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Abstract
The details presented in this article revolve around a sophisticated monitoring framework
equipped with knowledge representation and computer vision capabilities, that aims to pro-
vide innovative solutions and support services in the healthcare sector, with a focus on
clinical and non-clinical rehabilitation and care environments for people with mobility prob-
lems. In contemporary pervasive systems most modern virtual agents have specific reactions
when interacting with humans and usually lack extended dialogue and cognitive compe-
tences. The presented tool aims to provide natural human-computer multi-modal interaction
via exploitation of state-of-the-art technologies in computer vision, speech recognition and
synthesis, knowledge representation, sensor data analysis, and by leveraging prior clinical
knowledge and patient history through an intelligent, ontology-driven, dialogue manager
with reasoning capabilities, which can also access a web search and retrieval engine module.
The framework’s main contribution lies in its versatility to combine different technologies,
while its inherent capability to monitor patient behaviour allows doctors and caregivers to
spend less time collecting patient-related information and focus on healthcare. Moreover,
by capitalising on voice, sensor and camera data, it may bolster patients’ confidence levels
and encourage them to naturally interact with the virtual agent, drastically improving their
moral during a recuperation process.
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1 Introduction

Over the past few years low cost, low energy, wireless devices (cellphones, ambient intel-
ligence (Cook et al. 2009), internet of things (IoT) (Atzori et al. 2010) have surged the
consumer market and entered people’s routines, assisting in leisure activities with wearables
(e.g. biometrics logging), in working environments with ambient sensors (e.g. automated
regulation of light/humidity levels) or in various household uses (e.g. dialogue-driven home
appliances). The healthcare sector has always been at the forefront of adopting new tech-
nologies (Tran et al. 2020; Aouedi et al. 2020; Islam et al. 2015; Tai et al. 2020), since
it’s a field where technological advancements often have the most meaningful impact,
as they directly contribute to the well-being of individuals in dire need of assistance.
Patient monitoring based on always-on wireless cameras and remote data analysis offers
quasi real-time intervention possibilities that may prove crucial in an emergency situa-
tion. Additionally, IoT-infused sensors keep constant track of patient biometrics, while
dialogue-competent virtual agents may assist patients by reminding their drug dosage, their
exercise program or simply keep them entertained with music/quizzes/news, etc. Moreover,
besides patient well-being and satisfaction, health care facilities have also embraced the
aforementioned technologies to optimise personnel management, infrastructure operating
expenses, and drug/treatment efficacy. Although popular and mature to an adequate degree,
the exploitation of these technologies’ potential in real-world monitoring, rehabilitation, and
care settings has not been manifested to the fullest yet and still presents significant chal-
lenges; individual systems have been developed that include interaction with users1 without
however offering a complete and specialised caregiver-to-patient platform.

The present study is an extension of recent work (Mavropoulos et al. 2019) and attempts
to tackle those needs by offering a complete health care-oriented solution that comprises
an assortment of advanced functionalities, such as multimodal sensor data analysis and
management with alarm notifications, a conversational virtual agent with natural user inter-
action and medical history-respecting dialogue management (DM) that accepts a variety of
patient requests, which, to the best of our knowledge, no other system offers in a single plat-
form. Specifically, the proposed platform distances itself from off-the-shelf frameworks by
leveraging multimodal verbal (dialogue) and non-verbal (sensor/camera) information man-
agement as well as data from patients’ medical history to provide a user-friendly experience,
using underlying cutting-edge technologies in computer vision, big data analysis, natural
language processing and semantics. Notably, the platform: a) is user-agnostic, providing
user-requested services to both clinical staff and patients, b) achieves natural user interaction
and prolonged engagement, by exploitation of task-oriented and non-task-oriented conver-
sational systems’ advantages in an innovative DM framework, capable of social interactions
beyond the usual Q&A tasks, c) certifies a holistic approach in patient monitoring, with the
deployment of multimodal sensor data (from cameras, sleep sensors, blood sugar/pressure
levels and wearable readings) aggregation, analysis and fusion, which to the best of our
understanding has not been implemented by other platforms in a single solution, and d)
responds to complex queries, by applying reasoning rules to identify the most appropriate
topic, since semantics provide a framework which can interconnect data in an intelligent
way. A lack of research activity exists in the literature on the topic of combining semantics
with DM. Therefore, the system focuses on the benefits of related state-of-the-art research
in the form of a smart monitoring framework with dialogue capabilities, which supports

1https://medwhat.com/

322 Journal of Intelligent Information Systems (2021) 57:321–345

https://medwhat.com/


the physical recuperation and rehabilitation of patients in both clinical and non-clinical
environments.

The platform, whose development is part of the research project REA2 is capable of:
a) analysing user input by transcribing his/her voice to text and processing the output for
general keywords and named entities of interest in order to understand user needs, b) keep-
ing a history of both user dialogue and status, c) generating an appropriate response using
ontology-driven reasoning techniques, based either on information stored in the system’s
knowledge base (KB) or data retrieved from trustworthy web sources, and d) forwarding
the specific response to the user in written or verbal form via text-to-speech techniques. In
this work, focus is placed on some of the platform’s components that have seen the most
advanced development.

Naturally, the advantage such a system provides to involved parties’ quality of life,
can be two-fold, having both financial and societal consequences; primarily in hospitals,
rehabilitation centres and clinics, it makes caregiver-to-patient relations more efficient,
by limiting unnecessary interactions. Furthermore, mostly in home environments, it also
has direct implications to the patient’s emotional state, by minimising the latter’s reliance
on caregivers and enhancing the sense of independence and self-sustaining. To manage
these objectives, the following research directions are being explored: a) the development
of a versatile platform that can support both the collection and analysis of verbal and
non verbal information, b) the incorporation of multimodal (sensor/camera) data analysis,
human-computer dialogue history and patient medical history along with human profes-
sional expertise to a KB with reasoning capabilities and c) the deployment of a virtual agent,
able to assist medical staff and patients alike.

The rest of this work is organised as follows: An overview of the proposed system’s
architecture is provided in Section 1.1, while in Section 2 the theoretical background and an
outline of the relevant literature are supplied. Section 3 illustrates the experimental frame-
work of our study, and details of the system’s potential in a real-life use case scenario are
also presented. In Section 4 the experimental results are discussed, while Section 5 presents
the initial system evaluation results. Finally, Section 6 concludes the paper and provides
future aspirations towards further exploitation of results.

1.1 System overview

Due to the variety of the novel technologies that are being integrated in the framework, a
well-defined architecture is required to demonstrate precisely the high-level structural ele-
ments of the platform. REA’s architecture is illustrated in Fig. 1. It is composed of three
different conceptual levels: a) the communication understanding, b) the communication
analysis and c) the sensors management. Each level includes a set of software components,
hardware infrastructure and data storage implementations. From the considered software
components ensemble, we focus in this paper only on the ones that have reached a func-
tional initial version. In the figure, they are shown with green background and bold font in
their respective boxes.

All the human-computer interaction is achieved via a mobile device application; all the
interactions and the circulated data between the user and the architecture levels of the plat-
form are guided through the communication understanding level. This level communicates
directly with the user and acts as a central node, permitting data passthrough, and handling

2https://rea-project.gr/en/home-en/
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Fig. 1 System architecture. We report progress on the components with green background

all communication between the other levels. It encapsulates components related to primary
user interface (UI) actions, such as the authentication for authorised staff, and to the estab-
lishment of appropriate communication with the other levels. Also, it performs some initial
processing on the user input (speech-to-text, NLP) as well as processing the final system
output and converting it into voice format.

The system relies on the communication understanding level to carry out essential func-
tionality and on the communication analysis one to manage the interconnectivity between
levels and their respective components. As such, the system cannot operate optimally with-
out either of them, which is not the case for the sensor management level, since, by design,
it can serve additional functionality whenever plugged in.

The components that fall into the sensors management level are responsible for collect-
ing, and analysing data from various sensors and cameras for patient activity logging and
monitoring. The gathered information is either transmitted when a request is dispatched by
the communication understanding level, or sent proactively through an alert mechanism in
the case an emergency is captured by continuous monitoring processes. Apart from just
retrieving sensor/camera values, the application programming interfaces (APIs) existing
in this level also accept commands that perform actions, e.g. changing the tilt angle of a
patient’s bed.

The communication analysis level is indispensable to the integration of advanced and
complicated conversational functionalities into the virtual agent, which improve the sys-
tem’s interaction naturalness. The principal component in this level is the DM module;
it maps the latest user utterance into knowledge graphs, leverages the semantics poten-
tial (reasoning) to infer content that is not provided explicitly and decides in most cases
about the appropriate system response. The decision making process conducted by DM
also takes into consideration the data that are generated in the sensors management compo-
nents, retrieved through the communication understanding level and stored in the semantic
database. Depending on the identified discussion topic, it communicates with semantic-
based or Web-based question-answering systems to retrieve information associated with the
system response. There are few cases when this level is not advised for the final system
response as it can be produced exclusively by the communication understanding level. On
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these occasions, the communication understanding level can send a notification to the DM
module to update its dialogue history of the performed system action.

2 Related work

Interactive virtual agents have migrated from consumer products to specialised domains,
with health care accommodating many approaches (Savino and Latifi 2019), like avatars
that can detect dementia (Tanaka et al. 2017), or others that act as an automated social skills
trainer for people with autism spectrum disorders (Tanaka et al. 2017) or ones that promote
mental well-being (Ly et al. 2017). While not without issues, Bickmore et al. (2018), Apple,
Microsoft, and Amazon in particular have stepped into health care-oriented services (Ravin-
dranath et al. 2018), with Google being also ready to start hospital trials. Health care-centred
systems have managed to facilitate patient and caregiver communication (Aiva3, amazon
echo-based) via multipurpose mobile app and are able to support doctors via easy note gen-
erators (Suki4, Robin5) or even manage appointment re/scheduling and setting reminders
(Merit6). The architectures of these platforms have deployed technologies like speech-to-
text, text analysis, dialogue management, reasoning mechanisms, language generation, and
in REA’s case (this work), visual analysis. In the following, we report on the most important
works that relate to REA’s respective components.

Wearable sensor analysis Fusion is the act of combining data (early fusion) or combining
classification results (late fusion) in the field of human activity recognition. A good guide
for types of fusion and fusion methods employed in activity recognition studies is provided
in Nweke et al. (2019), while in Jain and Kanhangad (2017) concatenation of accelerometer
and gyroscope-based vectors was used as early fusion, which outperformed the late fusion
method. Deep learning algorithms have also been used as a method to fuse different sensors.
In Münzner et al. (2017), convolutional neural networks were utilised to perform early,
late and hybrid fusion. The different stages of the algorithm responded to a different type
of fusion. Late and hybrid fusion outperformed early fusion. Weights that characterise the
performance of a model are also found in late fusion applications. A thorough overview
of weighted late fusion techniques can be found in Chernbumroong et al. (2014), where
various wearable sensors are combined in order to recognize 13 activities.

Visual analysis Visual analysis is deployed in this paper so as to provide patient activ-
ity monitoring capabilities to the system. Related to the task of recognising activities from
video streams are popular techniques that utilize depth imagery as well as 3D human skele-
tons. Most of the earlier works in this domain focused on the extraction of hand-crafted
features from depth maps and human joints, in order to characterize their movement (Wang
et al. 2012; Xia et al. 2012; Zanfir et al. 2013). More recent studies tend towards lever-
aging deep learning and specifically Long Short Term Memory (LSTM) networks (Liu
et al. 2017). Rhif et al. (2018) extends upon the Lie group representation of Vemulapalli
et al. (2014) by involving CNNs and LSTMs. A recent non-deep learning method has been

3https://aivahealth.com
4https://www.suki.ai
5https://www.robinhealthcare.com/
6https://merit.ai/
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proposed by Luvizon et al. (2017) which encoded multiple spatial and temporal features of
different joint subgroups. The aggregation of features is achieved by applying VLAD encod-
ing (Vectors of Locally Aggregated Descriptors) and then optimal feature combinations are
found using metric learning. Our work regarding visual analysis is similar to the latter, in
its concept of feature aggregation, where we deploy a Fisher encoding schema instead of
VLAD.

Natural language processing In our system, a named entity recognition (NER) system
is responsible for detecting entities, such as persons, locations and organisations found
in user queries and subsequently, either maps the specific query to relevant information
stored in the system’s KB or activates the information retrieval component. In contrast to
past approaches, modern NER systems to operate optimally are neither dependent on fea-
ture engineering, nor require specialised resources (Nadeau and Sekine 2007), other than
word representations and a small amount of supervised training data (Mikolov et al. 2013;
Pennington et al. 2014; Bojanowski et al. 2017), making their usage very versatile and
“domain-agnostic”. The latest advancements in the field take the form of models based on
deep contextualised word representations and an attention architecture called Transformer
that learns contextual relations between words. In the latter, the trained vectors consider the
input sentence in its entirety and across all layers, instead of just the nearest word context
of the top layer found in previous approaches. This approach has improved results even fur-
ther and newer systems present f1-scores of around 92-93 in the Conll2003 dataset, as can
be seen in ELMo (Peters et al. 2018) (92.2 F1), BERT (Devlin et al. 2018) (92.8 F1), Flair
(Akbik et al. 2018) (93.09 F1) and in Baevski et al. (2019) (93.5 F1).

Semantics Semantics offer an intelligent interconnection between information coming
from heterogeneous sources as they better organise information, limit complexity and
extract inferences (Dam et al. 2011) which are very useful in problem solving and decision
making systems. Web Ontology Language (OWL) has been designed to represent complex
knowledge about entities and relations between them which are saved into RDF triplestores,
named Knowledge Bases. Many ontologies have been developed which provide classes and
properties to represent different types of models. Web Annotation Data Model (Sanderson
et al. 2017) offers the structure to represent an annotation as a set of linked resources, con-
taining a target and a body that is strongly attached to the target. OWL-Time (Hobbs and
Pan 2006) ontology describes temporal aspects of resources and the relations between them.
Friend Of A Friend (FOAF) (Brickley and Miller 2007) and General User Model Ontology
(GUMO) (Heckmann et al. 2005) ontologies cover many different aspects of user profile
information. Their usage in REA’s population system is shown in Section 3.5.

Dialogue management The main distinction that can be made on conversational systems
is the one between task-oriented and non-task oriented systems. The former are developed to
perform specific tasks, whereas the latter are utilised in cases where there is no specific goal
and when the system’s role is to establish a social connection with the user. For example, a
task-oriented system can support making reservations in a restaurant (Jurcicek et al. 2011),
while a non-task-oriented system can keep company to elderly people (Higashinaka et al.
2014). In this work, a framework that combines task-oriented and non-task-oriented systems
has been created. However, such hybrid systems have only recently been studied. In the
work of Yu et al. (2017), they apply non-task-oriented strategies when the user’s intention
is not clear. A work that is closely related to our work is presented in Pragst et al. (2017). In
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that agent, a decision mechanism determines whether the conversational agent will rely on
the knowledge-based module or on its own data.

3 Methodology

3.1 Datasets

A make or break feature concerning machine learning approaches is the availability of
appropriate datasets that will be used to train the relevant computational models. For the
wearable sensor analysis application, we used the Heterogeneity Human Activity Recog-
nition (HHAR) dataset (Stisen et al. 2015) that contains accelerometer and gyroscope
recordings from smartphones and smartwatches. The HHAR dataset contains devices with
different sampling frequencies as its initial use was to model heterogeneity. Six activities
were recorded in the dataset: bike, sit, stairs down, stairs up, stand and walk. The visual
analysis activity recognition component is trained on the SYSU 3D HOI RGB-D activity
dataset (Hu et al. 2017), which contains 480 videos and includes 12 action classes performed
by 40 different individuals. The dataset focus is on activities that involve human-object
interaction. In the context of the NLP task, the model has been trained and evaluated on
the CoNNL2003 dataset (Sang and De Meulder 2003) which includes annotation for four
classes of entities: Person (PER), Location (LOC), Organisation (ORG), and Miscellaneous
(MISC). The dataset is considered balanced, as it contains similar number of named entity
occurrences in the three important categories (PER, ORG, LOC).

3.2 Wearable sensor analysis

In order to leverage the information of many sensors during the project implementation,
the research group proposed a late fusion algorithm that utilises weights, a technique that
was tested in a previous work (Tsanousa et al. 2019). In the current section the previous
applications of the fusion method in Tsanousa et al. (2019, 2020) are extended to one more
public dataset of the activity recognition field and the obtained results are compared to the
performance of individual sensors’ and the results of two other fusion methods.

The human activity recognition process begins with a sliding window with overlap.
The sliding windows were taken in order to extract features, similar to Chowdhury et al.
(2017). Time domain features (mean, median, maximum, minimum, standard deviation and
variance) were extracted from the sliding windows without any further filtering or pre-
processing of the data. Several multilabel classification algorithms were tested and the
ones that are reported here are: Random Forests (RF), C5 trees and k-Nearest Neighbors
(kNN). Each classifier was applied separately to a sensor and the classification results of
the algorithms were combined afterwards. For the fusion step, we used the weighted late
fusion framework we introduced in Tsanousa et al. (2019), which is based on detection rate,
the simple late fusion method of averaging class probabilities and the weighted accuracy
method. To derive the weights for the fusion step, the typical steps of a classification frame-
work were applied. An algorithm was trained on the training set and then applied to the
test set in order to predict the types of activities. The classification algorithms were applied
separately to each sensor and the classification results are afterwards combined using the
late fusion methods mentioned. The comparison of the predicted labels with the true labels
gives the evaluation metrics that will then be used as weights in the fusion process. Using
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the fusion schemes mentioned, we combined two types of sensors, namely accelerometers
and gyroscopes. The fusion frameworks are described below:

Weighted accuracy Weighted accuracy (WACC) is a model-based approach, which means
that the weights used, enhance the model that has the best performance overall. Accuracy
(Metz 2008) is probably the most common evaluation metric used to characterise the per-
formance of a classifier. In this method, the accuracy of a model is divided by the sum
of accuracies (Eq. 1). These weights are then multiplied by the respective class probabil-
ity vectors Pij = {

pi1(x1), ..., pik(xn)
}
, i = 1, ..,m and the products of all models were

finally added together to create a final class probability vector (Chernbumroong et al. 2014).
The class with the maximum probability was assigned to each test case. The formula for
weighted accuracy, as described in Chernbumroong et al. (2014), is calculated for each one
of the i models.

WACC = Accuracy(i)

∑m
i=1 Accuracy(i)

(1)

Detection rate based weighted late fusion This method is considered class-based, thus
it pays attention to the recognition of each class, which is usually characterised by the F1-
score (Chowdhury et al. 2017) or balanced accuracy. It was introduced by the authors of
the current paper in Tsanousa et al. (2019). The supplement of the detection rate of a model
(Wij = 1 − DRij ) was chosen as weight, believing it will assist the recognition of classes
not so easily predicted. The detection rate (DR = T P/(T P +T N+FP +FN)) is obtained
again in the testing phase of a model, by comparing the true with the predicted labels. The
weights are calculated for each model separately and the weighted probability vectors of
all sensors are afterwards summed together. The detection rate is different for each class,
therefore each class j has different weights. Using (Pw = WijPij ), we multiply the weights
with the respective class probabilities and then add the weighted probabilities of the models
that will be fused. Again, to assign a class to a test case, we find the class with the maximum
fused probability.

Averaging As already stated, each model of those that will be combined, produces k (j =
1, .., k) class probability vectors. To combine the results of the different models, we average

the respective class probability vectors of the m models combined
(
Pj =

∑m
i=1 Pij

m

)
.

3.3 Visual analysis

Activities in their primitive form can be seen as sequential frames of human pose configura-
tions. We aim to extract low-level pose descriptors, based not only on joint configurations in
the spatial domain but also on joint displacement vectors in time the domain. An activity clip
can then be characterised by a high-level compact representation, derived by aggregating
the information of the full collection of pose descriptors that have been extracted.

Low-level pose descriptors We adopt the original Moving Pose (MP) descriptor by Zanfir
et al. (2013) which assumes that the pose, P(t), is a continuous and differentiable func-
tion of the body joint positions over time; as such, we can calculate its second-order Taylor
approximation in a short temporal window around the current time-step. The first and sec-
ond order derivatives of the pose function effectively encode information about the temporal
changes in pose configuration inside a short temporal window. The final low-level moving
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pose descriptor is the concatenation of the static pose vector and the first and second order
derivatives. The derivative vectors are then re-scaled to the unit norm, in order to remove
irrelevant variation in absolute speed and acceleration across different input sequences. All
the train and test skeleton limps are normalised in order to have the same average length
between limps of the same type, whilst maintaining the angles between joints.

High-level activity representations Our first contribution lies on the construction of the
final activity representations, which are not formed directly by the values of the low-level
descriptors themselves, but, rather, from first and second order statistics based upon proto-
typical descriptors, as explained thoroughly in a previous work of ours (Giannakeris et al.
2020). The process is initiated by reducing the MP descriptor dimensionality using Princi-
pal Component Analysis. Next, the aim is to create a statistical model that understands a few
prototypical Moving Poses from the training set. To achieve this objective, Gaussian mix-
tures are used, which are probabilistic models that assume all the data points are generated
from mixtures of a finite number of Gaussian distributions (GMM) with unknown parame-
ters. The EM algorithm is applied in order to fit a mixture of Gaussians to the training set
and find the optimal parameters. Finally, the full set of low-level descriptors extracted from
an activity clip is expressed using the gradients of the log-likelihood of each feature under
the GMM, with respect to the GMM parameters. This process is known as Fisher encoding
and the final representations are called Fisher Vectors (FV) (Sánchez et al. 2013).

Our previous experiments (Giannakeris et al. 2020) have shown that by aggregating Mov-
ing Pose vectors, Fisher encoding can increase recognition performance, compared with the
modified-KNN (k Nearest Neighbors) approach of the original Moving Pose paper (Zan-
fir et al. 2013). Note that the small transitions of pose configurations over short temporal
segments have already been encapsulated on the low-level descriptors themselves. How-
ever, by aggregating information over the full activity clip, the resulting representations may
lack higher-level information about the temporal evolution of prototypical moving poses as
an activity is performed. Therefore, our second contribution is to introduce stacked Fisher
Vectors extracted from non-overlapping sliding temporal windows over the full activity
sequence. To do this a sequence is split into s parts of equal duration and s Fisher Vectors
are extracted, as described previously. Finally, all the individual Fisher Vectors are concate-
nated into a stacked Fisher Vector representation (SFV). During testing, SFVs can now be
classified using the inexpensive linear SVM classifier. Both techniques have been evaluated
and the results are presented in the following section.

3.4 Natural language processing

In this section, we present the neural network’s NER architecture and elaborate on its most
important features. Since the main issues that we need to address revolve around the candi-
date word’s form and placement in a given sentence, we employ combined character-level
and word-level representation techniques to handle them with efficacy.

The adopted approach is based on a bidirectional LSTM model with a Conditional Ran-
dom Field (CRF) layer on top. While specific Transformer-based architectures were tested,
they were more computationally expensive, which had an immediate impact on the time
the model required to run and provide results. Thus, since the system relies on near real-
time reporting, such models were not pursued further. LSTMs are ideal when dealing with
sequences of data (like text) because of the way the network channels information via its
nodes, leveraging its ability to keep information in memory based on history. Any sequen-
tial information is being kept in the LSTM’s internal state (AKA hidden layer) and is being
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updated with each new data via input/output and forget gates. This way the network is capa-
ble of predicting the output based on long distance dependencies. The bidirectional nature of
the LSTM network manifests with two processes, applicable to each lexical unit of a given
sentence that each computes a representation of the lexical unit’s left and right context.

Character-level embeddings that take into account the spelling of words are used, to
counter issues deriving from language complexity. The technique involves breaking up each
lexical unit in its respective characters and then feeding the resulting sequence to a bidi-
rectional LSTM which turns it into a spelling-respecting vector. In order to also respect the
syntactic structure of a document and convey each lexical unit’s contextual characteristics
word-level representations are indispensable. Again, a bidirectional LSTM is used to cap-
ture each lexical unit’s contextual information (left and right context). Thus, the final word
representations combine both of the above embeddings.

Furthermore, to fulfil the task of NER, assigning a NER label to each word in a sentence,
the output needs to be annotated accordingly. It has been shown that CRFs (Lafferty et al.
2001) can produce high tagging accuracy; thereby we employ a CRF layer to attribute labels
for the whole sentence by leveraging sentence level tag information. The tagging format
used follows the BIO scheme (B-TAG for Beginning of entity, I-TAG for Inside of entity,
O-TAG for Outside of entity) where each word in a sentence is assigned a label reflecting
its role. A named entity frequently spans not just one, but many lexical units and using this
format is possible to annotate them efficiently irrespective of their length. As such, in the
sentence: REA, what’s the medication that is being administered to Mr. Smith? the respective
annotation reads B-PER O O O O O O O O O O O O O B-PER O. This tagging scheme
has already yielded promising results, but in consequent testing, the format will be updated
to either the BILOU or BIOES variants; they are comparable and usually improve scores
even further since they predict dedicated tags for unique/single (U-TAG in BILOU / S-TAG
in BIOES) or last/end entities (L-TAG in BILOU / E-TAG in BIOES). Figure 2 highlights
the network’s structure, which is comprised of an input layer (word embeddings), a hidden
layer (Bi-LSTM encoder) and an output layer (CRF layer).

In the specific implementation that is currently being tested, training / validation / test
data are comprised of two text files; the first one contains all the user queries that become

Fig. 2 Bidirectional LSTM-CRF model for Named Entity Recognition
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Fig. 3 Semantic Web system architecture

available from the speech-to-text service, while the second contains the BIO annotation of
the aforementioned queries, one query per line for both. The results are then outputted in
a single file, in a “one sentence token-per-line” format. In the same line, apart from the
sentence token the assigned label is also displayed in a tab-delimited format.

3.5 Semantics

We propose a semantic web system which consists of three basic components.

Semantic population system It creates the appropriate representation for metadata coming
from heterogeneous sources like verbal communication with the patient, text analysis, cam-
era surveillance, sensor measurements. The system uses OWL 2 ontology language to offer
knowledge representation by creating relations between the metadata. GUMO, FOAF and
Time ontologies have been extended to meet the needs of the REA project. The semantic
population data are saved in the Semantic graph database GraphDB.

Reasoning system It uses Description Logic (DL) services to create important rules for
supporting the DM system to infer the discussion topic from the communicated entities. A
relevant example reasoning rule is described below:7

AskT reatmentForInjury ≡ DialogueEntity � ∃contains.T reatmentRef erence

Each entity that comes from the dialogue with the patient is marked as a dialogueEn-
tity. Text analysis is applied in the concepts stemming from the dialogue procedure.
When a treatment reference is found in the concepts, the discussion topic is defined as
AskTreatmentForInjury.

Semantic data retrieval system It applies semantic queries to the data in the Knowledge
Base so to return the most appropriate information according to each user or system request.
The semantic data retrieval system is affected by the topic selection of the reasoning system.

The semantic web system’s architecture (Fig. 3) is strongly connected with the DM sys-
tem. The latter provides metadata to the semantic population system, while it communicates
with the semantic web system to retrieve the appropriate information to respond to the
patient.

3.6 Dialoguemanagement

The Dialogue Management system is based on the hybrid dialogue framework proposed
in Kamateri et al. (2019), which consists of five major components: a) the contextual

7We use the Description Logic syntax where OWL2 is based on.
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modelling and representation, b) the topic detection, c) the dialogue coordination, d) the
semantic intelligence and e) the strategy selection. Figure 4 shows the components and the
way they interact. In short, the DM system processes the user questions/responses, com-
municates with the appropriate information retrieval system (semantic-based or Web-based
question answering) and decides about the next system response.

Contextual modelling and representation This component represents semantically the
verbal and non-verbal input and interconnects it with the existing domain knowledge,
regarded as an interface to the semantic web system (Section 3.5). It makes use of two
ontologies that comprise the domain and the dialogue model. The domain model stores
information that describes an individual’s profile, health conditions, received therapy and
exercises, and other data related to the individual’s behaviour. The dialogue model holds
information about the possible conversation topics and the user and system actions.

For the domain model, we made use of two already existing ontologies, extending them
based on our application-specific aspects, the COPDology (Ajami and Mcheick 2018) and
the IDEF5 (Kultsova et al. 2016), as they best fit our knowledge representation needs. For
the dialogue model, we made use of the move concept of the OwlSpeak ontology (Ultes and
Minker 2014) and we expanded it to map the user and system actions and the supported
discussion topics.

The component initially takes as input the key entities, including named entities
(Section 3.4), that are associated with the user utterance and extracts resource categories.
Then, the resource categories are used to find entities that exist in the domain model by
means of the semantic web system (Section 3.5).

Topic detection The topic detection component takes the user utterance and associates
it with a discussion topic from the dialogue model. To achieve this, the component can
utilise semantic reasoning (Section 3.5) or a simple classification algorithm. In the latter
case, the algorithm calculates the probability of the candidate topics, taking into account
the communicated entities and domain entities that have already been associated with the
candidate topics. The candidate topic set is predefined based on the user requirements and
is configured before the deployment of the DM system. Even so, the system is capable of
handling any combination of candidate topics without modifying its internal mechanisms
(e.g. the topic detection algorithm).

Fig. 4 Dialogue Management system framework
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Semantic intelligence The semantic intelligence module updates the domain model with
the new information that is circulated during the interaction between the user and the agent.
Furthermore, it updates the dialogue history with the extracted entities and the topic of
each dialogue turn. Another functionality of this component is to retrieve relevant content
from the knowledge base. Last, it applies SPARQL reasoning techniques to generate alerts,
reminders and recommendations. These actions are triggered by the knowledge of the pre-
ceding discourse in combination with the specific user profile, forwarding system moves
that are not directly related to the discussion topic.

Dialogue coordination The dialogue coordination module produces task and non-task ori-
ented system actions and renders the entire component a hybrid one that combines the two
different types of conversation systems. Based on the number of identified topics and the
matching score, it selects among the following topic-oriented actions: a) predefined topic-
based (re-)action, when the matching score of a topic is high enough, b) clarification action,
when more than one topics receive an adequate matching score, and c) say-again action,
when matching score is quite low.

In order for the system to be able to follow a non-task-oriented functionality, it formulates
a set of social-oriented actions: a) switch topic, b) initiate a relevant topic, c) end current
topic and open question, d) suggest more information and e) elicit more information. The
non-task-oriented functionality is complemented by the actions generated by the semantic
intelligence module, including alerts, reminders and recommendations.

Strategy selection The role of the strategy selection component is to determine which
candidate action is the most appropriate to be returned as a system response. Three dif-
ferent mechanisms have been considered for the REA project: a) Random selection, this
is a simplistic approach selecting randomly between the chosen topic-oriented action and
the extracted actions from the semantic intelligence module. In the cases when the topic-
oriented approach fails to return an adequate score, all the social-oriented actions are also
considered in this random pick of system action. b) Selection based on the dialogue con-
text, where the extracted candidate responses are ranked using significance scores and the
top-ranked one is returned to the user (e.g., responses generated by the semantic intelli-
gence module are preferred over topic-oriented actions), c) Selection based on reinforcement
learning, where a simplified version of the Q-learning approach, presented in Yu et al.
(2016), can be utilised to train a policy for decision making. The reward function parame-
ters are defined with the help of domain experts’ knowledge and comprise the turn index,
the number of times each strategy was selected and the most recently used strategy.

The current version of the system supports the first two of the three strategy selec-
tion methodologies. The reinforcement learning approach is still under design and more
parameters may be added in the reward function when it is finalised.

3.7 Platform deployment and use case example

This section illuminates REA’s deployment, installation and user evaluation phases and set-
tings. Then, a use case example is presented to showcase the utility that a health-oriented
virtual agent may offer.

333Journal of Intelligent Information Systems (2021) 57:321–345



Table 1 Doctor-agent use case scenario

Actor Interaction

(i1) Doctor REA, did Mr. Goines leave his bed today?

(i2) REA Yes, he walked for 10 minutes, was sitting for 30 minutes and visited the restroom 3 times.

(i3) Doctor Did he have fever during visiting hours?

(i4) REA No, his body temperature was 36.6 degrees Celsius.

(i5) Doctor What is the weather tomorrow?

(i6) REA It will be sunny, around 21 degrees Celsius.

(i7) Doctor Please remind the patient to have a walk at noon.

(i8) REA Reminder set for tomorrow at noon.

(i9) Doctor Thank you, that would be all.

(i10) REA Have a nice day Dr. House!

3.7.1 Evaluation environments

System deployment and installation will be carried out in three phases. During the first two
phases, REA will be installed (first phase) and then evaluated (second phase) in a clinical
setting. This process is expected to yield useful feedback from patients and medical pro-
fessionals in order to report the platform’s shortcomings and update the system accordingly
in view of the next development iteration. The user partner that will host the REA system
and partake in its assessment is the EVEXIA8 rehabilitation centre, which is an established
health care service provider in the area of Thessaloniki for the past twenty years. The sys-
tem will be initially installed to monitor two single-bed hospital rooms, with a plan to add
another eight during the second and third phase, for a total of ten rooms. The installed
equipment will include all the required sensors and cameras, which will monitor patient
behaviour. Finally, a home environment installation (two residences) will take place during
the third phase that will feature the updated version of the platform.

3.7.2 A use case scenario

In an effort to convey the level of assistance REA is capable of providing in a hospital
environment, a simple use-case interaction between a clinician and the system is presented.
The platform’s multifarious functionality is highlighted by placing emphasis on poten-
tial reminders—alerts that REA can facilitate—and on the informational needs that it can
accommodate. In Table 1, the example dialogue between a doctor and REA is presented,
while the involvement of all the system components in the human-machine interaction is
broken down in the subsections that follow.

Language understanding It follows a three-step procedure: first, it transforms the ver-
bal communication information into text, then it detects concepts, named entities and the
relations between them, and in the end, it identifies the BabelNet synset of each term. For
instance, in sentence (i1) the concepts “Goines”, “leave”, “bed” and “today” are extracted,
while in (i3) the detected concepts are “fever”, “visiting” and “hours”. Each concept
is matched with a BabelNet synset URL e.g. fever corresponds to “https://babelnet.org/

8http://www.evexia.com/en/
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synset?word=bn:00033883n&lang=EN&langTrans=EN”. The patient’s profile is accessed
by exploiting the extracted named entity “Goines”.

Reasoning After the concepts’ recognition by the language understanding step, a reasoning
mechanism is applied to detect the semantic meaning behind the concepts. In sentence (i3),
for example, the mechanism detects a fever context when the measurement of the patient’s
body temperature is in a range from 37◦C to 42◦C, as shown in the following example. In
case that the constraint is not satisfied, the patient has a normal body temperature.

FeverContext ≡ PatientHealthMeasurements �
∃hasCondition.(BodyT emperatureRange � ∃value.high)

where high is the symbolic representation of high temperature, assigned to the person when
the measurements indicate fever (temperature > 37).

Dialogue management It is involved in all interaction turns in this dialogue. Firstly, it
discovers the discussion topic and the main entities of the user utterance. For example, in
(i1) the topic is AskPatientMovementForSpecificDay and in (i5) it is AskWeatherForSpeci-
ficTime. Indicative entity categories identified are temporal (today in (i1) and visiting hours
in (i3)), or named entities (Mr. Goines in (i1)). In addition, using semantic knowledge it
manages to map pronouns like he in (i3) to the correct patient.

Based on the identified topic, it generates candidate actions that may retrieve information
from the Knowledge Bases, the sensors/cameras data and the Web-based question answering
system. For answering (i1), it consults semantic knowledge to find actions related to leaving
from bed and sensors/camera data for the details of these actions, while for (i5) it redirects
the user request into the Web-based question answering service.

Apart from predefined topic-based reactions, it can generate actions which are based on
conversational history. A typical one is an alert that can be triggered if a user repeats the
same question many times. Finally, it is responsible for producing social oriented actions
like reminders (i7).

Visual analysis The monitoring functions of the visual analysis components provide infor-
mation about the activities Mr. Goines was doing this particular day, as well as the rooms
he was detected by the cameras to walk into, i.e. in this case the bathroom (i2).

Wearable sensor analysis Wearable sensors are involved in interaction (i2) to recognise
the activities performed by the patient. The recordings of the patient’s wearable sensors are
extracted, along with the respective timestamps, which are used to estimate the duration
of the activities. These recordings are analysed and using a classification algorithm, the
performed activity is recognized. The timestamps are used to estimate the duration of the
activities.

4 Components evaluation and results

In this section, results of the aforementioned components are reported. The presentation
is limited to the subsystems where a technical evaluation is possible, based on current
development.
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4.1 Wearable sensor analysis

Having already evaluated our method in certain public datasets, and in order to check its
versatility, we test its performance on one more public dataset, the HHAR, to combine
previous efforts with accelerometers and gyroscopes. The results of the proposed method
are compared with the individual performance of sensors and with two other late fusion
methods, the weighted accuracy and averaging. We subset the initial data based on the model
of the device so that all recordings have the same frequency. Here we report the results for
the Samsung s3 mini model, with a frequency equal to 100 Hz and for the LG Nexus 4 with
200 Hz sampling frequency. The time domain features are extracted from a sliding window
of 2 seconds with 1 second overlap, which in the S3 mini subset responds to 200 recordings
with 100 overlap, since the sampling frequency is 100 Hz, while in the LG Nexus 4 subset
respond to 400 recordings with 200 overlapping. Thus the time domain features mentioned
earlier are calculated from the recordings that constitute the time window.

Table 2 presents the accuracy values of the classifiers applied to the recordings obtained
from each device. In both devices, for all classifiers, fusion of the results of two sensors
outperforms individual performances. The values of the three fusion methods are quite close
and do not show remarkable deviations.

This application confirmed the importance of late fusion in the improvement of recog-
nition rate of activities when using wearable sensors. It is also obvious that our method is
quite promising and performs equally well with other fusion methods.

4.2 Visual analysis

Until now, we have tested the Moving Pose descriptor with Fisher encoding using a single
FV to two well-known RGB-D (RGB and Depth) datasets for activity recognition (Gian-
nakeris et al. 2020). In this work, we extend our experimental efforts to another RGB-D
activity dataset so as to examine the applicability of SVF for various values of s and sev-
eral GMM vocabulary sizes. The SYSU 3D HOI dataset (Hu et al. 2017) poses several key
challenges which are different from the other two datasets previously examined: a) There
are similarities between the manipulated objects among some activities (e.g. sweeping and
mopping); b) there are many subjects performing the activities, therefore more inter-subject
variations can be observed for the same type of activities due to the different characteristics
of participants. We follow the cross-subject splitting approach for evaluation, where half the
subjects are used for training and the other half are used for testing. We present the mean
accuracy of 30 random cross-subject splits, which is the designated evaluation protocol for
this dataset (Hu et al. 2017).

Table 2 Accuracy values for the Samsung S3 mini subset and the LG Nexus 4 subset

Accelerometer Gyroscope DR fusion Averaging WACC

RF 0.7225 0.6352 0.8696 0.8709 0.8593

S3 C5 0.7013 0.5934 0.8131 0.8144 0.8189

kNN 0.7887 0.5768 0.8234 0.8491 0.8343

RF 0.6776 0.6426 0.7977 0.7948 0.7948

Nexus C5 0.6928 0.6148 0.7727 0.774 0.7747

kNN 0.6963 0.6131 0.7203 0.7621 0.7582
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We experiment with 3 different values for the number of stacked Fisher Vectors, s, where
s = 1 is essentially a single Fisher Vector encoding the full sequence. We also experi-
ment with 4 different vocabulary sizes for the GMM. Table 3 shows the results after 30-fold
cross-validation of all the combinations of s and Number of Gaussians. The color map indi-
cates lower accuracy with yellow hues and higher accuracy with orange hues. The accuracy
of a single Fisher Vector (bottom row) is low regardless of the vocabulary size. This means
that even if the number of prototypical poses in the model is increased, the method still
cannot outperform the variant where multiple Fisher Vectors are stacked. Instead, the best
results are obtained when 32 prototypical poses are trained and 3 Fisher Vectors are stacked.
Performance slightly drops in the GMM axis after this point. This may be due to redundan-
cies in the increased set of prototypical poses that are created for higher values. Note that
these parameters are chosen to optimise performance for this particular dataset. In a larger
scale dataset where a lot of activity categories may exist, the method is expected to benefit
from a bigger GMM vocabulary that can capture higher variance. In addition, when deal-
ing with longer activity sequences, stacking more Fisher Vectors should also yield better
performance. Therefore, those parameters introduce flexibility to deal with various train-
ing data characteristics, with regards to both the number of samples as well as the duration
of the clips. This is especially important, since the final system will be trained in a con-
tinuously increasing pool of data as more and more patients enter the program. Regarding
efficiency levels, our proposed method achieves fast inference times with processing speeds
of 300-400 frames per second, which is enough for real-time monitoring of ten patients. All
the experiments were performed using a quad-core CPU clocked at 3.50GHz with 32GB of
available RAM.

Table 4 shows the comparison with other related works on this dataset that use skele-
ton based features (all use 30-fold cross-validation). Our Moving Pose + SFV methodology
achieves higher recognition accuracy compared to LAFF skeleton features of Hu et al.
(2016) and the ST-LSTM of Liu et al. (2017). The first uses a 3-level pyramid to capture
temporal structure, while the second learns long-term dependencies in sequential skeleton
data using spatio-temporal LSTMs. Both works can process videos real-time, but the second
reports inference times using a GPU. On the contrary, Dynamic Skeletons (Hu et al. 2017)
surpass our method in recognition accuracy by 1.1%, using temporal pyramid Fourier fea-
tures. Our method is also surpassed by a deep progressive reinforcement learning framework

Table 3 Mean accuracy (%) for
different GMM + SFV
parameters
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Table 4 Comparison with
State-of-the-art Method Accuracy (%)

LAFF (SKL) (Hu et al. 2016) 54.2

ST-LSTM (Tree) (Liu et al. 2017) 73.4

Dynamic Skeletons (Hu et al. 2017) 75.5

DPRL + GCNN (Tang et al. 2018) 76.9

Moving Pose + SFV 74.4

for key frame selection, which uses a graph-based convolutional neural network to model
dependency between human joints (Tang et al. 2018). DPRL + GCNN has a higher per-
formance by 2.5%, but it also heavily relies on deep learning which comes along with
the requirement of GPU deployment in order to achieve fast inference times. Overall, our
method’s robustness level is close to the current state-of-the-art results—at least in the exam-
ined dataset—whilst supporting real-time processing of approximately ten video streams.
Note that, the activity recognition function of REA, is also backed up by wearable sensor
analysis, as already discussed, therefore possible shortcomings of either component may
be covered by the other. However, such complementary characteristics have not yet been
thoroughly investigated yet. In case of conflicting results from multiple sensors/cameras
we follow the simple route of accepting the most confident classifier. In general, for a
multi-modal scenario, it is best to use fusion techniques that combine the classification prob-
abilities, instead of the predicted classification labels. Furthermore, there are more elegant
approaches for fusion like stacking and bagging that train the classifier on the classification
probabilities of the two sources, however this has not been tested yet on a real-time scenario.

4.3 Natural language processing

Network parameters and training The parameters that were used during training of the
Bi-LSTM-CRF models are displayed on Table 5. The word representations used and eval-
uated as input in the current model are the publicly available, pre-trained 300-dimensional
GloVE embeddings (Pennington et al. 2014) trained on the common crawl corpus for the
English language, the ELMo embeddings (Peters et al. 2018), and the BERT embeddings
(Devlin et al. 2018). In the current testing phase, the same settings will be applied to both
English and Greek (when available). However, in future phases, these will be fine-tuned to
perform optimally, taking advantage of all differentiating features of the specific resources.

Table 5 Bi-LSTM-CRF settings
used for the NER task Training parameters Value

Optimiser Adam

Character embeddings dimensions 100

Word embeddings dimensions 300

Dropout rate 0.5

Epochs 25

Batch size 20

LSTM size 100
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Table 6 NER performance of the proposed system vs. other popular approaches

System (CoNLL2003) Precision Recall F1-score

Our system (ELMo embeddings) 91.63 93.01 92.32

Our system (BERT embeddings) 91.46 92.32 91.88

Lample et al. 2016 90.95 90.94 90.97

Best shared task system: Florian et al. 2003 88.99 88.54 88.76

Baevski et al. 2019 (not reported) (not reported) 93.5

Results To evaluate system performance the values for precision, recall and F1-score mea-
sures were computed. At this point the results concerning the English language are very
similar to the state-of-the-art, yielding an F1-score of ˜92 (Table 6). To help improve this
score, on future iterations the model will be updated with newer embeddings (e.g. Flair
Akbik et al. 2018) and annotation (to the BILOU/BIOES format).

Next, we introduce four example tweets extracted directly from the REA platform after
having been processed by the NER tool. Integrated NER annotation is included to better
convey the application process, while in Table 7 the difference in the results when using
different embeddings is illustrated.

1. What events are available in Athens (LOC) today?
2. I wish to know more about the Brexit (MISC).
3. I wish to hear the latest Coldplay (MISC) album.
4. Rea (PER), what medication is being administered to Mr. Smith (PER)?

5 End-user evaluation

Towards assessing the performance of the entire REA platform, we are conducting a user-
oriented evaluation process. The principal reason is that regardless of the efficiency of
the individual components, based on objective benchmarking metrics, the actual evaluation
decision is in the hands of the end-users.

The aim of the initial user-centred assessment is to assess users’ thoughts and experiences
when using the system to support its development. Despite some functionalities of REA
are not yet finalised, the first prototype of the system with limited features was released
and available to test and evaluate in a real environments. The initial version of the system
included only a subset of the outlined deployed options, however, feedback was crucial and
defined what the platform progress should be towards the final phase.

Table 7 Performance evaluation of the proposed system with different embeddings

System configuration Correct entities Wrong entities

Current embeddings (Glove) Athens, Smith Brexit (ORG), Coldplay (LOC), Rea (ORG)

With ELMo Athens, Brexit, Smith Coldplay (ORG), Rea (ORG)

With BERT Athens, Brexit, Rea, Smith Coldplay (ORG)
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The selected environment for the evaluation activity was the EVEXIA rehabilitation cen-
tre. The first pilot was set up in two beds of the clinic, where respective patients interacted
with the system and provided feedback. More specifically, the user groups in this assessment
procedure were as follows:

– 20 patients that were in their rehabilitation phase.
– 15 individuals from the clinic personnel with diverse professional backgrounds

(4 doctors, 3 nurses, 3 physiotherapists and 5 caretakers of other specialties).

It should be noted that the software has been designed to execute real-time requests from
multiple different users/patients.The number of different users only depends on the available
hardware resources. Any modern multithreaded server with a reasonable amount of system
RAM is adequate to handle the REA system, since none of the developed sub-systems have
high memory complexity or require excessive amounts of system memory by themselves.
The central component of the system is occupying approximately 50MB of RAM memory,
while the rest of the components occupy 20GB of system RAM. During the evaluation
phase, REA’s capacity for simultaneous monitoring was up to 2 patients. Accordingly, the
evaluation for 20 patients was carried out during 10 different cycles.

A three-stage evaluation was organised, with each stage lasting three days. Three differ-
ent methods were employed for obtaining the required results: a) observation by the medical
staff during the pilots, b) interviews with questions aiming to elicit qualitative information
about the platform, c) structured questionnaires. For the latter method two types of ques-
tionnaires were prepared, for the patients and the clinical personnel respectively, so as to
address different aspects of the system. Specifically, the questionnares’ structure and over-
all design was driven by the user requirements, which were stated at the beginning of the
project, and included user interface satisfaction (QUIS-short version questionnaire, Chin
et al. 1988) and ease of use (PUEU questionnaire, Davis 1989) focused questions. Thus,
various quality parameters were used to compile the questions that accompanied the eval-
uation process and attempted to address these needs. The questionnaire questions revolved
around some qualitative variables such as the degree of user satisfaction with the overall
functionality of the system, the separate services provided, the system’s response speed, the
variety found in the different types of interaction with the system, the satisfaction of user
needs and requirements, and the usability and user friendliness, among others.

To address these needs the questions asked to the patients were mainly designed to mea-
sure the value of the implemented functionalities and the usability of the virtual agent (e.g.
“Is REA returning information pertinent to the questions?” - Table 8), while the questions
directed to the clinical workers were designed to capture the capability of the software to
increase the efficiency of their efforts in providing care-giving services. They answered
a Likert scale questionnaire (1-strongly agree, 5-strongly disagree), which the consortium
prepared and reviewed in two separate sessions. Each question followed the original Likert
weighting scale, while the average score for the questions was 4.26.

The provided input from all users of REA was gathered to formulate a cumulative con-
clusion with respect to their experience during the tests. The general feedback from both
patients and the clinic staff was positive, along with some negative points regarding spe-
cific aspects of the platform that will be taken into consideration in the next development
phase. Patients were considerably satisfied with the set of supported functionalities, the
tool’s responsiveness and the user friendliness of the system. The majority of them stated
that the services provided were adequate and there were no missing features. The system
was fulfilling their needs in fairly quick response times. The main negative element that was
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Table 8 Sample of the questionnaire used for patient evaluation

Please rate your agreement on the following statements:

REA provides the right amount of information.

strongly agree O O O O O strongly disagree

REA provides very little information.

strongly agree O O O O O strongly disagree

REA provides excessive information.

strongly agree O O O O O strongly disagree

REA clearly communicates its intention.

strongly agree O O O O O strongly disagree

I always understand what REA is telling me.

strongly agree O O O O O strongly disagree

REA understood what I asked for.

strongly agree O O O O O strongly disagree

I got the information I wanted.

strongly agree O O O O O strongly disagree

REA returns contradictory information.

strongly agree O O O O O strongly disagree

REA returns information pertinent to the questions.

strongly agree O O O O O strongly disagree

REA works the way I expected.

strongly agree O O O O O strongly disagree

REA needs too much time to respond.

strongly agree O O O O O strongly disagree

noted was the inability to properly entertain the users and reinforce their engagement in the
system. The addition of more social actions in the virtual agent will serve in mitigating this
issue. Apart from that, the need to extend the platform’s knowledge about various topics
was stressed out, as it was unable to answer some of the users’ questions.

The professional clinic workers were equally affirmative about REA’s potential. In par-
ticular, some of the advantages that were observed from this group of users include the
system’s effectiveness, consistency, simplicity and reliability. They were also impressed by
the swiftness of the agent’s replies. Their proposals for improving the service quality of
REA focused on two basic concerns. The first recommendation stated that the amount of
available information provided by the system should be enriched to assist their awareness
about additional topics (e.g. the medication of a patient). The second issue was, similarly
to the patients’ feedback, the level of entertainment REA was competent to provide to the
patients. This aspect was highlighted as important by the care-giving professionals, since
the rehabilitation process in a clinic environment can be stressful at times and positive
emotions have respective impact on patient state (Richman et al. 2005). Overall, regardless
of the reported downsides, the users that participated were excited about the prospect of
integrating a platform like REA inside a clinic environment.
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6 Conclusion and discussion

The work that has been presented includes development details for the main modules of
a patient-monitoring framework designed to assist medical stuff and patients in clinical or
home environments during the rehabilitation process. To achieve acceptance, the system
should provide solutions to users’ everyday routine, assisting in otherwise time-consuming
tasks; via REA’s utilisation, caregivers would be able to minimise mundane tasks, which
will be largely automated, while patients’ morale and self-esteem would be increased,
by handling themselves previously unattainable tasks. Even trivial ones, like regulating
room temperature or switching on the lights, which would have been impossible without
help. Advances in sensor data analysis, computer vision, dialogue management, natural
language processing and semantics have been combined to achieve natural and seamless
human-computer interaction.

Specifically for computer vision, an activity recognition framework from depth cameras
has been proposed in order to understand the activities that take place. The identification
of meaningful activities has been completed before the training of the final activity classi-
fication models, according to the user requirements provided by the clinical user-partner.
However, if the need to include a more diverse set of activities arises, then the classifiers
for each module should be retrained with the updated set. At a later stage, we will also deal
with activity detection. Moreover, fusing the visual and sensor modalities is currently on our
future plans, so as to provide a unified output to the system. Likewise, the framework of the
DM, the component that is responsible for handling most cases of the user-agent conversa-
tion has also been established. Next, the DM subsystem is going to be evaluated to measure
its performance and proceed with adaptations wherever necessary (including the comple-
tion of the reinforcement learning module). As regards to language understanding, a NER
subsystem is responsible for retrieving proper name-related user requests, while a seman-
tic KB collects all data and applies semantic reasoning to enrich the results and support the
DM system. Applying more complex reasoning rules and updating the ontologies to repre-
sent additional information are left as future work for the semantic system, while extending
the NER system to handle Greek constitutes a high-priority future prospect.

To ascertain that the current work is satisfactory and within scope of the initial objectives,
meticulous trials have been scheduled in regular prototype-testing periods, based on the
implementation of key indicators that will measure the platform’s impact. A first evaluation
has taken place, but further tests have been suspended because of the obstacles introduced
by the global pandemic (COVID-19 outburst). As might be expected, the user-centered
evaluating process is based on user requirements which emanated from both caregivers and
patients in the project’s preparation phase. The same users provided initial feedback on
system utility, user adoption and satisfaction in order to attain early detection and mitigation
of deterrent factors and conditions.
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