UAM

Lniversidad Autonoma

de Madrid

Biblos-e Archevo

51tor10 Institucional UAM

Repositorio Institucional de la Universidad Auténoma de Madrid
https://repositorio.uam.es

Esta es la version de autor del articulo publicado en:
This is an author produced version of a paper published in:

Mesas, R.M., Bellogin, A. Exploiting recommendation confidence in decision-aware
recommender systems, Journal of Intelligent Information Systems 54 (2020): 45-78

DOI: https://doi.org/10.1007/s10844-018-0526-3

Copyright: © 2020 Springer Nature

El acceso a la version del editor puede requerir la suscripcion del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://link.springer.com/journal/10844
https://doi.org/10.1007/s10844-018-0526-3

Exploiting recommendation confidence in decision-aware
recommender systems

Rus M. Mesas - Alejandro Bellogin

Received: date / Accepted: date

Abstract The main goal of a Recommender System is to suggest relevant items to users,
although other utility dimensions — such as diversity, novelty, confidence, possibility of pro-
viding explanations — are often considered. In this work, we investigate about confidence but
from the perspective of the system: what is the confidence a system has on its own recom-
mendations; more specifically, we focus on different methods to embed awareness into the
recommendation algorithms about deciding whether an item should be suggested. Some-
times it is better not to recommend than fail because failure can decrease user confidence
in the system. In this way, we hypothesise the system should only show the more reliable
suggestions, hence, increasing the performance of such recommendations, at the expense
of, presumably, reducing the number of potential recommendations. Different from other
works in the literature, our approaches do not exploit or analyse the input data but intrin-
sic aspects of the recommendation algorithms or of the components used during prediction
are considered. We propose a taxonomy of techniques that can be applied to some families
of recommender systems allowing to include mechanisms to decide if a recommendation
should be generated. In particular, we exploit the uncertainty in the prediction score for a
probabilistic matrix factorisation algorithm and the family of nearest-neighbour algorithms,
the support of the prediction score for nearest-neighbour algorithms, and a method indepen-
dent of the algorithm.

We study how the performance of a recommendation algorithm evolves when it decides
not to recommend in some situations. If the decision of avoiding a recommendation is sen-
sible —i.e., not random but related to the information available to the system about the target
user or item —, the performance is expected to improve at the expense of other quality di-
mensions such as coverage, novelty, or diversity. This balance is critical, since it is possible
to achieve a very high precision recommending only one item to a unique user, which would
not be a very useful recommender. Because of this, on the one hand, we explore some tech-
niques to combine precision and coverage metrics, an open problem in the area. On the
other hand, a family of metrics (correctness) based on the assumption that it is better to
avoid a recommendation rather than providing a bad recommendation is proposed herein. In

R.M. Mesas
Telefénica

A. Bellogin
Universidad Auténoma de Madrid
E-mail: alejandro.bellogin @uam.es

2 Rus M. Mesas, Alejandro Bellogin

summary, the contributions of this paper are twofold: a taxonomy of techniques that can be
applied to some families of recommender systems allowing to include mechanisms to de-
cide if a recommendation should be generated, and a first exploration to the combination of
evaluation metrics, mostly focused on measures for precision and coverage. Empiric results
show that large precision improvements are obtained when using these approaches at the
expense of user and item coverage and with varying levels of novelty and diversity.

Keywords Confidence - Decision-aware - Evaluation - Accuracy - Coverage - Novelty -
Diversity

1 Introduction

In the last years, the large growth on information in the Web and the increasing number of
online services have created new information needs such as providing personalised sugges-
tions of products. Several websites have huge item catalogues, which makes it harder for
their clients to choose an interesting item from them. The same problem occurs in other
systems, like in social networking systems, where a user should decide who to follow, or in
music or movie streaming services, where the client wants to select a song or movie accord-
ing to her tastes. Because of that, Recommender Systems — that aim at suggesting as many
relevant items to the users as possible — are prevalent in this type of websites. Usually, these
techniques exploit previous user interactions to suggest new items; in this way, they help
users in making better choices, and, at the same time, improve their experience in the sys-
tem, increase the user satisfaction, and act as a tool to discover all the items in the catalogue,
by promoting diverse and novel recommendations, with the aim of increasing their profits.

Nowadays, recommender system techniques are analysed from many different perspec-
tives, although most of the research is focused on producing more sophisticated algorithms
able to handle large amounts of data in an efficient way. In general, the main goal of a rec-
ommender system is suggesting as many relevant items to the users as possible, although
other goals are being considered recently (Gunawardana and Shani 2015): increasing the
diversity or novelty of the recommendations, suggesting items in such a way that it is possi-
ble to explain where the recommendation is coming from, increasing the confidence of the
user in the system, etc. In this work, in order to increase the amount of relevant items being
presented to the user, we investigate how the system could measure the confidence on its
own recommendations, and, therefore, in this way being aware of making decisions about
whether an item should be recommended. Our hypothesis is that, on several occasions, it is
better not to recommend rather than producing a bad recommendation, since a bad recom-
mendation may decrease the user confidence on the system. The purpose of this decision
making approach is that only items based on consistent, confident data are recommended
and presented to the users.

Even though the concept of confidence has already been studied in different aspects of
the field (Herlocker et al 2002), we focus on confidence but from the perspective of the sys-
tem, considering intrinsic aspects of the algorithm. In this way, we propose a taxonomy of
techniques for making recommendation decisions that can be applied to some families of
recommender systems. In particular, we present how to exploit the prediction uncertainty
in matrix factorisation and nearest-neighbour algorithms, the prediction support of the latter
recommendation technique, and a method that works independently of the algorithm. Ad-
ditionally, we also present a technique that exploits such uncertainties to create confidence
intervals and recommends by either underestimating or overestimating these intervals.

The main objective analysed in this work is related to the hypothesis that a decision-
aware system such as the one we propose here would only show those recommendations

Exploiting recommendation confidence in decision-aware recommender systems 3

generated from reliable and consistent data, which may lead to an increase in the num-
ber of relevant items presented to the user and in her confidence on the recommendations,
which may, in turn, also affect negatively other dimensions (Gunawardana and Shani 2015).
However, this hypothesis may not properly fit all the user tasks existing in recommender
systems and, hence, the proposed methods might only be suitable for a subset of these tasks.
More specifically, based on the taxonomy presented in (Herlocker et al 2004), we argue that
our approaches are consistent with the find good items and annotation in context tasks, by
presenting only those items with enough confidence in the first case, and filtering out the
low-confident items in the second case; in principle, there would be no problem with the
recommend sequence task. On the other hand, decision-aware recommendations are prob-
ably not suitable for the just browsing task, since other aspects besides accuracy are more
important in this case; similarly, they should not be applied in the find all good items task,
considering the potential coverage loss caused by our approaches. Finally, for the find cred-
ible recommendation task a user study might be needed, since it is not clear, a priori, that
more confident recommendations from the system viewpoint would appear trustworthy to
the user.

Nonetheless, considering the different purposes a recommender system can serve (Jan-
nach and Adomavicius 2016), we should compare against other dimensions besides accu-
racy to further explore the potential of the proposed approaches. As a consequence, our
second objective consists on studying how decision-aware algorithms affect different eval-
uation metrics such as precision, coverage, diversity, and novelty. As a matter of fact, by
returning only reliable, confident recommendations, the precision of a recommender might
be increased, at the expense of the number of users that receive the recommendations and/or
the number of items being recommended, making harder the decision of selecting a recom-
mender evidencing reasonable tradeoffs between both characteristics. Hence, another nov-
elty in this work is the study and development of new techniques and evaluation metrics for
a more complete evaluation of these new systems.

In summary, the contributions of this paper are twofold: a taxonomy of techniques that
can be applied to any recommendation algorithm or to some families of recommender sys-
tems allowing to include mechanisms to decide if a recommendation should be generated,
and a first exploration to the combination of evaluation metrics, where a family of metrics
accounting for incomplete rankings was defined, mostly focused on measures for precision
and coverage. Our results show that it is possible to increase the precision of recommender
systems when using decision-aware strategies, however these improvements have to be bal-
anced with a lack of coverage and diversity. Nonetheless, the proposed family of evaluation
metrics allows us to compare different systems in a fair, non-parametric way, based on the
assumption that it is better to avoid a recommendation rather than providing a bad recom-
mendation.

The remaining of the paper has the following structure. Section 2 provides some back-
ground on the different recommendation techniques that will be used throughout this ar-
ticle and presents works related to our approach. Section 3 presents the techniques anal-
ysed to embed awareness into the recommendation algorithms about deciding whether an
item should be suggested, and Section 4 introduces a technique to exploit the uncertainty
when predicting item suggestions to improve the recommendation process. Then, Section 5
describes our proposed evaluation metrics especially designed to evaluate decision-aware
algorithms in an unbiased way. Finally, Section 6 reports experiments conducted on three
real-world datasets and Section 7 ends with some conclusions and potential future lines of
work.

4 Rus M. Mesas, Alejandro Bellogin

2 Background and Related Work

We present in this section basic formulation and concepts needed for the rest of the paper.
Then, we survey some works related to our proposal.

2.1 Recommender systems

Throughout the paper, we use the inherent characteristics of two of the most used recommen-
dation algorithms based on collaborative filtering techniques: k nearest-neighbours (KNN)
and matrix factorisation (MF), which will be explained in the next sections.

2.1.1 k Nearest Neighbour (kNN)

Recommender systems based on the k nearest neighbours estimate their predictions for users
by computing a distance between users or items, and then using the closest elements to the
target user and item. Depending on whether users or items are being used in this process,
we would have a user-based kNN or an item-based kNN. In the following, we will only
describe the user-based kNN algorithm, the developments for the item-based kNN being
very similar (Linden et al 2003; Sarwar et al 2001; Karypis 2001).

In order to compute the rating r,; that user # may provide to item i, user-based nearest-
neighbour algorithms exploit the ratings of the k most similar users to u. The subset of k most
similar users to such user that voted this item is called «’s neighbourhood, N;(u). For this,
we need a similarity measure to account for the distance or closeness between two users,
that is, a function wy, : Z x % + R that, given two users u and v, returns the similarity
between them. In this way, once all similarities between user u# and the rest of users are
computed, the k users with the highest similarities could be selected and a new rating could
be estimated. This computation is typically performed by using a weighted average of the
neighbours’ ratings, using the similarities wy, as weights (Ning et al 2015), as we show in
Equation 1:

A ZVEN,‘(M) WuyTvi

Tui =
Yvem;(u) Wiy

ey

Furthermore, to take into account that each user may have a different rating behaviour —
e.g., some users may provide consistently higher ratings than others —, different normalisa-
tion formulations for this equation have been proposed, so the computations are centered in
the mean or a Z-score normalisation is applied to the ratings before being used (Ning et al
2015).

As it stems from their definition, the choice of the similarity metric is a key aspect of
neighbour-based methods, since it is used to select the users for the neighbourhood, but also
because the values are directly weighting the neighbours’ ratings when predicting the rating.
We now present the two most used user similarity functions in the literature:

- Cosine similarity: each user is represented by a |_#|-dimensional vector (considering
denotes the set of items in the system), where coordinate i denotes the rating provided
by that user to the i-th item, or O if that item has not been rated by the user. Then,
the similarity between two users is measured as the cosine distance between the two
corresponding user vectors (Ning et al 2015; Ekstrand et al 2011). Equation 2 shows
how this similarity is computed between users u and v:

Exploiting recommendation confidence in decision-aware recommender systems 5

u'v Yic g Tuilvi

=Ny

where u = (ry1,h2, s rus), v = (v, 125, Fwr), Zu denotes the items rated by u and
Yy those rated by v.

— Pearson correlation: this similarity measure accounts for the tendency that items are
rated similarly by two users (Ning et al 2015; Ekstrand et al 2011). Equation 3 shows
how this computation is performed, using the same notation as before, and considering
Juw the items rated by both users and 7, the average rating of user u.

@

cos(u,v)

Zie/w (ruy = Tu) (rvi = 7)

PC(u,v) =
\/Zie/mv (rui _fu)zzie/m, (rvi —7v)?

3

2.1.2 Matrix Factorisation (MF)

Another major family of collaborative filtering algorithms conforms the methods based on
latent factors, where both users and items are represented by a small number of unobserved
or latent factors. Matrix factorisation is one of the most popular techniques to compute
latent factors. These algorithms transform users and items into a space of latent factors
with D dimensions, and the user-item interactions — ratings in the most typical scenarios in
recommendation — are modelled as the scalar product between the user and item vectors in
that space (Koren et al 2009; Nakajima and Sugiyama 2011). In other terms, the goal is to
decompose the initial rating matrix R into the product:

R~R =UI"T @)

where U is a matrix of size V x D (with D << V) with coefficients for users, and [is the
matrix with coefficients for items with size J x D (D << J), where V is the number of users
and J the number of items in the system. In this way, the user u is represented by the u-th
row of matrix U, the item i is represented by the i-th column of matrix /, and the rating
provided by user u to item i is modelled by the product of these two vectors, as we present
in Equation 5:

rui=u' i)

The main problem in these models is how to find the best ranking of the D factors such
that R’ is as similar as possible to the original matrix R. This, in fact, is translated to a
minimisation problem considering the following objective function (Lim and Teh 2007):

FU,)=Y (u"i—rq)? (6)
u,l

It is worth noting that not all the entries in matrix R are known, otherwise it would mean
all the users have rated every possible item and the recommendation problem would not
make sense.

There are several ways of restoring the matrix while avoiding missing values. One ap-
proach was proposed by Srebro and Jaakkola in (Srebro et al 2003), where they use the
Expectation-Maximisation (EM) algorithm and fill the missing values with predictions from
lower range matrices restored in previous iterations. A probabilistic version of the MF prob-
lem (PMF) was proposed by Salakhutdinov and Mnih in (Salakhutdinov and Mnih 2011). In
this case, the matrix is factorised based on a probabilistic lineal model with Gaussian noise

6 Rus M. Mesas, Alejandro Bellogin

and the Maximum A Posteriori (MAP) method. Lim and Whye presented in (Lim and Teh
2007) a technique based on variational Bayesian inference to avoid overfitting. Here, all the
parameters are estimated using variational inference. Since we will be using this algorithm
in the paper, more details about this method are provided next, and a complete derivation is
presented in Appendix A.

In this case, by minimising the objective function in Equation 6, we end up computing a
predictive distribution on ratings given the observation matrix, where this distribution is ap-
proximated by using Bayesian inference, in particular, mean-field variational inference (Lim
and Teh 2007). Note that this is one of the few recommendation methods with an analyti-
cal, closed-form formulation for the uncertainty of its prediction (standard deviation of the
predicted rating) — besides providing an explicit formulation for the average of the predicted
scores (the estimated rating) — which we shall later exploit (see Section 3.3):

E(7i |R) =i
R 2 T =T\) _ T T+ @)
Var(?,; |R)=T1 —l—trace((q)u—l—uu) (l[/ﬁ—zz)) —iuu'i
where it is assumed the rating follows a normal distribution with mean " -i and deviation 7,
and ¢, and % represent the covariance matrix and vector of means for user u; y; and i denote
the same concepts but for item i.

2.2 Uncertainty and confidence in recommendation

The concept of confidence in recommendation has been applied to different aspects in the
field. On the one hand, confidence is defined on the input data, where some authors have
studied which combinations of users or (user, item) pairs let generate better recommenda-
tions, namely the profile-level trust and item-level trust approaches from (O’Donovan and
Smyth 2005), or like in (Hu et al 2008), where it is used to interpret the confidence when
transforming from implicit data (frequencies) into explicit. In (Latha and Nadarajan 2015),
the authors focus on discarding noisy users from the prediction computation by estimating a
popularity score for users based on their ratings towards popular items. The concept of noise
to improve the confidence has also been used in other works like (Toledo et al 2015), where
a fixing strategy is used to correct detected noisy ratings.

On the other hand, we can find different mechanisms that help to contextualise the pre-
dictions made by the recommendation algorithms. In this way, in (Herlocker et al 2002)
a factor is defined (significance weighting) that is combined with the user similarity to
devalue those cases where such similarity has been computed with not enough data. In a
similar fashion, in (Adomavicius et al 2007) a method is proposed to filter out recommen-
dations according to the rating deviation received by the items. Previously, in (Smyth et al
2002), other authors introduced the concepts of support and confidence in case-based rec-
ommenders computed from association rules.

In parallel, in (McNee et al 2003) it was studied how to introduce confidence measures
when presenting the recommendations, that is, in the interface the user is interacting with. In
that work, even though the confidence metric was very simple (number of ratings observed
by the system for one item) it was enough to increase the satisfaction level of the user.

Confidence measures have also been applied to improve the accuracy of popular algo-
rithms, like in (Himabindu et al 2016), where the authors use Conformal Predictions in the
classical Item-Based Collaborative Filtering algorithm to associate a confidence measure for
each individual prediction, or like in (Mazurowski 2013) where Bayesian intervals are used

Exploiting recommendation confidence in decision-aware recommender systems 7

to estimate the confidence of individual predictions. In the e-commerce area, (Zhang et al
2014) and (Zhang et al 2016) proposed new product ranking methods which takes uncer-
tainty and prediction confidence into consideration.

In summary, the idea of measuring the confidence of a recommender system has at-
tracted a lot of attention in the field, however, to the best of our knowledge, no other work
has combined this concept to embed awareness to make decisions about which items should
be recommended, as we present in this work.

2.3 Evaluation of recommender systems

Originally, recommender systems were evaluated using error metrics such as Mean Absolute
Error (MAE) or Root Mean Squared Error (RMSE), largely due to the Netflix prize (Bell
and Koren 2007), where the objective was to decrease the RMSE error a 10% with respect
to the Netflix algorithm. However, this type of evaluation method has now become out-
dated because it does not match the user experience (McNee et al 2006). However, this type
of evaluation method has now become outdated because it does not match the user experi-
ence (McNee et al 2006). As a consequence, Information Retrieval metrics such as precision
or recall are used to measure the effectiveness of the rankings generated by recommendation
algorithms. Nonetheless, how to evaluate top-N recommendation is still an open problem,
where different methodologies could be applied, leading to very different ranges in their
outputs (Bellogin et al 2011).

Even though these evaluation metrics are closer to the user experience, by optimizing
only this type of metrics (typically aiming for high accuracy) we ignore other concepts
important for the interaction with the system such as the discovery of new or surprising
items (Castells et al 2015). Because of this, different ways to define novelty and diversity
have emerged in the last years. In this context, multi-objective optimisation has been used
when different criteria — such as different evaluation dimensions: accuracy, novelty, diver-
sity, etc. — want to be optimised at the same time. Examples of these approaches can be
found in (Lacerda 2017), where the authors proposed a multi-objective algorithm that is
able to recommend accurate, novel, and diverse personalised lists, or in (Wang et al 2016),
where the main goal is to recommend a combination of popular and long-tail items using
their multi-objective recommendation framework. More recently, in (Jugovac et al 2017) the
authors propose a generic solution creating a parametric scheme to balance accuracy with
other quality factors.

However, one particular aspect of the evaluation problem has still not been addressed:
incomplete rankings. In a typical situation, a recommender is asked to recommend N items
and rank them (fop-N recommendation); usually this assumes that the recommender always
returns at least N items, but it may occur that it only suggests M < N items. This aspect of
evaluation has also been discussed in the Information Retrieval literature (Hull 1993), where
the author states that in such context, this can make search methods appear much worse
than they actually are. Because of this, in this paper we address this problem by combining
precision and coverage metrics into a single evaluation metric in a formal, principled way,
and, more specifically, by taking into account that it is better not to recommend something
to a user than providing a bad recommendation. This is different, although related, to the
multi-objective optimisation because the problem of incomplete rankings is still present
when using standard performance metrics. Nonetheless, the metrics defined in this paper
could be used in the future inside of any of the multi-objective recommendation frameworks
mentioned before.

8 Rus M. Mesas, Alejandro Bellogin

3 Embedding Decision-Awareness in Recommender Systems

Modifying recommendation algorithms so that they can decide whether a recommendation
should be produced is not an easy task when formulated in a generic way, because each
algorithm has different characteristics and hypothesis about the input data and produced
suggestions. As a starting point, in this section we shall focus on one of the main types of
recommender systems — Collaborative Filtering algorithms.

Different from other works in the literature, our approaches do not exploit or analyse the
input data (unlike the works described in (McNee et al 2003; Hu et al 2008)), but intrinsic
aspects of the recommendation algorithms or of the components used during prediction are
considered, similar to the weights introduced for similarity computation in (Herlocker et al
2002). More specifically, we exploit the uncertainty in the prediction score for a probabilistic
matrix factorisation algorithm and the family of nearest-neighbour algorithms (Section 3.3),
the support of the prediction score for nearest-neighbour algorithms (Section 3.2), and a
method independent of the algorithm (Section 3.1).

As aresult, the three decision-aware recommendation techniques presented herein could
potentially generate less items than requested by the user, since only those items with enough
confidence will be included in the recommendation list. Hence, this effect should be consid-
ered when deciding the applicability of the suggestions generated in this way, where some
recommendation tasks or domains might be less suitable than others for this type of setting,
as discussed in the introduction and in (Herlocker et al 2004).

3.1 Algorithm independent

Interactions between users and items are typically recorded as scores or ratings in a particu-
lar scale. This scale may have different values depending on the system, for instance, some
social networks let users indicate if something is liked — e.g., Facebook — whereas in other
cases a negative opinion might also be expressed — e.g., Reddit or YouTube —, although the
most common situation is having a whole range of values (szars), from one extreme (I do
not like this item) to the other (I really like this item) — e.g., Google Play, IMDb, or Amazon.

In these situations, when a recommender system is used to predict the user preferences,
the output of the recommender is usually in the same range as the input data — although
some modifications of state-of-the-art algorithms tend to work better when this constraint
is removed (Cremonesi et al 2010). Therefore, it would make sense to apply the explicit
semantics behind the input data to the output generated by the recommendation algorithm.
Hence, an algorithm could decide that an item is worth a recommendation only if the
predicted score is above a relevance threshold.

For example, in a domain where user interactions are ratings between 1 and 5, it is usu-
ally assumed that values below 3 indicate the item is not relevant for that user; thus, the only
recommendations that could be considered valid should be those predicted by the algorithm
as a value larger than 3, otherwise, the recommender system would be recommending items
that were predicted as not relevant for that user. Note that the same mechanism can also be
applied when ratings are not available, as long as a relevance threshold might be applied to
the output of the algorithms — for instance, a probabilistic matrix factorisation predicting a
score of 0.2 in a one-class scenario could be considered as not relevant (since it is below
0.5) and, hence, should not be recommended.

As a consequence, this approach may produce recommendation lists of different lengths
depending on the predictions made by the recommender. For instance, if we use a threshold
of 3, this may mean that a user will receive her top-25 recommendations (i.e., item 26th
is predicted below 3) whereas another user may only receive her top-7 recommendations

Exploiting recommendation confidence in decision-aware recommender systems 9

(probably because the highest score returned by the algorithm is lower than 5, and, hence,
the relevance threshold is achieved sooner). Hence, embedding decision-awareness in rec-
ommender systems has a clear impact on the coverage of the system, as we shall explore
with more detail in Section 5.

It is worth clarifying that this methodology is not equivalent to simply changing the
cutoff N when evaluating top-N recommendation lists — something already studied in (Her-
locker et al 2004). In order to test this approach, the items are ranked as usually according to
their predicted score, however, depending on the relevance threshold, those items whose pre-
dicted score is lower than such threshold will not be included in the list. Therefore, changing
the relevance threshold may or may not have an effect on the recommendation list length,
which in turn, would affect the performance measured at different cutoffs. This is because
there is no known a priori relation between the cutoff N and the relevance threshold, and,
in any case, such relation is established in a per-user basis and, hence, a single relevance
threshold would not behave uniformly across all users.

3.2 Based on prediction support

It is well known that, in order to compute scores for (user, item) pairs, some algorithms
use more data than others, depending on the actual users and items under consideration.
A paradigmatic example of this situation are the nearest-neighbour recommenders. These
algorithms estimate the user preferences based on similar users or items, however, it is re-
quired that those neighbours have rated the same item (in the user-based scenario) or that
the target user has rated those similar items (in the item-based case).

Indeed, the number of ratings used to predict the user preferences (denoted as support)
provides an indication of the confidence level the system has about the produced recommen-
dation, since the system cannot trust in the same way a score produced based only on two
neighbours or based on one hundred. This is actually the same idea behind the significance
weighting approach proposed by Herlocker and colleagues in (Herlocker et al 2002).

Hence, we propose that a nearest-neighbour recommender could decide that an item
is worth a recommendation if at least n out of the k neighbours have participated in
the preference computation. In other words, a prediction would be ignored if less than n
neighbours have contributed to the computation of the prediction score.

3.3 Based on prediction uncertainty

As described in the previous section, some algorithms compute the prediction scores based
on an aggregation of values, usually an average or a weighted average (such as the afore-
mentioned neighbour-based recommenders). Whenever an average is being calculated, it is
also possible to compute a standard deviation of the predicted score. When doing this, the
standard deviation can be interpreted as a confidence parameter of the algorithm about the
score: the larger the deviation, the more uncertainty on the prediction, and hence, the lower
the confidence on it.

Hence, we propose that an algorithm, for which it is possible to compute the standard
deviation of a prediction score, could decide that an item is worth a recommendation if the
standard deviation of the prediction (uncertainty) does not exceed a specified threshold
Or.

More specifically, we apply this approach to two families of recommender systems:
nearest-neighbour and probabilistic matrix factorisation. We describe next how we can com-

10 Rus M. Mesas, Alejandro Bellogin

pute the standard deviation in each case, whose general form is
Var(#i | R) = E(7%; | R) —E(fui | R)? ®)

when estimating rating 7,; for user # and item i.

First, for the case of a user-based nearest-neighbour algorithm, we use the fact that
predictions are generated by a weighted average; hence, we should compute the weighted
standard deviation, which has the following form:

ZveNi(u) Wuv(rvi - E)z
Vi—W/Vi

where 7 = (Lyen; () Warrvi) /Vis Vi = Loen,w) Wav » V2 = Lyen; () w2,, and N;(u) is the user
u’s neighbourhood composed of users who rated item i.

Secondly, we make use of the Bayesian approximation for matrix factorisation proposed
in (Lim and Teh 2007), although any other algorithm where an explicit formulation for
the standard deviation is given could be used instead. In this algorithm, as presented in
Section 2.1.2, the preference scores are computed by approximating a distribution, whose
average and deviation can be estimated (see Appendix A). To compute the standard deviation
of the prediction, we directly use Equation 7 where an analytical derivation of the uncertainty
is provided:

Var(fm) =

(&)

Var(#u) = Var(f | R) = T2 + trace ((¢ —I—WT) (u/i +ET)) @' (10)

In this way, this approach would decide if an item should be included in the recommen-
dation list by computing its uncertainty (Var(#,;)) according to a recommendation algorithm
and comparing it against the threshold o;.

4 A novel method to exploit prediction uncertainty for recommendation

In the previous section, we have presented a method to estimate the confidence or uncertainty
in a rating prediction for two families of recommendation algorithms. Besides using this
information to decide whether a recommendation should be generated or not (Section 3.3),
we now propose how to integrate such confidence into the predicted score.

Let us assume we have estimated the predicted rating with some uncertainty value. In
some situations — as in the case of the Variational Bayesian algorithm presented before —
the predicted rating corresponds to the mean p(7,;) of a specific distribution, whereas the
uncertainty o (#,;) is its standard deviation. Based on this information, we can compute a
confidence interval on the mean to estimate how good the predicted rating (mean) is accord-
ing to the available data. To do this, the lower and upper limits of this interval are calculated
by combining the mean and the standard deviation; more specifically: u + Ao. Here, for
simplicity we will use integer values for A, even though classical values come from tabular
data associated to a particular significance level!. In general, there is a one-to-one relation
between the value of A used in a confidence interval and its corresponding significance
level, but this relationship will depend on the data distribution; nonetheless, a Normal dis-
tribution would usually fit, especially when the sample size is large enough. For a graphical
interpretation of these A values for a Normal distribution see Figure 1.

Once we have estimated a confidence interval based on our predicted score and an un-
certainty value, we want to use it in the recommendation process to improve the accuracy of

' For instance, in a Normal distribution, A = 1.96 for a confidence interval with a significance level of
0.05.

Exploiting recommendation confidence in decision-aware recommender systems 11

99,7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations
B8% within
+— 1 standard —*
deviation

ji = 3o ji—2a o= 1 n+a o+ 2o p+ 3a

Fig. 1 Probability distribution around the mean for a Normal distribution N (g, 52).

our algorithm. We propose to use the limits of such confidence interval as our final predicted
score, as we present in Equation 11. Basically, the sign of the A value determines whether
the lower (negative A) or the upper (positive A) bound of the interval is meant to be used.
Note that when A = 0 this method is reduced to the original formulation.

if A < 0 underestimation
Pui = W(#yi) + A - o (#y;), where { if A = 0 standard estimation (11)
if A > 0 overestimation

An additional interpretation of this approach is the following. Since we apply this trans-
formation to all the items appearing in the ranking for a user, when a negative A value is
used, we are underestimating the predicted rating — i.e., the estimated mean pt(#,;) — by sub-
stracting the uncertainty o (#,;) a number of times specified by the A factor; however, this
transformation would have a different effect on the items with higher uncertainty values than
on those with lower ones, up to the point of changing the ranking position of highly predicted
but uncertain items with respect to other items, ranked lower in the original ranking but with
less uncertainty. Similarly, when a positive A factor is used in Equation 11, we overestimate
the predicted score, featuring at top positions those items with higher estimated ratings and
higher uncertainties. This might not be seen as a good idea in general, particularly when
we are focused on optimising accuracy and precision metrics, but it should help in finding a
good tradeoff between items with high predicted values and low uncertainty, and items with
low predicted values and high uncertainty, and hence, it could help discover novel or diverse
items.

5 Evaluating Decision-Aware Recommender Systems

As soon as a recommender system has control over which items should not be recommended
for a particular user, it is very likely that the user coverage and the item coverage decrease,
even though precision and other accuracy-related metrics increase. If the decision of avoid-
ing a recommendation is sensible — i.e., not random but related to the information available
to the system about the target user or item —, the performance is expected to improve at the
expense of other quality dimensions such as coverage, novelty, or diversity. This balance is
critical, since it is possible to achieve a very high precision recommending only one item to
a unique user, which would not result in a very useful recommender. Memory-based algo-
rithms are well known for suffering from this issue: if very few neighbours are considered,
the coverage is lower, but the recommendations are of higher quality (as observed in terms of

12 Rus M. Mesas, Alejandro Bellogin

error metrics (Herlocker et al 2002)); whereas larger neighbourhoods may increase the like-
lihood of receiving a noisy recommendation, but the chances of recommending more items
are also higher. Because of this, it becomes very important to study and define metrics that,
somehow, combine precision and coverage, especially in situations of confidence-awareness
like the one we propose in this paper.

As noted by Herlocker and colleagues in (Herlocker et al 2004) there is no general cov-
erage metric that, at the same time, gives more weight to relevant items when accounting for
coverage, while combining coverage and accuracy measures. Moreover, Gunawardana and
Shani mentioned the problem of balancing coverage and accuracy metrics in (Gunawardana
and Shani 2015), and leave it as an open issue in the area. They propose to design an experi-
ment where the precision of two recommenders is being compared after different thresholds
are applied to the algorithm. We, on the other hand, aim to address this problem by com-
bining the values of the different metrics to be compared, especially focused on deriving a
metric that assess when a recommender does not return an item.

5.1 F-score or Harmonic Mean

The F-score is an evaluation metric very popular in Machine Learning to combine precision
and recall measures. It produces the harmonic mean of both metrics, and it ranges between
0 and 1, 0 being the worst value and 1 the optimal value. Based on this idea, we propose to
combine precision and coverage through the harmonic mean, whose general formulation is
as follows:

L
p*-P+0Q

where 3 is used to control the importance of each metric in the final result: if § = 1 both
metrics P and Q have the same importance, whereas if § < 1 P is more important than Q.

Fg(P.Q) = (1+B?) (12)

5.2 G-score or Geometric Mean
Instead of using the harmonic mean, we could also use the geometric mean as follows:

Gay,a (P,Q) = (P - Q%) /(1 00) (13)

where o, 0 control the importance of each metric. In general, the result obtained for the
G-score will always be larger (or equal) to the one obtained for the F-score.

5.3 Correctness

The two metrics defined in the previous sections simply combine the result of some evalu-
ation measures; however we believe this is not enough for the problem we want to address.
Typical ranking-based metrics — such as precision — assume that no returning an item which
was previously asked to predict a rating for, is an advocate of that item being considered
as not relevant by a specific recommendation method. However, this is in contrast with the
(desired) situation that a recommender may not provide suggestions in some situations due
to a low confidence in the accuracy of such predictions (Gunawardana and Shani 2015;
Herlocker et al 2004).

Exploiting recommendation confidence in decision-aware recommender systems 13

We propose an evaluation metric that is able to assess when a recommender decides not
to recommend a specific item. To do this, we adapt an extension of accuracy proposed in
the context of Question Answering by Pefias and Rodrigo in (Pefias and Rodrigo 2011). In
that work, the authors assume that there are several questions to be answered by a system,
each question has several options, but one (and only one) of those options is correct. If it is
possible to give no response for a given question, this action should not be correct, but not
incorrect either. Hence, the authors propose a general formulation giving a different weight
to the value of unanswered questions:

Nac | Nac My

P(C) = P(CNA) + P(C| —A)P(-A) = 2 4 22

(14)

This metric satisfies the following basic properties:

1. A system that answers all the questions receives the same final score as if we use the
standard precision (n4/n).

2. A system that answers no question (n,. = 0) receives 0 as its final score.

3. The amount of unanswered questions add value to the metric, at the same proportion as
the correctly answered questions; this means that the unanswered responses of a system
with low accuracy do not add as much value to the metric as when considering a system
with high accuracy.

To apply this evaluation metric to recommendation, we first assume that the set of rec-
ommenders we want to compare will receive the same list of items to be ranked, a standard
situation shared by many evaluation methodologies (Bellogin et al 2011). Then, the equiva-
lence between a Question Answering system and a recommender is made — in a user basis
— by considering each recommendation algorithm as a different system that will answer (or
not) the questions available, represented as the candidate items to be ranked by a specific
methodology. In the following sections, we define four different instantiations of this metric,
two of them based on users and two for items.

5.3.1 User-based correctness

Let us assume each user receives a list with N < N recommendations from system r, that is,
LY = (iy,...,ig). Such a list is made up of:

— Relevant items for user u, considering as relevant those items rated by the user and
included in the test set, Te(u), optionally filtering out the items by the rating value that
appears in the test set so only those above a threshold are considered:

TP= Y 1(i€Tew)= Y Ipw(i)<N (15)

ieLl (u) ieLlN (u)

— Not relevant items for user u, i.e., those in the list but not rated by u in the test set:

FP= Z (l_lTe(u)(i)) <N (16)

ieLl (u)

— The user may receive less than N recommendations, denoting as A = NR the ’gaps’ in
the returned list or unanswered recommendations, satisfying

NR=N—(TP+FP) (17)

with 0 < NR < N. Hence, if N = N then NR = 0.

14 Rus M. Mesas, Alejandro Bellogin

Table 1 Toy example to compare precision (P) and user correctness (UC). In bold we show the best results
for each metric. Recommendation lists (a)-(f) consist of 5 elements (N = 5), two of them are relevant for this
user (@ and ©).

Evaluation metrics

Recommendation lists P uc
(a) O®O 0.40 0.40
(b) O® 0.20 0.28
) ® 0.20 0.36
(d)® 0.00 0.00
(e) 0.00 0.00
f) 00 0.40 0.64

Our goal is to somehow reward not recommending instead of recommending something
not relevant. In this way, a first instantiation of our metric arises: User Correctness (UC),
defined in Equation 18:

1 NR
UserCorrectness(u,r,N) = UC(u,r,N) = N (TP+TPW> €10,1] (18)

To better understand this metric, Table 1 shows a small example where explicit values
of the metric are presented for six different recommendation lists. Besides, a comparison
against standard precision metric is included. Among all the lists presented, the one with a
higher value according to UC is list (f), since the two returned items are relevant for user u.
However, precision achieves the same score with list (a) and list (f), since this metric is not
able to consider that the first list contains 3 not relevant items.

Now let us suppose that two users, u; and uj, receive only two items as the recom-
mendations from a system that returns lists up to 5 elements. In both cases the system has
decided to not recommend 3 items. Nonetheless, whereas u; only had those two items in her
set of relevant items Te(u;), up had another 10 items that could have been recommended.
Despite this difference, according to UC both users would receive a score of 0.64. However,
if we want to also consider the total amount of relevant items available for recommendation
— a concept similar to the well-known ranking metric recall (Baeza-Yates and Ribeiro-Neto
2011) — a second instantiation becomes available where we include the assumption that it
is worse to not recommend items when there are still several items available: Recall User
Correctness, defined in Equation 19.

1 TP
RecallUserCorrectness(u,r,N) = RUC(u,r,N) = N (TP—I— ENR) €[0,1] (19)
e

where Rel = |Te(u)| represents the number of relevant items available in the test set for user
u. In the previous example, this second metric RUC for user u; would produce a value of
1.0, whereas for u, this value would only be 0.5.

5.3.2 Item-based correctness

Besides user coverage, the correctness metric is also able to integrate item coverage, which is
related to the diversity of recommendations (Castells et al 2015). This property is interesting
because, as we shall see in the next sections, decision-aware recommendation algorithms
evidence not only a decrease on user coverage, but also on item coverage. Because of that,
we now present how we can derive an item-based correctness variation.

First, we need to define the following sets, based on the recommendation lists LY (u)
received by each user:

Exploiting recommendation confidence in decision-aware recommender systems 15

S@i,r,N)={u:icL(u)} (20)

In this case, S(i,r,N) denotes the set of all users having item i in her recommendation
list — for a system r and considering N as the length of the recommendation lists. Then,
using the ground truth test set, we define the following sets:

T(i)={u:icTe(u)} (2D

This set denotes the users in the test set for whom item i is relevant. Based on this, for
each item we can define:

— Users who received item i in their list, and this item is relevant:
TP=S{NT(i) (22)

Users with i in the list and 7 is not relevant:

FP=S@i)NT(>i) (23)

Users without 7 in the list but i is relevant:

FN =SG{)NT(i) (24)

Users without i in their list and i is not relevant for them:

TN =5S@i)NT(i) (25)

Based on these equations, we can compute the information about the number of users
for whom item i was not recommended (Equation 26) and the number of users for whom
item i is relevant (Equation 27).

NR=TN+FN (26)

Rel = TP+FN =|T(i)| 27)

Once these different sets have been defined, we propose the metrics ItemCorrectness
(IC, Equation 28) and RecallltemCorrectness (RIC, Equation 29), defined similarly as in the
case for users:

1 TP
ItemCorrectness(i,r,N) = IC(i,r,N) = 0 (TP+ ENR) (28)
. . 1 TP
RecallltemCorrectness(i,r,N) = RIC(i,r,N) = 0] <TP—|— R—INR> (29)
e

An important issue with the /C metric, that will become more obvious later in the ex-
perimental part, is that, since the number of users in the system is in the denominator, the
values returned by this metric tend to be very small. On the other hand, since the RIC metric
considers the ratio of users to whom relevant items were recommended — not taking into
account those users where a particular item was not relevant — the values returned by this
variation are, in general, higher.

16 Rus M. Mesas, Alejandro Bellogin

5.3.3 Averaging correctness metrics

So far, the four instantiations of the correctness metric for recommendation defined before
allow us to compute a score for each user (in the case of UC and RUC) and item (for /C and
RIC). In order to obtain values for the whole system, the standard procedure — as is done for
ranking-based metrics like precision or recall — is to compute a value for every user, and then
aggregate all these values by computing an arithmetic mean, as we show in Equation 30:

LueUsrRec(r) UC(u,r,N)
|UsrRec(r)|

MeanUserCorrectness(r,N) = MeanUC(r,N) = (30)

where UsrRec(r) denotes the users with at least one recommendation from system r.

We can observe that, in this case, we do not consider those users that receive no rec-
ommendation at all. Note that the main idea for this family of metrics is to reward those
systems that do not respond rather than those that respond incorrectly, however, it is also
important to penalise whenever the system does not return nothing. Because of this, we pro-
pose a slight modification of Equation 30, where we substract the ratio of users without a
recommendation, as we show in Equation 31:

UserCorrectness(r, N) = MeanUC(r, N) — MeanUC(r,N) - (1 — USC)
UsrR
_ MeanUC(,N) - USC = MeanUC(r,) - 1Ree()]
Ve (BD
_ LueUstRec(n UC(,,N)
Ve

where USC denotes the user space coverage (or user coverage) and V; is the number of users
in the whole recommendation system r. In this way, we are explicitly accounting for the user
coverage in the metric.

Regarding the RUC metric, we propose to use the same formulation as the one intro-
duced in Equation 31, so that we combine in the same metric precision, recall, and user
coverage. Furthermore, for the item-based correctness metrics, a similar procedure where
the total number of items is considered in the aggregation can be developed.

Finally, the four instantiations of the correctness metric for recommendation are tailored
to evaluate rankings or lists of recommendations; therefore, they can be computed at dif-
ferent cutoffs or positions in the rank by simply changing the value of N in the different
formulations and considering the aggregation functions presented here; this means that the
typical notation UC@N would be computed as UC@N (r) = UserCorrectness(r, N).

6 Experiments and Results
6.1 Experimental Settings
In this paper we have used three datasets from two different domains: two versions of the

MovieLens (ML)? (ML-100K and ML-1M) dataset and Jester®. ML-100K includes 100,000
ratings by 943 users on 1,681 items (movies), ML-1M contains 1,000, 209 ratings by 6,040

2 https://grouplens.org/datasets/movielens/
3 http://eigentaste.berkeley.edu/dataset/

Exploiting recommendation confidence in decision-aware recommender systems 17

ML-100K ML-1M Jester

Fig. 2 Rating distribution for each dataset: ML-100K, ML-1M, and Jester.

users on 3,883 movies, and Jester includes 1,710,677 ratings on 150 items (jokes) by
59,132 users. The rating scale on the first two datasets is [1,5], and on Jester is [—10, 10]
(that we moved into [0,20] to avoid negative ratings). Figure 2 shows the rating distribution
for each dataset; we observe all of them tend to be biased towards positive ratings, however
Jester also includes a large amount of very negative ratings.

Some of the algorithms used in the experiments are based on implementations found
in RankSys*, specifically, the nearest-neighbour algorithms and their modifications. The
probabilistic matrix factorisation method was implemented by ourselves.

Finally, regarding the evaluation, two publicly available frameworks were used: RankSys
and RiVal®. On top of the latter framework we implemented the following evaluation met-
rics: User Space Coverage representing the ratio of users that have received at least one
(USC) or N (USC@N) items as recommendations, Item Space Coverage representing the
ratio of items that were recommended to any user by a system returning at most N items
(ISC@N), and the Correctness metrics as defined in Section 5.3: UC@N (User Correct-
ness), RUC@N (Recall User Correctness), IC@N (Item Correctness) and RIC@N (Recall
Item Correctness). The RankSys framework was used to obtain novelty and diversity met-
rics, specifically EPC and AggrDiv (Vargas and Castells 2011).

Unless stated otherwise, all the reported metrics are computed at cutoff 10 (i.e., N = 10).
Furthermore, we considered every item included in the test set as relevant for that user,
meaning that we do not require any threshold to define a relevant item for a user. While
we agree that this setting might be counter-intuitive (since recommending something the
user rated with a very low rating will be considered as a positive recommendation), in some
preliminary experiments we observed almost no difference in the general results, meaning
that the ranking of the algorithms remained the same, even though the actual values of the
evaluation metrics could be different. This fact is consistent with previous works in the
area (Herlocker et al 2004; Bellogin et al 2011).

6.2 Performance of decision-aware strategies

In this section we evaluate the performance of the different decision-aware strategies pre-
sented in Section 3 using the evaluation metrics described in Section 5.

Let us start with the algorithm independent strategy. Recall that this strategy only in-
cludes in the recommendation list those items whose predicted score is above a relevance
threshold 7y. Tables 2 and 3 show the results when using this strategy. First, in Table 2 we
compare different evaluation metrics for the kNN algorithm. We observe that the change in

4 https://github.com/RankSys/RankSys
5 https://github.com/recommenders/rival

18 Rus M. Mesas, Alejandro Bellogin

Table 2 Comparison of performance metrics when using a decision-aware strategy based on relevance thresh-
old (), for a kNN algorithm on ML-100K.

y P Usc ISC R B Fos G, Ga Gy UC RUC IC RIC
1 0.037 1000 621 0071 0159 0045 0191 0332 0.110 0.037 0.037 0.000 0.015
2 0.037 100.0 62.1 0.071 0.159 0.045 0.191 0.332 0.110 0.037 0.037 0.000 0.015
3 0.037 100.0 62.1 0.071 0.159 0.045 0.191 0.332 0.110 0.037 0.037 0.000 0.015
4 0.036 100.0 62.1 0.070 0.159 0.045 0.191 0.331 0.110 0.036 0.036 0.000 0.015
5 0.020 99.2 60.0 0.040 0.094 0.025 0.142 0.272 0.074 0.022 0.022 0.000 0.011

Table 3 Comparison of performance metrics when using a decision-aware strategy based on relevance thresh-

old (y), for a probabilistic matrix factorisation algorithm on ML-100K.
y P UsC ISC F B Fs G Ga G, UC RUC IC RIC
1 0.093 100.0 22.7 0.170 0.338 0.113 0.304 0.453 0.205 0.093 0.093 0.001 0.009
2 0.093 100.0 22.7 0.170 0.338 0.113 0.304 0.453 0.205 0.093 0.093 0.001 0.009
3 0.093 99.9 22.7 0.170 0.338 0.113 0.304 0.452 0.205 0.093 0.093 0.001 0.009
4 0.086 97.8 223 0.158 0.317 0.105 0.290 0.434 0.193 0.086 0.085 0.001 0.007
5 0.024 59.0 15.5 0.047 0.104 0.030 0.120 0.204 0.070 0.018 0.015 0.000 0.002

coverage is not significant, while the performance remains steady. Hence, there is no bal-
ance to solve, and the algorithm with the highest precision (y = 1) is the clear winner. In this
situation, the proposed metrics UC and IC are not necessary since the maximum precision
and coverage values are obtained for the same parameter (Y = 1); however, they are included
to check they behave consistently.

Then, Table 3 shows these results for VB, where a very similar situation is observed.
In this context, we hypothesise that, because we are measuring precision at high positions
(recall the cutoff is 10), removing those items predicted by the recommender as not relevant
(score < 7) has almost no effect in the final ranking, as evidenced in these results, where
lower 7s obtain the best results.

Now, when we apply the strategy based on prediction support, a similar situation occurs
— see in Table 4 the results for ML-100K. User coverage remains almost unchanged until
n > 7, although precision increases even for smaller values of n until n = 7. Considering this
information, the three versions of the harmonic mean, G, and G ; all agree on the ranking
of the systems, where the best algorithms are those with n equals 5, 6, and 4, in that order.
We observe that UC and RUC do not discriminate much more than that, however, when IC
and RIC are analysed, the best recommenders are not the same as before (n = 4,5) which
makes sense because these techniques take the item coverage into account, which decreases
more abruptly than the user coverage. Similarly, G » also changes the ranking of systems
because it gives a higher weight to coverage than precision.

We now analyse the decision-aware strategy based on prediction uncertainty. Due to
space constraints we shall focus on the results for the probabilistic matrix factorisation al-
gorithm, and skip those from the nearest-neighbour recommender. As we show in Table 5,
this strategy evidences a strong tradeoff between coverage and precision, since introducing a
threshold of 0.82 increases the performance by a factor of 4 but reduces the coverage a 70%
with respect to no threshold. This situation is very interesting, because the optimal recom-
mender depends on the evaluation metric: for instance, 6; = 0.84 obtains the highest value
for F1 and G,,; but not in the other metrics, this is because they are too sensitive to the preci-
sion value, since that recommender achieves the second best value. This example evidences
the differences between the proposed correctness metrics and the other combination met-

Exploiting recommendation confidence in decision-aware recommender systems 19

Table 4 Comparison of performance metrics when using a decision-aware strategy based on prediction sup-
port, for a nearest-neighbour recommender on ML-100K.

n P usc 1SC F 23 Fys G, Gio Gy uc RUC Ic RIC

1 0.037 1000 621 0.070 0.159 0.045 0.191 0.332 0.110 0.037 0.037 0.000 0.015

2 0133 100.0 469 0.234 0433 0.160 0364 0510 0260 0.133 0.133 0.002 0.021

3 0.188 100.0 395 0317 0537 0225 0434 0573 0329 0.18 0.189 0.002 0.026

4 0.230 100.0 35.1 0374 0599 0272 0480 0.613 0376 0.234 0.236 0.003 0.029

5 0245 997 323 0393 0618 0288 0494 0624 0391 0259 0266 0.003 0.029

6 0241 964 285 0386 0.603 0284 0482 0.607 0383 0.257 0.263 0.003 0.026

7 0237 85.9 248 0.371 0.563 0.277 0.451 0.559 0364 0.231 0.231 0.002 0.023

8 0226 669 21.7 0338 0480 0260 0.389 0466 0324 0.180 0.171 0.002 0.018
Table 5 Comparison of performance metrics when using a decision-aware strategy based on prediction un-
certainty, for a probabilistic matrix factorisation algorithm on ML-100K.

Or P Uusc 1SC F F Fos Gy G2 Gy uc RUC IC RIC

- 0.093 1000 227 0.170 0.338 0.113 0304 0453 0.205 0.093 0.093 0.001 0.009

082 0326 282 9.1 0.303 0290 0316 0303 0.296 0.311 0.100 0.094 0.001 0.006

0.84 0283 59.0 15.1 0.382 0484 0316 0408 0462 0.361 0.174 0.170 0.002 0.011

0.86 0214 80.9 19.6 0338 0.520 0.251 0416 0519 0333 0177 0176 0.002 0.012

0.88 0.181 95.6 222 0304 0514 0216 0415 0548 0315 0.176 0.176 0.002 0.013

090 0.165 99.5 248 0283 0495 0.198 0405 0546 0300 0.165 0.165 0.002 0.013

092 0.156 100.0 260 0.269 0480 0.187 0395 0538 0289 0.156 0.156 0.002 0.012

094 0.145 100.0 273 0.254 0459 0.175 0.381 0.526 0276 0.145 0.145 0.002 0.011

096 0.139 100.0 282 0.245 0447 0.168 0373 0518 0.269 0.139 0.139 0.002 0.011

098 0.133 100.0 286 0235 0435 0.161 0.365 0.511 0.261 0.133 0.133 0.002 0.011

Table 6 Summary of optimal precision (P), coverage (USC), and correctness (UC) values along with the
optimal parameters found in the three datasets tested for the three decision-aware strategies presented in
Section 3.

. . Algorithm independent Prediction support Prediction uncertainty
Dataset Metric 7™ VB ¢ KNN @ KN o VB o
P 0.037 1 0.093 10245 5 0.037 - 0326 082
ML-100K usc 100 1 100 1 100 1 100 - 100 -
uc 0.037 1 0.093 1 025 5 0.037 - 0177 0.86
P 0.023 1 0.055 30243 6 0.023 — 0.189 082
ML-IM usc 100 1 100 1 100 1 100 — 100 —
uc 0.023 1 0.055 3 0245 6 0.023 — 0115 084
P 0289 6 0.165 9 0308 5 0260 - 0436 3.8
Jester usc 98.2 1 100 1 98.2 1 0982 - 100 -
uc 0.280 1 0162 1 0326 4 0.280 - 0212 45

rics: whereas the latter metrics simply combine two values, the former ones include further
assumptions that, in principle, help to interpret the comparisons between recommenders.
According to these results, 6; = 0.84 is preferred over o; = 0.86 by Fy, but UC inverts
this relation; we can infer that o = 0.86 is better suited for deciding when an item should
be recommended, since we are rewarding unanswered recommendations above incorrect
recommendations.

In summary, decision-aware strategies usually help improving the performance of the
recommendation techniques, as we have seen in the previous results for ML-100K. Table 6
shows a summary of the best results obtained for the rest of the datasets. We observe that
the algorithm independent strategy produces almost no tradeoff, as discussed previously, and
hence the optimal parameters are in most cases the same, regardless of the evaluation metric.
The same situation occurs with the prediction uncertainty for NN, where the highest values
are found for the baseline (no decision-aware is used). On the other hand, when prediction
support or prediction uncertainty (in VB) strategies are used, we obtain high improvements
both in terms of P and UC.

20 Rus M. Mesas, Alejandro Bellogin

Nonetheless, it should be noted that some of these metrics — especially /C — achieve
very low values. This is due to, as stated in their description, these metrics need to be nor-
malised by the number of users whenever we want to compare across different systems and
algorithms, as we present here. However, let us suppose that a system designer wants to use
this metric, they would probably be only interested in comparing algorithms inside the same
recommendation system, and hence, using the same number of users. Because of this, such
designer could remove the outer normalisation by the number of users in the formulations
for IC(i,r,N) and RIC(i,r,N) (Equations 28 and 29), this would give more significant figures
when averaging these metrics for all the items in the system. However, if we do not want
(or we cannot) modify those equations the interpretation of these metrics is very limited,
as with other ranking metrics (Bellogin et al 2011). At the end, since the information we
have from the users is far from complete, most evaluation metrics are only useful to rank
the recommender systems under the same situations (under- or over-estimating their quality,
depending on the completeness of the groundtruth information).

It is worth noting that in more general scenarios, for instance, as we show in Table 5,
the metrics do not need to agree on the optimal recommender, but this is because each
metric is actually measuring a different nuance of what quality means. In this example, UC,
RUC, and IC agree that the best recommender is the one with 6; = 0.86, however, RIC
produces a higher value for o; = 0.88. These results may indicate that a value of o; =
0.86 produces incomplete rankings but with more relevant items than other configurations;
however, when we consider the ratio of users to whom relevant items were recommended,
or = 0.88 produces slightly better results. Hence, in the end, depending on what criteria we
optimise for, we should select the recommenders according to a different evaluation metric.

Finally, if we want to extrapolate these results to obtain a set of guidelines that can
be general enough for different systems, a user study would be required to measure the
sensitivity levels of these metrics, that is, whether a difference of +¢ is noticed by an actual
user or not. Once that information is available, proper and realistic guidelines could be
proposed, matching the user experience with the system and the measurements provided by
the correctness metrics. This is something we would like to explore in the future and is out
of the scope of this work.

6.3 Performance of strategies based on confidence intervals

In this section we explore how the strategies based on confidence intervals may help im-
proving the performance of decision-aware recommendation algorithms. Recall that this ap-
proach combines the mean and standard deviation of the predicted rating in such a way that
the lower or upper limit of the corresponding confidence interval is used instead, depending
on the value of A (see Section 4).

A summary of the results for these strategies is presented in Figures 3 (for the kANN
algorithm) and 4 (for the probabilistic matrix factorisation method). Here, we show the
value obtained by each algorithm without using any decision-aware strategy in the horizontal
line, which in fact matches the point corresponding to A = 0 and None for the confidence
threshold.

We observe that, when the confidence threshold is not used — hence, we are not using
the uncertainty prediction strategy, only the confidence interval — there is always some value
of A that improves the performance, even twice the value. It is worth noting that this im-
provement is performed while the coverage remains unchanged (exhaustive results as the
ones presented before are omitted due to space constraints). In general, positive values of A
work better for kNN, whereas the opposite is true for the Variational Bayesian method.

Exploiting recommendation confidence in decision-aware recommender systems 21

ML-100K Jester
0.15 T 0.28 F T] ™
015 APUARAA M w
0.26 —éj./--“ ° |
0.10 B
o 0.10 0.24 - o]
. 22 -
0.05 0.05 N
- 0.20 |- 8
I I I ! ! !
0.5 1 None 6 8 None
O¢ Or
A=-2 A=-15 —— A=-1 —o—A=0 —=—A=1 A=15 —+—A1=2

Fig. 3 Precision (P) when using an strategy based on confidence intervals (points over the None label), and
a combination of this strategy and the prediction uncertainty strategy for a kNN algorithm. Baseline value
(no strategy) is presented as the horizontal line.

ML-100K ML-1M Jester

T 020 F T]

0.30 | N 0.40
0.15 |- .
0.20] . 0.30
a 0.10 |- \%% |
*—
0.10 |- = M, 0.20

% ¢
* 005 e
o [m]
| Py | A4 0.10
0.8 0.9 None 0.8 0.9 None
Ot O¢
A=-2 A=-15 —+A=—1 e A=0 —s— A=1 A=15 —— A=2|

Fig. 4 Precision (P) when using an strategy based on confidence intervals (points over the None label), and
a combination of this strategy and the prediction uncertainty strategy for a Variational Bayesian algorithm.
Baseline value (no strategy) is presented as the horizontal line.

When we combine the strategy based on confidence intervals with a decision-aware
technique based on uncertainty, we find that the situation is more homogeneous for the
Variational Bayesian method, whereas kNN is more erratic and the trends depend on the
dataset. Hence, Figure 4 shows the same behaviour for the three datasets: whenever the
constraints on O; are more strict, precision increases, the same result observed before in
Table 5; at the same time, underestimating the predicted rating (negative part of the A-
spectrum) works better, although in general the baseline is outperformed in almost every
case in the three datasets.

On the other hand, Figure 3 presents a more erratic behaviour for kNN, probably be-
cause the average and standard deviation are computed empirically, instead of coming from
sound theoretical models, as in the case of the Variational Bayesian algorithm. In this case,
as mentioned before, overestimating the predicted rating improves the performance of this
method in every dataset. This might be attributed to this method promoting those ratings
predicted by more neighbours, which, as we saw in Table 4, tend to be more precise, even
though they may have larger deviations, which are thus exploited by the use of positive As.

22

Rus M. Mesas, Alejandro Bellogin

EPC

AggrDiv

0.8 B 1 S
0.6 0.6 &
0.4 10504 \\S\S\E\’\g\g I
02 0.2

0 | | 0 0 | | | 0

S
I
o))
o |-

—&— ML-100K ML-1IM —*— Jester

Fig. 5 Novelty and diversity metrics for a decision-aware strategy based on prediction support. Jester is
plotted in the secondary (right) axis.

EPC AggrDiv
4 4.5 5 4 4.5 5
1 T T 1 T T T
0.8 - 1t o8 ik
0.6 0.6
0.4 10504 0.5
| | | | | |
0.85 0.9 0.95 0.85 0.9 0.95
(o Ot
[—=— ML-100K ML-IM —— Jester |

Fig. 6 Novelty and diversity metrics for a decision-aware strategy based on prediction uncertainty. Jester is
plotted in the secondary (right and upper) axis.

6.4 Impact on beyond-accuracy metrics

In this section we explore what is the impact on beyond-accuracy evaluation metrics — such
as diversity and novelty — of the proposed decision-aware strategies. As we already dis-
cussed in the previous section, the algorithm independent strategy does not exhibit a trade-
off between precision and coverage; hence, the impact this strategy imposes on diversity and
novelty metrics is negligible. On the other hand, the rest of the strategies have a clear effect
on them, as we present next.

Figure 5 shows the impact that a decision-aware strategy based on prediction support
has on novelty and diversity. We observe that, for larger n, both the diversity of the lists
and the novelty decrease (which means that the recommended items are more and more
popular). The rationale behind these results is that, when the constraint n becomes more
strict, more users are required to have seen (rated) those items, which, in the long term,
produces that more popular items are being recommended. This behaviour is consistent for
the three analysed datasets, except for Jester’s diversity, because of its very small catalogue.

Figure 6 compares novelty and diversity evolution for different thresholds using a decision-
aware strategy based on prediction uncertainty for the Variational Bayesian algorithm — we

Exploiting recommendation confidence in decision-aware recommender systems 23

omit the results for the kNN algorithm due to space constraints. We observe that, similarly as
in the previous strategy (Figure 5), when the constraints are more strict (here this means that
o decreases) both novelty and diversity decrease in the three tested datasets. In this case the
rationale is slightly different to what happened in the previous strategy: those items with a
lower standard deviation seem to correspond with popular items (like before), however, this
constraint really imposes a limit on the number of different items that can be recommended,
which ends up producing very low diversity scores.

Finally, Figure 7 shows the effect of exploiting prediction uncertainty in novelty and
diversity metrics. Following the same notation as in Figures 3 and 4, this figure presents
the evolution of diversity and novelty metrics when different values of A are used in an
isolated way (points over the None label), and whenever the decision-aware strategy based
on prediction uncertainty is applied. We only present the results for the Variational Bayesian
algorithm because of the erratic behaviour of the kNN algorithm in this experiment.

We observe, as in the previous experiment, that when the constraints are more strict
(o; decreases) both novelty and diversity decrease in the three tested datasets, and this ef-
fect produces a clear tradeoff with accuracy: those methods that retain more diversity and
novelty (larger As) correspond to those that were producing worse recommendations (lower
precision values, as shown in Figure 4). However, it is worth noting that when the prediction
uncertainty strategy is not used, the effect of confidence intervals in isolation is very dif-
ferent depending on the evaluation metric: whereas overestimating (A > 0) produces higher
novelty values, it generates items with lower diversity. This result may indicate that, in this
recommender, overestimating the rating prediction generates a very limited number of items
(low diversity), although these items are novel for the users (high novelty) but not relevant
for them (low precision).

In summary, we have found that decision-aware strategies have a profound impact on
beyond-accuracy metrics, in particular, in the diversity and novelty dimensions measured
by EPC and AggrDiv. In general, most of the evaluated strategies evidence a loss on nov-
elty and diversity when the constraints are more strict, either for those based on predic-
tion uncertainty (when less uncertainty is allowed in the recommendations) or those based
on prediction support (where a prediction needs to receive more support from the recom-
mender so it decides to return it). This leads to the following conclusion: the cost of pro-
ducing more confident recommendations is the generation of more popular (less diverse and
novel) items, which degenerates into non-personalised algorithms such as returning the most
popular items. Finding a good tradeoff between obvious and interesting suggestions is still
an open problem; to some extent, this issue might be addressed by means of the methods
presented herein, for instance, by selecting the amount of decision-awareness we want to
incorporate into the algorithm.

7 Conclusions and Future Work

In this work, we have studied how to increase the system level confidence on its own recom-
mendations by making the system aware of the decisions taken; we expect these improve-
ments to have an impact on users’ confidence however this should be validated in the future
with user studies. For this, we have proposed three strategies to decide if an item should be
included in a recommendation list of a specific user, based on the consistency and reliability
of the data that will be used by the recommender system to estimate the preferences. These
strategies (one based on the support of the prediction, other on its uncertainty, and another
that can be applied to any recommendation algorithm) have been evaluated in terms of preci-
sion, coverage, novelty, and diversity. We have also proposed another technique that exploits

24 Rus M. Mesas, Alejandro Bellogin

ML-100K ML-1M Jester
1.00 T 1.00 T B 0.80)
080 : 0.60
0.80 - - e |
v 0.60
% 0.40 |- -
0-40 0.60 | A4
0.20 0.20 - B
0.00 | | 0.40 | | | | |
0.8 0.9 None 0.8 0.9 None 4 4.5 None
Or Or Oz
ML-100K ML-1M Jester
0.40 T T T T
0.40 - 1.00 =
0.30
2
30
%D 0.20 0.3 0.80 |~ -
<
0.10 0.20 |-
0.60 |~ -
0.00 | | 0.10 | | | | |
0.8 0.9 None 0.8 0.9 None 4 4.5 None
Or Ot Oz
A=-2 A=-15 ——A=—-1 —o—A1=0 —-=—A=1 A=15 ——A=2

Fig. 7 Novelty and diversity metrics when using an strategy based on confidence intervals (points over the
None label), and a combination of this strategy and the prediction uncertainty strategy for a Variational
Bayesian algorithm. Baseline value (no strategy) is presented as the horizontal line.

the prediction uncertainty directly to produce recommendations, instead of to decide if an
item should be included or not in a recommendation list.

We have shown that a balance between these evaluation dimensions — especially be-
tween precision and coverage — is critical, and different metrics have been studied to draw
conclusions from them. As a first step towards improving the understanding of this tradeoff,
we have proposed a family of metrics (correctness) based on the assumption that it is bet-
ter to avoid a recommendation rather than providing a bad recommendation. These metrics
take into account the amount of unanswered items returned by a recommender system to
produce its score. One advantage of the proposed correctness metrics is that they do not
need additional parameters — hence, they are not sensitive to possible biases towards one
of the combined metrics like other combination measures analysed — e.g., F-score. Further-
more, they allow to consider the relevant items received by the user, the user coverage, and
the item coverage, while, at the same time, accounting for incomplete rankings by penal-
ising more those recommenders that retrieve less relevant items. However, further analysis
is needed in the future, especially to find an objective way to discriminate between these
systems and decide which of these metrics correlates better with the user satisfaction.

The results so far evidence that it is possible to improve precision while keeping mod-
erate reductions on coverage, a tradeoff successfully captured by the proposed correctness
evaluation metrics. More specifically, the experiments show that improvements up to 250%
can be achieved using the prediction uncertainty with a probabilistic matrix factorisation
algorithm; however, when this technique is used with a nearest-neighbour algorithm, the
improvements are much smaller, probably because the computation of the prediction un-
certainty is not based on a closed formulation but it is calculated empirically. In contrast,

Exploiting recommendation confidence in decision-aware recommender systems 25

the nearest-neighbour algorithm achieves large performance improvements when using the
prediction support technique. Nonetheless, the algorithm independent technique (based on
the final predicted score) does not produce positive results with the tested algorithms.

In the future, we aim at extending the correctness family of metrics so that other evalu-
ation dimensions could be combined under the same framework: diversity, novelty, or even
other accuracy metrics like normalised discounted cumulative gain. A possible line of work
would be on applying multi-objective optimisation frameworks with this new set of met-
rics but considering also the number of unanswered items in their computation. We also
want to integrate implicit feedback in the decision-aware recommendation strategies pre-
sented herein, since at the moment the three techniques proposed assume the algorithm is
predicting a rating for every user and item pair. Additionally, the psychological aspect of
the recommendations should also be considered, since if a user expects to receive N recom-
mendations, she may decrease her confidence on the system if less than N recommendations
are presented, although such behaviour should be linked to a target user task, i.e., find good
items vs just browsing (Herlocker et al 2004). Moreover, we aim at validating these results in
an online setting with real users, in particular, how users value incorrect recommendations
in comparison with unanswered/missing recommendations.

Acknowledgements This work was funded by the national Spanish Government under project TIN2016-
80630-P. The authors also acknowledge the very helpful feedback from the three anonymous reviewers.

References

Adomavicius G, Kamireddy S, Kwon Y (2007) Towards more confident recommendations: Improving rec-
ommender systems using filtering approach based on rating variance, Social Science Research Network,
pp 152-157

Baeza-Yates RA, Ribeiro-Neto BA (2011) Modern Information Retrieval - the concepts and technology be-
hind search, Second edition. Pearson Education Ltd., Harlow, England

Bell RM, Koren Y (2007) Lessons from the netflix prize challenge. SIGKDD Explorations 9(2):75-79

Bellogin A, Castells P, Cantador I (2011) Precision-oriented evaluation of recommender systems: an algo-
rithmic comparison. In: Proceedings of the fiftth ACM conference on Recommender systems, ACM, pp
333-336

Bishop CM (2006) Pattern recognition and machine learning. springer

Box GE, Tiao GC (2011) Bayesian inference in statistical analysis, vol 40. John Wiley & Sons

Castells P, Hurley NJ, Vargas S (2015) Novelty and diversity in recommender systems. In: Recommender
Systems Handbook, Springer, pp 881-918

Cremonesi P, Koren Y, Turrin R (2010) Performance of recommender algorithms on top-n recommendation
tasks. In: Amatriain X, Torrens M, Resnick P, Zanker M (eds) Proceedings of the 2010 ACM Conference
on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010, ACM, pp 39-46

Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recommender systems. Foundations and
Trends in Human-Computer Interaction 4(2):81-173

Gunawardana A, Shani G (2015) Evaluating recommender systems. In: Recommender Systems Handbook,
Springer, pp 265-308

Herlocker JL, Konstan JA, Riedl J (2002) An empirical analysis of design choices in neighborhood-based
collaborative filtering algorithms. Inf Retr 5(4):287-310

Herlocker JL, Konstan JA, Terveen LG, Riedl J (2004) Evaluating collaborative filtering recommender sys-
tems. ACM Trans Inf Syst 22(1):5-53

Himabindu TVR, Padmanabhan V, Pujari AK, Sattar A (2016) Prediction with confidence in item based
collaborative filtering. In: Booth R, Zhang M (eds) PRICAI 2016: Trends in Artificial Intelligence -
14th Pacific Rim International Conference on Artificial Intelligence, Phuket, Thailand, August 22-26,
2016, Proceedings, Springer, Lecture Notes in Computer Science, vol 9810, pp 125-138, DOI 10.1007/
978-3-319-42911-3_11, URL https://doi.org/10.1007/978-3-319-42911-3_11

Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: ICDM, IEEE
Computer Society, pp 263-272

Hull DA (1993) Using statistical testing in the evaluation of retrieval experiments. In: SIGIR, pp 329-338

26 Rus M. Mesas, Alejandro Bellogin

Jannach D, Adomavicius G (2016) Recommendations with a purpose. In: Sen S, Geyer W, Freyne J, Castells P
(eds) Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, Septem-
ber 15-19, 2016, ACM, pp 7-10, DOI 10.1145/2959100.2959186, URL http://doi.acm.org/10.
1145/2959100.2959186

Jugovac M, Jannach D, Lerche L (2017) Efficient optimization of multiple recommendation quality factors
according to individual user tendencies. Expert Syst Appl 81:321-331, DOI 10.1016/j.eswa.2017.03.
055, URL https://doi.org/10.1016/j.eswa.2017.03.055

Karypis G (2001) Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the tenth
international conference on Information and knowledge management, ACM, pp 247-254

Koren Y, Bell R, Volinsky C, et al (2009) Matrix factorization techniques for recommender systems. Com-
puter 42(8):30-37

Lacerda A (2017) Multi-objective ranked bandits for recommender systems. Neurocomputing 246:12-24,
DOI 10.1016/j.neucom.2016.12.076, URL https://doi.org/10.1016/j.neucom.2016.12.076

Latha R, Nadarajan R (2015) Ranking based approach for noise handling in recommender systems. In: Dziech
A, Leszczuk M, Baran R (eds) Multimedia Communications, Services and Security, Springer Interna-
tional Publishing, Cham, pp 46-58

Lim YJ, Teh YW (2007) Variational bayesian approach to movie rating prediction. In: Proceedings of KDD
cup and workshop, Citeseer, vol 7, pp 15-21

Linden G, Smith B, York J (2003) Amazon. com recommendations: Item-to-item collaborative filtering. IEEE
Internet computing 7(1):76-80

Mazurowski MA (2013) Estimating confidence of individual rating predictions in collaborative filtering
recommender systems. Expert Syst Appl 40(10):3847-3857, DOI 10.1016/j.eswa.2012.12.102, URL
https://doi.org/10.1016/j.eswa.2012.12.102

McNee SM, Lam SK, Guetzlaff C, Konstan JA, Riedl J (2003) Confidence displays and training in recom-
mender systems. In: INTERACT, IOS Press

McNee SM, Riedl J, Konstan JA (2006) Being accurate is not enough: how accuracy metrics have hurt
recommender systems. In: CHI, ACM, pp 1097-1101

Nakajima S, Sugiyama M (2011) Theoretical analysis of bayesian matrix factorization. Journal of Machine
Learning Research 12(Sep):2583-2648

Ning X, Desrosiers C, Karypis G (2015) A comprehensive survey of neighborhood-based recommendation
methods. In: Recommender Systems Handbook, Springer, pp 37-76

O’Donovan J, Smyth B (2005) Trust in recommender systems. In: IUIL, ACM, pp 167-174

Pefias A, Rodrigo A (2011) A simple measure to assess non-response. In: Lin D, Matsumoto Y, Mihalcea
R (eds) The 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, The Associa-
tion for Computer Linguistics, pp 1415-1424

Salakhutdinov R, Mnih A (2011) Probabilistic matrix factorization. In: NIPS, vol 20, pp 1-8

Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algo-
rithms. In: Proceedings of the 10th international conference on World Wide Web, ACM, pp 285-295

Smyth B, Wilson DC, O’Sullivan D (2002) Data mining support for case-based collaborative recommenda-
tion. In: AICS, Springer, Lecture Notes in Computer Science, vol 2464, pp 111-118

Srebro N, Jaakkola T, et al (2003) Weighted low-rank approximations. In: Icml, vol 3, pp 720-727

Toledo RY, Mota YC, Martinez-Lépez L (2015) Correcting noisy ratings in collaborative recommender sys-
tems. Knowl-Based Syst 76:96-108, DOI 10.1016/j.knosys.2014.12.011, URL https://doi.org/10.
1016/j.knosys.2014.12.011

Vargas S, Castells P (2011) Rank and relevance in novelty and diversity metrics for recommender systems.
In: Proceedings of the fifth ACM conference on Recommender systems, ACM, pp 109-116

Wang S, Gong M, Li H, Yang J (2016) Multi-objective optimization for long tail recommendation. Knowl-
Based Syst 104:145-155, DOI 10.1016/j.knosys.2016.04.018, URL https://doi.org/10.1016/j.
knosys.2016.04.018

Zhang M, Guo X, Chen G, Wei Q (2014) Predicting consumer information search benefits for personalized
online product ranking: a confidence-based approach. In: Siau K, Li Q, Guo X (eds) 18th Pacific Asia
Conference on Information Systems, PACIS 2014, Chengdu, China, June 24-28, 2014, p 375, URL
http://aisel.aisnet.org/pacis2014/375

Zhang M, Guo X, Chen G (2016) Prediction uncertainty in collaborative filtering: Enhancing personal-
ized online product ranking. Decision Support Systems 83:10-21, DOI 10.1016/j.dss.2015.12.004, URL
https://doi.org/10.1016/j.dss.2015.12.004

Exploiting recommendation confidence in decision-aware recommender systems 27

A Complete Derivation of Variational Bayesian

The goal of this algorithm is to minimise the objective function in Equation 6 using a proba-
bilistic model where R are the observations, U and / are the parameters, and some regularisa-
tion is introduced through priors on these parameters. As before, user u is represented by the
u-th row of matrix U and item i is represented by the i-th column of matrix /; nonetheless,
from now on, we shall consider these column vectors as row vectors.

The first hypothesis of the model is that the rating probability, considering matrices U
and I, follows a Normal distribution with mean « ' i and variance 72

P(ryi |UI)=N(u"-i,7%) (A1)
Moreover, the entries of these matrices U and [follow independent distributions; in

particular, u; ~ N(0,07) and iy ~ N(0,p?). As a consequence, the density functions of U
and 7 are formulated as in Equation A.2:

D
[ING10,07) (A2)
=1

:\

N(u | 0,67)
1 i

<
s

PU) =

Il
_
=

Il

I
_

The goal now is to compute or approximate the posterior probability P(U,I | R), so, in
this way, we can compute a predictive distribution on ratings given the observation matrix,
as in Equation A.3:

P(ha | R) = / P(fut | u,i,22)P(U,I| R) (A3)

Since computing this posterior probability P(U,I | R) is unfeasible, the proposed algo-
rithm aims at approximating such distribution by using Bayesian inference, more specifi-
cally, through the method known as Mean-Field Variational Inference.

Bayesian inference

Bayesian inference is a method that approximates a posterior distribution of a set of unob-
served variables Z = {Z;,--- ,Zp} knowing a subset of information R, P(Z | R), through a
variational distribution Q(Z) (Box and Tiao 2011). For this, a function Q(Z) is sought that
minimises the dissimilarity function d(Q, P). In the specific case of the Mean-Field Vari-
ational Inference method, such a dissimilarity function is the Kullback-Leibler divergence
between P and Q (Bishop 2006):

Da(0117) = LO@ log 5 T = T 0@ log 1020 +loxPlR) (A

where we use that P(Z | R) = P(Z,R)/P(R). Furthermore, by solving Equation A.4 for
log P(R) we obtain the following Equation A.5:

logP(R) =Dk (Q || P) — ;Q(Z) log P%Z(ZI)?)

=Dk (Q || P)+Z(Q) (A.5)

If we set log P(R) as a constant in Equation A.5, it is enough with maximising .# (Q) to
minimise Dky (Q || P). Indeed, .#(Q) is denoted as the (negative) variational free energy,
since it can be written as a sum of Q’s entropy and an energy (Equation A.6):

28 Rus M. Mesas, Alejandro Bellogin

—ZQ(logQ(Z +ZQ)log P(Z,R)
Z

=H(Q) +E[logP(Z,R)] = Ey(,)[log P(Z,R) — log Q(Z)]

(A.6)

Bayesian inference in VB

Once we apply the Mean-Field Variational Inference method presented above where Z =
{U, I} are the unobserved variables, and the rating matrix R is the known information, the
goal is to estimate a variational distribution function Q(U,I) that approximates the distri-
bution P(U,I | R). For this, we aim at maximising the so-called (negative) variational free
energy defined as in Equation A.7:

F(Q(U.I)) =Eg p[log P(U,I,R) —log Q(U,1)]
=-Y 0(U,1)(logQ(U,I) —logP(U,1,R))

In practice, it is intractable to maximise F(U,I) and, because of this, this algorithm
applies another simplification by considering that Q(U,I) = Q(U)Q(I). We now arrive to
the definitive formulation for % (Q(U)Q(I)), Equation A.8, as it is defined in (Lim and Teh
2007):

(A7)

Z(QW)Q)) = Eg)onllogP(U,1,R) —log Q(U, I)]

=Eowom {log %} +H(Q(U,1))

= EQ(U)Q(I) [IOgP(R | U,I— IOgP(U) — logP(I)] -‘rH(Q(UJ))

_ K 2 1y Eowjo[(rui—u'i)’]
7—210g(27m)—22 =
(u, 1) (A.8)

2
=1 O;

= 1 _1Eg

~3 Ylog(amp}) - 5y, =050
=1

=1 p;
+H(Q(U,I))

where K is the number of observed entries in R, or, in other terms, the number of ratings or
interactions known by the system at training time.

Maximising .Z (Q(U)Q(I)) with respect to Q(U) keeping Q(I) fixed, and viceversa, we
obtain the distributions for items and users. Equations A.9 and A.10 describe the covariance
matrix ¢, and user’s u mean % in Q(U), respectively.

= 0
g yiti'i
u = . ! A9
¢ - +i€§w) = (A9)
0 =
D

= ¢u< Y r;) (A.10)

i€O(u) T

Exploiting recommendation confidence in decision-aware recommender systems 29

where O(u) are the items observed by user u, which corresponds to the identifiers i such
that r,; was observed in the rating matrix R. Similarly, Equations A.11 and A.12 show the
formulation for the covariance matrix y; and item’s { mean i in Q([), respectively.

1 —1

P 0
1 —T—
O +u'u
= . R A1l
yi S +ue§<,~> p= (A1)
3
= ryilk
z:%<§>ﬂ> (A.12)
uc 1

where O(i) denotes the set of users that have rated item i.

The variances o7, p;, and T can also be estimated and learned by the model. By differen-
tiating Equation A.8 with respect to oy, p;, and 7, setting the derivatives to zero, and solving
for the optimal parameters, we obtain Equations A.13, A.14, and A.15.

Vv

1

of = o— Y. (9)u -+’ (A.13)

V—1,4

2 1 J 2

i =7 LWutv (A.14)

i=1

1 - T

2= — Y A2 i+trace|(¢,+7 @) (i +i)] (A.15)

K-154

Rating prediction in VB

Once the optimal approximation for P(U,1 | R) is calculated, that is, Q(U,I), it can be used
to predict future interactions between users and the system. For this, given a matrix R, we
find that the distribution of a new rating is the following (Equation A.16):

mnmmN/Pmﬂﬁmwawaﬂz/Nﬁmwﬁxﬂquﬁﬂmz (A.16)
Therefore, we can obtain its mean and, hence, the estimated or predicted rating:

Bl | B) = [[7 (G| a7, 2)Q(U. DaU I (A17)

Finally, when we apply Fubini’s theorem, we obtain the following formulation:

Mnmm://ﬁwﬁﬂu%#wmgijwusznzfi (A.18)

uli

Standard deviation of predicted rating in VB
We use the following explicit formulation for the standard deviation, derived by using mean-
field variational inference. First, we use the general form to compute the standard deviation
when estimating rating 7,; for user # and item i:

Var(7,i | R) =E(7 | R) —E(#y | R)? (A.19)

30 Rus M. Mesas, Alejandro Bellogin

Considering the formulation presented in Equation A.18, we know that E(#,; | R)?> =
(@'i)? =i ma'i. Hence:

B2 1 R) = [[#NGa | 2)0, navaidr,

= / / PN (P | u'i,t%)d? QU TAUAV

E(r2) =12 —E(ry)?=22+iTuu i (A.20)
=E(t*+i uu'i)

=T+ E(i uu'i)

= 1% f-trace((¢, — 1) (W; —ﬁT))

And therefore:

Var(Fu) = Var(#u | R) = 7% + trace ((¢ +WT) (w,- +ET)) imi o (A21)

which gives us an explicit estimation of the deviation (uncertainty) on the predicted rating

A
Fui.

	exploiting rus bellogin portada.pdf
	mesas bellogin exploitingconfidence pre

