
Compacting Frequent Star Patterns in RDF Graphs

Farah Karim

Leibniz University of Hannover, Germany
Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan

Karim@l3s.de

Maria-Esther Vidal

TIB Leibniz Information Centre for Science and Technology, Hannover
Leibniz University of Hannover, Germany

Maria.Vidal@tib.eu

Sören Auer

TIB Leibniz Information Centre for Science and Technology, Hannover
Leibniz University of Hannover, Germany

Auer@tib.eu

March 12, 2020

Abstract

Knowledge graphs have become a popular formalism
for representing entities and their properties using
a graph data model, e.g., the Resource Description
Framework (RDF). An RDF graph comprises enti-
ties of the same type connected to objects or other
entities using labeled edges annotated with proper-
ties. RDF graphs usually contain entities that share
the same objects in a certain group of properties, i.e.,
they match star patterns composed of these proper-
ties and objects. In case the number of these entities
or properties in these star patterns is large, the size of
the RDF graph and query processing are negatively
impacted; we refer these star patterns as frequent star
patterns. We address the problem of identifying fre-
quent star patterns in RDF graphs and devise the
concept of factorized RDF graphs, which denote com-
pact representations of RDF graphs where the num-
ber of frequent star patterns is minimized. We also

develop computational methods to identify frequent
star patterns and generate a factorized RDF graph,
where compact RDF molecules replace frequent star
patterns. A compact RDF molecule of a frequent star
pattern denotes an RDF subgraph that instantiates
the corresponding star pattern. Instead of having all
the entities matching the original frequent star pat-
tern, a surrogate entity is added and related to the
properties of the frequent star pattern; it is linked to
the entities that originally match the frequent star
pattern. Since the edges between the entities and the
objects in the frequent star pattern are replaced by
edges between these entities and the surrogate entity
of the compact RDF molecule, the size of the RDF
graph is reduced. We evaluate the performance of
our factorization techniques on several RDF graph
benchmarks and compare with a baseline built on
top of gSpan, a state-of-the-art algorithm to detect
frequent patterns. The outcomes evidence the effi-
ciency of proposed approach and show that our tech-

1

ar
X

iv
:2

00
3.

05
23

8v
1

 [
cs

.D
B

]
 1

1
M

ar
 2

02
0

niques are able to reduce execution time of the base-
line approach in at least three orders of magnitude.
Additionally, RDF graph size can be reduced by up
to 66.56% while data represented in the original RDF
graph is preserved.
Keywords: Semantic Web, RDF Compaction,

Linked Data, Knowledge Graph.

1 Introduction

Knowledge graphs have gained momentum as flexible
and expressive structures for representing not only
data and knowledge but also actionable insights [28];
they provide the basis for effective and intelligent ap-
plications. Currently, knowledge graphs are utilized
in diverse domains e.g., DBpedia [19], Google Knowl-
edge Graph [26], and KnowLife [12]. The Resource
Description Framework (RDF) [18] has been adopted
as a formalism to represent knowledge graphs; in
fact, in the Linked Open Data cloud [6], there are in
2019 more than 1,200 RDF knowledge graphs avail-
able1. RDF models knowledge in the form of graphs
where nodes represent entities; connections between
entity nodes are representing RDF triples composed
of subject, property, and object. The subjects and
objects are represented by nodes, and an edge repre-
sents a property that relates a subject with an object.
Diverse applications have been developed on top of
knowledge graphs [5, 15, 28]. However, the adoption
of knowledge graphs as de facto data structure of real-
world applications demands efficient representations
and scalable techniques for creating, managing, and
answering queries over knowledge graphs. Thus, ef-
ficient graph representations of real-world scenarios
are still demanded to enhance and facilitate the de-
velopment of applications over knowledge graphs.

In real-world applications, a group of entities can
share the same values in a set of features. For
example, several sensor observations can sense the
same temperature, in a given timestamp and city.
This situation can be represented in an RDF graph
with four triples per sensor observation oi, i.e.,
(oi temperature t), (oi unit u), (oi timestamp ts),

1https://lod-cloud.net/

and (oi gps_coordinates gc). All the resources rep-
resenting these sensor observations match the vari-
able ?o in the star pattern (SGP) composed by the
conjunction of the following triple patterns (?o tem−
perature t) (?o unit u), (?o timestamp ts), and (?o
gps_coordinates gc) [24]. In case the star patterns
are instantiated with many entities, a large number
of RDF triples will have the same properties and ob-
jects and the corresponding star pattern will be re-
peatedly instantiated; we name these star patterns
frequent star patterns. Although RDF triples that in-
stantiate a frequent star pattern correctly model the
real world, the size of the knowledge graph as well as
the efficiency of the tasks of management and pro-
cessing, can be negatively affected whenever a large
number of triples of frequent star patterns populate
the knowledge graph. Since frequent star patterns are
very common in real world knowledge graphs, tech-
niques are required to enable both the efficient rep-
resentation of the knowledge encoded in these star
patterns, as well as the processing and traversal of
the represented knowledge.

The Database and Semantic Web communities
have addressed the problem of representing relational
and graph data models; they have proposed a variety
of representation methods and data structures that
take into account the main features of a relational or
graph model with the aim of speeding up relation and
graph based analytics [1, 2, 3, 14, 16, 17, 20, 23, 32].
Compression techniques [1, 32] over the column-
oriented databases [7, 27], use the decomposition
storage model [10] to maintain data, where each at-
tribute value and a surrogate key, from the concep-
tual schema, are stored in a binary relation. How-
ever, a relation stored using the decomposition stor-
age model cannot easily exploit compression unless
surrogate keys are repeated [10]. Further, the de-
composition model stores two copies of a binary rela-
tion, also the surrogate keys are required to be stored
repeatedly for each attribute causing an increase in
the storage space requirements. In the context of
RDF graph, the scientific community has also ac-
tively contributed; approaches like [3, 14, 21, 31] gen-
erate compact binary representations for RDF knowl-
edge graphs. RDF binary compression techniques do
not take into account the semantics encoded in knowl-

2

edge graphs; they require customized engines to per-
form query processing. Moreover, there have been
defined compression approaches for RDF graphs able
to exploit semantics encoded in RDF triples. Ap-
proaches [20, 23] are application dependent and re-
quire a user to input the compression rules and con-
straints. Alternatively, compression approaches tai-
lored for ontology properties [17] have shown to be
effective, but they require prior knowledge of classes
and properties involved in repeated graph patterns to
generate compact representations. Lastly, techniques
proposed by Joshi et al. [16] require decompression to
access and process the original data, as well as extra
processing over the data. Albeit effective in reducing
the storage space, existing compression methods add
overhead to the process of data management, and
particularly, query execution time can be negatively
impacted. gSpan [30] and GRAMI [11] are state-
of-the-art algorithms that aim to identify frequent
patterns. However, only patterns with constants are
considered and they are neither able to identify star
patterns nor decide frequentness. We have built an
exhaustive algorithm that resorts to the gSpan enu-
meration of frequent patterns to identify the frequent
star patterns in an RDF knowledge graph; this ap-
proach corresponds to the baseline of our empirical
evaluation.
Our Research Goal: We address the problem of
identifying frequent star patterns in RDF knowledge
graphs, where certain properties and their corre-
sponding objects are repeatedly shared by several en-
tities of a type causing unnecessary growth of the
knowledge graphs. Our research goal is to mini-
mize the number of frequent star patterns in RDF
knowledge graphs to generate compact representa-
tions without losing any information. We investigate
the following research questions:

• What are the criteria that characterize frequent
star patterns?

• Do compact graph representations impact on the
size of knowledge graphs?

Approach: We devise the concept of factorized RDF
graphs, which corresponds to a compact graph with a
minimized number of frequent star patterns. Further,

we develop computational methods to detect frequent
star patterns in RDF graphs and to generate a fac-
torized RDF graph. These methods are able to iden-
tify entities and properties in frequent star patterns
in RDF graphs, and generate factorized RDF graphs
by representing frequent star patterns with compact
RDF molecules. A compact RDF molecule of a fre-
quent star pattern is an RDF subgraph that instan-
tiates the star pattern; a surrogate entity stands for
the entities that satisfy the corresponding frequent
star pattern. The surrogate entity is linked to the
properties and the corresponding objects in the fre-
quent star pattern (see Figure 4c). The entities, ini-
tially matching the frequent star pattern, are also
linked to the surrogate entity of the compact RDF
molecule. Compact RDF molecules significantly re-
duce the size of the RDF graph by replacing labeled
edges and entities connected the objects in the fre-
quent star pattern, with edges linking the entities
to the surrogate entity of a compact RDF molecule.
We study the effectiveness of our factorization tech-
niques over the LinkedSensorData benchmark [22];
it describes more than 34,000,000 weather observa-
tions collected by around 20,000 weather stations in
the United States since 2002. Experiments are con-
ducted against three LinkedSensorData RDF graphs
by gradually increasing the graph size. The observed
results evidence that frequent star patterns character-
ize the best set of properties relating several entities
of a class to the same objects in an RDF graph. More-
over, our techniques reduce RDF graphs size by up
to 66.56% using properties and classes recommended
by the frequent star patterns detection approach.
Contributions: we devise computational methods
for factorizing RDF graphs. The specific contribu-
tions are as follows: i) Criteria for detecting frequent
star patterns; ii) Factorization techniques compact-
ing frequent star patterns in RDF graphs. We have
presented two algorithms: An exhaustive approach
(named E.FSP) searches the space of frequent pat-
terns produced by an algorithm like gSpan, to iden-
tify frequent star patterns. Further, G.FSP imple-
ments a Greedy meta-heuristics that is able to tra-
verse the space of star patterns and identify the ones
that are frequent. Star patterns are traversed in
iterations, starting with the star patterns with the

3

c1 e1

c2

c3

c4

e2

e3

C

e5

e4

e6

p1

p2

p3

p1

p2

p3

p1

p2

p3p3

p2

p1

p4

p4
p4

p4

type

typetype

type

(a) An RDF Graph G

c1

e1
c2

c3

c4 e2
e3

p1
p2

p3

p1

p2

p3

p2p2

p3

p3

p1

p1e1
e2
e3

e1
e2
e3

e1
e2
e3

(b) Entities in the Graph Pattern

p1

p3

p2?x

e1

e2

e3
(c) A Star Pattern

Figure 1: Motivating Example. Frequent star pattern. (a) RDF graph with classes, entities, and proper-
ties; (b) Entities c1, c2, c3, and c4 are related to e1, e2, and e3 with properties p1, p2, and p3, respectively;
(c) A star pattern with subject variable ?x, respectively, relates e1, e2, and e3 with properties p1, p2, and
p3.

largest number of properties. The criteria of frequent
star patterns correspond the stop criteria of the al-
gorithm. iii) An empirical study of both the fre-
quent star patterns detection and factorization tech-
niques using existing benchmarks. Experimental re-
sults show that both E.FSP and G.FSP identify fre-
quent star patterns. Moreover, G.FSP overcomes
E.FSP by reducing execution time in at least three
orders of magnitude. More importantly, the experi-
ments indicate that factorizing frequent star patterns
by using surrogate keys enable for the creation of
compact RDF graphs that reduce size while preserv-
ing the information in the original RDF graph.

The article is structured as follows: We motivate
our research in Section 2, and present an analysis
of the state of the art in Section 3. Our approach
is defined in Section 4, while Section 5 reports on
the results of the experimental study. Finally, we
conclude with an outlook on future work in Section 6.

2 Motivating Example

Wemotivate the problem addressed by this work with
an RDF graph where entities of the same type – or
resources – match the same star pattern. In an RDF
graph, matching the same star pattern means that
the properties and objects are the same, whereas the

entities are different. When the number of entities
matching a star pattern is very high, the size of the
RDF graph increases and the query processing over
the RDF graph is affected negatively. A star pattern
with a high number of matching entities is a frequent
star pattern. Figure 1a depicts an RDF graph com-
posed by a class C, the entities c1, c2, c3, c4, e1, e2,
e3, e4, e5, and e6, and the properties p1, p2, p3, and
p4. A directed edge (s p o) in the RDF graph stands
for an RDF triple where p is a label that represents an
RDF predicate, while s and o are subject and object
nodes, respectively. Edges labeled with the predicate
type2, indicate that c1, c2, c3 and c4 are of the same
type, i.e., the class C. The directed edge (c1 p1 e1)
expresses that the entity c1 is related to object e1
with the property p1. Similarly, entities c2, c3, and
c4 are related to object e1 with the property p1, i.e.,
the indegree of e1 is four. Similarly, entities c1, c2,
c3 and c4 are related to e2 and e3 with the proper-
ties p2 and p3, respectively. Note that entities c1,
c2, c3, and c4 are associated with the same objects,
i.e., e1, e2 and e3 through the edges annotated with
same properties p1, p2, and p3. Albeit sound, these
redundant labeled edges generate frequent star pat-
terns because entities of the same type are described
using the same properties and objects. Figure 1b il-
lustrates the RDF subgraphs that map to the same

2property type refers to rdf:type

4

c1

e1

e2

e3

e4

p1
p2
p3

p4

c4

e1

e2

e3

e6

p1
p2
p3

p4

(a) Subgraphs per 4 Properties

c1

e1
e2

e3

p1 p2

p3

c1

e1
e3

e4

p1 p3

p4

c4

e1
e2

e3

p1 p2

p3

c4

e1
e3

e6

p1 p3

p4

(b) Subgraphs involving three
Properties

c1
e1

e2

p1

p2

c1
e1

e4

p1

p4

c1
e2

e4

p2

p4

c4
e1

e2

p1

p2

c4
e1

e4

p1

p4

c4
e2

e4

p2

p4

(c) Subgraphs involving two
Properties

Figure 2: Graph Patterns Identified by gSpan. Subgraphs, involving entities c1 and c4, extracted by
gSpan from the RDF graph in Figure 1a. (a) Subgraphs per set {p1, p2, p3, p4} of properties; (b) Subgraphs
involving three properties from p1, p2, p3, and p4; (c) Subgraphs around two properties from p1, p2, p3, and
p4.

star pattern, shown in Figure 1c, extracted from the
RDF graph in Figure 1a; note that ?x is a variable
whose instantiations correspond to constants in the
RDF graph. In these RDF subgraphs, the properties
p1, p2, and p3, and the corresponding objects e1, e2,
and e3, respectively, are the same, whereas the enti-
ties c1, c2, c3, and c4 are different. This indicates that
the star pattern is a frequent star pattern, i.e., several
entities c1, c2, c3, and c4 instantiate the star pattern.
Thus, several entities are related to the same objects,
even not all the properties of the class are involved in
frequent star patterns. A frequent star pattern com-
prising the entities c1, c2, c3, and c4 is illustrated in
Figure 1c, where the node ?x represents the entities
c1, c2, c3, and c4 of class C in the RDF graph in
Figure 1a. gSpan [30] solves the problem of identify-
ing the frequent subgraphs that involve same subject
entities related to the same object values using a set
of properties. However, our approach requires the
identification of frequent star patterns, where each
star pattern– with a subject variable–involves differ-
ent subject entities related to the same object values
using a set of properties. Figures 2a ,2b, and 2c show
some of the subgraphs extracted by gSpan involving
entities c1 and c4 , and the sets of properties contain-
ing four, three, and two properties, respectively, from
the RDF graphs in Figure 1a. gSpan exhaustively

enumerates the frequent subgraphs; thus, finding fre-
quent star patterns requires an exhaustive search over
the generated frequent subgraphs. In this work, we
exploit the RDF model and propose a technique that
allows for transforming an RDF graph G into an-
other RDF graph G′ where the number of frequent
star patterns is minimized. The graph G′ includes
all the nodes from G but additionally, G′ comprises
nodes that represent factorized entities– like the one
in Figure 4c.

3 Related Work

Database and Semantic Web communities have pro-
posed several representations to speed up processing
over the large amounts of data represented using re-
lational and RDF data models [1, 2, 3, 14, 16, 17, 20,
23, 32]. These compression approaches can be catego-
rized into compression techniques for relational and
RDF graph data models. Relational data model ap-
proaches [1, 32] efficiently store very large datasets in
column-oriented stores. Approaches [3, 14, 16, 17, 20,
21, 23, 31] target the efficient storage of RDF graph
data. Furthermore, several frequent pattern mining
algorithms [11, 30] extract frequent isomorphic graph
patterns from a graph.

5

3.1 Data Compression for Relational
Data Models

Column-oriented databases [27, 32] store each at-
tribute in a separate column such that successive val-
ues of the attribute are accumulated consecutively on
the disk. This improves the query processing when
the values of some of the columns are required to
process the query. The column oriented data stor-
age opens a number of opportunities to apply com-
pression techniques more naturally over the multi-
ple values of the same type. Compression approach
proposed by Abadi et al. [1] compress each column
in C-store [27] using one of the methods like Null
Suppression, Dictionary Encoding, Run-length En-
coding, Bit-Vector Encoding or Lempel-Ziv [25, 29].
Zukowski et al. [32] focus on improving bad CPU/-
cache performance caused by the compression tech-
niques involving if-then-else statements in the code,
e.g., Null Suppression, Run-length Encoding, and
does not take advantage of the super-scalar prop-
erties, e.g., pipe-lining the processes, in the mod-
ern CPUs. Zukowski et al. propose three com-
pression methods i.e., PFOR, PFOR-DELTA, and
PDICT. These compression solutions are exploited by
column-oriented stores using the decomposition stor-
age model [10], where n-array relations are decom-
posed into n binary relations. Each binary relation
consists of one attribute values and the corresponding
surrogate keys. In this model, two copies of data are
stored increasing the data storage requirements. Fur-
ther, for each attribute a copy of the corresponding
duplicated surrogate key is required resulting in an
increase of the storage by a factor of two. Moreover,
various compression techniques for a large number of
unique values, i.e., subject entities, are hard to im-
plement. Our approach generates a factorized graph
where entities matching a frequent star pattern are
represented by a surrogate entity of the correspond-
ing compact RDF molecule. These compact graph
representations replace repeated properties and cor-
responding objects with properties and objects in the
compact RDF molecules, hence, improve the stor-
age space requirements for the decomposition storage
model [10].

3.2 Data Compression for the RDF
Data Model

Meier et al. [20] propose a user-specific minimization
technique based on Datalog rules to remove the RDF
triples from a given RDF graph. Similarly, Pichler et
al. [23] study the RDF redundancy elimination in the
presence of rules, constraints, and queries specified by
users. These two approaches are user specific and re-
quire human input for compressing the ever growing
RDF graphs. A scalable lossless RDF compression
technique, proposed by Joshi et al. [16], automati-
cally generates decompression rules. The rules are
used to split the RDF datasets into an active dataset
containing compressed triples, and a dormant dataset
consisting of uncompressed RDF triples. This tech-
nique requires the overhead of decompression over
the compressed data to access the information ini-
tially represented in datasets. A factorized repre-
sentation of RDF graphs is presented by Karim et
al. [17], where repeated observation values are repre-
sented only once. This approach reduces the num-
ber of RDF triples in the observational data, which
is semantically described using the Semantic Sensor
Network (SSN) Ontology [9]. We propose an ap-
proach to automatically identify frequent star pat-
terns in RDF graphs described using any ontology.
Further, we devise factorized graphical representa-
tions of RDF graphs which do not require data de-
compression to perform data management tasks. Fer-
nández et al. [14] present a binary RDF represen-
tation format consisting of a Header, a Dictionary
and a Triple component containing RDF metadata,
RDF terms catalog, and compactly encoded RDF
triples, respectively. Pan et al. [21] propose RDF
compression based on graph patterns, which reduces
the number of RDF triples and then generates com-
pact binary representations of the reduced triples.
The compression technique k2-triples presented by
Álvarez-García et al. [3] exploits the two dimen-
sional k2-trees structure, proposed by Barisaboa et
al. [8], to distribute the compact triples obtained by
Header-Dictionary-Triples partitioning [14]. These
approaches are able to effectively reduce redundan-
cies in RDF graphs, and provide effective techniques
for RDF graph compression. However, customized

6

engines are required to perform query processing
over the compressed RDF graphs, and decompres-
sion techniques are needed during data management.
We devise factorization techniques that use semantics
encoded in RDF data and compactly represent RDF
triples, reduce redundancy, and facilitate data man-
agement tasks without requiring any decompression
or a customized engine.

3.3 Graph Mining Techniques

The problem of frequent pattern mining involves find-
ing subgraphs, from a graph, that have frequency
above a given threshold. gSpan [30] exploits the
depth first search (DFS) to mine frequent patterns.
gSpan maps a graph to a DFS code representing the
edges sequence. Several DFS codes can be gener-
ated for a single graph. These DFS codes are or-
dered lexicographically based on the edge labels and
the order of nodes being visited. From these ordered
DFS codes the minimum DFS codes are selected to
build the DFS tree. DFS over a code tree discov-
ers all the minimum DFS codes of frequent patterns.
GRAMI [11] mines frequent patterns and finds only
the minimal set of instances that satisfy the given
frequency threshold. GRAMI stores the templates
of frequent patterns instead of storing their appear-
ances. This avoids the creation and storage of all
appearances of patterns. For frequency evaluation,
GRAMI maps the frequent patterns mining problem
to constraint satisfaction problem (CSP), which is
represented by a tuple; (a) an ordered set of variables
representing nodes, (b) a set of domains of variables
in (a), and (c) a set of constrains between these vari-
ables. Two subgraphs patterns are isomorphic if the
variables in corresponding CSP tuple have different
values from the domains, however, nodes and edge
labels are the same. Notwithstanding these frequent
pattern mining approaches are able to identify the
frequent isomorphic graph patterns, extracting fre-
quent star patterns, which involve different subject
nodes related with same objects nodes using same
set of edge labels, requires an exhaustive search over
the identified frequent patterns. It is important to
highlight that although these approaches effectively
mine subgraph patterns, they are not able to iden-

tify patterns where one node is a variable. Contrary,
our approach searches for star patterns and is able to
detect the ones with highest instantiations.

4 RDF Graph Factorization Ap-
proach

We introduce important preliminary definitions, and
then formally define the problem of detecting fre-
quent star patterns and compacting them in an RDF
graph.

4.1 Preliminaries

Our approach is based on the RDF data model build-
ing on RDF triples.

Definition 4.1 (RDF triple [4]). Let I, B, L be dis-
joint infinite sets of URIs, blank nodes, and literals,
respectively. A tuple (s p o) ∈ (I∪B)×I×(I∪B∪L)
is an RDF triple, where s is the subject, p is the prop-
erty, and o is the object.

A set of RDF triples is called RDF dataset (or
knowledge graph) and can also be viewed as a graph.
Thus, in Figure 1a, the edge (c1 type C) represents
an RDF triple, where entity c1 corresponds to sub-
ject, type and C represent a property and an object,
respectively; there are nineteen more RDF triples.

Definition 4.2 (RDF Graph). An RDF graph G =
(V,E, L) is a labeled directed graph where nodes rep-
resent entities or objects, while labels stand for prop-
erties:

• An RDF triple (s p o) ∈ E, corresponds to an
edge in E from node s to node o; p is the label
of the edge and denote the property that relates
both nodes;

• s, o ∈ V , s corresponds to a subject and o cor-
responds to an object; and

• p ∈ L, is an edge label corresponding to a prop-
erty.

7

Definition 4.3 (RDF Molecule [13]). An
RDF molecule RM is a set of RDF triples
that share the same subject, i.e., RM=
(s p1 o1),(s p2 o2),. . . ,(s pn on).

Figure 1b presents four RDF molecules around the
subjects c1, c2, c3, and c4 of class C. In the RDF
molecule around subject c1 all the RDF triples de-
scribe c1 using properties p1, p2, and p3. Similarly,
RDF triples in each of the other RDF molecules de-
scribe the subjects c2, c3, and c4 using properties p1,
p2, and p3.

4.2 Problem Statement

Star patterns denote graph patterns covering RDF
molecules:

Definition 4.4 (Star Pattern). Given is an RDF
graph G = (V,E, L), a class C in E and a set
of properties SP = {p1, p2, . . . , pn} such that C is
the domain of all the properties in SP . Let en-
tities o1, o2, . . . , on be the objects of the properties
p1, p2, . . . , pn, respectively. Let ?s be a variable. A
star pattern of C over the properties p1, p2, . . . , pn
and objects o1, o2, . . . , on corresponds to a graph pat-
tern composed of the conjunction of triple patterns:
(?s p1 o1),(?s p2 o2), . . . , (?s pn on).

Figure 1c shows a star pattern composed of three
triple patterns containing properties p1, p2, and p3
and the corresponding objects e1, e2, and e3, respec-
tively. The entities c1, c2, c3, and c4 of class C in
the RDF graph in Figure 1a match the star pattern.
The variable ?x is the subject of the triple patterns
referring to the entities matching the star pattern.

Definition 4.5 (Class Multiplicity). Given an RDF
graph G = (V,E, L), a class C in E and a set of
properties SP = {p1, p2, . . . , pn} such that C is the
domain of all the properties in set SP of properties.
Let entities o1, o2, . . . , on be objects of the proper-
ties p1, p2, . . . , pn, respectively. The multiplicity of
o1, o2,. . . , on in G, M(o1, o2, . . . , on|G) is defined as
the number of different entities in C that match a
star pattern having the same objects o1, o2, . . . , on in
the properties p1, p2, . . . , pn. Entities s correspond

to instantiations of the subject variable in the star
pattern.

M(o1, o2, . . . , on|G) = |{s| (s :type C) ∈ G,
(s p1 o1) ∈ G, (s p2 o2) ∈ G,
. . . , (s pn on) ∈ G}|

In the RDF graph in Figure 1a, the multiplicity of
the objects e1, e2 and e3, given the set {p1, p2, p3} of
properties, is 4, because there are four instantiations
of the subject variable. Similarly, the multiplicity of
objects e4, e5 and e6, in the set {p4} of properties is
1 and 2.

Definition 4.6 (Class Multiplicity Inverse). Given
class C, a set SP = {p1, p2, . . . , pn} of proper-
ties and corresponding objects o1, o2,. . . , on, the
multiplicity inverse of o1, o2,. . . , on in G, denoted
MI(o1, o2, . . . , on|G), is:

MI(o1, o2, . . . , on|G) = 1/M(o1, o2, . . . , on|G)

In the RDF graph in Figure 1a, the class multi-
plicity inverse of the objects e1, e2, and e3, given the
set {p1, p2, p3} of properties, is 1

4 . The multiplicity
inverse of objects e4, e5, and e6 in the set {p4} of
properties is 1

1 and 1
2 .

Definition 4.7 (Multiplicity of Star Patterns).
Given a class C in an RDF graph G with proper-
ties SP = {p1, p2 . . . , pn}. The multiplicity of the
star patterns in C over SP , AMIG(p1, p2, . . . , pn|C),
is defined as follows:

AMIG(p1, p2, . . . , pn|C) = df ′∀s∈C({MI(o1, o2, . . . , on|G)
|(s type C) ∈ G, (s p1 o1) ∈ G,
(s p2 o2) ∈ G, . . . , (s pn on)
∈ G})e

where f ′(.) is an aggregation (e.g., summation) func-
tion.

In the RDF graph in Figure 1a, the multiplicity
of the star patterns of C over the set {p1, p2, p3} of
properties is 1

4 + 1
4 + 1

4 + 1
4 = 1, which is obtained

by summing up the class multiplicity inverse of the
objects e1, e2, and e3 given the set {p1, p2, p3} of
properties, for each entity c1, c2, c3, and c4 of class

8

C matching the star pattern. Similarly, the multiplic-
ity of the star patterns of class C over the set {p4} is
1
2 +

1
2 +

1
1 +

1
1 = 3 in the RDF graph, and is obtained

by summing up the individual class multiplicity in-
verse of objects e4, e5, and e6 given the set {p4},
for each of the entities c1, c2, c3, and c4 of class C
that map the corresponding star patterns. The mul-
tiplicity of the star patterns over a set of properties
corresponds to the number of star patterns composed
of the set of properties and the corresponding objects.
The problem of frequent star patterns detection is de-
fined next, the solutions correspond to frequent star
patterns. We define the frequent star patterns de-
tection problem as the minimization of connections
between a class instances and values linked through
the properties. To find the minimum number of edges
over the properties in a class, the sum of the number
of edges in the star patterns over a set of properties
and the number of edges between the class entities
and the properties that are not involved in the star
patterns is computed.

Definition 4.8 (FSP Detection Problem). Given an
RDF graph G = (V,E, L) and a class C in G with set
of properties S and number of instances AMG(C).
The problem of Frequent Star Patterns Detection
(FSP Detection) is to find a subset SP of S such that
the star patterns SGP of C over SP corresponds to
frequent star patterns, i.e., #Edges(SP,C,G) is min-
imized:

arg min
SP⊆S

{AMIG(SP |C) ∗ (|SP | + 1) + AMG(C) ∗ (|S − SP |)︸ ︷︷ ︸
#Edges(SP,C,G)

} (1)

Figure 3 illustrates the problem of detecting fre-
quent star patterns from the RDF graph in Figure 1a.
Figure 3a presents three star patterns AMIG(SS|C)
over the set of properties p1, p2, p3, and p4, and
15 edges in #Edges(SS,C,G). However, only one
star pattern AMIG(SS

′|C) over the set of proper-
ties p1, p2, and p3 exists in Figure 3b. A small value
of #Edges(SS’,C,G) i.e., eight, shows a subgraph over
SS′ that is represented by only one star pattern with
more instantiations than the star patterns for SS,
i.e., it is a frequent star pattern. Thus, the set of
properties SP where #Edges(SP,C,G) is minimal, en-
closes a subgraph with the minimal number of star

patterns which have the maximal number of instanti-
ations; additionally, these star patterns are the ones
with the greater number of properties. Figure 3c de-
picts the factorized RDF graph where this frequent
star pattern has been replaced with a compact RDF
molecule on a surrogate entity cM ; this factorization
reduces the size of the original RDF graph.

Theorem 4.1. Given an RDF graph G, a class
C in G, and non-empty sets of properties S,
SP , and SP ′ of C such that SP ′ ⊂ SP ⊂
S. If #Edges(SP ′, C,G) > #Edges(SP,C,G),
then ∀SP ′′ ⊂ SP ′, #Edges(SP ′′, C,G) ≥
#Edges(SP,C,G).

Proof. By contradiction. Suppose
#Edges(SP ′′, C,G) < #Edges(SP,C,G).
From #Edges(SP ′, C,G) > #Edges(SP,C,G)
and SP ′ ⊂ SP ⊂ S, it can be inferred that
AMIG(SP |C) < AMG(C), AMIG(SP

′|C) <
AMG(C), |SP ′′| < |SP ′| < |SP | < |S|,
|SP − SP ′′| ≥ 2, and AMIG(SP

′′|C) < AMG(C).
Considering these inequalities in #Edges(SP ′′, C,G)
and #Edges(SP,C,G), we can demonstrate
that #Edges(SP ′′, C,G) is at least greater than
#Edges(SP,C,G) in 2 ∗ AMG(C), contradicting,
thus, #Edges(SP ′′, C,G) < #Edges(SP,C,G).

Definition 4.9 (A Compact RDF Molecule). Given
a star pattern SGP of a class C over the properties
p1, p2, . . . , pn and objects o1, o2, . . . , on. Given a sur-
rogate entity sg of type C. A compact RDF molecule
for SGP is an RDF molecule composed of RDF triples
(sg p1 o1),(sg p2 o2),. . . ,(sg pn on).

Figure 4c shows a compact RDF molecule that in-
stantiates the star pattern presented in Figure 1c,
which is composed of the properties p1, p2, and p3
and the corresponding objects e1, e2, and e3, respec-
tively. The surrogate entity cM in the compact RDF
molecule, represents the entities c1, c2, c3, and c4 of
type C matching the star pattern, as shown in Fig-
ure 1b.

Definition 4.10 (The RDF-F Problem). Given an
RDF graph G = (V,E,L) and a set of properties

9

c1

e1

c2

e2
e3

C

e4

type
type

p1
p1p2
p2p3

p3p4
p4

c3

e1
e2
e3
e5

p1

p2

p3

p4

type
type

c4

e1
e2
e3
e6

p1

p2

p3

p4

A
M
I G
(S
S
|C
)=
3

S={p1,p2,p3,p4}
SS=S
#Edges(SS,C,G)=15

(a) #Edges(SP,C,G) over
p1,p2,p3, and p4

A
M

I G
(S

S
’|C

)=
1

 S={p1,p2,p3,p4}
SS’={p1,p2,p3}
#Edges(SS’,C,G)=8

c1 e1

c2

c3

c4

e2

e3

C

e5

e4

e6

p1

p2

p3

p1

p2

p3

p1

p2

p3p3

p2

p1

p4

p4
p4

p4

type

typetype

type

p1

p3

p2?s

e1

e2

e3
Frequent Star Pattern

(b) #Edges(SP,C,G) over properties
p1,p2, and p3

c1

c2

c3

c4

p1

p3

p2

C

ty
pe

cM

e1

e2

e3
e6

e4

e5

p4

p4

p4

p4

instanceO
f

instanceOf

instanceOf

in
st
an
ce
O
f

Compact RDF
Molecule

(c) Factorized Graph G′ from G

Figure 3: The Frequent Star Patterns Detection Problem. Properties involved in frequent star
patterns. (a) Stars patterns over the set SS = {p1, p2, p3, p4} of properties in class C require three surrogate
entities and #Edges(SS,C,G) are 15; (b) Star patterns over the set SS′ = {p1, p2, p3} of properties in
class C require one surrogate entitiy and #Edges(SS′, C,G) are eight; (c) A factorized RDF graph G′ of G
composed of compact RDF molecule with a surrogate entity cM .

c1

c2

c3

c4

cM

µNµN
µN
µN

(a) µN from G into G′

c1

c2

c3

c4

C

C

C

C type

type

type

type cM

cM

cM

cM

c1

c2

c3

c4

instanceOf

instanceOf

instanceOf

instanceOf

(b) type G into instanceOf G′

p1

p3

p2

C
ty
pe

cM

e1

e2

e3
(c) A Compact RDF
Molecule

Figure 4: The RDF Graph Factorization Problem. Factorization of RDF graph G into G′. (a) Entity
mappings µN from the RDF graph G in 1a to the surrogate entity cM in G′; (b) Transformation of property
type from G to G′; (c) A compact RDF molecule for the frequent star pattern over the properties p1, p2,
and p3.

SP , the problem of RDF factorization (RDF-F) cor-
responds to finding a factorized RDF graph of G,
G′ = (V ′, E′, L′), where the following hold:

• Entities in G are preserved in G′, i.e., V ⊆ V ′.

• For each entity si in V that corresponds to an in-

stantiation of the variable of a frequent star pat-
tern SGP of a class C over the set SP inG, there
is an entity sSGP in V ′ that corresponds to the
surrogate entity of the compact RDF molecule
of SGP . Formally, there is a partial mapping
µN : V → V ′:

10

– Instances of the frequent star pattern SGP
are mapped to the surrogate entity of the
star pattern, i.e., µN (si)=sSGP .

– The mapping µN is not defined for the rest
of the entities that do not instantiate a fre-
quent star pattern in G.

• For each RDF triple t in (s p o) in E:

– If µN (s) is defined and Cs is the type
of s, and p is type, then the triples
(s instanceOf µN (s)), (µN (s) type Cs) be-
long to E′.

– If µN (s) is defined and Cs is the type of s,
and p ∈ SP , then the triples (µN (s) p o)
belong to E′.

– Otherwise, the RDF triple t is preserved in
E′.

Consider RDF graphs G and G′ shown in Fig-
ures 1a and 3c, respectively. Figure 4a depicts a map
µN that assigns entities c1, c2, c3, and c4 of class C in
G to the surrogate entity cM in G′. Further, entities
c1, c2, c3, c4, C, e1, e2, e3, e4, e5, and e6 are pre-
served in G′. Moreover, the edge labeled with prop-
erty p1 in G, i.e., (c1 p1 e1) is presented with edges
(c1 instanceOf cM), (cM p1 e1) and (cM type C) in
G′; similarly, edges labeled with properties p2 and p3
inG are represented inG′. Figure 4b shows the trans-
formations of the connections between entities c1, c2,
c3, and c4 and the class C using labeled edges anno-
tated with property type, with the connections relat-
ing the entities c1, c2, c3, and c4 to the corresponding
surrogate entity cM using the property instanceOf .

Definition 4.11 (Axioms for InstanceOf). The
property instanceOf is a functional property defined
as follows:

• If (si instanceOf sg) and (sg type C) then
(si type C).

• If (si instanceOf sg) and (sg pj ok) then
(si pj ok).

These two axioms enable to represent implicitly, all
the knowledge encoded in the edges from an original

RDF graph that are removed during the factorization
process. They are utilized during query processing
to rewrite queries over the original RDF graph into
queries against the factorized RDF graph.

4.3 FSP Detection Approach

Algorithm 1 E.FSP Algorithm
Input: A dictionary subgraphsDict of subgraphs over

the subsets of properties in S, A set S of proper-
ties of class C.

Output: Frequent star patterns fsp, A set SP of
properties

1: fsp ← [], SP ← ∅, minEdges ← 0, subsetCard ←
|S|

2: while subsetCard ≥ 2 do
3: propSets← getSubsetsOf(S, subsetCard)
4: for SP ∈ propSets do
5: subgraphs← subgraphsDict[SP]
6: totalEdges← countEdges(subgraphs)
7: if minEdges == 0 then
8: minEdges← totalEdges
9: fsp← subgraphs

10: bestSP← SP
11: else if totalEdges < minEdges then
12: minEdges← totalEdges
13: fsp← subgraphs
14: bestSP← SP
15: end if
16: end for
17: subsetCard← subsetCard− 1
18: end while
19: SP ← bestSP
20: return fsp, SP

To solve the FSP detection problem, we propose
two algorithms that perform iterations over frequent
patterns involving different sets of properties sets
of a class C in an RDF graph G, and the class
entities. E.FSP, presented in Algorithm 1, resorts
to a frequent pattern mining algorithm like gSpan.
E.FSP exploits breadth first search technique to ex-
haustively traverse the search space of frequent pat-
terns generated by the frequent pattern mining algo-

11

p1,p2,p3,p4
e1,e2,e3,e42
e1,e2,e3,e51
e1,e2,e3,e61

p1,p2,p3
e1,e2,e34

p1,p2,p4
e1,e2,e42
e1,e2,e51
e1,e2,e61

p1,p3,p4
e1,e3,e42
e1,e3,e51
e1,e3,e61

p2,p3,p4
e2,e3,e42
e2,e3,e51
e2,e3,e61

totalEdges=16

p1,p2
e1,e24

p1,p3
e1,e34

p2,p3
e2,e34

p1,p4
e1,e42

p3,p4
e3,e42

p2,p4

e1,e51
e1,e62

e3,e51
e3,e61

e2,e42
e2,e51
e2,e61

totalEdges=11

totalEdges=17 totalEdges=17 totalEdges=17

totalEdges=14totalEdges=14totalEdges=14

totalEdges=18 totalEdges=18 totalEdges=18

(a) Exhaustive FSP Approach (E.FSP)

p1,p2,p3,p4

e1,e2,e3,e42
e1,e2,e3,e51
e1,e2,e3,e61

p1,p2,p3

e1,e2,e34

p1,p2,p4

e1,e2,e42
e1,e2,e51
e1,e2,e61

p1,p3,p4

e1,e3,e42
e1,e3,e51
e1,e3,e61

p2,p3,p4

e2,e3,e42
e2,e3,e51
e2,e3,e61

#Edges(SP,C,G)= 15

#Edges(SP,C,G)= 08

#Edges(SP,C,G)= 16 #Edges(SP,C,G)= 16 #Edges(SP,C,G)= 16

(b) Greedy FSP Approach (G.FSP)

Figure 5: Frequent Star Patterns Detection. E.FSP and G.FSP iterate over the star patterns in the
RDF graph in Figure 1a to detect the frequent star patterns. (a) E.FSP exhaustively iterates over the
whole search space of frequent patterns; (c) G.FSP iterates the search space without generating all the star
patterns.

rithm, and always finds the best frequent star pat-
terns. Figure 5a illustrates the iterations performed
by E.FSP to find the frequent star patterns in the
RDF graph in Figure 1a. E.FSP receives a dictionary
subgraphsDict of all the subgraphs over the subsets
of the set S of properties in the class C in an RDF
graph G. The keys of the dictionary subgraphsDict
are the combination of properties in the subsets of
S, and the dictionary values are the subgraphs in-
volving the properties from the corresponding keys.
E.FSP generates frequent star patterns and a set
of properties involved in the frequent star patterns.
E.FSP initializes the variables fsp, SP , minEdges,
and subsetCard in line 1. The variables minEdges
and subsetCard are initialized with values 0 and car-
dinality of S, respectively. From lines 2-18, E.FSP
iterates over all the subgraphs involving two or more
properties to find the frequent star patterns. In Fig-
ure 5a, E.FSP starts iterations with the set of prop-
erties SP = {p1, p2, p3, p4}, and the subgraphs in-
volving the properties in subsets of SP , where the
cardinality of subsets is equal to the cardinality of
S, i.e., four (line 3). The generated subset contains
all the properties in SP , i.e., {p1, p2, p3, p4}, and the

total number of edges totalEdges in SP is computed
i.e., 16 (line 5-6). Since minEdges are 0, therefore,
the value 16 of totalEdges is assigned to minEdges,
subgraphs over SP = {p1, p2, p3, p4} and SP are as-
signed to fsp and bestSP , respectively (line 7-10).
At line 17, the subset size subsetSize is reduced by
one in order to generate the subsets of properties of
S with the cardinality one less the cardinality of S
i.e., three. The subsets {p1, p2, p4}, {p1, p3, p4}, and
{p2, p3, p4}, of cardinality three, generate more num-
ber of edges i.e., value of totalEdges is 17, than the
minimum number of edges minEdges, i.e., 16, and are
not selected as the best sets of properties. However,
the subgraphs over the subset {p1, p2, p3} contain 11
number of triples, which is less than 16 the value
of minEdges. Therefore, E.FSP selects {p1, p2, p3}
as the best set of properties and the corresponding
subgraphs as the frequent star patterns (line 11-15).
Once all the subsets SP of S with cardinality three,
are evaluated, the value of subsetCard is reduced by
one i.e., two, and the subsets of cardinality two are
evaluated in the next iteration. Figure 5a presents
that all the subsets of cardinality two generate larger
values, i.e., 14 and 18, for totalEdges than the value

12

11 for minEdges. Therefore, none of the subsets of
properties of cardinality two contains the frequent
star patterns. Further, all the subsets of cardinality
greater or equal to two have been evaluated, E.FSP
stops and returns {p1, p2, p3} as the best set of prop-
erties and the corresponding subgraphs as the fre-
quent star patterns (line 19-20).
G.FSP, presented in Algorithm 2, adopts a greedy

algorithm to traverse the search space without gen-
erating all the frequent patterns. G.FSP starts it-
erations using a set SP of properties containing all
the properties in S of a class C in an RDF graph G.
G.FSP computes the value of Formula 1 for SP and
iterates over the subsets SP ′ of cardinality one less
the cardinality of SP and computes Formula 1 for
each of subsets SP ′. A property subset SP ′ with a
smaller formula value than the formula value of SP ,
is selected as the best set of properties in that it-
eration, and is used in the next iteration to check
the subsets of cardinality one less the cardinality of
the selected set of properties. The iterations are per-
formed until the cardinality of the selected subset
of properties is less than two. Based on the prop-
erty presented in Theorem 4.1, G.FSP stops, if none
of the subsets SP ′ generates less value for formula
than the formula value of SP . In addition, G.FSP
stops whenever the cardinality of the set of proper-
ties is less than two, or the multiplicity of star pat-
terns AMIG(SP |C) is one. G.FSP receives a set S of
properties in class C in an RDF graph G, and a list
starList of star patterns involving properties in S.
G.FSP returns frequent star patterns fsp and a set of
properties SP involved in the frequent star patterns.
Figure 5b shows the iterations performed by G.FSP
to detect the frequent star patterns in the RDF graph
in Figure 1a. G.FSP initializes all the variables at
line 1, where SP is assigned the set S of properties
for the first iteration i.e., SP = {p1, p2, p3, p4}. In
lines 2-29, G.FSP iterates over the subsets of SP to
find the frequent star patterns based on the criteria
in Formula 1. The cardinality value four of SP is
greater than two (line 3), and AMIG(SP |C) is not
equal to one (line 4-7), therefore, G.FSP computes
the value of #Edges(SP,C,G) of SP i.e., 15 (line
8). In lines 9-25, G.FSP iterates over the subsets
of SP of cardinality one less the cardinality of SP

Algorithm 2 G.FSP Algorithm
Input: A set S of properties of class C in G, and a

list starList of star patterns over properties in S.
Output: Frequent star patterns fsp, A set SP of

properties.
1: fsp ← [], starList′ ← [], SP ← S, SP ′ ← ∅,

fValue← fValue′ ← 0
2: repeat
3: if |SP | ≥ 2 then
4: if AMIG(SP |C) == 1 then
5: fsp← starList
6: return fsp, SP
7: else
8: fValue← #Edges(SP,C,G)
9: for p ∈ SP do

10: SP ′ ← SP − {p}
11: if |SP ′| ≥ 2 then
12: Create starList′ over SP ′ using

starList
13: value← #Edges(SP ′, C,G)
14: if AMIG(SP

′|C) == 1 then
15: fValue′ ← value
16: bestSP← SP ′

17: bestSList← starList′

18: break
19: else if value < fValue′ then
20: fValue′ ← value
21: bestSP← SP ′

22: bestSList← starList′

23: end if
24: end if
25: end for
26: end if
27: end if
28: starList← bestSList, SP ← bestSP
29: until fValue′ > fValue
30: fsp← starList
31: return fsp, SP

13

to find the best set of properties for the next itera-
tion. At line 10, a property p is removed from SP to
generate a subset SP ′ e.g., by removing p1 a subset
SP ′ = {p2, p3, p4} is generated. Since the cardinal-
ity of SP ′ is more than two, therefore, a star list
starList′, representing the star patterns over SP ′,
is created using starList (line 12-13). The value
of #Edges(SP ′, C,G) for SP ′ is computed i.e., 16
(line 13). For SP ′, AMIG(SP

′|C) is not one, and
the value 16 of #Edges(SP ′, C,G) for SP ′ is not
less than the value 15 of #Edges(SP,C,G) for SP ,
therefore, the star patterns over SP ′ = {p2, p3, p4}
do not involve frequent star patterns and SP ′ is not
a best candidate for the next iteration. Similarly, the
property subsets {p1, p3, p4} and {p1, p2, p4}, gener-
ated from SP by removing p2 and p3, respectively,
give a higher value 16 for #Edges(SP ′, C,G) and
the star patterns over these set of properties are not
better than the star patterns over SP . However,
SP ′ = {p1, p2, p3}, generated from SP by removing
p4, gives one star pattern, therefore, the star pat-
tern involving properties in SP ′ is returned as the
frequent star pattern without performing more itera-
tion (line 14-18). In case, the set SP ′ of properties is
involved in more than star patterns and the formula
value of SP ′ smaller than the value of SP , then SP ′

is selected for the next iteration (line 19-23). G.FSP
stops and no further iterations are performed if none
of the subsets SP ′ of SP generates a smaller value for
#Edges(SP ′, C,G) than #Edges(SP,C,G). G.FSP
returns the star patterns involving SP , with a min-
imum value for #Edges(SP,C,G), as the frequent
star patterns, and SP as the best set of properties.
E.FSP and G.FSP work under the following assump-
tions: (a) all RDF molecules are complete, i.e., all
class entities have values for all the properties, (b)
all the properties are functional. In addition to these
assumptions, G.FSP has one more assumption: (c) if
there are ties while deciding between the sets of prop-
erties, only one will be selected. Complexity of E.FSP
is exponential, i.e., 2n. G.FSP adopts a Greedy ap-
proach and prunes the search space by selecting only
the best set of properties during each iteration until
the stop condition is met, i.e., no better set of prop-
erties with a minimum formula value can be found.
In the worst case, the computational complexity of

G.FSP is
∑n

i=0(n− i)=
n(n+1)

2 , where n is the cardi-
nality of the input set of properties. The complexity
of G.FSP grows linearly with the increase in the size
of the input set of properties.

4.4 A Factorization Approach

We present a solution to the problem of factoriz-
ing RDF graphs describing data using ontologies. A
sketch of the proposed method is presented in Al-
gorithm 3. The algorithm receives an RDF graph
G = (V,E, L), a class C, and a set SP ′ of properties
from E.FSP or G.FSP, and generates a factorized
RDF graph G′ = (V ′, E′, L′), and the entity map-
pings µN from the entities of class C in V in RDF
graph G to the surrogate entities in V ′ in RDF graph
G′. The algorithm initializes the set of mappings µN ,
the set of nodes V ′, the set of labeled edges E′ and
the set of edge labels (properties) L′ of the factor-
ized RDF graph G′ (line 1). For all the entities of C
related to the same objects o1, o2, . . . , on using edges
annotated with properties p1, p2, . . . , pn in SP ′, the
algorithm creates a surrogate entity sg for the corre-
sponding compact RDF molecule in G′ (lines 2-3). In
lines 4-6, the algorithm maps all the entities, that are
related to o1, o2, . . . , on using properties p1, p2, . . . , pn
in G, to the surrogate entity in µN . Once all the map-
pings of the entities of C in G to the corresponding
surrogate entities in G′ are in µN , the factorized RDF
graph G′ is created using µN (lines 8-29). For each
RDF triple (s p o) in E, if entity mapping µN (s) is
defined, then a compact RDF molecule is created. If
p is type, then the new edges (s instance µN (s)), and
(µN (s) p o) are added to G′ along with entities s, o
and the mapped surrogate entity of s, and the edge
labels p and instanceOf (lines 11-14). If p is in SP ,
the new edge (µN (s) p o), and entities s, o and the
edge label p are added to G′ (lines 15-18). If entity
mapping µN (s) are defined, however, p is not in SP ,
or p is not type, then the edge (s p o) is added to
G′ along with the corresponding nodes and the edge
label (lines 19-23). If entity mapping µN (s) is not
defined, then the edge (s p o) and the nodes s and o,
and edge label p are added to G′ (lines 24-28).

Figure 6 depicts the transformations for the set
{p1, p2,

14

?s type C.
?s p1 ?o1.

Rule 1: Property p1

?s type C.
?s p2 ?o2.

Rule 2: Property p2

.

.

.

?s type C.
?s pn ?on.

Rule n: Property pn

Original RDF Graph

Tr
an

sf
or

m
at

io
ns

 o
f E

nt
iti

es
 o

f C
la

ss
 C

w

.r.
t.

P
ro

pe
rty

 S
et

 {p
1,p

2,.
..,

p n}

?sg type C.
?sg p1 ?o1.
?s instanceOf ?sg.

.

.

.

Factorized RDF Graph

?sg type C.
?sg p2 ?o2.
?s instanceOf ?sg.

?sg type C.
?sg pn ?on.
?s instanceOf ?sg.

(a) Transformation Rules for Class C

c1

e1

e2

e3

p1

C
type

e4

p4

p2

p3

cM

e1

e2

e3

p1

C
type

e4

p4

p2

p3

c1 in
sta

nce
Of

 p1,p2,p3 are functional properties

c1
 instanceOf is functional property

cMc1
 p1,p2,p3 are functional properties

Original RDF Graph Factorized RDF Graph

Assumptions: Assumptions:

(b) Original and Factorized RDF Graphs

Figure 6: Transformations in RDF Graph. Transformation rules preserved between original and factor-
ized RDF graphs. (a) Transformation rules over the properties p1, p2, . . . , pn; (b) Portions of RDF graphs
(original and factorized). Nodes and edges added to create the factorized RDF graph, are highlighted in
bold.

c1 e1

c2

c3

c4

e2

e3

C

e5

e4

e6

p1

p2

p3

p1

p2

p3

p1

p2

p3p3

p2

p1

p4

p4

p4

p4

type

typetype

type

c1

c2

c3

c4

p1

p3

p2

C

ty
pe

cM

e1

e2

e3
e6

e4

e5

p4

p4

p4

p4

instanceO
f

instanceOf

instanceOf

in
st

an
ce

O
f

Number of Labeled Edges = 20.0 Number of Labeled Edges = 12.0
 Percentage Savings = 40.0%

Original RDF Graph Factorized RDF Graph

(a) %age Decrease in Edges after Factorization

c1e9

c3c5

c7
e2

C

e8

e7

Number of Labeled Edges = 18.0 Number of Labeled Edges = 22.0
 Percentage Savings = -22.0%

e3

e4

e10

c2

e1

c6

ty
pe

type

type

ty
pe

type

type

p1 p1

p2

p2

p1
p1

p1

p2

p2

p1

p2
p2

c1

e9

c3

c5

c7

e2Ce8

e7
e3

e4

e10 c2 e1

c6

type

type

ty
pe

type

p1

p2

p1

p1

p2

p1

p2

p2cM1

cM2

cM4

cM5

c4

e5e6

type

p2
p1 c4 e6 e5

type

p2

p1

cM3

instanceOf
instanceOf instanceOf

instanceOf

insta
nceOf

instanceOf

in
st

an
ce

Of

Original RDF Graph Factorized RDF Graph

(b) %age Increase in Edges after Factorization

Figure 7: RDF Graph Factorization Overhead. Factorization of RDF graphs is not worthy in all cases.
(a) Entities of class C in the original RDF graph match the frequent star pattern over the properties p1, p2,
and p3; (b) few entities match each star pattern over p1 and p2 causing factorization overhead.

. . . , pn} of properties performed in an RDF graph
whenever a corresponding factorized RDF graph is
created. Figure 6a presents transformation rules; one
rule for each property in {p1, p2, . . . , pn} of class C.
Each rule states how the labeled edges associated
with a C in an original RDF graph are transformed
into the edges in the factorized graph. Rule 1 asserts
that the relation between an entity s of C with an ob-
ject o1 is not explicitly represented by one property
in the factorized RDF graph. In order to retrieve
o1, a path across the labeled edges between entities s

and the corresponding surrogate entity sg have to be
traversed. Similarly, the rest of the transformation
rules establish how explicit associations between en-
tities of C and the objects using properties p2, . . . , pn
in the original RDF graphs are represented by the
path of labeled edges annotated with properties in
the factorized RDF graphs. Algorithm 3 adds the
corresponding labeled edges of these paths in lines
7-16. Furthermore, Figure 6b presents a portion of
the RDF graph in Figure 1a and corresponding trans-
formation in the factorized RDF graph in Figure 3c.

15

Algorithm 3 The Factorization Algorithm

Input: An RDF graph G(V,E,L), A class C, A set
SP of properties from E.FSP Algorithm 1 or
G.FSP Algorithm 2

Output: Factorized RDF Graph G′(V ′, E′, L′) and
entity mappings µN

1: µN ←− ∅, V ′ ←− ∅, E′ ←− ∅, L′ ←− ∅
2: for all o1, o2, . . . , on ∈ V such that SS =
{s|p1, p2, . . . , pn ∈ SPAND
(s type C) ∈ G, (s p1 o1) ∈ G, (s p2 o2) ∈
G . . . , (s pn on) ∈ G} do

3: sg ← SurrogateEntity()
4: for ss ∈ SS do
5: µN ← µN ∪ {(ss, sg)}
6: end for
7: end for
8: for (s p o) ∈ E ∧ s, o ∈ V do
9: if µN (s) 6= ∅ then

10: {Create compact RDF molecule}
11: if p == type then
12: E′ ← E′ ∪ {(s instanceOf µN (s)),

(µN (s) p o)}
13: V ′ ← V ′ ∪ {s, µN (s), o}
14: L′ ← L′ ∪ {p, instanceOf}
15: else if p ∈ SP then
16: E′ ← E′ ∪ {(µN (s) p o)}
17: V ′ ← V ′ ∪ {µN (s), o}
18: L′ ← L′ ∪ {p}
19: else
20: E′ ← E′ ∪ {(s p o)}
21: V ′ ← V ′ ∪ {s, o}
22: L′ ← L′ ∪ {p}
23: end if
24: else
25: E′ ← E′ ∪ {(s p o)}
26: V ′ ← V ′ ∪ {s, o}
27: L′ ← L′ ∪ {p}
28: end if
29: end for
30: return G′(V ′, E′, L′), µN

The surrogate entity and the new labeled edges are
highlighted in bold in the factorized RDF graph. The
Algorithm 3 creates the surrogate entity in line 4; new
edges are created in line 10. Additionally, assump-
tions about the characteristics of the entity associa-
tions in the graph are presented. Some edges exist-
ing between the entities in RDF graph in Figure 1a
are not present in the factorized RDF graph in Fig-
ure 3c, these entity associations can be obtained by
traversing the factorized RDF graph as indicated by
the corresponding transformation rules in Figure 6a.

Figure 7 illustrates an example of factorization
overhead, i.e., a case when it is not worthy to fac-
torize a class given a set of properties in an RDF
graph. Figure 7a presents an example where savings
are observed in the number of edges after factoriza-
tion. The factorization of RDF graph in Figure 7a
for the class C using the properties p1, p2, and p3,
reduces the number of edges from 20.0 to 12.0 and
the positive value 40.0% for percentage savings indi-
cates a percentage decrease in the number of edges.
Furthermore, the edge savings gained after factoriza-
tion are high enough to compensate the addition of
the surrogate entity cM in the factorized RDF graph.
In contrast, factorization of the RDF graph over the
class C using the properties p1 and p2 introduces an
overhead, as shown in Figure 7b, by increasing the
number of nodes and edges in the factorized RDF
graph. The number of edges is increased from 18.0
to 22.0, shown in Figure 7b, after factorization and
a negative value −22.0% for the percentage savings
indicates an increase in the number of edges. The
star patterns, detected in the original RDF graph, in
Figure 7b, are replaced by the corresponding com-
pact RDF molecules with the corresponding surro-
gate entity and new labeled edges (presented in Al-
gorithm 3). Due to the high number of star patterns,
the addition of the surrogate entities and new labeled
edges increases the size of the factorized RDF graph.

5 Experimental Study

We study the effectiveness of the proposed techniques
for detecting frequent star patterns. Moreover, given
a class, we evaluate the impact of the factorization

16

techniques over the RDF graphs size by selecting sev-
eral combinations of the properties in the class. We
empirically assessed the following research questions:
RQ1) Are the proposed frequent star patterns de-
tection techniques able to efficiently detect the fre-
quent star patterns in RDF graphs? RQ2) Are the
proposed frequent star patterns detection techniques
able to detect the frequent star patterns in RDF
graphs? RQ3)
What is the impact of different combinations of prop-
erties of a class over the size of factorized RDF
graphs? RQ4) Are the proposed factorization tech-
niques able to reduce the number of labeled edges in
RDF graphs? Our experimental configuration is as
follows:
Datasets. Evaluation is conducted on three Linked-
SensorData datasets [22] semantically described us-
ing the Semantic Sensor Network (SSN) Ontology.
These RDF datasets comprise observations and mea-
surements of several climate phenomena, e.g., tem-
perature, visibility, precipitation, rainfall, and hu-
midity, collected during the hurricane and blizzard
seasons in the United States in the years 2003, 2004,
and 20053. Table 1a describes the main characteris-

3Available at: http://wiki.knoesis.org/index.php/

LinkedSensorData

tics of these RDF datasets. Moreover, Figure 8 shows
percentage of repeated RDF triples with wind speed,
temperature, and relative humidity values in dataset
D1D2D3. The unit of measurement is same for each
type of observation. These plots show that some of
the large number of observed values are highly re-
peated in the datasets. Further, values are not dis-
cretized to produce the same query answers.

Metrics. We measure the results of our empirical
evaluation in terms of number of nodes and edges in
an RDF graph. The size of an RDF graph is pre-
sented as the sum of nodes and edges in the graph,
where the nodes correspond to the entities and ob-
jects, whereas the edges are labeled edges annotated
with the properties of a class in an RDF graph. In
our empirical evaluation, we report on the following
metrics: a) Execution Time (Exec.Time(ms))
is the time required to find the frequent star pat-
terns in RDF graphs. b) Number of Nodes (NN)
is the number of Observation and Measurement en-
tities and objects in RDF graphs. c) Number of
Labeled Edges (NLE) represents the number of
labeled edges annotated with the properties in Ob-
servation and Measurement classes in RDF graphs.
d) Percentage Savings in the Number of La-
beled Edges (%Savings) stands for the percentage

Table 1: Datasets. (a) Statistics of the datasets with observations about several weather phenomena, col-
lected from around 20,000 weather stations in the United States; (b) The number of labeled edges NLE(G), in
the datasets obtained after gradually integrating the RDF datasets D1, D2, and D3 describing observations.

(a) Statistics of datasets collected from around 20,000 weather stations in the US.

Dataset Climate Date #RDF # Obs
ID Event Triples
D1 Blizzard April, 2003 38,054,493 4,092,492
D2 Hurricane Charley August, 2004 108,644,568 11,648,607
D3 Hurricane Katrina August, 2005 179,128,407 19,233,458

(b) Number of Labeled Edges NLE(G) in datasets.

Dataset Observation Measurement
ID NLE(G) NLE(G)

D1 24,142,314 12,071,157
D1D2 93,286,824 46,643,412
D1D2D3 207,630,306 103,815,153

17

Wind Speed Values
0

10

20

30

40

0 250 500 750

Percentage of Repeated RDF Triples with Wind Speed Values

(a) %age of Windspeed Repeated Triples
in D1D2D3

Temperature Values
0

0.5

1

1.5

2

0 100 200 300

Percentage of Repeated RDF Triples with Temperature Values

(b) %age of Temperature Repeated
Triples in D1D2D3

Relative Humidity Values
0

2

4

6

8

10

0 200 400 600

Percentage of Repeated RDF Triples with Relative Humidity Values

(c) %age of Relative Humidity Repeated
Triples in D1D2D3

Figure 8: Percentage of Repeated RDF Triples with Observation Values. Few of the large number
of values are highly repeated. (a) Percentage of repeated RDF triples with windspeed values; (b) Percentage
of repeated triples with temperature values; (c) Percentage of repeated triples with relative humidity values.

increase or decrease in the number of labeled edges
using a positive or a negative value, respectively. The
interpretation of the metric %Savings is, higher is
better.

Implementation. The experiments were performed
on a Linux Debian 8 machine with a CPU In-
tel Xeon(R) Platinum 8160 2.10GHz and 754GB
RAM. The datasets are factorized for Observation
and Measurement classes using all possible combi-
nations of the properties in each class. Table 2
shows the set of properties for Observation and Mea-
surement (Meas.), respectively, in the SSN ontol-

ogy. Each set of properties is assigned a set iden-
tification string SID, and are referred with the cor-
responding identification string in the paper. Ob-
servation contains property, procedure, generatedBy,
and time property. procedure and generatedBy are
symmetric properties and are considered together in
the sets. Similarly, in Measurement, sets of proper-
ties contain the properties value and unit. Further,
for experiments, datasets are gradually merged to in-
crease datasets size. The source code is available at
https://github.com/SDM-TIB/Graph-Factorization.

Table 2: Observation and Measurement Classes. Sets of properties containing different properties of
the Observation and Measurement (Meas.) classes in the SSN ontology, each set of properties is assigned a
unique ID, e.g., A1 and A8.

Class Set of Properties SID

O
bs
er
va
ti
on

{property} A1
{time} A2
{procedure, generatedBy} A3
{property, procedure, generatedBy,
time}

A4

{property, procedure, generatedBy} A5
{property, time} A6
{procedure, time, generatedBy} A7

M
ea
s. {value, unit} A8

{value} A9
{unit} A10

18

5.1 Efficiency of Frequent Star Pat-
terns Detection Approach

For evaluating the efficiency of the proposed frequent
star patterns techniques and to answer the research
question RQ1, we execute E.FSP and G.FSP over
five percent of RDF triples from dataset D1. The
dataset of the selected RDF triples describe the Mea-
surement and Observation classes, where several dif-
ferent types of observations from the Observation
class are included in the dataset. gSpan [30] is used
to generate the frequent patterns space for E.FSP,
which iterates over all the generated frequent pat-
terns. To evaluate the efficiency of two approaches,
we selected five percent of RDF triples from the
dataset D1; this number was chosen as a timeout
because gSpan was able to generate the frequent pat-
terns within thirty minutes. Efficiency comparison
in terms of execution time of E.FSP and G.FSP is
reported in Table 3. G.FSP finds the frequent star
patterns without generating all the star patterns in-
volving all the possible subsets of properties. Table 3
shows for E.FSP and G.FSP, the number of itera-
tions over sets of properties PSIterations, the number
of frequent star patterns detected #FSP, and the ex-
ecution time in milliseconds Exec.Time(ms) required
to detect the frequent star patterns. The results indi-
cate that E.FSP and G.FSP detect the same frequent
star patterns. The frequent star patterns, detected by
E.FSP and G.FSP, are over the set of properties A5
and A8 for all the different observations in the Ob-
servation class, and the Measurement class, respec-
tively. Execution time of G.FSP to detect frequent
star patterns is less by at least three orders of magni-
tude than the execution time of E.FSP, e.g., G.FSP
detects frequent star patterns in measurement class
in 1.9× 102 milliseconds, whereas 5.3× 105 millisec-
onds are required using E.FSP.

5.2 Effectiveness of Frequent Star
Patterns Detection Approach

To answer the research questions RQ2 and RQ3, we
compute the values of Formula 1 for all the sets of
properties given in Table 2 for the Observation and
Measurement classes, respectively, in the three RDF

datasets. The computed formula values for the Ob-
servation and Measurement classes are shown in Ta-
ble 4. Moreover, we compute the size of the original
and factorized RDF graphs, in terms of nodes and
edges in the RDF graphs. The formula values are
computed for the sets of properties that contain only
one property in the set, as well as the factorization
is performed using these sets of properties to illus-
trate the association between the formula values and
the savings obtained in the factorized graphs. Table 4
shows that the set A5 of properties in the Observation
class generates the smaller values D1 = 4, 142, 727,
D1D2 = 15, 756, 888, and D1D2D3 = 334, 898, 603
for the Formula 1, than all the other sets A1, A2,
A3, A4, A6, and A7. A smaller formula value for A5
indicates that the RDF graphs encapsulate a mini-
mum number of star patterns, over the properties in
the set A5 such that a large number of entities of the
Observation class match these star patterns. There-
fore, replacing these star patterns with the compact
RDF molecules during the factorization reduces the
size of the RDF graphs. Figure 9a presents the num-
ber of Observation nodes NN and the labeled edges
NLE in the original and factorized RDF datasetsD1,
D1D2, and D1D2D3. The results show that factor-
ization of the Observation class over the set A5 of
properties reduces the sum of the number of obser-
vation nodes and the labeled edges in the factorized
RDF graphs by up to 37%. On contrary, a large
formula value for A4 in datasets D1 = 4, 142, 727,
D1D2 = 15, 756, 888, and D1D2D3 = 334, 898, 603,
than the other sets A1, A2, A3, A5, A6, and A7 in-
dicates that a large number of star patterns over the
properties in A4 exist in the RDF graphs and a small
number of entities of the Observation class match
these star patterns. Figure 9a depicts an increase
in the number of Observation nodes NN and the la-
beled edges NLE in the factorized RDF datasets D1,
D1D2, and D1D2D3 after factorizing over the prop-
erties in A4. Similarly, the results for A1, A2, A3, A6,
and A7 in Table 4 and Figure 9a clearly show that
the higher the formula value for a set of properties in-
creases the number of nodes and edges in the factor-
ized RDF graphs by factorizing using the properties
in the corresponding set. In case of the Measurement
class Table 4 shows smaller formula values for the set

19

A8 of properties i.e., D1 = 28, 491, D1D2 = 34, 554,
and D1D2D3 = 40, 302, than the other sets A9 and
A10. Figure 9b reports the sum of the nodes and
the labeled edges representing measurements in the
original and factorized RDF datasets D1, D1D2, and
D1D2D3. The sum of the nodes and the labled edges
of the measurements are reduced up to 60% in all the
factorized RDF graphs by factorizing over the prop-
erties in A8. Furthermore, the higher formula values
for the sets A9 and A10 indicate less savings after
factorization compared to the set A8. The number
of nodes and edges in the factorized RDF graphs by
factorizing over the properties in sets A9 and A10
in Figure 9b are higher than A8. These results show
that the different combinations of class properties im-
pact the factorization of RDF graphs and the pro-
posed frequent star patterns detection techniques are
able to detect the set of properties involved in the
generation of frequent star patterns. Moreover, our
techniques are able to anticipate the best set of prop-
erties, answering thus, research questions RQ2 and
RQ3.

5.3 Effectiveness of RDF Graph Fac-
torization

We factorize the gradually increasing RDF datasets
D1, D1D2, and D1D2D3 over the Observation and
Measurement classes using the properties in the sets
of properties given in Table 2. The percentage sav-
ings are computed in terms of labeled edges for the
observations and measurements in the RDF datasets
after factorization. Table 1b presents the number
of edges NLE(G) in the Observation and Measure-
ment classes in the original RDF datasetsD1, D1D2,
and D1D2D3. Table 5 presents the number of la-
beled edges NLE(G′) and the percentage savings
%savings after factorization of the Observation and
Measurement classes. The highest savings 49.14%,
49.43%, and 49.53% in NLE(G′) for observations
after factorizing D1, D1D2, and D1D2D3 over the
properties in A5, shows that the number of frequent
star patterns over the properties in A5 are reduce
by replacing them with the corresponding compact
RDF molecules. On the other hand, the set A4 of
properties gives negative values of percentage savings

Table 3: Efficiency of Frequent Star Patterns Detection. E.FSP and G.FSP are used to detect the
frequent star patterns for the Observation and Measurement classes in the five percent of RDF triples from
the dataset D1. E.FSP and G.FSP detect the same frequent star patterns involving the sets A5 and A8 of
properties from the Observation and Measurement classes, respectively. G.FSP takes less time to identify
the same frequent star patterns than the time taken by E.FSP.

PSIterations #FSP Exec.Time(ms)
Class E.FSP G.FSP E.FSP G.FSP E.FSP G.FSP

O
bs
er
va
ti
on

Precipitation 8 4 23 23 2.1× 104 1.5× 101

Pressure 5 4 183 183 1.3× 106 7.1× 102

Rainfall 5 4 533 533 1.3× 106 8.0× 102

RelativeHumidity 5 4 341 341 1.3× 106 7.5× 102

Snowfall 8 4 382 382 9.2× 105 3.1× 102

Temperature 5 4 395 395 1.3× 106 7.8× 102

Visibility 5 4 395 395 1.3× 106 7.3× 102

WindDirection 5 4 350 350 1.3× 106 7.5× 102

WindSpeed 5 4 410 410 1.3× 106 7.6× 102

Measurement 1 1 1,907 1,907 5.3× 105 1.9× 102

20

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000
NLE NN

O
ri
gi
na
l

A
1
A
2 A
4

A
3

A
5 A
6 A
7

O
ri
gi
na
l

A
1
A
2

A
3

A
5 A
6
A
7

O
ri
gi
na
l

A
1
A
2

A
4

A
3

A
5
A
6

A
7

A
4

D1D2D3D1D2D1

(a) # of Observation Nodes NN and Edges NLE

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

200000000
NLE NN

D1D2D3D1D2D1

O
ri
gi
na
l

A
8 A
9 A
10

O
ri
gi
na
l

A
8

A
9

A
10

Original

A
8

A
9

A
10

(b) # of Measurement nodes NN and edges NLE

Figure 9: Nodes and Labeled Edges. The number of nodes NN and labeled edges NLE before and
after factorization of the RDF datasets. (a) The number of nodes NN and labeled edges NLE representing
observations in the RDF datasets; (b) The number of nodes NN and labeled edges NLE representing
measurements.

Table 4: Values Computed for Formula 1. The sets of properties in Table 2 for the Observation and
Measurement (Meas.) classes, respectively, are used to compute the Formula 1 values over the RDF datasets
D1, D1D2, and D1D2D3. The minimum formula values for the Observation and Measurement classes and
the corresponding sets A5 and A8, respectively, of properties are highlighted in bold. The smaller formula
values for A5 and A8 in the Observation and Measurement classes, respectively, indicate the maximum
savings after factorizing the RDF graphs over the properties in A5 and A8, as shown in Figure 9 and
Table 5.

#Edges(SP,C,G)
SID D1 D1D2 D1D2D3

O
b
se
rv
at
io
n

A1 12,071,185 46,643,440 103,815,183
A2 12,090,195 46,687,690 103,891,717
A3 8,111,623 31,205,888 69,358,875
A4 20,118,595 78,698,580 174,865,870
A5 4,142,727 15,756,888 34,898,603
A6 8,097,964 31,245,605 69,474,786
A7 15,784,707 61,406,644 135,902,747

M
ea
s. A8 28,491 34,554 40,302

A9 4,037,067 15,563,838 34,623,579
A10 4,023,731 15,547,816 34,605,063

21

%Savings, −16.68%, for the RDF dataset D1, and
−16.67%, for the RDF datasets D1D2 and D1D2D3,
indicating an increase in the number of labeled edges
after the factorization of the RDF datasets. Simi-
larly, for measurements, the positive values 66.37% of
percentage savings after factorizing D1, and 66.56%
for D1D2 and D1D2D3 over A8 indicate a decrease
in the number of labeled edges after factorization.
Furthermore, the percentage savings in the set A8 of
properties are higher than in A9 and A10. These re-
sults allow us to positively answer research question
RQ4.

6 Conclusions and Future Work

This article presents computational methods to iden-
tify frequent star patterns and to generate a factor-
ized RDF graph, with a minimized number of frequent
star patterns. A frequent star pattern contains class
entities linked to the objects or other resources us-
ing labeled edges annotated with properties in the
class. These frequent star patterns introduce redun-
dancy in terms of edges and nodes. Our proposed
computational methods implement the frequent star
pattern detection algorithm based on search space

pruning techniques to identify the classes and prop-
erties involved in frequent star patterns. Further-
more, the proposed factorization techniques gener-
ate compact representation of RDF graphs, factor-
ized RDF graph, by replacing a frequent star pat-
tern with a compact RDF molecule, composed of a
surrogate entity connected to the object in the fre-
quent star pattern using the labeled edges annotated
with relevant properties. We empirically study the
effectiveness of the frequent star pattern detection
algorithm to identify class and properties involved in
the frequent star pattern. Furthermore, we evalu-
ate the impact of the factorization techniques over
the gradually increasing RDF graphs size and dif-
ferent combinations of class properties. Experimen-
tal results suggest that the proposed computational
methods successfully identify the class properties in-
volved in the frequent star patterns and remove re-
dundancy caused by these frequent star patterns. For
the best set of properties, identified by the frequent
star pattern detection algorithm, the RDF graph size
is reduced by up to 66.56%. Our work broadens the
repertoire of techniques for representing and storing
knowledge graphs by providing RDF graph compres-
sion techniques which exploit the semantics encoded
in the data; these techniques generate compact rep-

Table 5: Percentage Savings in Labeled Edges after Factorization. Savings %Savings in the number
of Labeled Edges NLE(G′) after factorization of the RDF datasets using the sets of properties in Observation
and Measurement classes.

D1 D1D2 D1D2D3

O
b
se
rv
at
io
n

SID NLE(G′) %Savings NLE(G′) %Savings NLE(G′) %Savings
A1 20,125,493 16.64 77,745,918 16.66 173,032,155 16.66
A2 20,144,503 16.56 77,790,168 16.61 173,108,689 16.63
A3 16,226,021 32.79 62,546,938 32.95 139,064,503 33.02
A4 28,170,155 -16.68 108,838,750 -16.67 242,239,479 -16.67
A5 12,277,576 49.14 47,175,356 49.43 104,786,128 49.53
A6 16,150,898 33.10 62,317,489 33.20 138,639,234 33.23
A7 23,837,352 1.26 92,088,523 1.28 204,304,156 1.60

M
ea
s. A8 4,059,738 66.37 15,599,469 66.56 34,716,176 66.56

A9 8,069,688 33.15 31,130,127 33.26 69,300,827 33.25
A10 8,056,352 33.26 31,114,105 33.29 69,282,311 33.26

22

resentations of RDF graphs to help improving query
processing over RDF graphs without requiring a cus-
tomized engine. Our work contributes to the crucial
knowledge graph representation and provides the ba-
sics for further development of the efficient processing
techniques over the compact knowledge graphs. In fu-
ture, we will exploit parallel processing to efficiently
find frequent star patterns.

Acknowledgments

Farah Karim is supported by the German Aca-
demic Exchange Service (DAAD); this work is par-
tially funded by the EU H2020 project IASiS (GA
No.727658).

References

[1] D. Abadi, S. Madden, and M. Ferreira. Inte-
grating compression and execution in column-
oriented database systems. In Proceedings of
the 2006 ACM SIGMOD international confer-
ence on Management of data, pages 671–682.
ACM, 2006.

[2] D. Allen, A. Hodler, M. Hunger, M. Knobloch,
W. Lyon, M. Needham, and H. Voigt. Under-
standing trolls with efficient analytics of large
graphs in neo4j. BTW 2019, 2019.

[3] S. Álvarez-García, N. R. Brisaboa, J. D. Fernán-
dez, and M. A. Martínez-Prieto. Compressed
k2-triples for full-in-memory rdf engines. arXiv
preprint arXiv:1105.4004, 2011.

[4] M. Arenas, C. Gutierrez, and J. Pérez. Foun-
dations of RDF databases. In Reasoning Web.
Semantic Technologies for Information Systems,
pages 158–204. Springer, 2009.

[5] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik,
M. Stocker, and M. Vidal. Towards a knowledge
graph for science. In Proceedings of the 8th Inter-
national Conference on Web Intelligence, Min-
ing and Semantics, WIMS 2018, 2018.

[6] C. Bizer, T. Heath, and T. Berners-Lee. Linked
data: The story so far. In Semantic services,
interoperability and web applications: emerging
concepts, pages 205–227. IGI Global, 2011.

[7] P. A. Boncz, M. Zukowski, and N. Nes. Monet-
db/x100: Hyper-pipelining query execution. In
Cidr, volume 5, pages 225–237, 2005.

[8] N. R. Brisaboa, S. Ladra, and G. Navarro.
k2-trees for compact web graph representation.
In International Symposium on String Process-
ing and Information Retrieval, pages 18–30.
Springer, 2009.

[9] M. Compton, P. Barnaghi, L. Bermudez,
R. GarcíA-Castro, O. Corcho, S. Cox, J. Gray-
beal, M. Hauswirth, C. Henson, A. Herzog, et al.
The ssn ontology of the w3c semantic sensor net-
work incubator group. Web semantics: science,
services and agents on the World Wide Web,
17:25–32, 2012.

[10] G. P. Copeland and S. N. Khoshafian. A decom-
position storage model. In Acm Sigmod Record,
volume 14, pages 268–279. ACM, 1985.

[11] M. Elseidy, E. Abdelhamid, S. Skiadopoulos,
and P. Kalnis. Grami: Frequent subgraph and
pattern mining in a single large graph. Proceed-
ings of the VLDB Endowment, 7(7):517–528,
2014.

[12] P. Ernst, A. Siu, and G. Weikum. Knowlife:
a versatile approach for constructing a large
knowledge graph for biomedical sciences. BMC
bioinformatics, 16(1):157, 2015.

[13] J. D. Fernández, A. Llaves, and Ó. Corcho. Ef-
ficient RDF interchange (ERI) format for RDF
data streams. In The Semantic Web - ISWC
2014 - 13th International Semantic Web Con-
ference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part II, pages 244–259, 2014.

[14] J. D. Fernández, M. A. Martínez-Prieto,
C. Gutiérrez, A. Polleres, and M. Arias. Binary
rdf representation for publication and exchange

23

(hdt). Web Semantics: Science, Services and
Agents on the World Wide Web, 19:22–41, 2013.

[15] I. Grangel-González, L. Halilaj, M. Vidal,
O. Rana, S. Lohmann, S. Auer, and A. W.
Müller. Knowledge graphs for semantically inte-
grating cyber-physical systems. In Database and
Expert Systems Applications - 29th International
Conference, 2018.

[16] A. K. Joshi, P. Hitzler, and G. Dong. Logical
linked data compression. In Extended Semantic
Web Conference, pages 170–184. Springer, 2013.

[17] F. Karim, M. N. Mami, M.-E. Vidal, and
S. Auer. Large-scale storage and query process-
ing for semantic sensor data. In Proceedings of
the 7th International Conference on Web Intel-
ligence, Mining and Semantics, page 8. ACM,
2017.

[18] O. Lassila, R. R. Swick, et al. Resource descrip-
tion framework (rdf) model and syntax specifi-
cation. 1998.

[19] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, et al.
Dbpedia–a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web,
6(2):167–195, 2015.

[20] M. Meier. Towards rule-based minimization of
rdf graphs under constraints. In International
Conference on Web Reasoning and Rule Sys-
tems, pages 89–103. Springer, 2008.

[21] J. Z. Pan, J. M. G. Pérez, Y. Ren, H. Wu,
H. Wang, and M. Zhu. Graph pattern based
rdf data compression. In Joint International Se-
mantic Technology Conference, pages 239–256.
Springer, 2014.

[22] H. K. Patni, C. A. Henson, and A. P. Sheth.
Linked sensor data. 2010.

[23] R. Pichler, A. Polleres, S. Skritek, and
S. Woltran. Redundancy elimination on rdf
graphs in the presence of rules, constraints, and

queries. In International Conference on Web
Reasoning and Rule Systems, pages 133–148.
Springer, 2010.

[24] E. PrudâĂŹhommeaux and A. Seaborne. Sparql
query language for rdf. w3c recommendation
(january 15, 2008), 2011.

[25] M. A. Roth and S. J. Van Horn. Database
compression. ACM Sigmod Record, 22(3):31–39,
1993.

[26] A. Singhal. Introducing the knowledge graph:
things, not strings. Official google blog, 5, 2012.

[27] M. Stonebraker, D. J. Abadi, A. Batkin,
X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-store:
a column-oriented dbms. In Proceedings of the
31st international conference on Very large data
bases, pages 553–564. VLDB Endowment, 2005.

[28] M.-E. Vidal, K. M. Endris, S. Jazashoori,
A. Sakor, and A. Rivas. Transforming hetero-
geneous data into knowledge for personalized
treatments a use case. Datenbank-Spektrum,
pages 1–12.

[29] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and perfor-
mance of compressed databases. ACM Sigmod
Record, 29(3):55–67, 2000.

[30] X. Yan and J. Han. gspan: Graph-based sub-
structure pattern mining. In 2002 IEEE Inter-
national Conference on Data Mining, 2002. Pro-
ceedings., pages 721–724. IEEE, 2002.

[31] M. Zhu, W. Wu, J. Z. Pan, J. Han, P. Huang,
and Q. Liu. Predicate invention based rdf
data compression. In Joint International Se-
mantic Technology Conference, pages 153–161.
Springer, 2018.

[32] M. Zukowski, S. Heman, N. Nes, and P. A.
Boncz. Super-scalar ram-cpu cache compression.
In Icde, volume 6, page 59, 2006.

24

