that facilitate the interpretation of the integrated view internal representation into a
target DDL. Each template contains parameters which refer to the necessary information
for expressing the syntax of the output DDL. Typical templates for an OO DDL language
include Java methods that direct the generation of class names, keys, superclasses and prop-
erties. These templates are stored in a file called External Schema Specification File (ESSF)
for the output language. The following extract of a java program depicts a template that
will transform a virtual class from its RDF/OWL internal representation into standard ODL
representation:8

8Other templates can be used to generate for example a Java Data Objects (JDO) specification (Marr 2005)



public createStandardODLTemplate(Interface InterfaceName,

Key KeysName,

Extent ExtentsName,

SuperclassOf Superclasses,

Attribute PropertyNames,

ValueType PropertyType)

{

File standardOQL = new File(standardOQL);

FileWriter fwOQL = new FileWriter(fwStandardOQL);

write(fwOQL, ‘Interface’);

write(fwOQL, InterfaceName);

fwOQL.write(‘:’);

write_inheritance(fwOQL, Superclasses);

fwOQL.write(‘\n’);

fwOQL.write(‘(’);

writeStringToFile(fwOQL, ‘extent’);

write-extent(fwOQL, ExtentsName);

fwOQL.write(‘\n’);

writeStringToFile(fwOQL, ‘key’);

fwOQL.write(‘)’); fwOQL.write(‘\n’);

fwOQL.write(‘{’); fwOQL.write(‘\n’);

writeProperties(fwOQL, PropertyNames, PropertyTypes);

fwOQL.write(‘\n’);

writeStringToFile(fwOQL, (‘};’);

}

void writeStringToFile(FileWriter fw, String s) throws

IOException

{

for(int i=0; i<s.length(); i++)

fw.write(s.charAt(i));

fw.write(‘\n’);

}

void write-inheritance(FileWriter fw, SuperclassOf

SuperclassesName) throws IOException

{

// Enumerates over the inheritance list

Enumerator eSuperclasses = SuperclassesName.enumerate_list

(); while(eSuperclasses.has_more_p()){

writeStringToFile(fw, eSuperclasses.next().toString());

fw.write(‘:’)

}

}

....

..



This specification phase is performed once per target DDL. The result of applying the
above user defined template to the MODLI3 schema of Fig. 7 we get the following ODMG-
93 ODL schema definition:

Interface g-Hospital-Person : Person

(Key g-name)

{

attribute Person-Name g-name;

attribute Date-Of-Birth: g-dob;

attribute Address g-Address;

attribute Sex g-Sex;

}

Interface g-Hospital-Patient : g-Hospital-Person, patient

( )

{

attribute Patient-Blood-Type g-blood;

attribute Job g-job;

attribute set<Doctor> g-doctor;

}

...

..

Queries posed by the user using his/her preferred DDL are first translated to the MODLI3

internal representation before being processed by the QM. Clearly it is much easier to
create DDL templates when the target DDL is at least as expressive as MODLI3 . When
the target DDL is less expressive than the internal representation model, issues of limited
expressiveness of the target DDL need to be considered.

5 Query reformulation

In this section we will give a few examples of how a query processor can make use of
the integration knowledge in extracting data from several ISs. We describe how it is possi-
ble to exploit the information on the grid schema for global processing. When a grid user
submits a query on the global schema, MetaMed takes the query and produces a set of
subqueries that will be sent to the single information sources. According to other semantic
approaches (Comito et al. 2005; Levy et al. 1996; Arens et al. 1993), this process consists
of two main phases:

• semantic optimisation;
• query plan formulation;

5.1 Semantic optimisation

In this phase, the MetaMed mediator operates on the query by exploiting the semantic opti-
mistation techniques in order to reduce the query access plan cost. The query is replaced
by a new one that incorporates any possible restriction which is not present in the origi-
nal query but is logically implied by the query on the global schema. The transformation is



based on logical inference from content knowledge (in particular on the integrity constraint
rules) of the mediator schema, shared among the local classes from which the global class
is generated.

Let us the consider the the request: “Retrieve the doctors whose annual salary is greater
than £55000”:

select name

from g-Doctor

where g-salary is > 55000;

Let us suppose that in both integrated databases exists a relationship between the salary of
the doctor and his rank, stating that all doctors with a salary greater than £55000 are ranked
as consultants. This constraint rule can be defined in the following way:

(Defining-Axiom R1

(=> (and (Interface g-Doctor)

(> g-Doctor.g-salary 55000)

(Monetary-Units g-Doctor.g-salary pounds))

(= g-Doctor.rank Consultant))).

The mediator executes the semantic expansion of the input query by applying rule R1.
The resulting query is the following:

select name

from g-Doctor

where g-Doctor.g-salary > 55000

and g-Doctor.rank = ‘Consultant’;

Semantic expansion is performed in order to add predicates in the where clause: this
process makes query plan formulation more expensive (because a heavier query has to be
translated for each interesting source) but single source’s query processing overhead can be
lighter if secondary indexes into predicates added exist in the servers involved.

5.2 Query plan reformulation

Once the mediator has produced the optimized query at the grid level, a set of subqueries
for the local ISs will be formulated. For each IS, by using the mapping rules associated with
each global class, the mediator has to express the optimized query in terms of local schemas.
In order to produce the translated query, the mediator checks and translates every predicate
(boolean factor) in the where clause of the global query to determine the local query to be
generated. Starting from the local classes associated with the global class(es) queried by the
user.

Referring to our query example, the step 1 of the reformulation algorithm will consider
the querying of two local ISs’ classes (tables) Pnem-Patient and Patient, so that we derive
the following queries for servers Lung-Infection-DB and Cancer-DB respectively:

select name select fname, lname

from Lung-Infection-DB.Physician from Cancer-DB.Doctor

where Physician.wage > 55000 where Doctor.salary > 55000

and Physician.rank = ‘Consultant’; and Doctor.position =

‘Consultant’;



If integrity constraints are provided also for a local server, it is possible to perform

semantic query optimization with ODB-Tools on the corresponding local queries too, before

sending the query to the source. For example, if the following rule is provided for the Doctor

class of the Cancer-DB:

(Defining-Axiom R2

(=> (and (Interface Cancer-DB.Doctor)

(= Doctor.Position Consultant))

(> Doctor.staff# 100))).

R2 can be used to optimize the local query S2, giving raise to the following query:

select fname, lname

from Cancer-DB.Doctor

where Doctor.salary > 55000

and Doctor.position = ‘Consultant’

and Doctor.staff# > 100;

This transformation could be useful if, for example, an index is available for the staff#

attribute.

5.3 Query optimisation using extentional knowledge

Another type of knowledge which could be useful for query optimisation is interschema

knowledge of extensional type. It is defined in terms of interschema properties, specifying

mutual relationships between class instances and corresponding databases.

Example of interschema properties that can be specified for two classes c and c′ at the

extensional level are (equivalence, containment, overlapping, disjointness).

Referring to our example, let us suppose that the designer is able to state this exten-

sional property: Ext(Pnem-Patient) ⊂ Ext(Patient), stating that the patients stored in the

Pnemonia class of the Lung-Infection-DB are subset of those stored in the Patient class of the

Cancer-DB. The mediator may exploit this knowledge during the query processing phase to

minimize the data processing required. In particular, if the user is looking for the name of

the patients whose blood type is AB, the following query will be submitted:

select name

from g-Hospital-Patient

where g-blood = ‘AB’;

By exploiting the introduced extensional property, the mediator knows that all patient

instances of the Pnem-Patient class are also stored (and thus retrieved) in the Patient class.

Consequently only the following query is considered and will be sent to the Patient class of

the cancer database:

select name

from g-patient

where g-blood = ‘AB’;

While no query is sent to the Pnem-Patient table.



6 Conclusions

In this paper we have described the design and implementation of a multiple views inte-
gration language that facilitates the efficient production of multiple integration views from
multiple heterogeneous ISs in a Grid Environment. The language is based on a small set of
integration operators that are capable of providing a consistent and non-redundant represen-
tation of distributed participating ISs. The operators are customizable to satisfy the needs of
different user groups or participating programs. Users decisions on concepts to be integrated
are validated by the system.

The MetaMed system offers an integration language of operator services for grid end-
users to work with in terms of integrated and customized mediator views. Global queries
are executed by means of mapping requests against the mediator schema to requests against
the underlying ISs schemas. The mapping of queries is facilitated by a set of reformulation
rules that accompany each view. Finally, we believe that the availability of a rich set of
integration operators and the declarative nature of our language substantially increases the
degree to which service-oriented mediator functionalities can be integrated in a grid setting.

References

Al-Mourad, M.B., Gray, W.A., Fiddian, N.J. (2003). Multiple views with multiple behaviours for interop-
erable object-oriented database systems. In Proceeding of 14th international conference on database
and expert systems applications, Czech Republic, lecture notes in computer science (LNCS2736).
Springer-Verlag.

Arens, Y., Chee, C.Y., Hsu, C., Knoblock, C.A. (1993). Retrieving and integrating data from multiple infor-
mation sources. International Journal of Intelligent and Cooperative Information Systems, 2(2), 127–
158.

Brezany, P., Woehrer, A., Tjoa, A.M. (2004). Novel mediator architectures for grid information systems.
Journal for Future Generation Computer Systems - Grid Computing: Theory, Methods and Applications,
21(1).

Cattel, R.G. (1996). ODMG-93 The object database standard release 1.2. San Francisco: Morgan Kaufmann.
DBLP, http://dblp.uni-trier.de.

Chen, H., Wu, Z., Zheng, G., Mao, Y. (2004). RDF-based schema mediation for database grid. In Fifth
IEEE/ACM international workshop on grid computing (GRID04) (pp. 456-460).

Comito, C., Talia, D., Gounaris, A., Sakellariou, R. (2005). Data integration and query reformalution in
service-based grids: Architecture and roadmap. Technical report, CoreGRID technical report number
TR-0013. Institute on knowledge and data management.

Duwairi, R.M. (1997). Views for interoperability in a heterogeneous object-oriented multidatabase system.
PhD thesis. University of Wales College of Cardiff: Department of Computer Science.

Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I. (2003). Piazza: Data management infrastructure for seman-tic
web applications. In Proceedings of the 12th international world wide web conference (pp. 556–567).

Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I. (2004). The piazza peer data
management system. IEEE Transactions on Knowledge and Data Engineering, 16(7), 787–798.

Hillairet, G., Bertrand, F., Lafaye, J. (2009). Rewriting queries by means of model transformations from
sparql to oql and vice-versa. In R. Paige (Ed.), Theory and practice of model transformations, lecture
notes in computer science (Vol. 5563, pp. 116–131). Berlin/Heidelberg: Springer.

Horridge, M., & Bechhofer, S. (2011). The owl api: a java api for owl ontologies. Semantic Web, 2, 11–21.
Jackson, M.J., Antonioletti, M., Dobrzelecki, B., Hong, N.C. (2011). Distributed data management with

ogsadai. In S. Fiore & G. Aloisio (Eds.), Grid and cloud database management, (pp. 63–86).
Berlin/Heidelberg: Springer.

Kaoudi, Z., Dalamagas, T., Sellis, T. (2005). RDFSculpt: managing RDF schemas under set-Like semantics,
123–137.

Koehler, M., & Benkner, S. (2009). A service oriented approach for distributed data mediation on the grid. In
Proceedings of the 2009 8th international conference on grid and cooperative computing (pp. 401–408).

http://dblp.uni-trier.de


Kokkinidis, G., & Christophides, V. (2004). Semantic query routing and processing in P2P database systems:
the ics-forth sqpeer middleware. In Proceedings of the 2004 international conference on current trends
in database technology, EDBT’04 (pp. 486–495). Berlin/Heidelberg: Springer-Verlag.

Kollia, I., Glimm, B., Horrocks, I. (2011). SPARQL query answering over OWL ontologies. In G. Antoniou,
M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. De Leenheer & J. Pan (Eds.), The seman-
tic web research and applications, lecture notes in computer science (Vol. 6643, pp. 382–396).
Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-21034-1.

Levy, A.Y., Rajaraman, A., Ordille, J.J. (1996). Querying heterogeneous information sources using source
descriptions. In Proceedings of 22nd VLDB conference. Mumbai.

Li, A., Miao, J., Jia, Y. (2010). Research on broken mappings detecting method based on fuzzy aggregation
operators in deep web integration environment. In ICEE (pp. 125–128). IEEE.

Li, C., & Ling, T.W. (2004). Owl-based semantic conflicts detection and resolution for data interoperability.
In ER (Workshops) (pp. 266–277).

Lu, H., Ooi, B.-C., Goh, C.H. (1992). On global multidatabase query optimisation. ACM SIGMOD Record,
20(4), 6–11.

Ludascher, B., Gupta, A., Martone, M.E. (2001). Model-based mediation with domain maps. In Proceedings
of 17th international conference on data engineering (ICDE), Heidelberg, Germany IEEE Computer
Society.

Manolescu, I., Florescu, D., Kossmann, D. (2001). Answering XML queries on heterogeneous data sources.
In VLDB (pp. 241–250).

Manuali, C., & Grif, A.L. (2011). A new collaborative framework for a web service approach to grid
empowered calculations. Future Generation Comparative Systematics, 27(3), 315–318.

Marr, S. (2005). The java data objects persistence model. Seminar system modeling 2005, Hasso-
Plattner-institute for software systems engineering (pp. 1–8). http://stefan-marr.de/downloads/
The-JDO-Persistence-Model.paper.pdf.

Mukherjee, A., & Watson, P. (2012). Case for dynamic deployment in a grid-based distributed query
processor. Future Generation Comparative Systematics, 28(1), 171–183.

Muppavarapu, V., Pereira, A., Chung, S. (2010). Role-based access control for a grid system using ogsa-dai
and shibboleth. The Journal of Supercomputing, 54, 154–179.

Nejdl, W., & Wolf, B. (2002). EDUTELLA: a P2P networking infrastructure based on RDF. In Proceedings
of 11th WWW conference. Honolulu.

Orfali, R., & Harkey, D. (1996). Client/Server programming with JAVA and CORBA.
Papakonstantinou, Y., Garcia-Molina, H., Ullman, J. (1995). A query translation scheme for rapid implemen-

tation of wrappers. In Technical report. Stanford University: Department of Computer Science.
Papakonstantinou, Y., Garcia-Molina, H., Ullman, J. (1996). MedMaker: A mediation system based on

declarative specifications. In Proceedings of international conference on data engineering, New Orleans,
(pp. 132–141).

Qu, C., & Nejdl, W. (2004). Interacting the Edutella/JXTA Peer-to-Peer Network with Web Services. In
SAINT, (pp. 67–73): IEEE Computer Society.

Ricci, A., Denti, E., Piunti, M. (2010). A platform for developing SOA/WS applications as open and
heterogeneous multi-agent systems. Multiagent and Grid Systems, 6(2), 105–132.

Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R. (2011a). A reference architecture for building semantic-
web mediators. In CAiSE workshops (pp. 330–341).

Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R. (2011b). A reference architecture for building semantic-
web mediators. In C. Salinesi, O. Pastor, W. Aalst, J. Mylopoulos, M. Rosemann, M.J. Shaw, &
C. Szyperski (Eds.), Advanced information systems engineering workshops, lecture notes in business
information processing (Vol. 83, pp. 330–341). Berlin Heidelberg: Springer.

Sheth, A.P., & Larson, J.A. (1990). Federated database systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys, 22(3), 183–236.

Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou, R. (2002). Distributed
query processing on the grid. In M. Parashar (Ed.), Grid computing GRID 2002, lecture notes in
computer science (Vol. 2536, pp. 279–290). Berlin Heidelberg: Springer.

Tawil, A.-R.H., Gray, W.A., Fiddian, N.J. (1998). Ontological commitments for multiple view cooperation
in a distributed heterogeneous environment. In BNCOD (pp. 179–180).

Tawil, A.-R.H., Fiddian, N.J., Gray, W.A. (2002). Rich semantic-based schema integration in a federated
multiple information server environment. International Journal of Computers and Applications, 9(4),
205–226.

Tawil, A.R., Montebello, M., Bahsoon, R., Gray, W.A., Fiddian, N.J. (2008). Interschema correspon-
dence establishment in a cooperative owl-based multi-information server grid environment. Information
Science, 178(4), 1011–1031.

http://dx.doi.org/10.1007/978-3-642-21034-1
http://stefan-marr.de/downloads/The-JDO-Persistence-Model.paper.pdf
http://stefan-marr.de/downloads/The-JDO-Persistence-Model.paper.pdf


Tian, J., Liu, J., Pan, W., Vincent, M., Liu, C. (2008). Performance analysis and improvement for transfor-
mation operators in XML data integration. In Y. Zhang, G. Yu, E. Bertino, & G. Xu, (Eds.), Progress
in WWW research and development, lecture notes in computer science (Vol. 4976, pp. 214–226).
Berlin/Heidelberg: Springer. doi:10.1007/978-3-540-78849-2.

Vidal, V.M.P., Fernandes de Macêdo, J.A., Pinheiro, J.C., Casanova, M.A., Porto, F. (2011). Query processing
in a mediator based framework for linked data integration. IJBDCN, 7(2), 29–47.

Young-Jin, K., & Thottan, M. (2011). SGTP: smart grid transport protocol for secure reliable delivery of
periodic real time data. Bell Labs Technical Journal, 16(3), 83–99.

http://dx.doi.org/10.1007/978-3-540-78849-2

	Integration operators for generating RDF/OWL-based user defined mediator views in a grid environment
	Abstract
	Introduction
	The MetaMed service-based architecture
	RDF/OWL-based integration operators for generating global views
	Importation operator
	Generalisation operator
	Specialisation operator
	Merger operator
	Cost of integration operators
	Case study

	Verification of integration decisions

	Generation of the mediator global schema
	External schema specification module

	Query reformulation
	Semantic optimisation
	Query plan reformulation
	Query optimisation using extentional knowledge

	Conclusions
	References




