
Compact Representations for Efficient Storage
of Semantic Sensor Data

Farah Karim12, Maria-Esther Vidal1 and Sören Auer1

1Leibniz University of Hannover, Welfengarten 1B, 30167 Hannover, Germany
2Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan

{karim, vidal, auer}@l3s.de

Keywords: Sensor Data, Data Factorization, and Query Execution.

Abstract: Nowadays, there is a rapid increase in the number of sensor data generated by a wide variety of sensors
and devices. Data semantics facilitate information exchange, adaptability, and interoperability among several
sensors and devices. Sensor data and their meaning can be described using ontologies, e.g., the Semantic
Sensor Network (SSN) Ontology. Notwithstanding, semantically enriched, the size of semantic sensor data
is substantially larger than raw sensor data. Moreover, some measurement values can be observed by sensors
several times, and a huge number of repeated facts about sensor data can be produced. We propose a compact
or factorized representation of semantic sensor data, where repeated measurement values are described only
once. Furthermore, these compact representations are able to enhance the storage and processing of semantic
sensor data. To scale up to large datasets, factorization based, tabular representations are exploited to store and
manage factorized semantic sensor data using Big Data technologies. We empirically study the effectiveness
of a semantic sensor’s proposed compact representations and their impact on query processing. Additionally,
we evaluate the effects of storing the proposed representations on diverse RDF implementations. Results
suggest that the proposed compact representations empower the storage and query processing of sensor data
over diverse RDF implementations, and up to two orders of magnitude can reduce query execution time.

1 INTRODUCTION

Internet of Things (IoT), cyber-physical systems,
and sensor data applications are of paramount im-
portance in our increasingly data-centric society and
receive growing attention from the research commu-
nity. RDF representations of IoT data are being gen-
erated (Gaur et al., 2015; Jabbar et al., 2017) to add
semantics to the data and turn the data into mean-
ingful actions. The Semantic Sensor Network (SSN)
Ontology (Compton et al., 2012) is a W3C standard
to describe the sensor data, refer as semantic sensor
data. The SSN Ontology consists of several classes
and corresponding properties to describe the mean-
ing of sensor data in terms of sensor capabilities, ob-
servations, and measured values in an RDF graph.
However, RDF representations generate an enormous
amount of data; thus, efficient representations of sen-
sor data are required. Furthermore, several sensor
observations with the same measurement values gen-
erate RDF data redundancy, e.g., 13◦F temperature
observed by several sensors over the different times-
tamps. These data redundancies negatively impact the

size of the semantic sensor data, hence the storage
and processing of this data. Therefore, efficient rep-
resentations of semantic sensor data are required to
store and process large amounts of sensor data using
different RDF implementations. Rule-based (Joshi
et al., 2013; Meier, 2008; Pichler et al., 2010) and bi-
nary (Álvarez-Garcı́a et al., 2011; Bok et al., 2019;
Fernández et al., 2013; Pan et al., 2014) compres-
sion techniques for RDF data effectively reduce the
size of the data. Distributed and parallel process-
ing frameworks for Big Data are exploited in several
approaches (Du et al., 2012; Khadilkar et al., 2012;
Mami et al., 2016; Nie et al., 2012; Papailiou et al.,
2013; Punnoose et al., 2012; Schätzle et al., 2012;
Schätzle et al., 2013). Moreover, column-oriented
stores (Idreos et al., 2012; MacNicol and French,
2004; Stonebraker et al., 2005; Zukowski et al., 2006)
apply column-wise compression techniques, and im-
prove query performance by projecting the required
columns. In the context of query processing, effi-
cient SQL query processing techniques based on the
factorization of the data are proposed in (Bakibayev
et al., 2013). Despite these storage and processing

ar
X

iv
:2

01
1.

09
74

8v
1

 [
cs

.D
B

]
 1

9
N

ov
 2

02
0

techniques, the tremendously growing data requires
efficient representations to facilitate the storage and
processing.
Our Research Goal: We tackle the problem of ef-
ficiently representing semantic sensor data described
using the SSN ontology. Our research goal is to gen-
erate compact representations where redundancies are
removed. The proposed compact representations en-
hance the performance of the query engines by scal-
ing up to large sensor data. We aim at determining
the impact of the compact representations on seman-
tic sensor data, and the effect of these representations
on query processing.
Approach: In this work, we propose the Compacting
Semantic Sensor Data (CSSD) approach for efficient
storage and processing of semantic sensor data. The
CSSD approach is based on factorizing the data and
storing only a compact or factorized representation of
semantic sensor data, where repeated values are rep-
resented only once. In addition, universal (Ullman,
1984) and Class Template (CT) based tabular repre-
sentations leveraging the columnar-oriented Parquet
storage format are utilized to scale up to even larger
RDF datasets.

The effectiveness of the proposed factorization
techniques are empirically studied, as well as the im-
pact of factorizing semantic sensor data on query pro-
cessing using LinkedSensorData benchmark (Patni
et al., 2010). The observed results demonstrate that
the proposed factorization techniques are able to ef-
fectively reduce the size of semantic sensor data while
all the encoded information is preserved, and im-
proves query performance. This article extends our
previous work (Karim et al., 2017), where we intro-
duce the factorization techniques for semantic sensor
data to scale-up to large datasets. Here, we present
techniques for efficient storage of semantic sensor
data and conduct an extended analysis and evaluations
of the CSSD approach. In essence, we make the fol-
lowing contributions to the problem of storing seman-
tic sensor data:

• The CSSD approach using factorization tech-
niques;

• Tabular representations of semantic sensor data to
scale-up to large datasets;

• SPARQL query rewriting techniques against fac-
torized sensor data; and

• An empirical evaluation of the proposed com-
pact representations demonstrating the effective-
ness and efficiency of the CSSD approach.

The article is structured as follows: We motivate
the research problem in section 2, and review exist-
ing work in section 3. A formal description of our

approach is discussed in section 4, and tabular repre-
sentations in section 5. We present the experimental
study in section 6 with an outlook on future work in
section 7.

2 Motivating Example

The MesoWest LinkedObservation1 datasets en-
compass sensor data containing weather observations
during hurricane and blizzard seasons in the United
States. Observations incorporate measurements of
several weather phenomena, e.g., wind direction,
snowfall, wind speed, rainfall, humidity, and tem-
perature. These weather observations from sensors
are semantically described using the Semantic Sen-
sor Network (SSN) ontology. These LinkedObserva-
tions enclose almost two billion RDF triples seman-
tically describing sensor data collected during major
active storms in the United States since 2002. The
RDF sensor data describing the weather observations
during the storm season in the year 2004 contains
108,644,568 RDF triples representing 11,648,607 ob-
servations about different weather phenomena, i.e.,
precipitation, rainfall, wind direction, temperature,
and relative humidity. Figure 1a illustrates the RDF
graph of sensor data describing pressure, wind di-
rection, rainfall, temperature, and visibility observa-
tions, as well as observation timestamps from the
MesoWest dataset during the year 2004. The RDF
graph depicts 46,341 RDF triples semantically de-
scribing 5,149 sensor observations. The RDF triples
associated with the same measurement value are rep-
resented by the same color nodes and edges in the
graph. The RDF triples affiliated with timestamps
are also represented with the same color nodes and
edges. The RDF graph statistics, shown in Figure 1b,
indicate the existence of remarkably redundant inter-
connectivity among the RDF nodes. The RDF graph
and the statistics present that the RDF triples are repli-
cated with the redundant measurement values. Also,
each sensor observation is related to seven neigh-
bors in average, i.e., observations are semantically de-
scribed using seven RDF triples in average.

Figure 1c depicts the number of RDF triples per
distinct measurement value within the RDF dataset.
Rainfall measurement value, 6.55 cm, is highly re-
peated and is related to 15,552 RDF triples, and 113◦

wind direction is the second highly repeated value
and is affiliated with 13,941 RDF triples. Likewise,
the number of RDF triples related with unique val-
ues can be noticed for other climate phenomena, e.g.,

1http://wiki.knoesis.org/index.php/
LinkedSensorData

http://wiki.knoesis.org/index.php/LinkedSensorData
http://wiki.knoesis.org/index.php/LinkedSensorData

(a) Original RDF Graph

S# Parameter Value
1 Connected Components 1.0
2 Network Centralization 0.3
3 Avg. # of Neighbors 6.4
4 Network Density 0.0
5 Multi-edge Node Pairs 5,149.0
6 Network Heterogeneity 11.1

(b) Statistics of Original RDF Graph

0

10000

20000

30000

40000

50000

6.55cm 113° 20'' 84°F 10cm Timestamp

Total NT NT per Value

(c) NT per Value vs Total
Figure 1: Motivating Example. (a) An RDF Graph, with the same color of nodes and edges, represents the RDF triples
related to same values; (b) Statistics of the RDF graph; (c) Number of RDF triples(NT), associated with same value, to total
RDF triples. The RDF graph and statistics are generated by Cytoscape tool. (http://www.cytoscape.org/).

temperature, pressure, and visibility, and corroborate
the natural intuition that the number of observations
is much higher than the the number of distinct mea-
surement values. We exploit this natural intuition of
semantic sensor data, and present a compact repre-
sentation. RDF triples of repeated measurements val-
ues are factorized in these compact representations,
and are added to the dataset only once without los-
ing any information initially encoded in the sensor
data. Unlike other RDF data compression techniques,
the semantics of observations are utilized to factorize
the semantic sensor data. The factorized representa-
tions provide efficient storage over diverse RDF im-
plementations, and queries can be directly executed
over factorized RDF datasets. To scale up to large
datasets, tabular representations, based on the factor-

ization, can be used to exploit Big Data technologies
for storage and management of large amount of se-
mantic sensor data.

3 Related Work

Semantic Web and Big Data communities have
been working for better storage and process-
ing of large datasets. RDF compression tech-
niques (Álvarez-Garcı́a et al., 2011; Bok et al., 2019;
Fernández et al., 2013; Meier, 2008; Pan et al., 2014;
Pichler et al., 2010) are devised, as well as, Big Data
tools are exploited in (Du et al., 2012; Khadilkar et al.,
2012; Mami et al., 2016; Nie et al., 2012; Papailiou
et al., 2013; Punnoose et al., 2012; Schätzle et al.,

http://www.cytoscape.org/

2013) to efficiently process RDF data. Furthermore,
column-oriented stores (Idreos et al., 2012; MacNicol
and French, 2004; Stonebraker et al., 2005; Zukowski
et al., 2006) exploit fully decomposed storage model
(Copeland and Khoshafian, 1985) to scale-up to large
datasets, and data factorization based query optimiza-
tion techniques are proposed in (Bakibayev et al.,
2013).

3.1 RDF Data Compression

A user specific approach to minimize RDF graphs
by defining Datalog rules to remove the irrelevant
RDF data is proposed by Meier (Meier, 2008). Sim-
ilarly, Pichler et al. (Pichler et al., 2010) study the
complexity of RDF minimization in presence of con-
straints, rules, and queries. These approaches re-
quire data decompression to process and manage the
compressed RDF datasets. A graph pattern based
logical compression technique, proposed by Pan et
al. (Pan et al., 2014), replaces bigger graph patterns
by smaller graph patterns and generates a sequence of
bits for each graph pattern. Similarly, Fernandez et
al. (Fernández et al., 2013) compresses and describes
RDF data in binary format in terms of header, dictio-
nary, and triples. The header contains compression
relevant metadata, the dictionary contains identifiers
of data values and triples represent the collection of
data identifiers. A compressed RDF structure, k2-
triples, presented by Álvarez-Garcı́a et al. (Álvarez-
Garcı́a et al., 2011), vertically partitions RDF triples,
and utilizes k2-trees (Brisaboa et al., 2009) to create
indexes for each partition. Bok et al. (Bok et al., 2019)
present RDF provenance compression technique by
exploiting dictionary encoding. These approaches
provide effective solutions for RDF data compression.
However, customized engines are required to execute
queries over the compressed RDF data, and data man-
agement tasks demand decompression techniques to
be performed over the compressed data. Contrary, we
propose factorization techniques that generate a com-
pact representation by exploiting properties of seman-
tic sensor data, where queries can be executed directly
over the compact representations. Since factorization
and compression techniques are independent, and do
not directly intervene with each other, both can be ex-
ploited in conjunction.

3.2 Big Data Tools and RDF

Relational representations of RDF data over big data
storage technologies, i.e., Parquet and MongoDB, are
presented by Mami et al. (Mami et al., 2016), where
a table for each RDF class is created, representing

class properties as attributes. Du et al. (Du et al.,
2012) combine Hadoop framework and an RDF triple
store, Sesame, to achieve scalable RDF data analy-
sis. RDF data is partitioned in such a way that all
the triples with the same predicate are allocated to the
same partition. Jena-HBase (Khadilkar et al., 2012)
provides a variety of RDF data storage layouts for
HBase and all operations over RDF graph are con-
verted into the underlying layout operations. Schätzle
et al. (Schätzle et al., 2013) present PigSPARQL, a
SPARQL query processing framework using Hadoop
MapReduce over large RDF graphs. A scalable RDF
data management system developed by Punnoose et
al. (Punnoose et al., 2012) presents storage methods
and indexing, where RDF data is stored as a pair of
a key and a corresponding value, and RDF triples
are indexed using SPO, POS, and OSP. Papailiou et
al. (Papailiou et al., 2013) present an RDF store to
efficiently perform distributed Merge and Sort-Merge
joins using multiple indexing over HBase, where in-
dexes that are compressed using dictionary encoding.
Nie et al. (Nie et al., 2012) study the efficient RDF
partitioning and indexing schemes to process RDF
data in distributed way using MapReduce. We pro-
pose factorization techniques for the RDF sensor data
where the RDF triples related to the redundant values
are factorized. The proposed tabular-based represen-
tations of factorized RDF graphs, i.e., factorized ta-
bles and CT based tables, scale up to large datasets by
leveraging the column-oriented Parquet storage for-
mat. The tabular representation of the factorized RDF
graphs remove data redundancies and improve the
storage and query processing using Big Data tools.

3.3 Relational Data Compression

Column-stores have gained attention for being able to
efficiently store data and improve the IO bandwidth
for large-scale data intensive applications. Early ef-
forts include C-Store (Stonebraker et al., 2005), Syba-
seIQ (MacNicol and French, 2004), MonetDB (Idreos
et al., 2012), and lightweight data compression by
Zukowski (Zukowski et al., 2006). Various com-
pression techniques are exploited in C-Store (Stone-
braker et al., 2005) to support several column sort-
orders without space explosion. C-Store compresses
each column using one of the four encoding schemes
defined based on the order of values in the col-
umn. Similarly, SybaseIQ (MacNicol and French,
2004) uses column-store to perform complex ana-
lytics efficiently on massive amounts of data, and
optimizes workloads across multiple servers through
multi-node, shared storage, and parallel database sys-
tem. MonetDB (Idreos et al., 2012) exploits column-

store technology to efficiently perform analytics over
the large collections of data. Furthermore, light-
weight compression is used to keep intermediate re-
sults in memory for reuse. Zukowski (Zukowski et al.,
2006) proposes lightweight data compression tech-
niques over the column-stores in order to speedup
the data-intensive query processing. These compres-
sion techniques exploit column-oriented stores that
use fully decomposed storage model by Copeland et
al. (Copeland and Khoshafian, 1985), where n-array
relations are decomposed into n binary relations, i.e.,
a pair of attribute value and an identifier. Two copies
of each binary relation are stored increasing the stor-
age requirements. Our approach generates a factor-
ized RDF graph where data redundancies are reduced.
Hence, factorized representations reduce the storage
requirements for the decomposition storage model.

3.4 Data Compression based Query
Optimization

Factorization techniques have been utilized for opti-
mization of relational data and SQL query process-
ing (Bakibayev et al., 2013; Bakibayev et al., 2012).
Existing approaches proposed compact representa-
tions of relational data, obtained by applying logi-
cal axioms of relational algebra, e.g., distributivity
of product over union, and commutativity of product
and union. Bakibayev et al. (Bakibayev et al., 2012)
present an in-memory query engine to run select-
project-join queries over factorized data. The query
results are expressed using factorized representations
in terms of singleton relations, product, and union.
The compact representations are obtained by alge-
braic factorization using distributivity of product over
union, and the commutativity of product and union.
These factorized representations form a nested struc-
ture containing the attributes from the schema, and are
referred as factorization tree. A set of operators for se-
lection and projection are proposed that map the fac-
torized representations and generate efficient query
plans. Similarly, Bakibayev et al. (Bakibayev et al.,
2013) improve the performance of relational process-
ing for aggregate and ordering queries using the dis-
tributivity of product over union to factorize relations
as in the factorization of logic functions (Brayton,
1987). Factorized representations reduce the number
of computations required for the evaluation of aggre-
gation functions, i.e., sum, count, avg, min, max, like-
wise evaluation of aggregation functions as sequences
of partial aggregations over the factorized representa-
tion speedup the processing. To evaluate order-by-
queries, factorized tables are restructured with a con-
stant delay enumeration. Therefore, queries can be

executed in factorized relational data, and efficient
execution plans can be found to speed up execution
time. We build on these experimental results and pro-
pose factorization technique tailored for semantically
described sensor data. The CSSD approach exploits
the semantics encoded in RDF sensor data to com-
pactly represent RDF triples, reduce redundancy, and
facilitate query execution.

4 The Semantic Sensor Data
Factorization Approach

4.1 Preliminaries

The Semantic Sensor Network (SSN) Ontol-
ogy (Compton et al., 2012), developed by the W3C
Semantic Sensor Network Incubator Group2, is an
OWL ontology that consists of 50 RDF classes and
55 properties to semantically describe sensor data in
terms of observations, observed properties, features
of interest, and measurement units and observed
values. A portion of the SSN ontology, illustrated
in Figure 2a. Sensors generate observations by
detecting certain properties of features of interest and
produce the observed values as sensor output. Given
disjoint infinite sets I, L, B of IRIs, literals, and
blank nodes, respectively, a tuple (s p o) ∈ (I ∪ B)
× I × (I ∪B∪L) is called an RDF triple. An RDF
graph G = (VG, EG,LG) comprises RDF triples,
where VG is a set of nodes in I ∪ B ∪ L, EG is a set
of edges representing RDF triples, and LG is a set
of edge labels in I (Arenas et al., 2009). Figure 3a
illustrates an RDF graph representing a portion of the
RDF dataset from the weather observations. Nodes
correspond to resources representing sensor observa-
tions, timestamps, measurements, and literals. Edges
in RDF graphs represent RDF triples and connect
the nodes in RDF graphs using properties from the
SSN ontology. We ignore name of the properties,
prefixes, and replace long URLs by short identifiers
for clarity. We refer to such an RDF graph described
using the SSN ontology in this paper as an SSN RDF
graph. RDF graphs are usually composed of entity
description sub-graphs, sometimes also referred to
as Concise Bounded Descriptions (CBD)3. These
subgraphs are named RDF subject molecules defined
as follows: Given an RDF graph G, a subgraph M of
G is an RDF molecule (Fernández et al., 2014) iff the
RDF triples of M = {t1, . . . , tn} share the same sub-
ject, i.e., ∀ i, j ∈ {1, ..,n} (subject(ti) = subject(t j)).

2https://www.w3.org/2005/Incubator/ssn/
3https://www.w3.org/Submission/CBD/

Sensor

Observed Value

Sensor Input Sensor Output

Property

4-8
knots 15-19 knots -9 C 30 C

4-8
knots

15-19
knots

-9 C 30 CWind
Direction

Visibility PressureSnowfall

detects isProducedBy

isProxyFor

Observation

observationResultincludesEvent
hasValue

(a) Semantic Sensor Network (SSN) Ontology

detects

detects

hasMeasurementCapability

observes

observes

Pressure

SnowFall

hasMeasurementCapability

Low Pressure

Heavy Snow

(b) RDF Molecules
Figure 2: Overview of the Semantic Sensor Network (SSN) Ontology. (a) The SSN Ontology is composed of 50 classes
and 55 properties to describe sensor observations; a portion of the SSN classes and properties is presented. (b) An RDF graph
with two subject molecules in the class Sensor; for clarity URIs are omitted.

Figure 2b presents an RDF graph with two RDF
subject molecules. Each RDF molecule consists of
three RDF triples connected to the same subject,
which represents an instance of the sensor class. We
will refer to RDF subject molecules as molecules in
the rest of the paper.

4.2 Problem Statement

The concept of RDF molecule is utilized to devise ob-
servation and measurement molecules based on the
SSN Ontology. Moreover, we present the concept of
multiplicity. Building on these definitions the prob-
lem tackled in this work is defined.
Definition 4.1 (Observation Molecule). An ob-
servation molecule OM is a set of RDF triples
that share the same subject of type observa-
tion class, i.e., OM= (obs rdf:type :Observation),
(obs :procedure proc), (obs :property pp).

Figure 3b presents three observation molecules,
each consists of three RDF triples describing an ob-
servation subject. Each observation subject is de-
scribed in terms of observation type, observed prop-
erty and the observation procedure.
Definition 4.2 (Measurement Molecule). A measure-
ment molecule MM is a set of RDF triples that
share the same measurement subject, i.e., MM=
(m rdf:type
:MeasureData), (m :value val), (m :unit uom).

Figure 3c presents three measurement molecules,
each consists of three RDF triples having the same
measurement subject. Each measurement is described
in terms of measured value and unit. Class Tem-
plates are the abstract descriptions of the triples in
RDF graphs and are defined as follows:
Definition 4.3 (Class Template (CT)). Given a class
C in an RDF graph G, a Class Template is a 4−

tuple =< C,SP, IntraL, InterL >, where, SP is a set
of properties in C, IntraL is a set of pairs (p,C j) such
that p is an object property with domain C and range
C j in the same dataset, and InterL is a set of pairs
(p,Ck) such that p is an object property with domain
C and range Ck in different datasets. A Class Template
is a simplification of an RDF Molecule Template (En-
dris et al., 2017).

Figure 4 shows class templates (CT) ex-
tracted from Figure 3a around the :TempObs,
:RainfallObs, :Instant, and :MeasureData
classes (Figure 4a). Moreover, Figure 4b shows
intra-link between :MeasureData and :TempObs
using :result, and inter-link of :TempObs and
:RainfallObs to :Instant using :samplingTime.

Definition 4.4 (Measurement Multiplicity (Karim
et al., 2017)). Given an RDF graph G of sensor data
using the SSN ontology. Given a resource uom cor-
responding to a measurement unit, and a literal value
val, the measurement multiplicity of uom and val in
G, Mm(val,uom|G), is defined as the number of mea-
surements have same value val and measurement unit
uom in G.

Mm(val,uom|G) = |{m| (m rdf:type :MeasureData)
∈ G,(m :unit uom) ∈ G,
(m :value val) ∈ G}|

In the RDF graph in Figure 3a, three measure-
ments, i.e., :m1, :m2, and :m3, are related to the unit
cm and value 20.0. Therefore, the measurement mul-
tiplicity of cm and 20.0 is 3. Similarly, the measure-
ment multiplicity of ◦F and 24.8 is 3.

Definition 4.5 (Observation Multiplicity (Karim
et al., 2017)). Given an RDF graph G of sensor data
described using the SSN ontology. Given resources
proc, ph, pp, and uom corresponding to a proce-
dure, an observed phenomenon, observed property,

cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

M
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

(a) RDF Graph G

:property

:pro
ced

ure

rdf:type:obs1

:LGVI1

:RainfallObs

:Precipitation

:property

:pro
ced

ure

rdf:type
:obs2

:LGVI1

:RainfallObs

:Precipitation

:property

:pro
ced

ure

rdf:type
:obs3

:LGVI1

:RainfallObs

:Precipitation

(b) Obs. Molecules

:unit

rdf:
type

cm

:Measure
Data

20.0^^:float
:value

:unit

rdf:
type

cm

:Measure
Data

20.0^^:float
:value

:unit

rdf:
typ

e

cm

:Measure
Data

20.0^^:float:value

:m1

:m2

:m3

(c) Meas. Molecules
Figure 3: Example of a Simplified RDF. Several RDF triples are related to the same measurement values, for simplicity
URIs are not presented. (a) RDF graph has Mm(v,u|G) = 3 and Mo(s, p, pp,v,u|G) = 3 for the values 20.0cm and 24.8◦F . (b)
Three observation (Obs.) molecules; (c) Three measurement (Meas.) molecules.

:TempObs

:RainfallObs:Measure
Data

:Instant

:property :procedure :timestamp

:value:unit
:pro

per
ty :procedure

(a) Class Templates (CTs)

:TempObs

:RainfallObs:Measure
Data

:Instant

:property :procedure :timestamp

:result

:sampling
Time

:samplingTime

:result

:value:unit
:pro

per
ty :procedure

Intra-Link

Inter-Link

(b) CT Intra- and Inter-dataset Linking
Figure 4: CTs and CT Linking. (a) Four Class Templates are extracted from the RDF graph in Figure 3a around the classes
:TempObs, :RainfallObs, :MeasureData, and :Instant; (b) inter- and intra-links between class templates.

and measurement unit, and a literal value val, the
multiplicity of an observation obs for uom and val
in G, Mo(proc, ph, pp,val,uom|G), is defined as the
number of observations about the property pp of the
observed phenomenon ph, sensed by proc, that have
the same value val and unit of measurement uom in
G.
Mo(proc, ph, pp,val,uom|G) = |{obs|

(obs rdf:type ph)
∈ G,(obs :procedure
proc) ∈ G,(obs :prop
erty pp) ∈ G,(obs
:result m) ∈ G,(m
rdf:type :Measure
Data) ∈ G,(m :unit
uom) ∈ G,(m :value
val) ∈ G}|

In Figure 3a, the procedure :LGVI1, the
phenomenon :RainfallObs, the property

:Precipitation, the measurement unit cm, and
the value 20.0 are associated with :obs1, :obs2,
and :obs3, and the observation multiplicity is 3.
Similarly, the observation multiplicity for :LGVI1,
:TempObs, :AirTemp, ◦F, and 24.8 is 3.

Definition 4.6 (Compact Observation Molecule).
Given a surrogate observation oM, a compact obser-
vation molecule COM is a set of RDF triples that
share the same surrogate observation oM, i.e., COM=
(oM rdf:type :Observation),(oM :procedure proc),
(oM :property pp), such that the observation mul-
tiplicity of the procedure proc and the observed
property pp is one.

Figure 5a presents a compact observation
molecule, with a surrogate observation :obsM1
that corresponds to the observations :obs1, :obs2,
and :obs3 in Figure 3b, and is associated with the
observation multiplicity value one.

Definition 4.7 (Compact Measurement Molecule).
Given a surrogate measurement mM, a compact
measurement molecule CMM is a set of RDF
triples that share the same surrogate measurement
mM, i.e., CMM= (mM rdf:type :MeasureData),
(mM :value val), (mM :unit uom), such that the
multiplicity of the value val and the unit uom is one.

A compact measurement molecule for the mea-
surement molecules in Figure 3c is presented in Fig-
ure 5a using a surrogate measurement :mM1. :mM1
corresponds to :m1, :m2, and :m3 in Figure 3c and is
associated with the multiplicity value one.

Definition 4.8 (A Factorized RDF Graph). Given
an RDF graph G = (VG,EG,LG) representing sensor
data described using the SSN ontology, a factorized
RDF graph G′ = (VG′ ,EG′ ,LG′) of G is an RDF graph
where the following hold:

• Entities in G are preserved in G′, i.e., VG ⊆VG′ .
• For each entity obs in VG that corresponds to an

entity of :Observation class over the class prop-
erties :procedure and :property and objects
proc and pp, respectively, in G, there is an en-
tity oM in VG′ that corresponds to the surrogate
observation of the compact observation molecule
over the properties :procedure and :property
and objects proc and pp, respectively, in G′.

• For each entity m in VG that corresponds to an
entity of class :MeasureData over the properties
:value and :unit and objects val and uom, re-
spectively, in G, there is an entity mM in VG′ that
corresponds to the surrogate measurement of the
compact measurement molecule over the proper-
ties :value and :unit and objects val and uom,
respectively, in G′.

• There is a partial mapping µN : VG→VG′ :
– Observation entities in G are mapped to the sur-

rogate observations in G′, i.e., µN(obs)=oM.
– Measurement entities in G are mapped

to the surrogate measurements in G′, i.e.,
µN(m)=mM.

– The mapping µN is not defined for the rest
of the entities that are not instances of the
:Observation or :MeasureData class in G.

• For each RDF triple t in (s p o) in EG:
– If µN(s) is defined and :Observation

is the type of s, then the RDF
triples (s :observationOf µN(s)) and
(µN(s) rdf:type :Observation) is in EG′ .

– If µN(s) is defined and :MeasureData
is the type of s, then the RDF triple
(µN(s) rdf:type :MeasureData) belong
to EG′ .

– If µN(s) is defined and :Observation is
the type of s, and p is not :result and
:samplingTime, then (µN(s) p o) is in EG′ .

– If p is :samplingTime, then (s p o) is in EG′ .
– If µN(s) and µN(o) are defined and p is :result,

then (µN(s) p µN(o)) and (s p o) are in EG′ .
– If µN(s) is defined and type of s is

:MeasureData, then (µN(s) p o) is in EG′ .
– Otherwise, the RDF triple t is preserved in EG′ .

• Multiplicity of measurements is reduced, i.e., for
all val, uom such that Mm(val,uom|G) ≥ 1, then
Mm(val,uom|G′)=1, and

• Multiplicity of observations is reduced,
i.e., for all proc, ph, pp, val, uom, such
that, Mo(proc, ph, pp,val,uom|G) ≥ 1, then
Mo(proc, ph, pp,val,uom|G′)=1.

Given an RDF graph G = (VG,EG,LG) represent-
ing sensor data with the SSN ontology, the prob-
lem of semantic sensor data factorization (SSDF) in
G, corresponds to finding a factorized RDF graph
G′ = (VG′ ,EG′ ,LG′) of G. Consider RDF graphs G
and G′ in Figure 3a and Figure 5c, respectively. Fur-
thermore, Figure 5b shows mappings µN that assign
measurements :m1, :m2, and :m3 in G to the sur-
rogate measurement :mM1 in G′, and :m4, :m5, and
:m6 to :mM2. Similarly, :obs1, :obs2, and :obs3 are
mapped to :obsM1, and :obs4, :obs5, and :obs6 to
:obsM2; µN is the identity for the rest of the nodes.
Measurement and observation multiplicities are one
in G′, which is the factorized graph of G.

Once RDF graphs are factorized, query processing
is performed against the factorized graphs. SPARQL
queries over the original RDF graphs need to be
re-written against the corresponding factorized RDF
graphs in the way that equivalent answers are com-
puted. We have defined seven query rewriting rules,
given in Table 1. Each rule is given a name, i.e., fssn1,
fssn2, fssn3, fssn4, fssn5, fssn6, and fssn7, and has a
head and a body. The head of a rule corresponds to
the triple pattern in the query against original RDF
graph, whereas the body of the rule represents the cor-
responding triple patterns against the factorized RDF
graph. The head of the rule fssn1 contains a triple
pattern that matches to all the original observations,
whereas the body of the rule matches the correspond-
ing surrogate observations. Moreover, the variable
substitutions, i.e., ?obs by ?Xobs, are maintained for
the query clauses such as SELECT, FILTER, GROUP
BY etc. The head of rule fssn2, matches the procedure
generating the original observations, while the body
of the rule matches the procedure of the surrogate ob-
servations, and keeps the variable substitutions. Sim-
ilarly, the head of the rule fssn3 consists of a triple

Table 1: Query Rewriting Rules. The rewriting rules for observations and measurements with respect to the relevant prop-
erties are expressed in terms of triple patterns. The variables representing observations and measurements are replaced in
SPARQL query clauses, i.e., SELECT, ORDER BY, GROUP BY, and FILTER.

Rule Name Head Body
fssn1 ?obs rdf:type :Observation ?obs rdf:type :Observation

?Xobs :observationOf ?obs
Replace ?obs by ?Xobs in query clauses

fssn2 ?obs :procedure ?sensor ?obs :procedure ?sensor
?Xobs :observationOf ?obs
Replace ?obs by ?Xobs in query clauses

fssn3 ?obs :property ?property ?obs :property ?property
?Xobs :observationOf ?obs
Replace ?obs by ?Xobs in query clauses

fssn4 ?m rdf:type :MeasureData ?m rdf:type :MeasureData
?Xobs :observationOf ?obs
?Xobs :result ?Xm
Replace ?m by ?Xm in query clauses

fssn5 ?m :value ?val ?m :value ?val
?Xobs :observationOf ?obs
?Xobs :result ?Xm
Replace ?m by ?Xm in query clauses

fssn6 ?m :unit ?uom ?m :unit ?uom
?Xobs :observationOf ?obs
?Xobs :result ?Xm
Replace ?m by ?Xm in query clauses

fssn7 ?obs :result ?m ?obs :result ?m
?Xobs :observationOf ?obs
?Xobs :result ?Xm
Replace ?obs by ?Xobs and ?m by ?Xm in query clauses

:property

:pr
oce

dur
e

rdf:type

:LGVI1

:RainfallObs

:Precipitation

:ObsM1

:unit

rdf
:ty
pe

cm

:Measure
Data

20.0^^:float:value:mM1

(a) Compact Molecules

µN

:obs1 :obs2 :obs3 :obs4 :obs5 :obs6

:ObsM1 :ObsM2

:mM1 :mM2

:m1 :m2 :m3 :m4 :m5 :m6

µN µN
µN µN µN

µN µN µN
µN µN µN

(b) Entity mappings µN from G into G′

cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

M
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

:ObsM1

:mM1

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:ObsM2

:mM2:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

(c) Factorized RDF graph G′
Figure 5: Instance of the Semantic Sensor Data Factorization Problem. Factorized RDF graph G′ of G in Figure 3a. (a)
Compact observation and measurement molecules are presented. (b) Entity mappings µN from graph in Figure 3a to surrogate
entities; (c) Factorized RDF graph G′ with multiplicities equal to one.

pattern that matches the observed property in the orig-
inal RDF graph, and the body of the rule extracts the
observed property of the surrogate observations.

The rules fssn4, fssn5, and fssn6 are used to
rewrite the triple patterns involving the measurement
properties. The head of the rule fssn4 contains a triple
pattern matching all the entities of measurements in
original RDF graphs. The body of the rule fssn4
contains three triple patterns that match to the sur-
rogate measurements, as well as, associate the orig-
inal observations with the surrogate observations, us-
ing property :observationOf, and relate observations
to corresponding measurements in the original RDF
graph using property :result. Moreover, the body of
the rule maintains the measurement variable substi-
tutions. The head of the rule fssn5 find matches of

the values of measurements in original RDF graphs,
whereas the body of the rule find values of the sur-
rogate measurements in factorized RDF graphs. Fur-
ther, the triple patterns extract associations between
the original and surrogate observations, as well as
between the original observations and correspond-
ing original measurements, and maintain the mea-
surement variable substitutions. The head of rule
fssn6 contains the triple pattern matching the mea-
surement units in original RDF graph, whereas the
body matches the unit of the surrogate measurements.
Also, body maintains associations between original
and surrogate observations and original observations
and corresponding measurements along with mea-
surement variable substitutions. Finally, the head of
the rule fssn7 maps the original observations and the

measurements in original RDF graphs using property
fssn7. The body of the rule fssn7 find associations
between surrogate observations and surrogate mea-
surements in factorized RDF graphs using property
:result. Likewise associations between the original
and surrogate observations and the original observa-
tions and original measurements are maintained. Ad-
ditionally, the variable substitutions for the observa-
tions and measurements are maintained.

Let G and G′ be RDF graphs such that G′ is a
factorized graph of G. Consider a SPARQL query Q
over G. The problem of evaluating SPARQL queries
against a factorized RDF graph corresponds to the
problem of transforming Q into a SPARQL query Q′

over G′ such that the results of evaluating Q over G
and the results of Q′ over G′ are the same, i.e., the
condition [[Q]]G = [[Q′]]G′ is satisfied.

An instance of the problem of evaluating queries
on factorized RDF graphs is shown in Figure 6. A
SPARQL query Q over the RDF graph G in Figure 3a
is presented in Figure 6a. The SPARQL query Q′ in
Figure 6b, corresponds to a rewriting of Q, against G′

which represents factorization of G. The evaluations
of Q and Q′ produce the same answers. In this work,
we present SPARQL query rewriting rules that allow
for rewriting a query Q into a query Q′.

4.3 A Factorization Approach

We present a solution to the semantic sensor data fac-
torization (SSDF) problem.A sketch of the proposed
factorization approach is presented in Algorithm 1.
The algorithm receives an RDF graph G(VG,EG,LG),
and a graph G′′(VG′′ ,EG′′ ,LG′′) representing an al-
ready factorized graph and the entity mappings µN′′

in G′′. The algorithm incrementally generates a fac-
torized RDF graph G′(VG′ ,EG′ ,LG′) of G, and the en-
tity mappings µN from the observations and measure-
ments in G to the surrogate observations and mea-
surements in G′, respectively. The algorithm ini-
tializes a set of entity mappings µN and the sets of
nodes VG′ , edges EG′ , and labels LG′ of the factorized
graph G′ (line 1). If for all the observations with ob-
served phenomenon ph, sensor procedure proc, ob-
served property pp, and for the corresponding mea-
surements with value val and the related unit uom
in G, the surrogate observation and measurement are
already in G′′, then the observations and measure-
ments in G are mapped in µN to the surrogate ob-
servation and measurement in G′′, respectively(lines
2-9). Furthermore, observations in G are linked using
the property :observationOf to the surrogate obser-
vations in µN(line 6-8). If the surrogate observation
and measurement are not in G′′, the algorithm (lines

11) creates corresponding surrogate entities in G′, i.e.,
the subjects of compact measurement and observation
molecules are created. In lines 12-13, the algorithm
maps all the measurements, related to val and uom
in G, to the surrogate measurements in µN . For all
the observations with observed phenomenon ph, sen-
sor procedure proc, observed property pp, measure-
ment value val and unit of measurement uom in G,
adds in µN the mappings of all the observations in G
with the surrogate observations in G′ in lines 14-15.
Once the mappings are in µN , the nodes and edges
representing the mapped observations and measure-
ments in G are processed. All nodes s and o related
to the property :result in G are added to G′ along
with their associations. Moreover, a new edge relat-
ing s and µN(s) using the property :observationOf
is added to G′ (lines 18-20). If s and o are linked using
a property rdf:type and o is either :Observation or
:MeasureData, then a new edge (µN(s) p o) is added
to G′ along with µN(s) and o (lines 21-22). If s and
o are associated through a predicate p in {:procedure,
:property, :value, :unit}, then a new edge (µN(s) p o)
is added to G′ in lines 23-24. Otherwise, the edge
(s p o) is added to the G′ in lines 25-26.

Figure 7b depicts a portion of the RDF in Fig-
ure 3a and the corresponding transformation in the
factorized RDF graph in Figure 5c. The surrogate
measurements and observations, and the new edges
are highlighted in bold. The Algorithm 1 creates the
surrogate measurements and observations in line 3
and 7; new edges are created in line 12, 15, and 17.
Additionally, assumptions about the characteristics of
the associations between the nodes in the graph are
presented. While some edges existing in the RDF
graph in Figure 3a are not present in the factorized
RDF graph, these associations can be obtained by
traversing the graph through the surrogate observa-
tions and measurements. The implicit satisfaction of
all the associations in the original RDF graph that are
not included in the factorized graph is restricted under
the following assumptions:

For all observations :obs and measurements :m in
G, the following hold.

• Measurement: the properties :value and :unit
of measurement are both functional properties for
any measurement :m. Furthermore, the property
:result that associates an observation with a
measurement has a functional inverse.

• Observation: the property :procedure that as-
sociates an observation and a procedure is a func-
tional property for any observation :obs.
The following hold for a surrogate observation

:obsM, a surrogate measurement :mM, an observation
:obs, and a measurement :m in G′.

Which are the measurement values and unit of
the observations recorded by sensor :LGVI1?

SELECT ?val ?uom WHERE {
 ?obs :procedure :LGVI1.
 ?obs :result ?m .
 ?m :value ?val.
 ?m :unit ?uom }

Answer:

(?val, 20.0^^:float),(?uom, :cm)
(?val, 24.8^^:float),(?uom, :°F) cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

M
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

(a) SPARQL Query over Original RDF Graph

Which are the measurement values and unit of
the observations recorded by sensor :LGVI1?

SELECT ?val ?uom WHERE {
?obs :procedure :LGVI1.
?Xobs :observationOf ?obs.
?obs :result ?m.
?m :value ?val.
?m :unit ?uom.
?Xobs :result ?Xm }

Answer:

(?val, 20.0^^:float),(?uom, :cm)
(?val, 24.8^^:float),(?uom, :°F) cm

:obs1

ts1

:Rainfall
Obs

:Precipita
tion

:Measure
Data20.0^^:float

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

:ObsM1

:mM1

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:ObsM2

:mM2:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

M
ea

su
re

m
en

ts
O

bs
er

va
ti

on
s

T
im

eS
ta

m
ps

(b) SPARQL Query over Factorized RDF Graph
Figure 6: Instance of the Query Evaluation Problem. Evaluation of SPARQL queries over the original and factorized RDF
graphs respects set semantics. (a) SPARQL query over original RDF graph selects the values and unit collected by :LGVI1;
(b) Rewritten SPARQL query over factorized RDF graph, in Figure 5c.

• Surrogate Observation: The properties
:procedure and :property are functional
properties for any surrogate observation :obsM.

• Surrogate Measurement: :value and :unit are
both functional properties for any surrogate mea-
surement :mM. Furthermore, :result that asso-
ciates a surrogate observation with a surrogate
measurement has a functional inverse.

• Observation: :observationOf property that as-
sociates an observation :obs with a surrogate ob-
servation is a functional property.

• Measurement: :m is related to only one observa-
tion, i.e., :result associates an observation with
a measurement, and has a functional inverse.

We are assuming that SPARQL queries against the
original and factorized RDF graphs are evaluated un-
der the set semantics, i.e., no duplicates are in the
answers. Coming back to the motivating example,
Figure 8 illustrates the factorized RDF graph of the
graph in Figure 1. The factorized RDF graph in Fig-
ure 8a is sparse and the average number of neighbors
has been reduced from 6.4 to 2.5. This indicates that
the number of RDF triples describing an observation
is reduced after factorization. Figure 8c shows that
for each measurement value the number of associated

RDF triples in the factorized RDF graph is reduced
by 74%.

4.4 Queries over Factorized RDF
Graphs

In this section, we define the algorithm that solves
the problem of query evaluation on a factorized RDF
graph. Table 1 presents the rules to rewrite a SPARQL
query against an original SSN RDF graph into a query
against the corresponding factorized RDF graph. The
query rewriting rules are defined in terms of SPARQL
triple patterns. For each property of the observa-
tion and measurement classes, a rewriting rule is de-
fined. Furthermore, substitutions for the observation
and measurement variables in the query clauses, i.e.,
SELECT, ORDER BY, GROUP BY, and FILTERS
etc, are presented. Given a SPARQL query and a set
R of query rewriting rules, the Algorithm 2 describes
the steps performed to each set of triple patterns that
composes a Basic Graph Pattern (BGP). If the input
query consists of several BGPs, the structure of the
original query remains the same, and Algorithm 2 is
applied to each BGP within the query using rules in
Table 1.

Figure 6 presents two SPARQL queries: Figure 6a

?obs :procedure :LGVI1.
?obs :procedure :LGVI1.
?Xobs :observationOf ?obs.
Replace ?obs -> ?Xobs

Rule fssn2

Original RDF Graph Factorized RDF Graph

?obs :result ?m.

Rule fssn7

?m :value ?val.

Rule fssn5

?m :unit ?uom.
?m :unit ?uom.
?Xobs :observationOf ?obs.
?Xobs :result ?Xm.
Replace ?obs -> ?Xobs, ?m ->?Xm

Rule fssn6

?obs :result ?m.
?Xobs :observationOf ?obs.
?Xobs :result ?Xm.
Replace ?obs -> ?Xobs, ?m ->?Xm

?m :value ?val.
?Xobs :observationOf ?obs.
?Xobs :result ?Xm.
Replace ?obs -> ?Xobs, ?m ->?Xm

(a) Query Rewriting

:result

:observationOf

Original RDF Graph Factorized RDF Graph

:value, :unit are functional properties,
:result has inverse and is functional

:procedure and :property
are functional properties

Assumptions:
:result has inverse
 and is functional

:observationOf is
a functional property

Assumptions:

:procedure and :property
are functional properties

:value, :unit are functional properties,
:result has inverse and is functional

:property

:procedure

rdf:type
:obs1

:LGVI1

:RainfallObs

:Precipitation

ts1

:time1

:unit

rdf:type

:m1

cm

:Measure
Data

20.0^^:float
:value

:result

:obs1

ts1

:time1

:m1

:property

:procedure

rdf:type

:LGVI1

:RainfallObs

:Precipitation

:ObsM1

:unit

rdf:type

cm

:Measure
Data

20.0^^:float
:value

:mM1

:m1

:obs1

:m1

:obs1 :ObsM1

:mM1

:result

(b) Original and Factorized RDF Graphs
Figure 7: Example of Query Rewriting. Query rewriting rules are presented. (a) Query rewriting rules from Table 1 are
used to rewrite the query in Figure 6a into the query in Figure 6b. (b) Portions of the RDF graphs (original and factorized).
Nodes and edges highlighted in bold are added during the RDF graph factorization.

and Figure 6b present an original query Q and rewrit-
ing of Q produced by Algorithm 2. Figure 7a shows
the rewriting of SPARQL query in Figure 6a. Rules
fssn2, fssn5, fssn6, and fssn7 from Table 1 are used to
rewrite the query. The algorithm replaces each triple
pattern in a BGP that instantiates the head of a rule
in SR by the body of the rule, e.g., the triple pattern
(?obs :procedure :LGVI1) instantiates the head of rule
fssn2, thus, the triple pattern in the BGP is replaced
with the body of fssn2, as shown in Figure 7a. More-
over, the variables corresponding to the observations

and measurements in the original query represent
the surrogate observations and measurements in the
rewritten query, consequently, these variables are re-
placed by the new variables in the query clauses. The
variable substitution for observation ?obs by ?Xobs
is maintained during the rewriting process using rule
fssn2 in order to retrieve the original observations, if
required. Similarly, other triple patterns in the BGP
each matching the head of a rule, i.e., fssn5, fssn6,
and fssn7, are replaced by the body of the rule, and
the variable substitutions of ?obs and ?m by ?Xobs

(a) Fact. RDF Graph

S# Parameter Value
1 Connected Components 1.0
2 Network Centralization 0.1
3 Avg. # of Neighbors 2.5
4 Network Density 0.0
5 Multi-edge Node Pairs 5.0
6 Network Heterogeneity 9.2

(b) Statistics of Factorized RDF Graph

0

5000

10000

15000

6.55cm 113° 20'' 84°F 10cm Timestamp

NT Original NT Factorized

(c) NT Fact. vs Original
Figure 8: Factorization of the Running Example. Factorization reduces the number of RDF triples related to the same
value. (a) Factorized (Fact.) RDF Graph of Figure 1a; (b) Statistics of the fact. RDF graph; (c) The number of factorized
triples. The graph and statistics are generated by the Cytoscape tool (http://www.cytoscape.org/).

and ?Xm, respectively, are maintained for the query
clauses. The evaluation of both, original and rewrit-
ten, queries produce the same results. Another impor-
tant property is that the time complexity of the origi-
nal and rewritten queries is also the same.
Theorem 1. Given G and G′ such that G′ is a fac-
torized RDF graph of G. Let Q and Q′ be SPARQL
queries where Q′ is a rewritten query of Q over G′

generated by Algorithm 2. The problem of evaluat-
ing Q′ against G′ is in: (1) PTIME if query Q has
only AND and FILTER operators; (2) NP-complete
if query Q has expressions with AND, FILTER, and
UNION operators; and (3) PSPACE-complete for
OPTIONAL graph pattern expressions.

Proof. We proceed with a proof by contradiction. As-
sume that complexity of Q′ is higher than Q. Then,
UNION or OPTIONAL operators not included in Q
are added to Q′. However, Algorithm 2 only changes
triple patterns over G by triple patterns against G′.
Additionally, Algorithm 2 includes new JOINs (AND

operator). However, adding AND or FILTER opera-
tors does not affect the complexity of the problem of
evaluating Q′ over G′, and contradicting the fact that
the complexity of Q′ is higher than Q.

5 Tabular Representation of RDF
Graphs

Sensor data tend to stack up quickly, scaling up
to large amounts of data. In order to capture that
growth, we opt for representing factorized data in
tabular format, so that Big Data processing tech-
nologies can be used. For that purpose, we choose
to store the data in the modern, columnar-oriented
Parquet4 storage format. We propose tabular repre-
sentations of both the original and factorized RDF

4https://parquet.apache.org/

http://www.cytoscape.org/
https://parquet.apache.org/

ObsID Type Procedure Property Sampling
Time

Time
stamp MID Value Unit

:obs1 :Rainfall :LGVI1 :Precipitation :time1 ts1 :m1 20.0 cm

:obs2 :Rainfall :LGVI1 :Precipitation :time2 ts2 :m2 20.0 cm

:obs3 :Rainfall :LGVI1 :Precipitation :time3 ts3 :m3 20.0 cm

:obs4 :Temp :LGVI1 :AirTemp :time4 ts4 :m4 24.8 °F

:obs5 :Temp :LGVI1 :AirTemp :time5 ts5 :m5 24.8 °F

:obs6 :Temp :LGVI1 :AirTemp :time6 ts6 :m6 24.8 °F

Observation Universal

(a) Universal Parquet Table for Observations

ObsMID Type Procedure Property MMID

:obsM1 :Rainfall :LGVI1 :Precipitation :mM1
:obsM2 :Temp :LGVI1 :AirTemp :mM2

Compact Observation Molecule

MMID Value Unit
:mM1 20.0 cm
:mM2 24.8 °F

Compact Measurement Molecule

ObsID Sampling
Time

Time
stamp MID ObsMID

:obs1 :time1 ts1 :m1 :obsM1

:obs2 :time2 ts2 :m2 :obsM1

:obs3 :time3 ts3 :m3 :obsM1

:obs4 :time4 ts4 :m4 :obsM2

:obs5 :time5 ts5 :m5 :obsM2

:obs6 :time6 ts6 :m6 :obsM2

Observation

(b) Factorized Data Parquet Tables
Figure 9: Factorized Tabular Representation of RDF Graphs. Parquet tables are utilized to represent RDF graphs in Spark.
(a) A universal table stores all the data of the original RDF graph.(b) Factorized data is represented in three parquet tables to
store compact observation and measurement molecules.

graphs (in Figure 3a and Figure 5c, respectively),
shown in Figure 9 and Figure 11. Columnar nature
of Parquet makes it best suited for scenarios where
queries access only a few number of columns from
a wide table of many columns. Parquet pulls only
the requested columns, contrary to row-oriented stor-
age. We rely on these properties of Parquet tables,
and represent RDF graphs using a universal table.
The universal tabular representation, Observation
Universal in Figure 9a, of original RDF graph
in Figure 3a, contains all the properties of an ob-
servation, i.e., rdf:type, :procedure, :property,
:result, :samplingTime, :value, :unit, and
:timestamp. These predicates are modeled with
the attributes: Type, Procedure, Property, MID,
SamplingTime, Value, Unit, and Timestamp, re-
spectively. The tabular representation of the factor-
ized RDF graph in Figure 5c is shown in Figure 9b.
The Compact Observation Molecule table models
the properties rdf:type, :procedure, :property,
and :result of a surrogate observation with the at-
tributes Type, Procedure, Property, and MMID, re-
spectively. The Compact Measurement Molecule
table contains the properties :value and :unit de-
scribing a surrogate measurement. Note that the type
:MeasureData is implicitly represented in the ta-

ble name. The Observation factorized table con-
tains the observation predicates that are not repre-
sented in the Compact Observation Molecule and
Compact Measurement Molecule tables, as well as
a reference to the corresponding surrogate observa-
tions, as a foreign key. Furthermore, SPARQL queries
against original and factorized graphs are translated
into SQL queries over universal and factorized ta-
bles, respectively. Figure 10 shows SQL represen-
tations of SPARQL queries in Figure 6. The eval-
uation of the SQL queries against the universal and
factorized tables is the same as the SPARQL queries
over the RDF graphs. Instead of using the univer-
sal tabular representations, RDF graphs can be rep-
resented using the Class Template (CT) based tab-
ular representations. For each CT around a class
one table is created containing the properties of the
class as attributes. Similarly, for each intra- or
inter-link between the classes a binary table is cre-
ated containing the identifiers from the correspond-
ing CT tables. Figure 11a illustrates the CT-based
tabular representations around the :RainfallObs,
:TempObs, :Instant, and :MeasureData classes in
Figure 3a. The class templates of :RainfallObs
and :TempObs are represented in Rainfall CT
and Temperature CT with the attributes Procedure

SELECT ?val ?uom
WHERE {
 ?obs :procedure :LGVI1.
 ?obs :result ?m .
 ?m :value ?val.
 ?m :unit ?uom }

SPARQL Query SQL Query

SELECT DISTINCT Value, Unit
FROM Observation
WHERE
 Procedure = :LGVI1

(a) Query Universal Table

SELECT ?val ?uom
WHERE {
 ?obs :observationOf ?oM.
 ?oM :procedure :LGVI1.
 ?oM :result ?mM.
 ?mM :value ?val.
 ?mM :unit ?uom }

SELECT DISTINCT CMM.Value, CMM.Unit
FROM Compact Observation Molecule as COM,
 Compact Measurement Molecule as CMM
WHERE
 COM.MMID=CMM.MMID AND
 COM.Procedure=:LGVI1

SPARQL Query SQL Query

(b) Query Factorized Data Tables
Figure 10: Query Evaluation Over Universal and Factorized Tables. SPARQL queries over original and factorized RDF
graphs and their corresponding SQL queries are presented. (a) SQL query over the universal parquet table; (b) SQL query
against the parquet tables representing the factorized RDF graph.

and Property. Similarly, :MeasureData and the
properties :value and :unit are represented in
Measurement CT with the attributes Value and Unit,
respectively. Instant CT represents :Instant
by modeling :timestamp property as Timestamp.
Rainfall Measurement models the association be-
tween the :RainfallObs and :MeasureData using
the primary keys, ObsID and MID, from the corre-
sponding CT-based tabular representations. Also, the
association between :RainfallObs and :Instant is
presented in Rainfall Instant. Similarly, associa-
tion of :TempObs with :MeasureData and :Instant
is presented in Temperature Measurement and
Temperature Instant, respectively.

The CT-based tabular representations of the
factorized RDF graph, in Figure 5c, are shown
in Figure 11b. F-Rainfall CT models the
properties :procedure and :property, describ-
ing the surrogate rainfall observations, with the
attributes Procedure and Property, respectively.
Similarly, the CTs of the surrogate tempera-
ture observations are modeled in F-Temperature
CT with attributes Procedure and Property.
The surrogate measurements are modeled in the
F-Measurement CT using Value and Unit. Instant
CT models :timestamp property of :Instant
with Timestamp. The links between the sur-
rogate observations and measurements are repre-
sented in Factorized Rainfall Measurement and
Factorized Temperature Measurement. More-
over, the explicit mappings between the original
and surrogate rainfall observations are represented in
Rainfall Observation. Similarly, Temperature
Observation stores the mappings between the orig-

inal and surrogate temperature observations. In ad-
dition, Rainfall Measurement and Temperature
Measurement represent association of the original
rainfall and temperature observations, respectively,
with the corresponding measurements. Furthermore,
the links of the original rainfall and temperature ob-
servations with the corresponding timestamps are rep-
resented in Rainfall Instant and Temperature
Instant, respectively. Figure 12 illustrates the CT
based SQL representations of the SPARQL queries
in Figure 6. The results of the SQL queries against
CT based tabular representations of the original and
factorized RDF graphs are the same as the SPARQL
queries over the original and factorized RDF graphs.

Theorem 2. The decomposition of the Observation
universal table into factorized tables: Observation,
Compact Observation Molecule, and Compact
Measurement Mole- cule, is loss-less join.

Proof. Considering the following functional depen-
dencies hold in the universal and factorized tables:

• ObsMID→ Type, Procedure, Property, MMID
• MMID→ Value, Unit
• ObsID → SamplingTime, Timestamp, MID,
ObsMID

We can prove using the algorithm(Jeffrey, 1989) that
the factorized tables are a loss-less join decomposi-
tion of universal table T that includes all the attributes
in the Observation universal plus ObsMID and MMID.
The attributes of the Observation universal can be
projected from G′, thus, satisfying the loss-less join
condition.

ObsID Procedure Observerd
Property

:obs1 :LGVI1 :Precipitation

:obs2 :LGVI1 :Precipitation

:obs3 :LGVI1 :Precipitation

Rainfall RDF-CT

ObsID Procedure Observed
Property

:obs4 :LGVI1 :AirTemp

:obs5 :LGVI1 :AirTemp

:obs6 :LGVI1 :AirTemp

Temperature RDF-CT

MID Value Unit

:m1 20.0 cm

:m2 20.0 cm

:m3 20.0 cm

:m4 24.8 °F

:m5 24.8 °F

:m6 24.8 °F

Measurement
RDF-CT

DateTime Sampling
Time

:time1 ts1

:time2 ts2

:time3 ts3

:time4 ts4

:time5 ts5

:time6 ts6

Instant RDF-CT

ObsID MID

:obs1 :m1

:obs2 :m2

:obs3 :m3

ObsID Date
Time

:obs1 :time1
:obs2 :time2
:obs3 :time3

Rainfall
Measurement

Rainfall
Instant

ObsID MID

:obs4 :m4

:obs5 :m5

:obs6 :m6

ObsID Date
Time

:obs4 :time4
:obs5 :time5
:obs6 :time6

Temperature
Measurement

Temperature
Instant

(a) CT Based Parquet Table for Observations
Rainfall
Observation

Temperature
Observation

DateTime Sampling
Time

:time1 ts1

:time2 ts2

:time3 ts3

:time4 ts4

:time5 ts5

:time6 ts6

Instant RDF-CT

MMID Value Unit

:mM1 20.0 cm

:mM2 24.8 °F

F-Measurement
RDF-CT

ObsID ObsMID

:obs1 :obsM1

:obs2 :obsM1

:obs3 :obsM1

ObsID ObsMID

:obs4 :obsM2

:obs5 :obsM2

:obs6 :obsM2

ObsMID MMID

:obsM1 :mM1

Factorized
Rainfall
Measurement

ObsMID MMID

:obsM2 :mM2

Factorized
Temperature
Measurement

ObsID MID

:obs1 :m1

:obs2 :m2

:obs3 :m3

ObsID Date
Time

:obs1 :time1

:obs2 :time2

:obs3 :time3

Rainfall
Measurement

Rainfall Instant

ObsID MID

:obs4 :m4

:obs5 :m5

:obs6 :m6

ObsID Date
Time

:obs4 :time4

:obs5 :time5

:obs6 :time6

Temperature
Measurement

Temperature
Instant

F-Rainfall RDF-CT

F-Temperature RDF-CT

ObsMID Procedure Observed
Property

:obsM1 :LGVI1 :Precipitation

ObsMID Procedure Observed
Property

:obsM2 :LGVI1 :AirTemp

(b) Factorized CT Based Parquet Tables
Figure 11: CT based Tabular Representation of RDF Graphs. Parquet tables are utilized to represent CT-based tabular
representations of RDF graphs in Spark. (a) Each CT-based table stores a class template collected from the original RDF
graph.(b) Factorized RDF graph is represented in compact CT based tables.

Theorem 3. If G is an SSN RDF graph and G′ is a
factorized RDF graph of G, and T1 is the factorized
tabular representation of G′, then T1 is in third normal
form with respect to the universal representation of G.

Proof. Recall (Codd, 1972), a table is in third normal
form if for every X → Y

• X is a super key, or • Y −X is a prime at-
tribute

Considering that the following functional depen-
dencies hold in both the universal, and factorized ta-
bles:

• MMID→ Value, Unit
• ObsMID→ Type, Procedure, Property, MMID
• ObsID → SamplingTime, Timestamp, MID,
ObsMID

It can be demonstrated that all the tables created after
factorization are in 3NF.

Theorem 4. The decomposition of the Class
Template (CT) based tables representing sensor

data into the factorized CT based tables is loss-less
join.

Proof. Consider the following functional dependen-
cies hold in CT and factorized CT tables:

• ObsMID→ Procedure, Property
• MMID→ Value, Unit
• ObsMID, MMID→ ObsMID, MMID
• ObsID, ObsMID→ ObsID, ObsMID
• ObsID, MID→ ObsID, MID
• ObsID, SamplingTime→ ObsID, SamplingTime
• SamplingTime→ Timestamp

We can prove using the algorithm(Jeffrey, 1989)
that the factorized CT based tables are a loss-less
join decomposition of the CT based tables that in-
cludes all the attributes in the CT tables plus ObsMID
and MMID. The attributes of the CT tables can be pro-
jected from G′, thus, satisfying the loss-less join con-
dition.

Theorem 5. If G is an SSN RDF graph and G′ is
a factorized RDF graph of G, and T2 is the Class
Template (CT) based tabular representation of G′,

SELECT ?value ?unit
WHERE {
 ?obs :procedure :LGVI1.
 ?obs :result ?m .
 ?m :value ?value.
 ?m :unit ?unit }

SPARQL Query SQL Query
SELECT DISTINCT MRDFCT.Value, MRDFCT.Unit
FROM Rainfall RDF-CT as RRDFCT,
 Temperature RDF-CT as TRDFCT,
 Measurement RDF-CT MRDFCT,
 Rainfall Measurement as RM,
 Temperature Measurement as TM
WHERE (RRDFCT.Procedure=:LGVI1 AND
 RRDFCT.ObsID=RM.ObsID AND
 RM.MID=MRDFCT.MID) OR
 (TRDFCT.Procedure=:LGVI1 AND
 TRDFCT.ObsID=TM.ObsID AND
 TM.MID=MRDFCT.MID)

(a) Query Class Template (CT) based Tables

SELECT ?val ?uom
WHERE {
 ?obs :observationOf ?oM.
 ?oM :procedure :LGVI1.
 ?oM :result ?mM.
 ?mM :value ?val.
 ?mM :unit ?uom }

SELECT DISTINCT FMRDFCT.Value, FMRDFCT.Unit
FROM F-Rainfall RDF-CT as FRRDFCT,
 F-Temperature RDF-CT as FTRDFCT,
 F-Measurement RDF-CT as FMRDFCT,
 Factorized Rainfall Measurement as FRM,
 Factorized Temperature Measurement as FTM
WHERE (FRRDFCT.Procedure=:LGVI1 AND
 FRRDFCT.ObsMID=FRM.ObsMID AND
 FRM.MMID=FMRDFCT.MMID) OR
 (FTRDFCT.Procedure=:LGVI1 AND
 FTRDFCT.ObsMID=FTM.ObsMID AND
 FTM.MMID=FMRDFCT.MMID)

SPARQL Query SQL Query

(b) Query Factorized CT based Tables
Figure 12: Query Evaluation Over CT-based Tables. Original and rewritten SPARQL queries and the corresponding SQL
queries against CT-based tables are presented. (a) Query over CT-based tables of the original RDF graph. (b) The SQL query
over CT-based tabular representation of the factorized RDF graph.

then T2 is in third normal form with respect to the CT
based tabular representation of G.

Proof. Recall (Codd, 1972), a table is in third normal
form if for every X → Y

• X is a super key, or

• Y −X is a prime attribute

Considering the following functional dependen-
cies hold in CT based tables:

• ObsMID→ Procedure, Property

• MMID→ Value, Unit

• ObsMID, MMID→ ObsMID, MMID

• ObsID, ObsMID→ ObsID, ObsMID

• ObsID, MID→ ObsID, MID

• ObsID, SamplingTime→ ObsID, SamplingTime

• SamplingTime→ Timestamp

It can be demonstrated that all the factorized tables
are in 3NF.

6 Experimental Study

We empirically study the effect of the proposed
factorization techniques over RDF implementations
accessible through RDF and Big Data engines. We
evaluate the impact on the size of the factorized RDF
graphs as well as on query execution time in differ-
ent query engines. RDF-3X (Neumann and Weikum,
2010) is utilized to evaluate the influence of the pro-
posed techniques over the RDF stores. Spark (Za-
haria et al., 2016) is used to study the tabular rep-
resentation of RDF graphs. In this work, we inves-
tigated the following research questions: RQ1) Are
the proposed factorization techniques able to reduce
the size of the semantically represented sensor data?
RQ2) How is the factorization time affected by the
size of the RDF graphs? RQ3) What is the impact
of the queries against factorized RDF graphs over the
query execution time? RQ4) Is the performance of
queries against factorized RDF graphs affected by the
size of the factorized RDF graphs or RDF implemen-
tation? The experimental configuration to evaluate the
research questions mentioned above is as follows:
Datasets: Evaluation is conducted over two sensor
datasets (Ali et al., 2015; Patni et al., 2010) described
using the Semantic Sensor Network (SSN) Ontology.
The RDF datasets describing weather observations
are collected from around 20,000 weather stations in

Algorithm 1: The Incremental Factoriza-
tion Algorithm

Input: An RDF graph G(VG,EG,LG), Previously factorized RDF
Graph G′′(VG′′ ,EG′′ ,LG′′), and entity mappings µN′′

Output: Factorized RDF Graph G′(VG′ ,EG′ ,LG′), and entity
mappings µN

1 µN ←− µN′′ ,VG′ ←−VG′′ ,EG′ ←− EG′′ ,LG′ ←− LG′′

2 forall proc, ph, pp,val,uom ∈VG such that
SO = {obs|(obs rdf:type ph) ∈ G,

(obs :procedure proc) ∈ G,

(obs :property pp) ∈ G,(obs :result m) ∈
G,(m rdf:type :MeasureData) ∈ G,(m :unit uom) ∈
G,(m :value val) ∈ G}, and
SM = {m|(m rdf:type :MeasureData) ∈
G,(m :unit uom) ∈ G,(m :value val) ∈ G} do

3 if ∃mM, oM such that
(mM rdf:type :MeasureData) ∈ G′′,
(mM :unit uom) ∈ G′′,
(mM :value val) ∈ G′′,(oM rdf:type ph) ∈
G′′,(oM :procedure proc) ∈
G′′,(oM :property pp) ∈ G′′, and
(oM :result mM) ∈ G′′ then

4 foreach
(srdf:type o)∈EG∧s,o∈VG∧rdf:type∈ LG

such that s ∈ SM∪SO do
5 if s ∈ SM then
6 µN ← µN ∪{(s,mM)}
7 else
8 µN ← µN ∪{(s,oM)},EG′ ←

EG′ ∪ (s :observationOf µN(s))}
9 VG′ ←VG′ ∪{s,o},

LG′ ← LG′ ∪{:observationOf}
10 else
11 mM← SurrogateMeasurement(),oM←

SurrogateObservation()
12 foreach m ∈ SM do
13 µN ← µN ∪{(m,mM)}
14 foreach obs ∈ SO do
15 µN ← µN ∪{(obs,oM)}
16 foreach (s p o) ∈ EG ∧ s,o ∈VG ∧ p ∈ LG do
17 if s ∈ SM∪SO then
18 if p == :result then
19 EG′ ← EG′ ∪

{(s p o),(µN(s) p µN(o)),(s :observationOf µN(s))}

20 VG′ ←VG′ ∪{s,o,µN(s),µN(o)},
LG′ ← LG′ ∪{p,:observationOf}

21 else if p == rdf:type && (o ==

:Observation||o == :MeasureData)

then
22 EG′ ← EG′ ∪{(µN(s) p o)},

VG′ ←VG′ ∪{µN(s),o}, LG′ ← LG′ ∪{p}
23 else if p == :procedure||p ==

:property||p == :value||p == :unit

then
24 EG′ ← EG′ ∪{(µN(s) p o)},VG′ ←

VG′ ∪{µN(s),o}, LG′ ← LG′ ∪{p}
25 else
26 EG′ ← EG′ ∪{s p o)}, VG′ ←VG′ ∪{s,o},

LG′ ← LG′ ∪{p}
27 return G′(VG′ ,EG′ ,LG′),µN

Algorithm 2: The Query Rewriting Algo-
rithm

Input: Set ST of triple patterns in a BGP of
Q and set SR of query rewriting rules

Output: STnew the rewriting of ST under SR
1 STnew←− /0

2 foreach t ∈ ST do
• Select r ∈ SR such that t matches the head

of r and instantiate the body of r

• Let SQt be the matched body of r and
variableSubstitutions be the set of mapp-
ings between variables in t into SQt , add
(t,SQt ,variableSubstitutions) to STnew

3 return STnew

the United States5. Realtime smart city datasets are
collected from the city of Aarhus, Denmark. The
smart city datasets encompasses the traffic, pollution,
and parking observations 6. Table 2 describes the
main characteristics of these RDF datasets.
Queries: The SRBench-Version 0.9 queries7 are
used as baseline in our experimental testbed. Be-
cause RDF-3X does not evaluate queries with the OP-
TIONAL operator, query 2 is modified to include only
one BGP. Also, the STREAM clause, ASK queries,
aggregate modifiers like AVG, GROUP BY, and HAV-
ING are not supported. So, only SELECT queries
without aggregate modifiers are part of our testbed.
Queries range from simple queries with one triple pat-
tern to complex queries having up to 14 triple patterns
with UNION and FILTER clauses 8.
Metrics: We report on the following metrics:
a) Number of Triples (NT) in the semantic sensor
data collection. b) Percentage Savings (%age NT
Savings) in the number of RDF triples after factoriza-
tion; higher the better. c) Average Number of Triples
per Observation (avg. NT per Obs.) represents the
average number of RDF triples describing an obser-
vation; lower the better. d) Factorization Time (FT)
is the elapsed time between the request of factoriza-
tion and the generation of the factorized RDF graph.
e) RDF3x Loading Time (LT) is the time required
to load RDF data to RDF3x store. FT and LT are
computed as the real time of the time command of the
Linux operating system. f) Query Execution Time

5Available at: http://wiki.knoesis.org/index.
php/LinkedSensorData

6Available at: http://iot.ee.surrey.ac.uk:8080/
datasets.html

7https://www.w3.org/wiki/SRBench
8Details can be found at https://sites.google.

com/site/fssdexperimets/

http://wiki.knoesis.org/index.php/LinkedSensorData
http://wiki.knoesis.org/index.php/LinkedSensorData
http://iot.ee.surrey.ac.uk:8080/datasets.html
http://iot.ee.surrey.ac.uk:8080/datasets.html
https://www.w3.org/wiki/SRBench
https://sites.google.com/site/fssdexperimets/
https://sites.google.com/site/fssdexperimets/

Table 2: Datasets: Description of the semantic sensor datasets; weather and smart city datasets; collected from the United
States and Aarhus, Denmark, respectively.

Weather Dataset Smart City Dataset
ID Climate Event #Triples # Obs ID #Triples # Obs
D1 Blizzard 38,054,493 4,092,492 C1 47,487,800 4,748,884
D2 Hurricane Charley 108,644,568 11,648,607 C2 47,051,850 4,705,267
D3 Hurricane Katrina 179,128,407 19,233,458 C3 56,816,196 5,681,712

Table 3: Effectiveness of the Semantic Sensor Data Factorization. Number of triples (NT) before and after factorization
along with %age NT savings.

Dataset Number of Triples(NT) %age NT Avg. NT per Obs.
ID Original Factorized Savings Original Factorized

D1 38,054,493 17,800,156 53.22 9.29 4.34
D1D2 146,699,061 63,993,774 56.38 9.32 4.06
D1D2D3 325,827,468 136,979,696 57.96 9.31 3.92
C1 47,487,800 23,937,396 49.59 9.99 5.04
C1C2 94,539,650 47,621,691 49.63 9.99 5.04
C1C2C3 151,355,846 76,223,192 49.64 9.99 5.04

(ET) is the elapsed time between the submission of
the query to the engine and the complete output of the
answer, and is measured as the real time produced by
the time command of the Linux operation system.
Implementation: Three series of experiments were
conducted over the gradually integrating sensor
datasets in Table 2, i.e., D1, D1D2, and D1D2D3.
i) Algorithm 1 is executed over the original RDF
datasets to generate the factorized RDF representa-
tions. Moreover, original and factorized RDF datasets
are loaded in RDF3X store. ii) SPARQL queries
are executed using RDF3X engine over original and
factorized RDF datasets. The experiments are exe-
cuted on a Linux Debian 8 machine with a CPU Intel
I7 980X 3.3GHz and 32GB RAM 1333MHz DDR3.
Queries are run on both cold and warm cache.9 to
assess the query performance when data is cached.
To run on warm cache, we executed the same query
five times by dropping the cache just before running
the first iteration of the query; thus, data temporally
stored in cache during the execution of iteration i can
be used in iteration i+1. iii) In the third series of ex-
periments, SQL queries were run on cold and warm
cache using Apache Spark10 over the universal, fac-
torized, original and factorized CT-based tabular rep-
resentations. These tabular representations are stored
using Parquet format in HDFS11. The experiments
were conducted on a spark cluster of one master and
three worker nodes.The experiments are performed

9To run cold cache, we clear the cache before running
each query by performing the command sh -c "sync ; echo

3 > /proc/sys/vm/drop caches"
10http://spark.apache.org/
11https://hadoop.apache.org/

on a machine with Intel(R) Xeon(R) Platinum 8160
CPU 2.10GHz and 23 RAM slots, where each RAM
slot is DDR4 type, 32GB RAM size, and 2666MHz
speed. The source code of the factorization approach
is available on github12.

Efficiency and Effectiveness of Factorized RDF.
For evaluating the efficiency and effectiveness of the
proposed factorization techniques and to answer the
research questions RQ1 and RQ2, we execute algo-
rithm 1 by gradually integrating the datasets in Ta-
ble 2, i.e., D1, D1D2, and D1D2D3. Effectiveness is
reported based on the reduction of RDF triples (NT),
while efficiency is measured in terms of factoriza-
tion time (FT) and RDF3X loading time (LT). Ta-
ble 3 reports on the number of RDF triples (NT) in
datasets D1, D1D2, and D1D2D3 before and after
the factorization, as well as in datasets C1, C1C2,
and C1C2C3. The results demonstrate that the pro-
posed factorization techniques are capable of reduc-
ing the RDF triples by at least 53.22% in the datasets
of weather observations, and 49.59% in smart city
dataset. Moreover, the results report that the factor-
ized representation of sensor observations requires in
average a small number of RDF triples, e.g., five RDF
triples instead of ten in the weather dataset, while pre-
serving all the information within the original RDF
graph. These results allows us to positively answer
research question RQ1, i.e., factorized RDF graphs
effectively reduce the size of RDF graphs. We also
measure factorization time and factorized RDF load-
ing time to RDF3X, and compare to the time required

12https://github.com/SDM-TIB/
SemanticSensorDataFactorization

http://spark.apache.org/
https://github.com/SDM-TIB/SemanticSensorDataFactorization
https://github.com/SDM-TIB/SemanticSensorDataFactorization

Table 4: Efficiency of the Semantic Sensor Data Factorization. Time that elapses during factorization (FT) as well as the
RDF3X Loading Time (LT).

Dataset Factorization RDF3X LT(s)
ID Time FT(s) Original Factorized

D1 417.229 460.511 252.976
D1D2 1,260.495 1,887.626 970.150
D1D2D3 2,147.239 3,822.723 1,982.697

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000

100000

1000000 D1 Cold Run Q Q'

E
T

 (
m

s
L

o
g

-s
ca

le
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000

100000

1000000 D1D2 Cold Run Q Q'

E
T

 (
m

s
L

o
g

-s
ca

le
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000

100000

1000000 D1D2D3 Cold Run Q Q'

E
T

 (
m

s
L

o
g

-s
ca

le
)

Figure 13: Query Execution Time ET (ms Log-scale) over RDF3x. Original SPARQL queries Q and rewritten SPARQL
queries Q′ are evaluated on cold cache against original and factorized RDF graphs, respectively. Rewritten queries reduce
execution time on factorized RDF graphs by up one order of magnitude.

by RDF3X to upload the original RDF graphs, in Ta-
ble 4. Algorithm 1 as well as factorized RDF loading
to RDF3X requires less than 50% of the time con-
sumed by RDF3X during original RDF data loading.
Thus, with these results research question RQ2 can
be also positively answered.
Impact of Factorized RDF over Query Processing.
We analyze the efficiency of the proposed represen-
tations by running the queries generated using Algo-
rithm 2. First, the impact of our approach on query
execution is studied over centralized RDF engines;
to evaluate the benefits of caching previous results,
queries are executed on cold and warm caches. The
advantage of running these queries on cold and warm
caches on RDF3X are analyzed over the gradually in-
creasing original and factorized RDF datasets. The
original queries Q are compared to the reformulated
queries Q’. Original queries (Q) are executed against
the original datasets, while plans for reformulated
queries (Q’) are run against gradually increasing fac-
torized datasets. Figure 13 reports on the query exe-
cution time (milliseconds. log-scale) with cold cache,
while Figure 14 depicts the observed execution time
when queries are run on warm cache; the minimum
value is reported in all the queries. In all cases, refor-
mulated queries over factorized RDF graphs exhibit
better performance whenever they are run on cold and
warm caches. This observation supports the statement
that because observation and measurement multiplic-
ity is reduced to one in factorized RDF graphs, factor-
ized queries produce small intermediate results which
can be maintained in resident memory and re-used in
further executions. Thus, the performance of factor-
ized queries is considerable better with warm cache,

overcoming other executions by up to three orders of
magnitude, e.g., Q2 and Q6. Results also suggest that
performance of reformulated queries is not affected
by the RDF graph size, e.g., large RDF graphs like
D1D2D3 with 325,827,468 RDF triples.

We further analyse the effect of factorization when
query processing is conducted over the relational rep-
resentations of sensor data, i.e., universal and factor-
ized tables, and the CT based tabular implementation
of original and factorized RDF data. The performance
of queries over Parquet tables depends on the number
of attributes included in the query, as well as on the
ratio between the attributes in the query and the at-
tributes in the tables 13. In queries against the univer-
sal table, the ratio between the number of attributes
varies from 0.09 to 0.45. While the ratio in factorized
queries is in the range from 0.46 to 0.75, and in origi-
nal and factorized CTs is 0.25 and 0.78. So, based on
this statement, queries over the universal table should
be faster than queries over the factorized tables and
CT based tables. However, as observed in Figures 15
and 16, reformulated queries over factorized CT ta-
bles speed up execution time to almost two orders
of magnitude, except Q11 where factorized tables are
performing better. Factorized CTs reduce the size of
tables by creating them around each molecule tem-
plate and factorization further removes data redun-
dancies. Actually, in queries Q4 and Q5, execution
over the universal table times out after 100 minutes.
These results indicate that the rewritten queries speed
up query processing over big data engines.
Discussion. The presented experimental results con-
firm that the factorization techniques are able to re-

13https://parquet.apache.org/

https://parquet.apache.org/

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0.01

0.1

1

10

100

1000

10000

100000

1000000 D1 Warm Run Q Q'

E
T

 (
m

s
L

o
g

-s
ca

le
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0.01

0.1

1

10

100

1000

10000

100000

1000000 D1D2 Warm Run Q Q'

E
T

 (
m

s
L

o
g

-s
ca

le
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0.01

0.1

1

10

100

1000

10000

100000

1000000 D1D2D3 Warm Run Q Q'

E
T

 (
m

s
L

o
g

-s
ca

le
)

Figure 14: Query Execution Time ET (ms Log-scale) over RDF3x. SPARQL queries Q and rewritten queries Q′ are
evaluated on warm cache against original and factorized RDF graphs, respectively. To warm cache up, memory is flushed.
The rewritten queries reduce query execution time by up two order of magnitude.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1 Cold Run U F RDFct F-RDFct

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2 Cold Run U F RDFct F-RDFct
E

xe
. T

im
e

 (
m

s
L

o
g

-s
ca

le
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2D3 Cold Run U F RDFct F-RDFct

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

Timeout Timeout Timeout TimeoutTimeout Timeout

Figure 15: Query Execution Time ET (ms Log-scale) over Relations. Query evaluation over tabular based representations
in cold cache. Executions are timed out after 100 minutes. SQL version of the rewritten SPARQL queries over the factorized
(F) and factorized CT tables (F-RDFct) reduce execution time.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1 Warm Run U F RDFct F-RDFct

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2 Warm Run U F RDFct F-RDFct

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2D3 Warm Run U F RDFct F-RDFct

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)
TimeoutTimeout TimeoutTimeout TimeoutTimeout

Figure 16: Query Execution Time ET (ms Log-scale) over Relations. Query evaluation over tabular representations in
warm cache. Execution timeout is 100 minutes. SQL queries execution time over the factorized (F) and factorized CT tables
(F-RDFct) is less than the universal (U) and original CT tables (RDFct).

duce duplicated measurements in observational data
without any information lost. Furthermore, since
graphs can be factorized incrementally, savings are
observed whenever new incoming tuples are related
to measures previously collected. The benefits of the
approach are reported in the reduction of the number
of RDF triples of the factorized graphs, as well as in
the execution time of queries rewritten over these fac-
torized graphs. These savings are even more signifi-
cant when the query engine provides efficient caching
techniques to maintain in cache intermediate results
of previously evaluated queries. Lastly, in the case of
relational representation of factorized data in big data
infrastructures, space savings are significant, enabling
an efficient query execution over factorized tables.

7 Conclusions and Future Work

This article presents compact RDF representations
for semantic sensor data to reduce data redundancy,
while information is preserved and query execution
performance is enhanced. Moreover, the effectiveness
of the proposed approach was studied over several
query engines. Furthermore, tabular representations
for a loss-less large-scale storage of factorized seman-
tic sensor data are presented. A factorization algo-
rithm transforms original observations and measure-
ments to a compact representation where data redun-
dancy is reduced. Additionally, query rewriting rules
and a query re-writing algorithm are presented. The
query rewriting algorithm exploits the rewriting rules
to rewrite SPARQL queries against factorized RDF
graphs, and speeds up query execution time. The fac-
torized observations and measurements are also ex-
ploited to produce tabular representations for factor-

ized RDF graphs utilizing Parquet tables. We empir-
ically evaluate the effectiveness of the proposed fac-
torization techniques and results confirm that exploit-
ing semantics encoded in semantic sensor data allow
for reducing redundancy by up to 57.96%, while the
time taken by the process of factorizing RDF data is
less than 50% of loading time for the original RDF
data in state-of-the-art RDF stores. Further, the load-
ing time for factorized RDF data is reduced by more
than 45% of the loading time of original RDF data
in native RDF stores. Also, we evaluated the impact
of proposed compact representations over the diverse
implementations available for RDF data, i.e., native
RDF implementations and non-native large-scale tab-
ular based implementations. Thus, CSSD broadens
the portfolio of tools that enable to semantically en-
rich sensor data. As the main limitation, CSSD can
only be applied to data coming from one single de-
vice. In the future, we plan to devise data integration
techniques able to merge RDF molecules generated
from the factorization of heterogeneous data collected
either from sensors or static data sources of observa-
tional data. We will apply these techniques to the en-
ergy domain to facilitate the integration and analysis
of data collected from diverse energy providers.

Acknowledgments

Farah Karim is supported by the German Aca-
demic Exchange Service (DAAD).

REFERENCES

Ali, M. I., Gao, F., and Mileo, A. (2015). Citybench: a
configurable benchmark to evaluate rsp engines us-
ing smart city datasets. In International Semantic Web
Conference, pages 374–389. Springer.

Álvarez-Garcı́a, S., Brisaboa, N. R., Fernández, J. D.,
and Martı́nez-Prieto, M. A. (2011). Compressed k2-
triples for full-in-memory rdf engines. arXiv preprint
arXiv:1105.4004.

Arenas, M., Gutierrez, C., and Pérez, J. (2009). Founda-
tions of rdf databases. In Reasoning Web. Seman-
tic Technologies for Information Systems, pages 158–
204. Springer.

Bakibayev, N., Kociský, T., Olteanu, D., and Zavodny,
J. (2013). Aggregation and ordering in factorised
databases. PVLDB, 6(14):1990–2001.

Bakibayev, N., Olteanu, D., and Zavodny, J. (2012). FDB:
A query engine for factorised relational databases.
PVLDB, 5(11):1232–1243.

Bok, K., Han, J., Lim, J., and Yoo, J. (2019). Provenance
compression scheme based on graph patterns for large
rdf documents. The Journal of Supercomputing, pages
1–23.

Brayton, R. K. (1987). Factoring logic functions. IBM Jour-
nal of research and development, 31(2):187–198.

Brisaboa, N. R., Ladra, S., and Navarro, G. (2009). k2-
trees for compact web graph representation. In Inter-
national Symposium on String Processing and Infor-
mation Retrieval, pages 18–30. Springer.

Codd, E. F. (1972). Further normalization of the data base
relational model. Data base systems, pages 33–64.

Compton, M., Barnaghi, P., Bermudez, L., Garcı́A-Castro,
R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M.,
Henson, C., Herzog, A., et al. (2012). The ssn on-
tology of the w3c semantic sensor network incubator
group. Web Semantics: Science, Services and Agents
on the World Wide Web, 17:25–32.

Copeland, G. P. and Khoshafian, S. N. (1985). A decom-
position storage model. In Acm Sigmod Record, vol-
ume 14, pages 268–279. ACM.

Du, J.-H., Wang, H.-F., Ni, Y., and Yu, Y. (2012).
Hadooprdf: A scalable semantic data analytical en-
gine. In International Conference on Intelligent Com-
puting, pages 633–641. Springer.

Endris, K. M., Galkin, M., Lytra, I., Mami, M. N., Vidal,
M.-E., and Auer, S. (2017). Mulder: querying the
linked data web by bridging rdf molecule templates.
In International Conference on Database and Expert
Systems Applications, pages 3–18. Springer.

Fernández, J. D., Llaves, A., and Corcho, Ó. (2014). Ef-
ficient RDF interchange (ERI) format for RDF data
streams. In The Semantic Web - ISWC 2014, pages
244–259.

Fernández, J. D., Martı́nez-Prieto, M. A., Gutiérrez, C.,
Polleres, A., and Arias, M. (2013). Binary RDF repre-
sentation for publication and exchange (HDT). J. Web
Sem., 19:22–41.

Gaur, A., Scotney, B., Parr, G., and McClean, S. (2015).
Smart city architecture and its applications based on
iot. Procedia computer science, 52:1089–1094.

Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender,
S., and Kersten, M. (2012). Monetdb: Two decades
of research in column-oriented database. IEEE Data
Engineering Bulletin.

Jabbar, S., Ullah, F., Khalid, S., Khan, M., and Han, K.
(2017). Semantic interoperability in heterogeneous
iot infrastructure for healthcare. Wireless Communi-
cations and Mobile Computing.

Jeffrey, D. U. (1989). Principles of database and
knowledge-base systems.

Joshi, A. K., Hitzler, P., and Dong, G. (2013). Logical
linked data compression. In 10th Extended Semantic
Web Conf. ESWC, pages 170–184.

Karim, F., Mami, M. N., Vidal, M.-E., and Auer, S. (2017).
Large-scale storage and query processing for seman-
tic sensor data. In Proceedings of the 7th International
Conference on Web Intelligence, Mining and Seman-
tics, page 8. ACM.

Khadilkar, V., Kantarcioglu, M., Thuraisingham, B., and
Castagna, P. (2012). Jena-hbase: A distributed,
scalable and efficient rdf triple store. In Proceed-
ings of the 11th International Semantic Web Confer-
ence Posters & Demonstrations Track, ISWC-PD, vol-
ume 12, pages 85–88. Citeseer.

MacNicol, R. and French, B. (2004). Sybase iq multiplex-
designed for analytics. In Proceedings of the Thirti-
eth international conference on Very large data bases-
Volume 30, pages 1227–1230. VLDB Endowment.

Mami, M. N., Scerri, S., Auer, S., and Vidal, M.-E. (2016).
Towards semantification of big data technology. In
International Conference on Big Data Analytics and
Knowledge Discovery, pages 376–390. Springer.

Meier, M. (2008). Towards rule-based minimization of rdf
graphs under constraints. In International Conference
on Web Reasoning and Rule Systems, pages 89–103.
Springer.

Neumann, T. and Weikum, G. (2010). The rdf-3x engine for
scalable management of rdf data. The VLDB Journal
The International Journal on Very Large Data Bases,
19(1):91–113.

Nie, Z., Du, F., Chen, Y., Du, X., and Xu, L. (2012). Ef-
ficient sparql query processing in mapreduce through
data partitioning and indexing. In Asia-Pacific Web
Conference, pages 628–635. Springer.

Pan, J. Z., Gómez-Pérez, J. M., Ren, Y., Wu, H., Wang,
H., and Zhu, M. (2014). Graph pattern based RDF
data compression. In 4th Joint Int. Conf. on Semantic
Technology (JIST).

Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P.,
and Koziris, N. (2013). H 2 rdf+: High-performance
distributed joins over large-scale rdf graphs. In 2013
IEEE International Conference on Big Data, pages
255–263. IEEE.

Patni, H., Henson, C., and Sheth, A. (2010). Linked sen-
sor data. In Collaborative Technologies and Systems
(CTS), 2010 International Symposium on, pages 362–
370. IEEE.

Pichler, R., Polleres, A., Skritek, S., and Woltran, S. (2010).
Redundancy elimination on rdf graphs in the pres-
ence of rules, constraints, and queries. In Interna-
tional Conference on Web Reasoning and Rule Sys-
tems, pages 133–148. Springer.

Punnoose, R., Crainiceanu, A., and Rapp, D. (2012). Rya:
a scalable rdf triple store for the clouds. In Proceed-
ings of the 1st International Workshop on Cloud Intel-
ligence, page 4. ACM.

Schätzle, A., Przyjaciel-Zablocki, M., Dorner, C., Hornung,
T., and Lausen, G. (2012). Cascading map-side joins
over hbase for scalable join processing. In SSWS+
HPCSW@ ISWC, pages 59–74.

Schätzle, A., Przyjaciel-Zablocki, M., Hornung, T., and
Lausen, G. (2013). Pigsparql: A sparql query pro-
cessing baseline for big data. In International Seman-
tic Web Conference (Posters & Demos), volume 1035,
pages 241–244.

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cher-
niack, M., Ferreira, M., Lau, E., Lin, A., Madden, S.,
O’Neil, E., et al. (2005). C-store: a column-oriented
dbms. In Proceedings of Very large data bases, pages
553–564. VLDB Endowment.

Ullman, J. D. (1984). Principles of database systems. Gal-
gotia publications.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust,
M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S.,
and Stoica, I. (2016). Apache spark: a unified engine
for big data processing. Commun. ACM, 59(11):56–
65.

Zukowski, M., Heman, S., Nes, N., and Boncz, P. A. (2006).
Super-scalar ram-cpu cache compression. In Icde, vol-
ume 6, page 59.

