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Abstract This paper tackles the problem of discovering subtle fall risks using
skeleton clustering by multi-robot monitoring. We aim to identify whether a gait
has fall risks and obtain useful information in inspecting fall risks. We employ
clustering of walking postures and propose a similarity of two datasets with respect
to the clusters. When a gait has fall risks, the similarity between the gait which is
being observed and a normal gait which was monitored in advance exhibits a low
value.

In subtle fall risk discovery, unsafe skeletons, postures in which fall risks ap-
pear slightly as instabilities, are similar to safe skeletons and this fact causes the
difficulty in clustering. To circumvent this difficulty, we propose two instability
features, the horizontal deviation of the upper and lower bodies and the curvature
of the back, which are sensitive to instabilities and a data preprocessing method
which increases the ability to discriminate safe and unsafe skeletons.

To evaluate our method, we prepare seven kinds of gait datasets of four persons.
To identify whether a gait has fall risks, the first and second experiments use
normal gait datasets of the same person and another person, respectively. The third
experiments consider that how many skeletons are necessary to identify whether
a gait has fall risks and then we inspect the obtained clusters. In clustering more
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than 500 skeletons, the combination of the proposed features and our preprocessing
method discriminates gaits with fall risks and without fall risks and gathers unsafe
skeletons into a few clusters.

Keywords Skeleton Clustering · Human Monitoring · Mobile Robots · Service-
oriented DSMS

1 Introduction

In these years, a rapid growth of the elderly population and dangers of accidental
falls result in significant problems in the world. In 2050, older people (age ≥ 65) are
forecasted to reach 997 million (11.6% of the world population) [United Nations, Department of Economic and Social Affairs, Population Devision(2013)].
Among the various problems the elderly face in their daily lives, accidental falls
are critical [Rubenstein(2006)], e.g., in the U.S., falls occur in 30-60% of older
adults each year, and 10-20% of these falls result in injury, hospitalization, and/or
death [Rubenstein(2006)]. Recently, many researchers proposed early detection
methods for the accidental falls using static cameras or sensors [Gjoreski et al(2012)Gjoreski, Lustrek, and Gams,
Rougier et al(2011)Rougier, Auvinet, Rousseau, Mignotte, and Meunier,Sixsmith and Johnson(2004)].
We tackle developing a monitoring system to discover fall risks because it is impor-
tant to prevent injuries caused by the falls such as fractures and sprains. Since 17%
of the causes of these falls are “Gait/balance disorders or weakness” [Rubenstein(2006)],
our system monitors walking postures to discover fall risks related with instabilities
of the postures.

We adopt a multi-robot system for monitoring a human because it can collect
data of the human from a suitable position while the human walks. We have wit-
nessed a rapid advancement of mobile robots and hence their applications in vari-
ous domains such as industry, medicine, security, social infrastructure, and trans-
portation [Dunbabin and Marques(2012),Leibrandt et al(2014)Leibrandt, Marcus, Kwok, and Yang,
Neumann et al(2012)Neumann, Asadi, Lilienthal, Bartholmai, and Schiller,Palunko et al(2012)Palunko, Cruz, and Fierro,
Pippin and Christensen(2014)]. Recently, many researchers developed mobile robots
which work close to humans, e.g., navigation, assistance and monitoring [Ardiyanto and Miura(2014),
Coradeschi et al(2013)Coradeschi, Cesta, Cortellessa, Coraci, Gonzalez, Karlsson, Furfari, Loutfi, Orlandini, Palumbo, Pecora, von Rump, S̆timec, Ullberg, and Östlund,
Fischinger et al(2013)Fischinger, Einramhof, Wohlkinger, Papoutsakis, Mayer, Panek, Koertner, Hofmann, Argyros, Vincze, Weiss, and Gisinger,
Martinson and Yalla(2014)]. Autonomous mobile robots possess a potential to
drastically change our society by their ability to sense, move, and reason.

Among various kinds of reasoning performed by an autonomous mobile robot,
we believe discovery is one of the most promising and challenging research issues.
Naturally it is impossible for its designers and developers to foresee all kinds of sit-
uations that the robot encounters. For instance, a monitoring robot would benefit
from its ability to analyze its observation and discover patterns to adapt to its tar-
get person [Deguchi et al(2014)Deguchi, Takayama, Takano, Scuturici, Petit, and Suzuki].
With this motivation in our mind, we have proposed several autonomous mobile
robots which perform online clustering to discover useful patterns [Deguchi and Suzuki(2014),
Kondo et al(2014)Kondo, Deguchi, and Suzuki,Suzuki et al(2012)Suzuki, Matsumoto, and Kouno,
Suzuki et al(2014)Suzuki, Deguchi, Takayama, Takano, Scuturici, and Petit,Takayama et al(2014)Takayama, Deguchi, Takano, Scuturici, Petit, and Suzuki],
which we call data mining robots.

In this paper, we develop a multi-robot monitoring system based on a service-
oriented data streammanagement system (DSMS) [Gripay et al(2010)Gripay, Laforest, and Petit]
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to discover fall risks inherent in a gait of a human. We define subtle fall risks as
fall risks which are too small to be recognized at a glance and discover them to
avoid falls. Our subtle fall risk discovery aims to (1) discriminate gaits with fall
risks and gaits without fall risks and (2) obtain useful information in inspecting
the fall risks. Our system collects posture data of a walking human using mobile
robots and uses a clustering method to discover subtle fall risks.

This paper is organized in the following way. In the next section, we list related
works. Section 3 shows human monitoring in our problem, a definition of the fall
risk discovery problem and the motivation to tackle subtle fall risk discovery. In
Section 4, we explain the detail of our multi-robot monitoring system based on
a service-oriented DSMS. Section 5 presents our proposed methods for clustering
and evaluation. In Section 6, we conduct three kinds of experiments to evaluate
our proposed methods for clustering and discuss the results. Section 7 concludes
this paper.

2 Related Works

Many researchers tackled the problems of analyzing and detecting the falls of the
elderly people. From the 1980s to the 2000s, there were many researches about
risk factors of accidental falls. Tinetti et al. investigated the individual chronic
characteristics associated with the falls among elderly persons and tested the hy-
pothesis that the risk of the falls increases as the number of chronic disabilities in-
creases [Tinetti et al(1986)Tinetti, Williams, and Mayewski]. They revealed that
falls among several elderly persons resulted from accumulated effects of multiple
specific disabilities. Rubenstein surveyed studies about causes of falls, risk factors
and therapeutic and preventive approaches [Rubenstein(2006)].

From the 2000s, many researchers developed methods for automatic early de-
tection of accidental falls. Sixsmith and Johnson developed a prototype system
which detects falls using thermal-imaging sensors and then raises alarms [Sixsmith and Johnson(2004)].
They employed a neural network to classify falls and other kinds of events using
vertical-velocity of the target. Rougier et al. [Rougier et al(2011)Rougier, Auvinet, Rousseau, Mignotte, and Meunier]
used a Kinect sensor to calculate the distance from the 3D centroid of the human
body to the ground and the vertical velocity of the centroid. They determined
the best thresholds from the training dataset to classify “sitting down actions”,
“crouching down actions” and “falls”. Gjoreski et al. employed body-worn inertial
and location sensors for fall detection [Gjoreski et al(2012)Gjoreski, Lustrek, and Gams].
They proposed a fall detection method based on the use of context information
which consists of the user’s body accelerations, activities and locations.

In recent years, mobile robots are used to monitor older adults and fall de-
tection is applied as a part of monitoring. GiraffPlus1 and Hobbit2, which were
developed in large-scale EU projects, achieved fall detection by mobile robots suc-
cessfully. GiraffPlus is a complex system for early detection and adaptive support
to changing individual’s needs and the heart of the system is a unique telepresence
robot [Coradeschi et al(2013)Coradeschi, Cesta, Cortellessa, Coraci, Gonzalez, Karlsson, Furfari, Loutfi, Orlandini, Palumbo, Pecora, von Rump, S̆timec, Ullberg, and Östlund].
The system generates alarms and informs remote caregivers about location of the

1 http://www.giraffplus.eu/
2 http://hobbit.acin.tuwien.ac.at/
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faller when a fall occurs [Koshmak et al(2013)Koshmak, Linden, and Loutfi]. Hob-
bit consists of a socially assistive robot which supports older adults at home and de-
tects a fall to call for help if necessary [Fischinger et al(2013)Fischinger, Einramhof, Wohlkinger, Papoutsakis, Mayer, Panek, Koertner, Hofmann, Argyros, Vincze, Weiss, and Gisinger].
In addition, the robot picks up objects to clear the floor for fall prevention.

We employ clustering of walking postures for subtle fall risk discovery be-
cause it is difficult to foresee all diverse risks. Posture clustering is studied by
many researchers for gesture recognition, action recognition and so on. Wang
used a pairwise clustering algorithm to extract salient postures which can char-
acterize actions [Wang(2010)]. In the paper, non-Euclidean relational fuzzy c-
means was adopted to cope with the fuzziness of the histogram of oriented gradi-
ents [Wang(2010)] which is extracted from two posture images. Diraco et al. pre-
sented an active vision system for an automatic fall detection and a posture recog-
nition method for elderly healthcare [Diraco et al(2010)Diraco, Leone, and Siciliano].
As a part of the research, they proposed thresholding-based clustering of 3D pos-
tures using the distance from the ground to the human centroid as a feature for fall
detection. Pal et al. tackled the problem of recognizing health care linked gestures
of young individuals by using Kinect [Pal et al(2014)Pal, Saha, and Konar]. They
applied fuzzy c-means and principal component analysis to feature vectors each
of which consists of 171 normalized distances between each pair of joints of the
skeleton.

3 Skeleton Clustering with Instability Features for Fall Risk Discovery

3.1 Monitoring Human by Mobile Robots

In this paper, we assume that human monitoring for fall risk discovery is conducted
in a room of which the size is about 6.5m × 4.5m, so we use two mobile robots due
to the space capacity. Our monitoring system involves two autonomous mobile
robots R1 and R2, which monitor a target human H, and a fixed PC, which
manages the robots. The management PC communicates with each robot via a
wireless network. We assume that H is in an indoor space, though our system
could be used outdoors if we employ appropriate robots.

While the monitoring system is operating, H is either standing still or walking
around. In this paper, we assume at a first step that there are no obstacles between
Rk and H to focus postures of H3 because obstacles such as furnitures and other
humans cause several problems for movement and monitoring of the robots. In
this paper, we especially focus the functionality of the robot to discover fall risks.

To discover fall risks, our system collects postures of the target human and clus-
ters them incrementally while the human walks around a room. After the walking
for a few minutes, our system discovers useful information about the fall risks
which the gait of the human has. In fall risk discovery, we aim to (1) discriminate
gaits with fall risks and gaits without fall risks and (2) obtain useful information
in inspecting fall risks. Since we conduct clustering of walking postures, the second

3 It is surely better to conduct fall risk discovery at home. However, if fall risk discovery
is conducted in another situation, it has an advantage over early fall detection in an aspect
because prevention is better than cure. Fall risk discovery aims to find fall risks before the
target human is likely to fall.
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1 Spine 6.90
2 ShoulderCenter 10.45
3 Head 3.55
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5 ElbowLeft 2.50
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7 HandLeft 0.40
8 ShoulderRight 8.50
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10 WristRight 1.30
11 HandRight 0.40
12 HipLeft 12.50
13 KneeLeft 7.80
14 AnkleLeft 3.10
15 FootLeft 0.90
16 HipRight 12.50
17 KneeRight 7.80
18 AnkleRight 3.10
19 FootRight 0.90

Fig. 1 20 joints of Kinect. The left shows the position of each joint and the mass ra-
tio [Clauser et al(1969)Clauser, McConville, and Young] of body parts. The right explains each
joint and its weight ratio, where j represents the ID of the joint pj,t.

aim necessitates us to obtain a few clusters which (mostly) consist of unbalanced
postures.

3.2 Fall Risk Discovery

Our monitoring system collects a skeleton4 S(t, r(t)) at time t which is observed
by its vision system, Kinect for Windows5 mounted on the robot Rr(t), as a
posture of human H. S(t, r(t)) consists of 20 joints (p0,t,p1,t, ...,p19,t) as shown
in Fig. 1. Kinect outputs pj,t as a point (pj,t.x,pj,t.y,pj,t.z) in the 3D space
with the position of the sensor as its origin (shown in Fig. 2). Joint pj,t also has
tracking state pj,t.s which indicates 1: Tracked or 2: Inferred when the robot Rr(t)

monitors the human H.
We define the fall risk discovery as a clustering problem of skeletons {S(1, r(1)),

...,S(T, r(T ))} (r(t) = 1, 2) observed by the two robots R1 and R2, where T
represents the number of the skeletons. Before clustering skeletons, we use shift
and rotation transformation as shown in Equation (1) to convert pj,t so that p0,t

becomes the point of origin, and x′z′ plane becomes parallel to the ground.pj,t.x
′

pj,t.y
′

pj,t.z
′

 =

 1 0 0
0 cosϕr(t) − sinϕr(t)

0 sinϕr(t) cosϕr(t)

pj,t.x− p0,t.x
pj,t.y − p0,t.y
pj,t.z − p0,t.z

 (1)

4 http://research.microsoft.com/en-us/projects/vrkinect/
5 Kinect is a sensing device developed by Microsoft. Kinect consists of an RGB camera,

an IR emitter and an IR depth sensor, a multi-array microphone and a 3-axis accelerometer.
(http://www.microsoft.com/en-us/kinectforwindows/)
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Here ϕr(t) is the elevation angle of the Kinect. As the clustering method, we use
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [Zhang et al(1997)Zhang, Ramakrishnan, and Livny],
as we did in [Deguchi(2014),Deguchi and Suzuki(2014),Takayama et al(2014)Takayama, Deguchi, Takano, Scuturici, Petit, and Suzuki].

BIRCH is a distance based incremental method to obtain clusters from data
points, each of which corresponds to a skeleton in our problem. BIRCH constructs
a data structure named clustering feature tree (CF-tree) which is similar to a
B+-tree [Bayer and McCreight(1972)]. Each node of a CF-tree stores a clustering
feature CF(X).

CF(X) =

(
N,

N∑
i=1

xi,

N∑
i=1

∥xi∥2
)

= (N,LS, SS) (2)

CF(X) is a compressed representation of a set X which consists of N data
points {x1, ...xN} and CF(X) enables calculation of various extended distance
measures [Zhang et al(1997)Zhang, Ramakrishnan, and Livny] including average
inter-cluster distance D(CF1,CF2).

D(CF1,CF2) =

√∑N1

i=1

∑N1+N2

j=N1+1 ∥xi − xj∥2

N1N2

=

√
N1SS2 +N2SS1 − 2LS1 · LS2

N1N2
(3)

CF(X1 ∪X2) can be updated using information of CF(X1) and CF(X2) only.

CF(X1 ∪X2) =

(
N1 +N2,

N1+N2∑
i=1

xi,

N1+N2∑
i=1

∥xi∥2
)

=

(
N1 +N2,

N1∑
i=1

xi +

N1+N2∑
j=N1+1

xj ,

N1∑
i=1

∥xi∥2 +
N1+N2∑
j=N1+1

∥xj∥2
)

= CF(X1) +CF(X2) (4)

The CF-tree is updated incrementally when a new data point xnew is input. At
first, the nearest leaf nnear from xnew is searched from the root of the CF-tree. For
each internal node ninter, the CF CFinput of xnew is added into the CF of ninter.

y

x

z

horizontal plane

elevation angle

Kinect

z

x

y

Fig. 2 The original 3D space of Kinect. The origin (x, y, z) = (0, 0, 0) is located at the center
of the IR depth sensor on the Kinect. The z axis is not parallel to the ground when the elevation
angle of the Kinect is not equal to 0. In the right figure, the x axis is parallel to the depth
direction of the figure.
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The distance between CFinput and each child of ninter is calculated and then nnear

is searched from the subtree of the nearest child recursively. After nnear is searched,
the diameter of a CF which is the merge of CFinput and the CF CFnear of nnear

is calculated. CFinput is merged into CFnear when the diameter is less than the
absorption threshold θleaf of BIRCH, otherwise CFinput is added into the CF-tree
as a new leaf. To simplify BIRCH, we use the inter-cluster distance D(CF1,CF2)
for both internal nodes and the nearest leaf. Thus we employ D(CFinput,CFnear)
instead of the diameter to judge whether CFinput is merged into CFnear.

Each leaf of the CF-tree consists of similar data points, so the leaf is called
a subcluster. BIRCH obtains a set of K(E , θleaf) clusters C = {c1, ..., cK(E,θleaf)}
by merging leaves if the distance of leaves is less than the absorption threshold
θleaf . Here E represents a set of the input data. For the fall risk discovery, each
data point of E is represented by features which are relevant to the degrees of the
instabilities of a skeleton S(t, r(t)) to obtain a set of clusters in terms of fall risks.

3.3 Subtle Fall Risk Discovery

In [Takayama et al(2014)Takayama, Deguchi, Takano, Scuturici, Petit, and Suzuki],
we tackled the problem of discovering fall risks from walking postures of a human
who occasionally took spontaneous unbalanced postures. In contrast to [Takayama et al(2014)Takayama, Deguchi, Takano, Scuturici, Petit, and Suzuki],
our target human does not take spontaneous unbalanced postures. For effective
early prediction of accidental falls, we should discover fall risks before the target
human is in a dangerous situation in which he/she is likely to fall down.

Our target is an elderly person who does not have serious impairments on
his/her bodies, but he/she may have fall risks. If we discover their fall risks, it can
lead to mitigate the fear of falling in his/her future life. If he/she has fall risks,
we define his/her gait as abnormal. In the abnormal gait, both safe and unsafe
skeletons appear, where an unsafe skeleton is taken from a posture in which fall
risks appear slightly as instabilities. On the other hand, a safe skeleton is taken
from a stable posture.

Since unsafe skeletons are similar to safe skeletons, there are two difficult points.
First, it is difficult to build a correct set of clusters which is accurate enough to eval-
uate the clustering results. Since we cannot find unsafe skeletons in abnormal gaits
at a glance, it is difficult to label skeletons as safe or unsafe. Even if we look at the
skeletons carefully, it is not easy to determine the boundary between the safe and
the unsafe skeletons. Second, there is a dilemma between the sensitivity for the fall
risks and robustness against the noise. In our problem, it is harder to reflect insta-
bilities of postures than in [Takayama et al(2014)Takayama, Deguchi, Takano, Scuturici, Petit, and Suzuki].
In addition, several joints of the skeleton sometimes become inaccurate due to noise
because Kinect was originally developed as a static sensor for video game consoles.
Therefore, it is difficult to define features which are both sensitive for instabilities
and robust against noise.

Normalized mutual information (NMI) is often used as an evaluation measure
of clustering. However, it is not adequate due to the first difficult point because the
measure needs the correct set of clusters. The correct set of clusters are significantly
different among the labelers, most of whom cannot have confidence in their labels.
On the other hand, it is easy to label gait without fall risks as normal and prepare
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Human H
- walking
- standing still

observe dataset

command

dataset

command

dataset:                      - skeleton (20 joints)     
- camera angle (Kinect)
- data ID   

Mobile Robot1 R1

- Communication program
- Mobile Robot1 program

Mobile Robot2 R2

- Communication program
- Mobile Robot2 program

SoCQ
dataset

Management PC

dataset 
& source name

destination
& command

Command
Service C

incremental clustering

Clustering
Service D

Clustering
result

Fig. 3 System overview. In our monitoring system, SoCQ engine manages two mobile robots
to monitor the target human.

a normal gait dataset in advance. Therefore, we define a similarity to a normal
gait dataset and propose an evaluation method using the similarity in Section 5.3.

4 Proposed System for Human Monitoring

4.1 System Overview

Since unsafe skeletons are similar to safe skeletons, it is important to collect de-
tails of walking postures. A mobile robot has several advantages for monitoring
over fixed cameras and sensors such as observation from a suitable position. In
addition, a multi-robot system observes more information about the target by
cooperative monitoring from different directions. However, there are troubles in
developing, managing and controlling various components. We adopt a service-
oriented data stream management system (DSMS), a Service-oriented Continuous
Queries (SoCQ) [Gripay et al(2010)Gripay, Laforest, and Petit] engine, built on
a middleware Ubiware [Scuturici et al(2012)Scuturici, Surdu, Gripay, and Petit].
SoCQ engine manages data sources effectively in a uniform manner and simplifies
the application development by using declarative queries. Therefore, SoCQ enables
us an agile development and an efficient management of the system.

The management PC receives observed data from each robot and issues com-
mands to the robots for realizing a cooperative observation. In our system, vision
systems to monitor the target human H are only those mounted on the robots.
In using a low-cost sensor as the vision system of each robot, observed data are
prone to noise while the robot is moving. Therefore, our robots are designed to
move to suitable positions for monitoring at short intervals.

Fig. 3 shows a schematic overview of our monitoring system. From the view-
point of DSMS, each robot provides a data stream about the postures of the human
H and a service implementing a functionality which reflects a command (move left,
move right or stay). These services are seen by SoCQ engine and can be called
by the queries executed on the management PC. A clustering service (SoCQ com-
patible) based on BIRCH [Zhang et al(1997)Zhang, Ramakrishnan, and Livny] is
also available on the management PC. SoCQ engine executes continuous queries
integrating all these services and data streams.
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4.2 Service-Oriented DSMS on the Management PC

The SoCQ engine is a service-oriented DSMS capable of managing dynamic ob-
jects, which are data/relations, streams and services, in a dynamic environment [Gripay et al(2010)Gripay, Laforest, and Petit].
Each dynamic object is seen as a data source, may it come from a relation or a
stream, or from a method/service execution. In our solution, most interactions
with robots are implemented as continuous queries, which are run possibly forever
and return data as soon as some conditions are satisfied. In other words, we see
the robots and the surrounding space as a database-like environment. Each robot
produces a skeleton stream and responds to commands issued by the SoCQ engine.

Fig. 4 shows the SoCQ description of the environment which consists of four
parts: Receive data, Use BIRCH, Generate command and Send command. Each
part includes a relation and a data stream with their associated continuous queries
each of which is similar to tables in classical relational databases. The relation
skeletons describes all the skeletons sent by each robot and the corresponding
stream is skeletonSupervision. The relation addUsingBIRCH enables clustering
skeletons incrementally according to a service based on BIRCH [Zhang et al(1997)Zhang, Ramakrishnan, and Livny].
The relations generateCommand and receiveCommand represent commands for
a mobile robot for realizing a cooperative monitoring. The streams of the SoCQ
model is implemented as continuous queries: for instance, supervision BIRCH
provides the skeleton clustering for all the data sent by the robots, supervision create
and supervision receive produce the commands and invoke the corresponding ser-
vice, respectively.

For our service-oriented DSMS, each robot is integrated in the system as a
data source which generates a data stream consisting of the skeleton S(t, r(t)), the
camera angle ϕr(t) and the data index at time t. When a command is sent to the
robot, the robot is recognized as a data source that handles a service to respond
to the command.

4.3 Mobile Robots

For monitoring a walking human, each mobile robot finds the human H and moves
to a suitable position for monitoring H at short intervals. For realizing a cooper-
ative monitoring, one of the two robots moves relatively long distance to observe
skeletons of H from a different direction.

In our system, each robot acts according to a behavior strategy which is mod-
eled as a 4-state finite automaton in Fig. 5. The three out of the four states, the
searching, adjusting and monitoring statuses, are defined to monitor the target
human H. Only when the robot receives a repositioning command from SoCQ
engine, it transits to the remaining state, the moving status, for realizing a coop-
erative monitoring. Each behavior of the robot consists of left and right turns and
forward and backward moves.

In the searching status, the robot Rk alternately performs turning left/right
and moving forward to find H and transits to the adjusting status when Rk finds
H. In the adjusting status, Rk uses left/right turns and forward/backward moves6

6 A left/right turn precedes a forward/backward move so that the robot does not lose sight
of the target human easily.
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Fig. 4 SoCQ description of our monitoring system. There are four parts of descriptions and
each part has a relation and a stream with associated continuous queries.

to move to a suitable position for monitoring. When Rk is on a suitable position,
Rk transits to the monitoring status and stops for monitoring H. If Rk receives
a repositioning command from SoCQ engine, it transits to the moving status. In
the moving status, Rk turns left/right so that Rk does not head to H or the other
robot and then Rk moves forward for a while. After the forward move, Rk transits
to the searching status to find H again.

Fig. 6 shows a situation thatRk is in a suitable position for monitoringH. Here
dideal is the ideal distance between Rk and H. Rk has the monitored area where
Rk observes skeletons of H. If H is not in the area, skeletons are prone to noise
and Rk is likely to lose sight of H immediately. dideal is determined by using the
model in Fig. 7. The vision system, Kinect, is mounted on Rk of which the height
is equal to hR. Here hH, ϕR and Φ represent the height of H, the elevation angle
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Monitoring Status
TR = yes
SP = yes

Moving Status
TR = ∗
SP = ∗

Adjusting Status
TR = yes
SP = no 

Searching Status
TR = no
SP = no

Repositioning Command received

Target  moved

Target missed

Fig. 5 State diagram of the behavior strategy of the robot. TR (target recognition) represents
that whether the robot recognizes the target human and SP (suitable positioning) represents
that whether the robot positions itself in a suitable position for monitoring. TR and SP are
both binary variables. * is used as a wildcard value (yes or no).

human H

0.2m
2.5m

dideal

monitored area

krobot R

0.3m

0.4m

0.4m suitable position

Fig. 6 Suitable position for monitoring. In the monitored area, observed skeleton does not be
prone to noise.

h

L
H Rk

φ
Φz

h

H

R

x

y

R

Fig. 7 Geometric model for setting the ideal distance for monitoring. The x axis is parallel
to the depth direction of the figure.

of the Kinect and its field of view angle in the vertical direction, respectively. To
monitor the whole body of H, Rk needs to satisfy the following two inequalities.

L tan(Φ/2 + ϕR) + hR > hH (5)

L tan(Φ/2− ϕR) > hR (6)

In our monitoring system, we set an ideal distance dideal = 2.5m because we
assume that hH is equal to 1.7m and hR, ϕR and Φ of the robot are equal to 0.46m,
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Table 1 The detail of the robot’s behavior. (var.) represents that the value is variable de-
pending on the robot’s observation.

Status turn left/right move forward
time [s] velocity [deg/s] time [s] velocity [m/s]

monitoring 0.0 0 0.0 0.0
adjusting (var.) 40 (var.) 0.1+va
searching 3.0 40 1.0 0.2
moving 1.5+tm 40 0.6 0.4

10 degrees and 43 degrees, respectively. For our robot behavior, each turn or move
is determined experimentally as shown in Table 1. Here va is the velocity so that
Rk reaches a suitable position for monitoring in approximately one second and tm
is the time until H moves outside the visual field of Rk.

4.4 Reposition Command for the Robot

Our two robots should monitor the target humanH from different directions due to
two reasons. The first reason is the advantage of multi-robot monitoring to obtain
more information of H. The second reason is the prevention of a bad situation for
monitoring in which all skeletons are prone to noise. Since Kinect is suitable for
monitoring from the front of H7, monitoring from the side of H corresponds to a
bad situation and it is possibly subject to a mistrack or a sight loss of joints. In
the monitoring from different directions, at least one of the robots avoids such a
bad situation.

For realizing such a cooperative monitoring, a single robot Rr(t) moves if Rr(t)

receives a repositioning command, which is generated by the generating command
service in the management PC, from the SoCQ engine. When the both robots mon-
itor H unstably, the repositioning command is not generated to prevent situations
in which the both robots lose sight of H. The repositioning command indicates
left or right so that Rr(t) does not head H or the other robot.

The command is generated by the Algorithm 1 by comparing skeletons in two
circular arrays array[1] and array[2] each of which is held by one of the robots.
In the algorithm, there are three judgments: whether the monitorings of the both
robots are stable, whether Rr(t) monitors H from a less suitable direction than the
other robot R3−r(t) and whether Rr(t) should move left or right. The algorithm
consists of four parts: data storage (line 1 to line 5), the first judgment (line 6),
the second judgment (line 9 to line 15) and the third judgment (line 16).

In data storage, the latest m sets of data are stored in each array. If there
are old data, which are obtained more than τ before, in each array, the old data
are removed. Here m is the size of each array and τ is a time threshold. For the
first judgment, we check whether the both arrays are full. When the frequency of
observing data is higher than the frequency of removing data in data storage, the
both robots monitor H stably. For the second judgment, we use a classification
method to identify whetherRr(t) monitorsH from a less suitable direction. For the

7 Because Kinect was initially developed as an input device for a video game console.
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Algorithm 1 Generating the command which is sent to the robot Rr(t)

Input: skeleton S(t, r(t)), robot ID r(t) (= 1, 2) and camera angle ϕr(t)
Output: command ct
1: S′(t)← ShiftAndRotate(S(t, r(t)), ϕr(t))
2: tcurrent ← GetT ime()
3: e(t)← ConvertInstance(S′(t))
4: Dir(t)← InferDirection(S′(t))
5: StoreData(array[r(t)], e(t), Dir(t), tcurrent, τ,m)
6: send flag ← BothCountMax(array[1], array[2],m)
7: ct ← 0
8: if send flag = True then
9: worse count← 0
10: for i = 1 to ξ do
11: if JudgeWorse(array[r(t)], array[3− r(t)], i) then
12: worse count← worse count+ 1
13: end if
14: end for
15: if worse count > ν then
16: ct ← SelectDirection(array[r(t)], array[3− r(t)], ξ)
17: ClearArrays(array[r(t)], array[3− r(t))
18: end if
19: end if

third judgment, we use heading directions of the latest m skeletons to determine
whether Rr(t) should move left or right.

In lines 1-4 of the Algorithm 1, a feature vector e(t) and a heading direc-
tion Dir(t) are extracted from a set of received data S(t, r(t)), r(t) and ϕr(t).
e(t) and Dir(t) are used in the second and third judgments, respectively, In
ShiftAndRotate, we apply the shift and rotation transformation, which is the
same as Equation (1), to the skeleton S(t, r(t)). Concerning the transformed skele-
ton S′(t), the hip center joint is the point of origin and the xz plane is parallel to
the ground. ConvertInstance extracts e(t) from S′(t) and InferDirection esti-
mates Dir(t) of S′(t). StoreData stores e(t), Dir(t) and the current time tcurrent
in array[r(t)] and removes old data. In line 6, BothCountMax returns True when
the both arrays are full. JudgeWorse returns True when it judges that Rr(t) mon-
itors H from a less suitable direction than the other robot by using e(t) included
in the i-th latest element in each array. The second judgment is conducted in lines
10-14 by using e(t)s included in the ξ most recent elements. When worse count
becomes larger than a threshold ν, the algorithm generates the repositioning com-
mand. In line 16, SelectDirection sets one of two values meaning “move left” and
“move right” to the command ct

8 by comparing the average values of Dir(t)s in-
cluded in the ξ most recent elements in each array. ClearArrays clears all elements
of the two arrays.

The heading direction Dir(t) is estimated from the coordinates of the two
shoulders p4,t and p8,t as in the following equation.

Dir(t) = arctan
p8,t.z

′ − p4,t.z
′

p8,t.x′ − p4,t.x′

(
−π

2
< Dir(t) <

π

2

)
(7)

8 In line 7, the command ct = 0 which has no effect to the behavior of Rr(t) is necessary
for the generating command service. This is because a service which is managed by a SoCQ
engine needs to respond to the engine.
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In our monitoring system, we experimentally set m = 15, τ = 10s, ξ = 10 and
ν = 7 for generating the repositioning command by using the Algorithm 1.

For the second judgment, we assume that the front of H is more suitable for
monitoring of H than the side of H because skeletons taken from the side are more
prone to noise. We define a front skeleton and a side skeleton as skeletons which are
taken from the front and the side of H, respectively. To identify whether a mobile
robotRr(t) monitorsH from a less suitable direction than the other robotR3−r(t),
we employ a binary classification method, Adaboost [Freund and Schapire(1997)].
Let T = {e0, e1, ..., eN} be the training data, which consist of N examples. Each
example et = {xt, yt} consists of an instance xt and its class label yt(= 0, 1). A
binary classification method learns a classifier from T and then the classifier is
used to predict the class label of a new instance. In the classification, we classify
two situations in which: (yt = 0) Rr(t) and R3−r(t) observe the front and the side
skeletons, respectively and (yt = 1) Rr(t) and R3−r(t) observe the side and the
front skeletons, respectively.

In our problem, elements in each instance xt represent the difference between
two skeletons in terms of suitability based on directions from the center of the
whole human body to joints and tracking statuses of joints. Each element of an in-
stance is extracted from same joints of two skeletons. An instance xt is represented
as follows.

xt =
(
a(Rr(t),R3−r(t), t, 1), ..., a(Rr(t),R3−r(t), t, 19),

b(Rr(t),R3−r(t), t, 1), ..., b(Rr(t),R3−r(t), t, 19)
)

(8)

Here the elements of xt are represented as follows.

a(Rr(t),R3−r(t), t, j) =
∣∣η(tlate(t,Rr(t)), j)

∣∣− ∣∣η(tlate(t,R3−r(t)), j)
∣∣ (9)

η(t, j) = arctan
pj,t.x

′

pj,t.z′

(
−π

2
< η(t, j) <

π

2

)
(10)

b(Rr(t),R3−r(t), t, j) = pj,tlate(t,Rr(t)).s− pj,tlate(t,R3−r(t)).s (11)

a(Rr(t),R3−r(t), t, j) and b(Rr(t),R3−r(t), t, j) are calculated from two skeletons
which are observed by the two robots Rr(t) and R3−r(t) at the latest times
tlate(t,Rr(t)) and tlate(t,R3−r(t)) before time t, respectively. η(t, j) indicates the

angle between the z′ axis and the line passing through the hip center joint9 and
the j-th joint in the x′z′ plane as shown in Fig. 8. When the line is parallel to
the z′ axis, η(t, j) is equal to 0 degrees. When Rr(t) observes a front skeleton and
R3−r(t) observes a side skeleton, a(Rr(t),R3−r(t), t, j) becomes large. In the same
situation, b(Rr(t),R3−r(t), t, j) is likely to exhibit 0 or -1. This is because several
joints of the side skeleton observed by R3−r(t) are inferred, thus pj,tlate(t,Rr(t)).s
and pj,tlate(t,R3−r(t)).s are likely to be equal to 1 and 2, respectively. To create each
instance for judging whether Rr(t) monitors H from a less suitable direction, e(t)
in the Algorithm 1 is represented as follows.

e(t) = (η(t, 1), ..., η(t, 19),p1,t.s, ...,p19,t.s) (12)

To collect front skeletons and side skeletons for the second judgment, we con-
ducted experiments as shown in Fig. 9. The two robots R1 and R2 did not move

9 We assume that the hip center joint p0,t is positioned on the center of the whole body.
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robot

p’

p’

j, t

0, t
η(t, j)

z’

x’

Fig. 8 Definition of the angle η(t, j) between the z′ axis and the line passing through the 0th
joint p0,t and the j-th joint pj,t in the x′z′ plane. When the robot observes the side skeleton,
the line is parallel to the z′ axis, thus η(t, j) is likely to be equal to 0.

45deg

2.5m

2.5m

R

R

1

2 human H

0deg

90deg

Fig. 9 Relative positions of the human and the robots in the experiment to collect front
skeletons and side skeletons. The two robots R1 and R2 collect the front skeletons and the
side skeletons, respectively.

and observed skeletons of the human H. H gradually changed the heading direc-
tion within a range of 0 to 45 degrees as shown in Fig. 9 while stepping at the
position. Therefore R1 collected front skeletons and R2 collected side skeletons.
In the experiment, we collected 363 front skeletons and 271 side skeletons.

Our classifier was learnt from 786984 examples which were generated from
the collected skeletons and their right-and-left-reversed ones. In the training data,
393492 instances with labels zt = 0 were generated by regarding R1 as Rr(t) and
R2 as R3−r(t). On the other hand, we regarded R1 as R3−r(t) and R2 as Rr(t)

to generate 393492 instances with labels zt = 1. For evaluation of our classifier,
we used 10-fold cross validation and then the accuracy of each fold is equal to 1.

When skeletons are observed from a human who walks in the room, the perfor-
mance of the classifier may be lower due to noise but we believe that the classifier is
accurate enough to be employed in our system. In situations in which it is difficult
to judge whether Rr(t) monitors H from a less suitable direction, the both robots
monitor H from directions which are similar to each other in terms of suitability.
Therefore, the quality of the cooperative monitoring does not heavily depend on
which robot moves for realizing the monitoring from different directions.
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5 Proposed Method for Skeleton Clustering

5.1 Two kinds of Instability Features

To discover subtle fall risks, we represent skeletons by using features which are
related with the instabilities of the human posture. For reflecting the degrees of
the instabilities, we define two kinds of features: (δHC, αW) and (δUL, αU) as
shown in Figs. 10 and 13.

5.1.1 Previous Instability Features

Initially, we considered the robustness against noise on several joints, thus we
used a large number of joints or instability of the whole body for calculating
features. We initially defined two instability features δHC and αW which reflect
large instabilities of postures. We call δHC and αW the previous features.

δHC(t) was defined as the horizontal deviation of the center g(t) of gravity of
the whole body from the hip center joint p0,t, which we consider as the center of
the whole body.

δHC(t) = f(g(t),p0,t) (13)

f(a,b) =
√

(a.x′ − b.x′)2 + (a.z′ − b.z′)2 (14)

g(t) =

∑19
j=0 wjpj,t∑19

j=0 wj

(15)

Here wj , of which the value is shown in the right of Fig. 1, represents the weight ra-
tio of each joint [Takayama et al(2014)Takayama, Deguchi, Takano, Scuturici, Petit, and Suzuki].
To determine wj , we used the mass ratios of body parts as shown in the left of Fig. 1
which were investigated experimentally in [Clauser et al(1969)Clauser, McConville, and Young].
We assumed that the mass of each part can be regarded as concentrated at the
center of the part and the joints of the part are distributed so that each of their

g

δHC

p
0,t

αW

p
2,t

p
14,t

p
18,t

Fig. 10 Previous instability features δHC(t) and αW(t) to reflect overall instabilities
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p14,t p14,t
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Fig. 11 Geometric model for explanation of the robustness of αW

centers coincides with the center of the part. These assumptions allow us to con-
sider that each joint owns the evenly distributed sum of the mass ratios of the
body parts as its concentrated mass ratio.

αW(t) represents the degree of the inclination of the whole body. We defined
αW(t) as the largest angle between the y′ axis and the line passing through the
shoulder center joint p2,t and one of the ankle joints p14,t and p18,t.

αW(t) = max
j=14,18

[
arctan

f(pj,t,p2,t)

|pj,t.y′ − p2,t.y′|

] (
0 < αW(t) <

π

2

)
(16)

δHC and αW tend to be robust against noise. In calculating δHC(t), we use g(t)
which is the center of gravity of all joints. If a joint pn,t is shifted to p′

n,t = pn,t+n
due to noise and the other joints are not shifted, the difference d from the accurate
center of gravity is calculated as follows.

d =

∑19
j=0 wjp

′
j,t∑19

j=0 wj

−
∑19

j=0 wjpj,t∑19
j=0 wj

=
wnn∑19
j=0 wj

(17)

Although the joints on the hands and the wrists are often shifted by relatively
large distances due to noise, the shifts are mitigated by w7/

∑19
j=0 wj = 0.004

and w6/
∑19

j=0 wj = 0.013, respectively. Therefore g(t) is robust against n which
is caused by noise. To explain the robustness of αW, we compare αW and the
angle between the y′ axis and the line passing through the spine joint p1,t and
the shoulder center joint p2,t using the model shown in Fig. 11. Assume that the
left and right skeletons in Fig. 11 are equivalent, but the shoulder center joint p2,t

in the right skeleton is shifted 5cm on the horizontal plane due to noise. Without
noise, αW and the compared angle are equal to 2.05 and 0.00, respectively. When
p2,t is shifted by noise, αW and the compared angle exhibit a value between 0.00
and 4.09, and 7.13, respectively. Therefore, noise does not have relatively large
influence on δHC(t) and αW(t).

The previous features are effective in reflecting fall risks when the posture of the
target human becomes largely unbalanced, but they are not suitable to represent
subtle fall risks. δHC(t) does not exhibit a large value because the human moves
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his/her arms and legs unconsciously to keep balance. In using αW(t), values repre-
senting an unsafe skeleton and a safe skeleton are similar to each other because the
small instability cannot be discriminated from the effects of the strides. Therefore
the previous features have a low ability to reflect small instabilities and there is no
difference between the normal and the abnormal datasets in the previous feature
space as shown in the left of Fig. 12.

5.1.2 Proposed Instability Features

To discover subtle fall risks, we define δUL and αU as shown in Fig. 13 for reflecting
small instabilities of postures. We call δUL and αU the proposed features. These
features are more sensitive to instabilities than the previous features.

Since the lower body sustains the upper body, we consider that the horizon-
tal deviation between their centers of gravity signifies instabilities. δUL(t) is the
deviation of the centers of gravity of the upper body gup(t) (joints 1-11) and the
lower body glow(t) (joints 12-19).

δUL(t) = f (gup(t),glow(t)) (18)

gup(t) =

∑11
j=1 wjpj,t∑11

j=1 wj

, glow(t) =

∑19
j=12 wjpj,t∑19

j=12 wj

(19)

In the analysis by Tinetti et al. [Tinetti et al(1986)Tinetti, Williams, and Mayewski],
the 24 out of the 25 elderly who were recurrent fallers were unable or unwilling to
extend their backs. When the back is curved, the center of gravity of the whole
body is largely located forward and the walking becomes unstable. In this case,
the probability that the human falls down becomes relatively high. For reflecting
the curvature of the back, we define αU(t) as the angle between the upper body
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Fig. 12 Distributions of the skeletons in the normal and the abnormal gait datasets using two
pairs of features. The left figure uses the previous instability features δHC and αW. The right
figure uses the proposed instability features δUL and αU. The both figures use same datasets.
δUL and αU are effective to reflect fall risks. In these datasets, αU is especially effective.



Skeleton Clustering by Multi-Robot Monitoring for Fall Risk Discovery 19

and the y′ axis.

αU(t) = arctan
f (p1,t,p2,t)

|p1,t.y′ − p2,t.y′|

(
0 < αU(t) <

π

2

)
(20)

In the proposed feature space, it is easier to distinguish safe and unsafe skele-
tons than in the previous feature space. In the right of Fig. 12, there is a larger
difference between a normal and an abnormal gait datasets than in the left. How-
ever, skeletons are widely distributed in the space and there is no obvious boundary
between the safe and the unsafe skeletons. Even if most of safe and unsafe skeletons
are separated in clusters, there are too many clusters to inspect the fall risks. To
circumvent this problem, we propose a new feature transformation in Section 5.2.

5.1.3 Normalization of Instability Features

To use the features for clustering, it is important to normalize them because δHC

and δUL are deviations whereas αW and αU are angles. To normalize features
online, we use a normal gait dataset Dpost which is prepared in advance to calcu-
late several statistics such as the mean and the variance. When we inspected the
distributions of Xpost which is a set of the feature values extracted from Dpost,
we found that αU follows an exponential distribution while the remaining three
follow normal distributions10. αU rarely exhibits a high value because a human
takes a balance to prevent falls unconsciously. For each instability feature x, we
judge whether x follows a normal distribution or an exponential distribution and
convert x to xN which follows a normal distribution [Deguchi(2014)] as shown in
the Algorithm 2.

The Algorithm 2 consists of judgment whether Xpost follows a normal distri-
bution or an exponential distribution (line 1 to line 6), recalculation of the mean
and the variance (line 8 to line 12) and conversion of the input feature x (line

10 We consider a normal distribution and an exponential distribution only because these
distributions are not necessary to set parameters such as a value k for degrees of freedom in a
chi-squared distribution. It is difficult to determine such parameters because instabilities of a
posture is caused by plural fall risks.
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Fig. 13 New instability features δUL(t) and αU(t) to reflect subtle fall risks
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Algorithm 2 Approximate conversion from an exponential distribution to a nor-
mal distribution
Input: feature values Xpost = {x1, x2, ..., xn}, input feature x
Output: approximated feature xN

1: µ←
∑n

i=1
xi/n

2: σ2 ←
∑n

i=1
(xi − µ)2/n

3: flagExp ← False
4: simN ← Correlation(Xpost, N(µ, σ2))
5: simExp ← Correlation(Xpost, Exp(1/µ))
6: if simExp > simN then
7: flagExp ← True
8: for i = 1 to n do
9: xi ←

√
xi

10: end for
11: µ←

∑n

i=1
xi/n

12: σ2 ←
∑n

i=1
(xi − µ)2/n

13: end if
14: if flagExp = True then
15: xN ←

√
x

16: else
17: xN ← x
18: end if

15). In lines 1 and 2, the mean µ and the variance σ2 of Xpost are calculated. In
lines 4 and 5, Correlation calculates the correlation coefficients simN and simExp

between Xpost and a normal distribution N(µ, σ2) and between Xpost and an ex-
ponential distribution Exp(1/µ), respectively. When simN is smaller than simExp,
we consider that Xpost follows Exp(1/µ). Line 9 converts xi so that Xpost follows
a normal distribution approximately. In lines 11 and 12, µ and σ2 are recalculated,
which are used for the feature transformation defined in Section 5.2. Lines 1 to 13
are conducted in advance because it needs Xpost only. If Xpost follows Exp(1/µ),
line 15 converts the input feature x in the same way as in line 9.

5.2 Focus-on Transformation for an Instability Feature

In using our instability features, skeletons are widely distributed in the space of
the proposed features δUL and αU against our intuition and this fact deteriorates
clustering performance. In this section, we define a feature transformation which
enables a clustering method to keep the number of clusters small while yielding
several clusters which mostly consist of unsafe skeletons. To realize such a trans-
formation, we focus the intensity of attention to skeletons. When we manually sep-
arate safe and unsafe skeletons, we would pay more attention to skeletons which
are not categorized obviously. We assume that the intensity of our attention can
be approximated as a normal distribution N(xa, σa). For estimating N(xa, σa),
we use only a set of feature values Xpost extracted from a normal gait dataset
Dpost, which is prepared in advance, to transform a feature value online. By using
N(xa, σa), we emphasize distances among ambiguous skeletons and not emphasize
distances among obvious skeletons.

We propose the focus-on transformation which transforms an instability feature
x to a new feature χ. The focus-on transformation consists of two steps: estimating
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the intensity of the attention N(xa, σa) and transforming x to χ. In the first
step, we estimate N(xa, σa) by using the mean µ and the standard deviation σ
of Xpost. xa is the feature value corresponding to a skeleton to which we pay
the most attention and σa represents the degree of spread of N(xa, σa). Most
of the skeletons in Dpost seem obviously safe, so we assume that the probability
P (Xpost ≥ xa) is negligible. Therefore, xa is determined as follows.

0.01 =
1

2

∫ ∞

xa

1√
2πσ2

exp

[
− (t− µ)2

2σ2

]
(21)

Here the values 0.01 and 1/2 are chosen to represent a rare case and reflect the one-
side long tail distribution of Xpost, respectively. σa cannot be determined uniquely
due to the difference of the individuals. In this paper, we use σa = 2σ to cover a
wide range because it is impossible to foresee to which skeleton a person pay more
attention to distinguish the safe and the unsafe skeletons. The first step, which
calculates xa and σa, is conducted before our system starts to monitor the target
human because Dpost is prepared in advance.

In the second step, the transformation converts xB − xA to χB − χA using
N(xa, σa) so that χB−χA is equal to the probability P (xA ≤ xa ≤ xB). Intuitively,
when the area between xA and xB is close to xa, χB−χA is emphasized significantly
in the transformed space because P (xA ≤ xa ≤ xB) is high. The relation between
χB − χA and xB − xA is shown in the following equation.

χB − χA =

∫ xB

xA

1√
2πσ2

a

exp

[
− (t− xa)

2

2σ2
a

]
dt

=

∫ xB

−∞

1√
2πσ2

a

exp

[
− (t− xa)

2

2σ2
a

]
dt

−
∫ xA

−∞

1√
2πσ2

a

exp

[
− (t− xa)

2

2σ2
a

]
dt (22)

For example, we assume that a situation in which xB is equal to xA + σa/5. If xA

is equal to xa, χB − χA is equal to 0.0793. On the other hand, if xA is equal to
xa + σa, χB − χA is equal to 0.0436. We define the focus-on transformation from
x to χ as follows.

χ =

∫ x

−∞

1√
2πσ2

a

exp

[
− (t− xa)

2

2σ2
a

]
dt (23)

5.3 Evaluation Method Using Similarities between the Datasets

5.3.1 Similarity between two datasets

As we explained in Section 3.3, an evaluation measure which needs a correct set
of clusters, e.g., NMI, is inappropriate for our problem because it is difficult to
label each skeleton accurately. To circumvent this problem, we define a similarity
between two datasets and use the similarity in our evaluation method. The simi-
larity focuses on the occurrence frequency of skeletons with respect to the obtained
clusters. When a dataset is taken from an abnormal gait, more skeletons belong
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to clusters which consist of skeletons with high instabilities. Thus, the frequencies
of two normal gait datasets should be similar to each other, but the frequencies of
a normal and an abnormal gait datasets should be dissimilar.

To calculate the degree of the similarity ∆X ,Γ (D1,D2) between two datasets
D1 = {d1, ...,dM1

} and D2 = {dM1+1, ...,dM1+M2
} with respect to the obtained

clusters, we first create a merged dataset D = {d1, ...,dM1+M2
}. A set of clusters

C = {c1, ..., cK(D,X ,Γ )} is obtained by clustering D based on BIRCH using a
preprocessing method Γ with a set of features X . Here K(D,X , Γ ) is the number
of the obtained clusters. We construct a histogram Hj expressing the occurrence
frequency of skeletons in a dataset Dj with respect to C as follows.

Hj(i) =
Nci,Dj

Mj
(24)

Here Nci,Dj
is the number of skeletons from Dj included in ci. In Hj , we regard

each cluster ci as a bin Hj(i) of Hj . We define ∆X ,Γ (D1,D2) as the Bhattacharyya
coefficient [Bhattacharyya(1946)] between H1 and H2, which is widely used for
representing the similarity between two histograms.

(25)

When D2 is a normal gait dataset and ∆X ,Γ (D1,D2) is low, there are several
clusters which mostly consist of skeletons from D1 and these skeletons can be
regarded as unsafe. In such a case, D1 is considered as abnormal and the clusters
are useful in inspecting the fall risks.

5.3.2 Evaluation Measure

We evaluate the combination of a preprocessing method Γ and a set of features X
from two aspects: to recognize two normal gaits as belonging to the same category
and to discriminate a normal and an abnormal gaits. Thus, we prepare two normal
gait datasets Dstable and Dnormal and an abnormal gait dataset Dabnormal. If the
similarity between Dstable and Dnormal is high and the similarity between Dstable

and Dabnormal is low, the combination shows high performance.

We propose an evaluation measure E(X , Γ ) as follows.

E(X , Γ ) = ∆X ,Γ (Dnormal,Dstable)−∆X ,Γ (Dabnormal,Dstable) (26)

E(X , Γ ) measures the difference between the similarities ∆X ,Γ (Dnormal,Dstable)
and ∆X ,Γ (Dabnormal,Dstable). In cases in which E(X , Γ ) exhibits negative values
or values close to zero, we can confidently regard the clustering method using
Γ with X as ineffective. This is because we cannot identify whether a dataset D
contains a gait with fall risks by using∆X ,Γ (D,Dstable). In a case in which E(X , Γ )
exhibits a high value, the clustering method obtains a set of clusters in which a
normal and an abnormal gait datasets have different occurrence frequencies of
skeletons. Thus, we can regard the method as effective to discover fall risks.
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Table 2 Datasets used in the experiments. Abnormality on the body part(s) refers to the body
part(s) with tools for simulating the physical situation of the elderly. #skeletons represents
the number of skeletons.

Dataset #skeletons Person Abnormality on the body part(s)

A0 799 A none
A1 658 A visual deficit α
A2 764 A visual deficit β
A3 701 A mobility limitation 1
A4 638 A mobility limitation 1 & weakness 1
A5 680 A mobility limitation 2
A6 609 A mobility limitation 2 & weakness 2
B0 593 B none
B1 833 B visual deficit α
B2 691 B visual deficit β
B3 789 B mobility limitation 1
B4 785 B mobility limitation 1 & weakness 1
B5 746 B mobility limitation 2
B6 913 B mobility limitation 2 & weakness 2
C0 979 C none
C1 1048 C visual deficit α
C2 1071 C visual deficit β
C3 1288 C mobility limitation 1
C4 1296 C mobility limitation 1 & weakness 1
C5 1151 C mobility limitation 2
C6 1144 C mobility limitation 2 & weakness 2
D0 1319 D none
D1 858 D visual deficit α
D2 991 D visual deficit β
D3 517 D mobility limitation 1
D4 811 D mobility limitation 1 & weakness 1
D5 426 D mobility limitation 2
D6 1186 D mobility limitation 2 & weakness 2

6 Experiments

6.1 Conditions

In the experiments for evaluating our methods, we used seven kinds of datasets
of four persons A, B, C and D as shown in Table 2. Each dataset consists of
skeletons in a five-minute walk. To collect datasets, we conducted experiments in
the room as shown in Fig. 14.

The robot platform is TurtleBot2 with Kobuki11 (Kobuki). Our Kobuki had a
notebook PC Panasonic CF-SX3. The width, the depth and the height of Kobuki
are about 37cm, 37cm and 46cm, respectively, and a Kinect was mounted on the
top of the robot. The service-oriented DSMS was run on a notebook PC Panasonic
CF-SX2 and the PC and the robots were connected to a wireless LAN router NEC
Aterm WG1800HP (we used IEEE802.11a). Specifications of the PCs are shown
in Table 3. A person walked in the environment and our system observed skeletons
using the two mobile robots which are shown in Fig. 15.

To compare all datasets, we manually removed non-human skeletons and bro-
ken skeletons which largely deviate from walking postures of a human from the

11 http://kobuki.yujinrobot.com/home-en/about/reference-platforms/turtlebot-2/
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human H

robot Rrandom walk

robot R

1

2

Fig. 14 Environment of the experiments (width × height ≃ 6.5m × 4.5m)

Table 3 Specifications of the PCs

Mobile robot Service-oriented DSMS
PC CF-SX3 CF-SX2
CPU Core i7-4500U Core i7-3540M

Operation frequency 1.8GHz 3.0GHz
(using Intel Turbo Boost Technology) max 3.0GHz max 3.7GHz

Main memory 4GB RAM 4GB RAM

Fig. 15 TurtleBot2 with Kobuki

datasets. These skeletons were mistakenly taken from the wall or the floor or con-
tain serious errors such as having the twice longer right arm than the left or both
feet being 10cm above the ground. We consider that it is easy to remove these
non-human and broken skeletons automatically by using a classification method
because they largely differ from normal skeletons. A0, B0, C0 and D0 are normal
gait datasets which consist of safe skeletons. In other datasets, the target human
wore one or more tools on his/her eyes, one leg or both legs to become in a poor
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Fig. 16 Tools for simulating the physical situation of the elderly. The left: the goggle simulates
a visual deficit. The center: the band limits the movement of the knee joint. The right: the 1kg
load simulates the decrease of the physical strength.

physical situation for walking12. We call the influence of such tools abnormalities.
Since the target human often took unsafe postures due to the abnormalities, each
of these datasets consists of safe and unsafe skeletons and is regarded as abnor-
mal. The tools (Sanwa 104-998)13 for realizing these abnormalities are shown in
Fig. 16. They are used to simulate the physical situation of the elderly. The goggle
was used with two kinds of filters: clouded or narrowed. The person with “visual
deficit α” used the goggle with the narrowed filter and with “visual deficit β”, the
person walked using the goggle with the both filters. The band which limits the
movement of the knee joint and the weight which places a 1kg load on the leg sim-
ulate the decrease in physical strength. The person with “mobility limitation 1”
and “mobility limitation 2” wore the one or two bands on his/her one knee and
both knees, respectively. In addition to the mobility limitations, the person with
“weakness 1” and “weakness 2” wore the one or two weights on his/her one ankle
and both ankles, respectively.

Fig. 17 shows a snapshot of the experiments for the abnormal gait dataset A4.
We compared our method against a simplified method using the z-score normal-
ization, which is often used for normalization of features, instead of our focus-on
transformation. The z-score normalization assumes that a feature value v follows
a normal distribution and converts v into v′ to follow the standard normal distri-
bution as shown in Equation (27).

v′ =
v − µv

σv
(27)

Here µv and σv are the mean and the standard deviation of vs which were extracted
from a normal gait dataset Dpost. For each method we tested three sets of the
instability features: the previous two only, the proposed two only and all four.

The value for the absorption threshold θleaf of BIRCH yields various numbers
of clusters; for a specific combination of the dataset D, the instability feature set
X and the preprocessing method Γ of clustering. Thus we define a normalized
threshold θ′leaf as follows.

θ′leaf =
θleaf

maxD Θleaf(X , Γ |D)
(28)

12 Although it is the best way to prepare datasets taken from healthy elderly people, it is
difficult for us to prepare such datasets. This is because we cannot guarantee their safety
completely.
13 The tools are introduced to various domains, e.g., education, social welfare, home builder,
airline company and vocational training. From 2011, the tools were used in several news pro-
grams. Therefore, we consider that the tools simulate the physical situation of the elderly
adequately.
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Fig. 17 Snapshot of the experiments (A4)

Here Θleaf(X , Γ |D) represents the minimum value of θleaf yielding a single cluster
from D by using a method using Γ with X . To simplify the experiments, we
assume that the clustering method always obtains a single cluster when θleaf is
greater than Θleaf(X , Γ |D). A larger value for θleaf gathers less similar skeletons
into a cluster, thus the value tends to yield smaller number of clusters. Clustering
using θ′leaf = 1 gathers all skeletons in each dataset into a single cluster and using
θ′leaf = 0 does not gather any skeletons.

To evaluate a combination of Γ and X , our method uses the similarity between
two normal gait datasets Dstable and Dnormal and the similarity between a normal
gait dataset Dstable and an abnormal gait dataset Dabnormal. Dstable and Dnormal

were selected or created from the normal gait datasets of the four person A, B,
C and D. On the other hand, Dabnormal was selected from the abnormal gait
datasets of the persons. We conducted two kinds of experiments: (1) the datasets
which were used for Dstable, Dnormal and Dabnormal were taken from a single person
and (2) Dnormal and Dabnormal were taken from a single person while Dstable was
taken from another person. In the experiments (1), we consider a case that the
gait of the target human is monitored periodically (e.g., every month) for a long
term and we can prepare a normal gait dataset of the target for Dstable. In the
experiments (2), we consider a more practical case that a normal gait dataset of
the target is unavailable, but a normal gait dataset of another person is available
for Dstable.

In addition to the experiments, we evaluated our clustering method from prac-
tical viewpoints: (3.1) how many skeletons our method needs to judge whether a
gait is normal or abnormal and (3.2) whether several clusters mostly consist of
unsafe postures which are useful in inspecting fall risks. The experiments (3.1)
exhibit that how long the target elderly person has to walk for fall risk discovery.
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The experiments (3.2) inform us that how useful information is included in the
obtained clusters to inspect the fall risks.

6.2 Using Datasets of One Person

In the experiments (1), we employed a half of the normal gait dataset as Dstable

and regarded the remaining half as Dnormal so that we used the datasets taken
from a single person for Dstable, Dnormal and Dabnormal. For example, to ob-
tain the evaluation measure E(X , Γ ) for A1, the normal gait dataset A0 =
{S(0, r(0)), ...,S(T, r(T ))} was divided into the first half A01st and the remaining
half A02nd and then we calculated E(X , Γ ) as follows.

A01st = {S(0, r(0)), ...,S(⌊T/2⌋, r(⌊T/2⌋))} (29)

A02nd = {S(⌊T/2⌋+ 1, r(⌊T/2⌋+ 1)), ...,S(T, r(T ))} (30)

E(X , Γ ) = ∆X ,Γ (A01st,A02nd)

−∆X ,Γ (A1,A01st) +∆X ,Γ (A1,A02nd)

2
(31)

The results are shown in Figs. 18-21. In each figure, there are six kinds of plots
each of which uses a different dataset as Dabnormal. We show the results in the
figures for each person because there is the difference among representations of
fall risks due to the difference of the individuals. The vertical axis represents the
measure E(X , Γ ) of our evaluation method for a combination of a preprocessing
method Γ and a set of features X . A high value for E(X , Γ ) indicates that the
method obtains clusters in which Dnormal and Dabnormal have different occurrence
frequencies of skeletons. The horizontal axis represents the normalized threshold
θ′leaf

14 of BIRCH. A high value for θ′leaf indicates that the method obtains a few
clusters which are useful in inspecting the fall risks in the skeletons. When both
E(X , Γ ) and θ′leaf exhibit high values, the method has a high ability to identify
abnormal gaits and obtain useful information in inspecting the fall risks. In each
right plot in Figs. 18-21, the target person had larger abnormalities on his/her
walking postures than in the left plot in the same row. Therefore the right three
plots in each figure tend to show higher performance than the left three plots.

In the datasets taken from the persons A and D in which fall risks appear
as instabilities of postures, our method using the focus-on transformation with
the proposed features outperforms the other methods. For example in A4&A0,
E(X , Γ ) of our method exhibits 0.021 when θ′leaf is equal to 0.55. In contrast to our
method, the other methods exhibit no more than 0.002 for E(X , Γ ) in θ′leaf ≥ 0.55.
Although the combination of the z-score normalization and the proposed features
has a peak at E(X , Γ ) = 0.11 in θ′leaf = 0.13, there are 81 clusters. Therefore, the
combination of the focus-on transformation with the proposed features is effective
to discover fall risks which appear in walking postures as instabilities.

In the datasets C2&C0, C4&C0 and C6&C0, fall risks appear as slower
walking speed and shorter strides, but not instabilities of postures. Consequently,
the previous features are as effective as the proposed features. When the target
human walks more slowly, the center of gravity of his/her body does not move

14 We employ the normalized threshold θ′leaf as the horizontal axis instead of the number of
clusters because we confirm the difficulty to select an optimal value for θ′leaf .
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Fig. 18 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (1) (on the dataset of the person A). The combination of the focus-on transfor-
mation and the proposed features shows high performance except A3&A0 because the fall
risks appeared in skeletons as instabilities.
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Fig. 19 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (1) (on the dataset of the person B). The datasets, especially B0, are too noisy for
the proposed features, thus the method using the focus-on transformation with the proposed
features exhibits negative values for E(X , Γ ).
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Fig. 20 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (1) (on the dataset of the person C). There is an irregular case in which fall risks
appear as lower walking speed and smaller strides, thus the previous features are accidentally
as effective as the proposed features.
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Fig. 21 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (1) (on the dataset of the person D). In four out of the six plots, the combination
of the focus-on transformation and the proposed features shows high performance while θ′leaf
exhibits high values. Thus our method is effective to discriminate the normal and the abnormal
gaits for the person such as D.
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forward relatively, thus δHC exhibits a lower value. When the target human walks
with shorter strides, his/her ankles are close to the center of his/her shoulders on
the horizontal plane, thus αW exhibits a lower value. Therefore the previous fea-
tures δHC and αW accidentally discriminate the normal and the abnormal gaits.
However, δHC and αW reflecting slower walking speed and shorter strides exhibit
similar values extracted from standing postures. Thus the focus-on transforma-
tion does not emphasize the differences of δHC and αW in C2&C0, C4&C0 and
C6&C0 and induces negative evaluation values.

In the datasets taken from the person B except B6&B0, the method using
the focus-on transformation with the proposed features exhibits negative values
for evaluation measure E(X , Γ ). Skeletons in the datasets are too noisy for the
proposed features, thus the methods using the proposed features do not show high
performance. Unfortunately, the focus-on transformation emphasizes the effect
of noise. Since skeletons are noisy, all methods show low performance in several
datasets such as B1&B0 and B5&B0.

6.3 Using Normal Gait Dataset of Another Person for the Subject

It is difficult to prepare the normal gait dataset of the target elderly as Dstable ex-
cept several cases in which the gait of the target is monitored periodically for a long
term, e.g., every month. Therefore, it is useful to employ the normal gait dataset
of another healthy person as Dstable. The experiments (2) employed a normal gait
dataset of another person as Dstable. For example, we calculated ∆X ,Γ (A0,B0),
∆X ,Γ (A0,C0) and ∆X ,Γ (A0,D0) and used the average value of these similarities
as ∆X ,Γ (A0,Dstable).

The results of the experiments are shown in Figs. 22-25. As the same to the ex-
periments (1), the right three plots in each figure tend to show higher performance
than the left plots. In the datasets taken from A and D, in which fall risks appear
in postures as instabilities, our method using the focus-on transformation with the
proposed features outperforms the other methods. For example in A2&A0, our
method achieves E(X , Γ ) = 0.030 in θ′leaf = 0.72, but the other methods exhibit
no more than 0.003 for E(X , Γ ) while θ′leaf exhibits more than 0.59.

In Fig. 23 except B2&B0, all methods show low performance. This is because
the noisy skeletons in B0 are dissimilar to skeletons in each normal gait of the
other three persons, thus the positive term ∆X ,Γ (Dnormal,Dstable) of E(X , Γ )
(refer to Equation (5.3.2)) becomes low. In the datasets taken from C, the method
using the focus-on transformation with the previous features exhibits negative
values for E(X , Γ ) around θ′leaf = 0.40. In contrast to the experiments (1), the
previous features are considered to be ineffective to detect fall risks in C. As we
explained in Section 6.2, the previous features δHC and αW exhibit lower values
reflecting lower walking speed and smaller strides. However, the values are similar
to the values which are extracted from skeletons in another normal gait, thus the
methods using the previous features do not show high performance as same as in
the experiments (1). On the other hand, though our method using the focus-on
transformation with the proposed features does not exhibit high evaluation values
in the datasets taken from C, our method tends to outperform the other methods.
For example in C1&C0, the proposed features inhibit negative evaluation values.
The same effect also appears in C3&C0. For example in C4&C0, the combination
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Fig. 22 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (2) (using the abnormal gait datasets of the person A). In five out of the six plots,
the method using the focus-on transformation with the proposed features exhibits high values
for E(X , Γ ) while θ′leaf exhibits high values.
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Fig. 23 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (2) (using the abnormal gait datasets of the person B). All methods show low
performance because B0 is dissimilar to the normal gait datasets of the other three persons
due to noise.
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Fig. 24 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (2) (using the abnormal gait datasets of the person C). In contrast to the first
experiments, the previous features are not effective because fall risks appear in skeletons as
slower walking speed and shorter strides, but not instabilities.
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Fig. 25 The evaluation measure E(X , Γ ) in terms of the threshold θ′leaf : the results of the
experiments (2) (using the abnormal gait datasets of the person D). In four out of the six
plots, the method using the focus-on transformation with the proposed features shows high
performance while θ′leaf exhibits high values.
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of the focus-on transformation and the proposed features exhibits E(X , Γ ) = 0.01
in θ′leaf = 0.77. Thus the method keep a high ability to discriminate safe and
unsafe skeletons when θ′leaf becomes high.

6.4 Evaluation from Practical Viewpoints

In the experiments (3.1) and (3.2), we evaluated each method from more practical
viewpoints: how many skeletons are necessary to identify an abnormal gait and
how useful information are included in the obtained clusters to inspect fall risks. In
the experiments (3.1), we used the datasets taken from the person D and normal
gait datasets of the other three persons in the same way as the experiments (2).
The normalized thresholds θ′leaf which we used are shown in Table 4. The results
are shown in Fig. 26.

There are six plots which are different from each other in terms of the combina-
tion of a preprocessing method Γ and an instability feature set X . The vertical axis
represents the similarity ∆X ,Γ (D,Dstable) between two datasets D and Dstable in
terms of the occurrence frequency of skeletons with respect to the obtained clus-
ters. Here D was selected from the dataset taken from D and ∆X ,Γ (D,Dstable)
was an average value of the similarities each of which used one of A0, B0 and
C0 as Dstable. The horizontal axis represents the number of skeletons from D and
∆X ,Γ (D,Dstable) was calculated when every ten skeletons of D were input as data
points into the CF tree constructed from the skeletons in Dstable.

After about 500 skeletons were input, the values for ∆X ,Γ (D,Dstable) in Fig. 26
became stable and the difference between D0 and another dataset became large.
Therefore, our approach needs more than 500 skeletons to discover subtle fall risks
effectively in these settings. To calculate the skeletons per second in Table 5, we
regarded a computation time per skeleton longer than two seconds as the time that
the both robots lost sight of the target and excluded them. In the worst case, 4.43
skeletons were observed per second, so it takes about two minutes without missing

Table 4 Normalized thresholds θ′leaf which is used to estimate that how many skeletons are
necessary for each method to discriminate the normal and the abnormal gaits effectively (the
experiments(3.1)).

Z-score normalization Focus-on transformation
previous proposed all previous proposed all

θ′leaf 0.094 0.086 0.091 0.419 0.549 0.236

Table 5 Skeletons per second in each dataset

D skeletons/s D skeletons/s D skeletons/s D skeletons/s

A0 5.52 B0 5.59 C0 6.87 D0 7.77
A1 4.74 B1 4.71 C1 6.94 D1 7.88
A2 4.80 B2 5.09 C2 7.26 D2 6.21
A3 4.43 B3 6.91 C3 7.50 D3 6.08
A4 4.58 B4 5.65 C4 7.20 D4 7.55
A5 4.44 B5 8.03 C5 6.94 D5 5.44
A6 4.71 B6 7.29 C6 6.32 D6 8.54
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Fig. 26 Similarity in Section 5.3 in terms of the number of skeletons taken from the person
D. Before about 500 skeletons are input, the similarity is highly unstable.

time to observe 500 skeletons. We believe that two minutes are short enough not
to impose heavy burden on the target elderly.

In the results using the proposed features, the larger the number of skeletons
becomes, the lower the similarity ∆X ,Γ (D5,Dstable) becomes. If our monitoring
system observed more skeletons of D5, it may be possible to discover fall risks
more effectively. In the results using the focus-on transformation with the pro-
posed features, the similarity ∆X ,Γ (D1,Dstable) becomes high when the number
of skeletons is about 800. Such a case was considered as irregular, in which the per-
son D became familiar with the abnormality on his eyes and the method succeeded
in reflecting the change.

In the experiments (3.2), we show several postures in the obtained clusters from
a pair of the datasets A0 and D1 (or D6) using the focus-on transformation with
the proposed features. In this clustering, the numbers of input skeletons in D1
and D6 are limited to 500, respectively and we used the value for the normalized
absorption thresholds θ′leaf of BIRCH shown in Table 4. Several postures in the
obtained clusters are shown in Figs. 27 and 28. All postures shown in Figs. 27 and
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cluster 0
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0/4
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4/4
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3/3
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0/1

Fig. 27 Examples of the obtained clusters from D1 with A0: n1/n2 represents that there are
n2 skeletons including n1 skeletons from D1 in the cluster. cluster 1, cluster 4 and cluster 5
mostly consist of skeletons from D1 and these clusters are considered to be useful in inspecting
the fall risks.

28 look like safe at a glance. However, several clusters mostly consist of postures
from D1 or D6 which look more unsafe than other postures. In these postures, the
subtle fall risks which are included in D1 and D6 are more apparent. Therefore,
we believe that our method using the focus-on transformation with the proposed
features can provide useful information in inspecting the subtle fall risks.
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Fig. 28 Examples of the obtained clusters from D6 with A0: n1/n2 represents that there
are n2 skeletons including n1 skeletons from D6 in the cluster. cluster 2, cluster 4, cluster 6,
cluster 8 and cluster 9 mostly consist of skeletons from D1 and these clusters are considered
to be useful in inspecting fall risks.
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7 Conclusions

We developed an autonomous multi-robot monitoring system and tackled the prob-
lem of discovering fall risks: to discriminate normal and abnormal gaits and to
obtain useful information in inspecting fall risks. In this problem, we aim to pre-
vent dangerous situations in which an elderly person is likely to fall. Since unsafe
skeletons, in which fall risks appear as slight instabilities, are similar to safe skele-
tons, our problem is challenging. It is difficult to reflect small instabilities of unsafe
skeletons, thus we need features which are sensitive to the instabilities. There are
no obvious boundary between safe and unsafe skeletons, thus we need a method
enabling clustering to focus on the difference between safe and unsafe skeletons. It
is difficult to find unsafe skeletons at a glance, thus we need an evaluation method
which does not need a class label for each skeleton.

To discriminate safe and unsafe skeletons, we proposed two instability features
and a preprocessing method for skeleton clustering. The features, the horizontal
deviation of the upper and lower bodies and the curvature of the back, are sensitive
to instabilities which are caused by subtle fall risks. The preprocessing method,
the focus-on transformation for an instability feature, emphasizes the difference
between safe and unsafe skeletons. To identify an abnormal gait, we defined a
similarity between two datasets in terms of the occurrence frequencies of skeletons
with respect to the obtained clusters. By using the similarity, we proposed an
evaluation method which uses two normal and an abnormal gait datasets.

To evaluate our method, we conducted three kinds of experiments by using
seven kinds of gait datasets of four persons. The datasets of each person consist
of a normal gait dataset and six kinds of abnormal gait datasets. In the first
experiments, we assumed that a situation that an elderly person is monitored
periodically, e.g., every month to confirm whether he/she walks with fall risks.
Thus our evaluation method used the datasets of a singular person for calculating
two kinds of similarities. In the second experiments, we assumed that a normal
gait dataset of the target person were not available for identifying whether the
gait which is observed as having fall risks. Thus we used a normal gait dataset
of another person for calculating the similarity between two datasets. The third
experiments were conducted from more practical viewpoints: how many skeletons
are necessary to identify an abnormal gait and whether there are several clusters
which mostly consist of unsafe skeletons.

The first and second experiments exhibited that our method using the focus-on
transformation with the proposed features mostly outperformed the other methods
when fall risks appeared in skeletons as instabilities. In an irregular case, fall
risks appeared as slower walking speed and shorter strides, The previous features
reflected the difference between a normal gait and an abnormal gait which had such
fall risks. Thus the previous features were as effective as the proposed features in
the first experiments. However, the previous features were ineffective in the second
experiments because the features exhibited similar values extracted from standing
postures.

In the third experiments, the similarity between two datasets became stable
and the difference between a normal and an abnormal gait datasets became large
after about 500 skeletons were input. By using our monitoring system, it took
about two minutes without missing time to observe 500 skeletons. In the obtained
clusters, there were several clusters which mostly consist of postures from the
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abnormal gait dataset and these postures look more unsafe. Thus these clusters
were considered to be useful in inspecting fall risks. Therefore, our method using
the focus-on transformation with the proposed features is effective to discover fall
risks when more than 500 skeletons are observed and fall risks appear in skeletons
as instabilities.

Future work includes an investigation on the effective range of the evaluation
method in terms of its robustness as well as alternative theoretical methods which
are valid for a wider range of problems.
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