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Handling Inconsistencies in Tables with Nulls and

Functional Dependencies

Dominique Laurent · Nicolas Spyratos

Abstract In this paper we address the problem of handling inconsistencies in ta-
bles with missing values (also called nulls) and functional dependencies. Although
the traditional view is that table instances must respect all functional dependen-
cies imposed on them, it is nevertheless relevant to develop theories about how
to handle instances that violate some dependencies. Regarding missing values, we
make no assumptions on their existence: a missing value exists only if it is inferred
from the functional dependencies of the table.

We propose a formal framework in which each tuple of a table is associated
with a truth value among the following: true, false, inconsistent or unknown; and
we show that our framework can be used to study important problems such as
consistent query answering, table merging, and data quality measures - to mention
just a few. In this paper, however, we focus mainly on consistent query answering,
a problem that has received considerable attention during the last decades.

The main contributions of the paper are the following: (a) we introduce a new
approach to handle inconsistencies in a table with nulls and functional dependen-
cies, (b) we give algorithms for computing all true, inconsistent and false tuples,
(c) we investigate the relationship between our approach and Four-valued logic in
the context of data merging, and (d) we give a novel solution to the consistent
query answering problem and compare our solution to that of table repairs.
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1 Introduction

In several applications today we encounter tables with missing values and func-
tional dependencies. Such a table is often the result of merging two or more other
tables coming from different sources. Typical examples include recording the re-
sults of collaborative work, merging of tables during data staging in data ware-
houses or checking the consistency of a relational database.

As an example of collaborative work consider two groups of researchers each
studying three objects found in an archaeological site. The researchers of each
group record in a table data regarding the following attributes of each object:

– Identifier (here of the form in where n is an integer, distinct objects being
associated with distinct identifiers)

– Kind (such as statue, weapon, . . . )
– Material from which the object is made (such as iron, bronze, marble, . . . )
– Century in which the object is believed to have been made.

At the end of their work each group submits their findings to the site coordi-
nator in the form of a table as shown in Figure 1 (tables D1 and D2). Each
row of a table contains data recorded for a single object. For example, the row
(i1, statue,marble, 1.BC) means that object i1 is a statue made of marble and
believed to have been made in the first century before Christ. Similarly the row
(i2, statue, , 2.BC) means that object i2 is a statue of unknown material, believed
to have been made during the second century before Christ. Note that, in this
tuple, there is a missing value, meaning that the material from which object i2 is
made could not be determined.

D1 Id K M C

i1 k m c
i1 m′

i2 k′ m′ c
i2 k′ m′′

i3 m

D2 Id K M C

i1 k c
i2 k′ c′

i2 k′ m′′

i3 k′

D Id K M C

i1 k m c
i1 m′

i1 k c
i2 k′ m′ c
i2 k′ m′′

i2 k′ c′

i3 m
i3 k′

Fig. 1 The tables prepared by the two groups and the merged table

Now, the data contained in the two tables can be merged into a single table D
containing all tuples from the two tables, without duplicates, as shown in Figure 1
(table D). In doing this merging, we may have discrepancies between tuples of D.
For example, object i1 appears in D as being made from two different materials;
and object i2 appears as made from two different materials and in two different
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centuries. This kind of discrepancies may lead to ‘inconsistencies’ that should be
identified by the site coordinator and resolved in cooperation with the researchers
of the two groups.

It should be obvious from this example that the merging of two or more tables
into a single table more often than not results in inconsistencies even if the indi-
vidual tables are each consistent. For example, although each of the tables D1 and
D2 shown in Figure 1 satisfies the functional dependencies Id → K and Id → C,
the merged table D does not satisfy Id → C.

A similar situation arises in data warehouses where one tries to merge views
of the underlying sources into a single materialized view to be stored in the data
warehouse.

As a last example, in a relational database, although each table may satisfy its
functional dependencies, the database as a whole may violate some dependencies.
To determine whether the database is consistent with its dependencies, one pro-
ceeds as follows: all tables are merged by placing their tuples into a single universal
table D possibly with missing values (under certain assumptions discussed in [25]);
then all functional dependencies are applied on D through the well known chase
algorithm [12,24]. If the algorithm terminates successfully (i.e., no inconsistency
is detected) then the database is consistent; otherwise the algorithm stops when a
first inconsistency is detected and the database is declared inconsistent.

So in general the question is: what should we do when a table is inconsistent?
There are roughly three approaches: (a) reject the table, (b) try to correct or
‘repair’ it so that to make it consistent (and therefore be able to work with the
repaired table) and (c) keep the table as is but make sure you know which part is
consistent and which is not.

The first approach is followed by database theorists when checking database
consistency, as explained above. This approach is clearly not acceptable in practice
as the universal table might contain a consistent set of tuples that can be useful
to users (e.g., users can still query the consistent part of the table).

The second approach tries to alleviate the impact of inconsistent data on the
answers to a query by introducing the notion of repair: a repair is a minimally
different consistent instance of the table and an answer is consistent if it is present
in every repair. This approach, referred to as ‘consistent query answering’, has
motivated important research efforts during the past two decades and is still the
subject of current research. The reader is referred to Section 6 for a brief overview
of the related literature. However, this approach is always difficult to implement
due to important issues related to computational complexity and/or to semantics
(there is still no consensus regarding the definition of ‘consistent answer’).

In our work we follow the third approach that is, we keep inconsistencies in the
table but we determine which part of the table is consistent and which is not. More
specifically, we use set theoretic semantics for tuples and functional dependencies
that allow us to associate each tuple of the table with one truth value among
the following: true, false, inconsistent or unknown. By doing so we can study a
number of important problems including in particular the problem of consistent
query answering, and the definition of data quality measures.

Regarding consistent query answering, our model offers a fundamentally dif-
ferent and direct solution to the problem: the consistent answer is obtained by
simply retrieving true tuples that fit the query requirements.

3



Moreover our approach offers the possibility of defining meaningful data quality
measures. For example if a table contains a hundred tuples of which only five are
true while the remaining ones are inconsistent, then the quality of data contained
in the table is five percent. Since we have polynomial algorithms for computing
all true, false and inconsistent tuples, we can define several quality measures of
the data contained in a table, inspired by the work in [17]. We can then use such
measures to accompany query answers so that users are informed of the quality of
the answer they receive (e.g., getting an answer from a table with ninety five per
cent of true tuples is more reliable than if the table contained only five per cent of
true tuples). However, defining and studying such measures lies outside the goals
of the present paper. In this paper we focus on one important application of our
approach, namely consistent query answering. A complete account of data quality
measures will be reported in a future paper.

The main contributions of the present paper can be summarized as follows:

1. We introduce a new approach to handle inconsistencies in a table with nulls
and functional dependencies; we do so by adapting the set theoretic seman-
tics of [21] to our context and by extending the chase algorithm so that all
inconsistencies are accounted for in the table.

2. We give polynomial algorithms in the size of the table for computing all true
and all inconsistent tuples in the table.

3. We investigate the relationship of our approach with Four-valued logic in the
context of data merging.

4. We propose a novel approach for consistent query answering and we investigate
how our approach relates to existing approaches.

The paper is organized as follows: In Section 2 we recall basic definitions and
notations regarding tables and we introduce the set theoretic semantics that we
use in our work. In Section 3 we give definitions and properties regarding the truth
values that we associate with tuples. In Section 4 we study computational issues
and give algorithms for computing the truth values of tuples. In Section 5, we show
how our approach relates to Four-value logic when merging two or more tables. In
Section 6 we present a novel solution to the problem of consistent query answering
and compare it to existing approaches. Section 7 contains concluding remarks and
suggestions for further research.

2 The Model

In this section we present the basic definitions regarding tuples and tables as well
as the set theoretic semantics that we use for tuples and functional dependencies.
Our approach builds upon earlier work on the partition model [21].

2.1 The Partition Model Revisited

Following [21], we consider a universe U = {A1, . . . , An} in which every attribute
Ai is associated with a set of atomic values called the domain of Ai and denoted by
dom(Ai). An element of

⋃

A∈U dom(A) is called a domain constant or a constant.
We call relation schema (or simply schema) any nonempty subset of U and we

4



denote it by the concatenation of its elements; for example {A1, A2} is simply
denoted by A1A2. Similarly, the union of schemas S1 and S2 is denoted as S1S2

instead of S1 ∪ S2.
We define a tuple t to be a partial function from U to

⋃

A∈U dom(A) such that,
for every A in U , if t is defined over A then t(A) belongs to dom(A). The domain
of definition of t is called the schema of t, denoted by sch(t). We note that tuples
in our approach satisfy the First Normal Form [24] in the sense that each tuple
component is an atomic value from an attribute domain.

Regarding notation, we follow the usual convention that, whenever possible,
lower-case characters denote domain constants and upper-case characters denote
the corresponding attributes. Following this convention the schema of a tuple
t = ab is AB and more generally, we denote the schema of t as T .

Assuming that the schema of a tuple t is understood, t is denoted by the
concatenation of its values, that is: t = ai1 . . . aik means that for every j = 1, . . . , k,
t(Aij ) = aij , aij is in dom(Aij ), and sch(t) = Ai1 . . . Aik .

We assume that for any distinct attributes A and B, we have either dom(A) =
dom(B) or dom(A)∩dom(B) = ∅. However, this may lead to ambiguity when two
attributes have the same domain. Ambiguity can be avoided by prefixing each value
of an attribute domain with the attribute name. For example, if dom(A) = dom(B)
we can say ‘an A-value a’ to mean that a belongs to dom(A), and ‘a B-value a’
to mean that a belongs to dom(B). In order to keep the notation simple we shall
omit prefixes whenever no ambiguity is possible.

Denoting by T the set of all tuples that can be built up given a universe U

and the corresponding attribute domains, a table D is a finite sub-set of T where
duplicates are not allowed.

Given a tuple t, for every A in sch(t), t(A) is also denoted by t.A and more
generally, for every subset S of sch(t) the restriction of t to S, also called sub-tuple
of t, is denoted by t.S. In other words, if S ⊆ sch(t), t.S is the tuple such that
sch(t.S) = S and for every A in S, (t.S).A = t.A.

Moreover, ⊑ denotes the ‘sub-tuple’ relation, defined over T as follows: for any
tuples t1 and t2, t1 ⊑ t2 holds if t1 is a sub-tuple of t2. It is thus important to
keep in mind that whenever t1 ⊑ t2 holds, it is understood that sch(t1) ⊆ sch(t2)
also holds.

The relation ⊑ is clearly a partial order over T . Given a table D, the set of all
sub-tuples of the tuples in D is called the lower closure of D and it is defined by:
LoCl(D) = {q ∈ T | (∃t ∈ D)(q ⊑ t)}. We shall call a table reduced if it contains
only maximal tuples (i.e., if no tuple in the set is sub-tuple of some other tuple in
the set).

The notion of T -mapping, as defined below, generalizes that of interpretation
defined in [21].

Definition 1 Let U be a universe. A T -mapping is a mapping µ defined from
⋃

A∈U dom(A) to 2N. A T -mapping µ can be extended to the set T as follows: for
every t = ai1 . . . aik in T , µ(t) = µ(ai1) ∩ . . . ∩ µ(aik).

A T -mapping µ is an interpretation if µ satisfies the partition constraint stating
that for every A in U , and for all distinct a and a′ in dom(A), µ(a) ∩ µ(a′) = ∅.

We emphasize that in [21] interpretations provide the basic tool for defining true
tuples: a tuple t is said to be true in an interpretation µ if µ(t) is nonempty.
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To see the intuition behind this definition consider a relational table D over U
and suppose that each tuple is associated with a unique identifier, say an integer.
Now, for every A in U and every a in dom(A), define µ(a) to be the set of all
identifiers of the tuples in D containing a. Then µ is an interpretation as it satisfies
the partition constraint. Indeed, due to the fact that, for every attribute A in U , a
tuple t can not have more than one A-value, it is then impossible that µ(a)∩µ(a′)
be nonempty for any distinct values a, a′ in dom(A).

Incidentally, if for every A in U we denote by dom∗(A) the set of all A-
values such that µ(a) 6= ∅, then the set {µ(a) | a ∈ dom∗(A)} is a partition of
⋃

a∈dom∗(A) µ(a) (whence the name “partition model”). The following example
illustrates this important feature.

Example 1 Considering U = {A,B,C} and D = {ab, bc, ac, a′b′, b′c′, abc}, the
tuples in D can be respectively assigned the identifiers 1, 2, 3, 4, 5 and 6. In
that case, we have µ(a) = {1, 3, 6}, µ(a′) = {4}, µ(b) = {1, 2, 6}, µ(b′) = {4, 5},
µ(c) = {2, 3, 6}, µ(c′) = {5}, and µ(α) = ∅ for any constant α different than a, a′,
b, b′, c and c′.

It is clear that the T -mapping µ is an interpretation and, since dom∗(A),
dom∗(B) and dom∗(C) are respectively equal to {a, a′}, {b, b′} and {c, c′}, it is easy
to see that {µ(α) | α ∈ dom∗(A)} is a partition of {1, 3, 4, 6}, {µ(β) | β ∈ dom∗(B)}
is a partition of {1, 2, 4, 5, 6}, and {µ(γ) | γ ∈ dom∗(C)} is a partition of {2, 3, 5, 6}.

Moreover, extending µ to non unary tuples yields the following regarding the
tuples in D: µ(ab) = {1, 6}, µ(bc) = {2, 6}, µ(ac) = {3, 6}, µ(a′b′) = {4}, µ(b′c′) =
{5}, and µ(abc) = {6}. 2

Summarizing our discussion, when dealing with consistent tables in [21], only
interpretations are relevant. In the present work, we follow the same idea, but
we also extend the work of [21] so that we can deal with inconsistencies. As we
shall see, non satisfaction of the partition constraint in Definition 1 is the key
criterion to characterize inconsistent tuples.

2.2 Functional Dependencies

The notion of functional dependency in our approach is defined as in [21].

Definition 2 Let U be a universe. A functional dependency is an expression of
the form X → Y where X and Y are nonempty sub-sets of U .

A T -mapping µ satisfies X → Y , denoted by µ |= X → Y , if for all tuples
x and y, respectively over X and Y , the following holds: if µ(x) ∩ µ(y) 6= ∅ then
µ(x) ⊆ µ(y).

Based on Definition 2, for all X and Y such that X ∩ Y = ∅, and for every
T -mapping µ, the following holds:

µ |= X → Y if and only if µ |= X → A for every A in Y .

This is so because, for every x and y such that µ(x)∩µ(y) 6= ∅, µ(x) ⊆ µ(y) holds
if and only if µ(x) ⊆ µ(a) holds for every constant a in y.

Therefore without loss of generality we can assume that all functional depen-
dencies are of the form X → A where A is an attribute not in X. Under this
assumption, we consider pairs ∆ = (D,FD) where D is a table over U and FD
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a set of functional dependencies over U , and we say that a T -mapping µ satisfies
∆, denoted by µ |= ∆, if (i) for every t in D, µ(t) 6= ∅, and (ii) µ satisfies every
X → A in FD.

To see how our notion of functional dependency relates to the standard one
in relational databases [24], recall first that a relation r over universe U satisfies
X → A if for all tuples t and t′ in r such that t.X = t′.X, we have t.A = t′.A.

In our approach, let ∆ = (D,FD) and consider two tuples t and t′ in D such
that XA is a subset of sch(t) and of sch(t′) and let t.X = t′.X = x. Then for
every T -mapping µ such that µ |= ∆, µ(t) and µ(t′) are nonempty, implying
that µ(x) ∩ µ(t.A) and µ(x) ∩ µ(t′.A) are also nonempty. By Definition 2, this
implies that µ(x) is a sub-set of µ(t.A) and of µ(t′.A). As a consequence, assuming
that t.A 6= t′.A (i.e., that X → A is not satisfied in the sense of the relational
model), means that µ(t.A) ∩ µ(t′.A) is nonempty, and therefore µ can not be an
interpretation.

Therefore if we restrict T -mappings to be interpretations then the notion of
functional dependency satisfaction in our approach is the same as that of relational
databases. As we shall see, this observation supports the notion of consistency for
∆, to be given later (in Definition 4).

Given ∆ = (D,FD) and tuples t, t′, t′′, the following notations are extensively
used in the remainder of the paper.

− ∆ ⊢ t, denotes that if µ |= ∆ then µ(t) 6= ∅.
− ∆ ⊢ (t ⊓ t′), denotes that if µ |= ∆ then µ(t) ∩ µ(t′) 6= ∅.
− ∆ ⊢ (t � t′) denotes that if µ |= ∆ then µ(t) ⊆ µ(t′).
− ∆ ⊢ (t � t′ ⊓ t′′) denotes that if µ |= ∆ then µ(t) ⊆ µ(t′) ∩ µ(t′′).

Given ∆ = (D,FD), we now build a particular T -mapping µ such that µ |= ∆ as
follows: Let (µi)i≥0 be the sequence defined by the steps below:

1. Associate each tuple t with an identifier, id(t), called the tuple identifier of t
(this can be an integer that identifies t uniquely).

2. Let µ0 be the mapping defined for every domain constant a by:
µ0(a) = {id(t) | t ∈ D and a ⊑ t}.

3. While there exists X → A in FD, x over X and a in dom(A) such that
µi(xa) 6= ∅ and µi(x) 6⊆ µi(a), define µi+1 by: µi+1(a) = µi(a) ∪ µi(x) and
µi+1(α) = µi(α) for any other constant α.

Lemma 1 For every ∆ = (D,FD), the sequence (µi)i≥0 has a unique limit µ∗

such that µ∗ |= ∆. Moreover:

1. For all a1 and a2 in the same attribute domain dom(A), if µ∗(a1)∩µ∗(a2) 6= ∅
then there exist X → A in FD and x over X such that µ∗(x) 6= ∅ and µ∗(x) ⊆
µ∗(a1) ∩ µ∗(a2).

2. For all α and β, ∆ ⊢ (α ⊓ β) holds if and only if µ∗(α) ∩ µ∗(β) 6= ∅ holds.

Proof See Appendix A. 2

Given ∆ = (D,FD), Lemma 1 shows the following:

1. There always exists a T -mapping µ such that µ |= ∆.
2. When two constants from the same domain have common identifiers with re-

spect to µ∗ then this is due to a functional dependency.
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3. For every tuple t, ∆ ⊢ t if and only if µ∗(t) 6= ∅.

It is important to note that the T -mapping µ∗ as defined in Lemma 1 is not
necessarily an interpretation as the following example shows.

Example 2 Let U = {A,B,C} and ∆ = (D,FD) where D = {ab, bc, abc′} and
FD = {B → C}. Associating ab, bc and abc′ respectively with 1, 2 and 3, µ∗ is
obtained as follows:
• First, we have µ0(a) = {1, 3}, µ0(b) = {1, 2, 3}, µ0(c) = {2} and µ0(c

′) = {3}
and µ0(α) = ∅ for any other domain constant α.
• Then, considering B → C, we have µ1(a) = {1, 3}, µ1(b) = µ1(c) = µ1(c

′) =
{1, 2, 3} and µ1(α) = ∅ for any other domain constant α.

Hence, µ∗ = µ1 and we remark that µ∗(c) ∩ µ∗(c′) 6= ∅, thus that µ∗ is not an
interpretation. Nevertheless, as stated by Lemma 1, it is easy to see that µ∗ |= ∆.
2

We note here that the authors of [22] use a construction similar to that of Lemma 1
to define a minimal model of∆, called ‘query model’, assuming thatD is consistent
with FD.

Now, in order to characterize when ∆ ⊢ (t � a) holds, we introduce the notion
of closure of a tuple t in ∆ inspired by the well known relational notion of closure
of a relation scheme with respect to a set of functional dependencies [24].

Definition 3 Given a database ∆ = (D,FD) and a tuple t, the closure of t in ∆

(or closure of t for short, when ∆ is understood), denoted by t+, is the set of all
domain constants a such that ∆ ⊢ (t � a) holds.

We notice that, based on Definition 3, for every constant a occurring in a tuple t

(i.e., if a ⊑ t holds) then a is in t+, because, in this case, µ(t) ⊆ µ(a) holds for
every T -mapping µ. However constants not occurring in t may also appear in t+

due to functional dependencies, as shown in the following example.

Example 3 Continuing Example 2 where U = {A,B,C} and ∆ = (D,FD) with
D = {ab, bc, abc′} and FD = {B → C}, we show that c belongs to (ab)+.

Indeed, for every µ such that µ |= ∆, we have µ(ab) ⊆ µ(b) (since b ⊑ ab) and
µ(b) ⊆ µ(c) (due to B → C and the fact that µ(b) ∩ µ(c) 6= ∅ must hold). Hence,
by transitivity, µ(ab) ⊆ µ(c) holds, implying that ∆ ⊢ (ab � c) holds, which by
Definition 3, means that c belongs to (ab)+. It should also be noticed that a similar
argument shows that c′ also belongs to (ab)+. 2

Clearly computing the closure directly from its definition is inefficient. Algorithm 1
gives a method for computing the closure, since the following lemma states that
this algorithm correctly computes the closure.

Lemma 2 Let ∆ = (D,FD) and t a tuple. Then Algorithm 1 computes correctly
the closure t+ of t.

Proof See Appendix B. 2

We draw attention on the fact that the database involved in Algorithm 1 is not ∆
but the database ∆t that can be seen as ∆ in which the tuple t has been added.

It should however be noticed that in case ∆ ⊢ t, this distinction is not necessary
because in this case, for every tuple q, ∆ ⊢ q holds if and only if ∆t ⊢ q holds.
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Algorithm 1 Closure of t

Input: ∆ = (D,FD) and a tuple t.
Output: The closure t+ of t
1: ∆t := (Dt,FD) where Dt = D ∪ {t}
2: t+ := {a | a ⊑ t}
3: while t+ changes do

4: for all X → A ∈ FD do

5: for all x such that for every b in x, b ∈ t+ and ∆t ⊢ xa do

6: t+ := t+ ∪ {a}
7: return t+

This is a consequence of the fact that, as seen in Appendix B, if ∆ ⊢ t then for
every T -mapping µ, µ |= ∆ holds if and only if µ |= ∆t.

On the other hand, the following example shows that when ∆ 6⊢ t, the intro-
duction of ∆t instead of ∆ is necessary for correctly computing t+.

Example 4 Let U = {A,B, C} and ∆ = (D,FD) where D = {ac, b} and FD =
{A → B,B → C}.

It is easy to see that when numbering the tuples in D by 1 for ac and 2 for
b, the T -mapping µ∗ for ∆ is defined by: µ∗(a) = µ∗(c) = {1}, µ∗(b) = {2} and
µ∗(α) = ∅ for any other constant α.

For t = ab, we argue that c is in t+, that is, for every µ such that µ |= ∆,
µ(ab) ⊆ µ(c) holds. Indeed, this trivially holds if µ(ab) = ∅ (as is the case with
µ∗), and otherwise the following proof can be done:
• As µ(ab) 6= ∅, A → B implies that µ(a) ⊆ µ(b).
• As µ(ac) 6= ∅, µ(a) ⊆ µ(b) implies µ(bc) 6= ∅. Thus, µ(b) ⊆ µ(c), due to B → C.
• Therefore, µ(a) ⊆ µ(c), and since µ(ab) ⊆ µ(a), we have µ(ab) ⊆ µ(c).

On the other hand, computing (ab)+ using a modified version of Algorithm 1
where ∆t is replaced by ∆ would output a and b in the closure. It should also be
noticed that computing (ab)+ using Algorithm 1 is as follows: by the statement
on line 2, a and b are inserted into the closure, and then, since for t = ab, ∆t ⊢ ab

the above reasoning shows that ∆t ⊢ bc as well. Therefore, c is inserted into the
closure because the test line 5 succeeds. 2

The following example shows a case where the tuple t of which the closure is
computed is such that ∆ ⊢ t.

Example 5 As seen in Example 2, if U = {A,B,C} and ∆ = (D,FD) where
D = {ab, bc, abc′} and FD = {B → C}, µ∗ is defined by: µ∗(a) = {1, 3}, µ∗(b) =
µ∗(c) = µ∗(c′) = {1, 2, 3} and µ∗(α) = ∅ for any other domain constant α.

In this case, the computation of (ab)+ according to Algorithm 1 is as follows:
• As ab is in D, ∆t = ∆. We thus run Algorithm 1 with ∆ instead of ∆t.
• (ab)+ is first set to {a, b}.
• Considering B → C, since b is in (ab)+, and since ∆ ⊢ bc and ∆ ⊢ bc′ (this holds
because µ∗(c) and µ∗(c′) are nonempty), c and c′ are inserted in (ab)+.

As no further step is processed, (ab)+ = {a, b, c, c′}, as seen in Example 3.
Thus ∆ ⊢ (ab � c) and ∆ ⊢ (ab � c′) hold, implying ∆ ⊢ (ab � c ⊓ c′). 2

9



3 Semantics

In this section we provide basic definitions and properties regarding the truth value
associated with a tuple. The following definition is borrowed from [21].

Definition 4 ∆ is said to be consistent if there exists an interpretation µ such
that µ |= ∆.

Since in our approach, inconsistent tables are not discarded, it is crucial to be able
to provide semantics to any ∆ = (D,FD), being it consistent or not. To this end,
inspired by Belnap’s Four-valued logic [5], we consider four possible truth values
for a given tuple t in ∆. The notations of truth values for tuples in our approach
and their intuitive meaning are as follows, for a given tuple t:

– Truth value true: t is true in ∆.
– Truth value false: t is false in ∆. This means that we do not follow the Closed

World Assumption (CWA), according to which any non true tuple is false [20].
– Truth value inc (i.e., inconsistent): t is true and false in ∆. This truth value

is necessary for ‘safely’ dealing with inconsistent tuples.
– Truth value unkn (i.e., unknown): t is not true, not false and not inconsistent

in ∆. This truth value is necessary for dealing with tuples not falling in one of
the previous three categories.

In order to formalize the exact meaning of these truth values in our approach, we
introduce the following terminology and notation for a given tuple t:

– If∆ ⊢ t holds, t is said to be potentially true in∆. Notice here that by Lemma 1,
t is potentially true if and only if µ∗(t) 6= ∅.

– If∆ ⊢ (t � a⊓a′) holds for some distinct a and a′ in the same attribute domain,
then we use the notation ∆ |∼ t, and in this case, t is said to be potentially
false to reflect that µ(a) ∩ µ(a′) must be empty for µ to be an interpretation.
By Definition 3, ∆ |∼ t holds if and only if there exist a and a′ in the same
attribute domain such that a and a′ are in t+.

Consequently, if a tuple t is such that ∆ ⊢ t and ∆ |∼ t, then for µ to be an
interpretation, µ must associate t with a set expected to be empty and nonempty,
which is of course a case of inconsistency! This explains why, in our approach,
‘potentially true’ and ‘potentially false’, should respectively be understood as ‘true
or inconsistent’ and ‘false or inconsistent’.

Based on this intuition, each tuple is assigned one of the four truth values
according to the following definition.

Definition 5 Given∆ = (D,FD) and a tuple t, the truth value of t in ∆, denoted
by v∆(t), is defined as follows:

− v∆(t) = true if ∆ ⊢ t and ∆ 6|∼ t; t is said to be true in ∆.
− v∆(t) = false if ∆ 6⊢ t and ∆ |∼ t; t is said to be false in ∆.
− v∆(t) = inc if ∆ ⊢ t and ∆ |∼ t; t is said to be inconsistent in ∆.
− v∆(t) = unkn if ∆ 6⊢ t and ∆ 6|∼ t; t is said to be unknown in ∆.

We point out that the four truth values as defined above correspond exactly to
the four truth values defined in the Four-valued logic [5]. The reader is referred
to Section 5 for more details on this point. We illustrate Definition 5 through the
following example.
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Example 6 As in Example 2, let U = {A,B,C} and ∆ = (D,FD) where D =
{ab, bc, abc′} and FD = {B → C}.

It has been seen in Example 5 that (ab)+ = {a, b, c, c′}. Thus ∆ |∼ ab holds.
Moreover, it is easy to see from Example 2 that µ∗(ab) 6= ∅, implying that ∆ ⊢ ab

holds as well. As a consequence, by Definition 5, v∆(ab) = inc, meaning that ab

is inconsistent in ∆. We notice that similar arguments hold for abc, abc′, bc, bc′

and b, showing that these tuples are also inconsistent in ∆.

Moreover, based on Definition 4, we also argue that∆ is not consistent, because
every µ such that µ |= ∆ cannot be an interpretation. This is so because µ∗(c) ∩
µ∗(c′) 6= ∅ and Lemma 1 imply that for µ such that µ |= ∆, µ(c) ∩ µ(c′) 6= ∅.

Now, consider the tuple bc′′ where c′′ is a constant in dom(C) distinct from
c and c′. To compute (bc′′)+ using Algorithm 1, the database ∆t = (Dt,FD)
where Dt = {ab, bc, abc′, bc′′} is first defined and then, the closure is first set to
{b, c′′}. The subsequent computation steps rely on B → C and on that ∆t ⊢ bc

and ∆t ⊢ bc′ to insert c and c′ in the closure.

It therefore follows that (bc′′)+ = {b, c′′, c, c′}, thus that ∆ |∼ bc′′ holds. Since
∆ 6⊢ bc′′ (because µ∗(bc′′) = ∅ and µ∗ |= ∆), it follows that v∆(bc′′) = false.
Hence bc′′ and all its super-tuples are false in ∆.

As an example of unknown tuple in ∆, let a′ be in dom(A) such a′ 6= a, and
consider a′c. Since µ∗(a′c) = ∅, ∆ 6⊢ a′c. On the other hand, it can be seen that
(a′c)+ = {a′, c}, because D ∪ {a′c} does not allow any specific tuple derivation
using B → C. Hence, ∆ 6|∼ a′c, which shows that v∆(a′c) = unkn. 2

The following example shows that computing all inconsistent tuples in ∆ is not
an easy task.

Example 7 Let ∆ = (D,FD) be defined over U = {A,B, C} by D = {abc, ac′}
and FD = {A → B,B → C}.

Here again, the tuples in D along with the functional dependencies in FD show
no explicit inconsistency. However computing µ∗ yields the following:
• To define µ0, we associate the tuples abc and ac′ with the integers 1 and 2,
respectively. It follows that µ0(a) = {1, 2}, µ0(b) = {1}, µ0(c) = {1}, µ0(c

′) = {2}
and µ0(α) = ∅ for any other domain constant α.
• The next steps modify µ0 so as to satisfy A → B and B → C as follows:

1. Due to A → B, µ1 is defined by: µ1(a) = {1, 2}, µ1(b) = {1, 2}, µ1(c) = {1}
and µ1(c

′) = {2};
2. Due to B → C, µ2 is defined by: µ2(a) = {1, 2}, µ2(b) = {1, 2}, µ2(c) = {1, 2}

and µ2(c
′) = {1, 2}.

As µ2 |= FD, µ∗ = µ2. Moreover, we have a+ = {a, b, c, c′} and b+ = {b, c, c′}
showing that, by Lemma 2, ∆ ⊢ a � (c⊓ c′) and ∆ ⊢ (b � c⊓ c′), thus that a and
b are inconsistent in ∆. It can then be seen that, for example, abc, bc′ and ac are
also inconsistent in ∆.

Now, let ∆1 = (D1,FD) such that D1 = {ac, ac′}. In this case, µ∗ is defined
by µ∗(a) = {1, 2}, µ∗(c) = {1}, µ∗(c′) = {2} and µ∗(α) = ∅ for any other domain
constant α. Therefore, a+ = {a}, showing that a is not inconsistent in ∆1. As a
consequence, ac, ac′ along with all their sub-tuples are true in ∆1 and all other
tuples are unknown in ∆1. 2
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The following proposition shows that our notion of inconsistent tuple complies
with Definition 4.

Proposition 1 ∆ = (D,FD) is consistent if and only if there exists no tuple t

such that v∆(t) = inc.

Proof We first note that if there exists a tuple t such that v∆(t) = inc, then ∆ ⊢ t

and ∆ |∼ t. Hence there exist a and a′ in the same attribute domain dom(A) such
that ∆ ⊢ (t � a ⊓ a′). Thus every T -mapping µ such that µ |= ∆ satisfies that
µ(t) 6= ∅ and µ(t) ⊆ µ(a) ∩ µ(a′), implying that µ(a) ∩ µ(a′) 6= ∅. Hence, µ is not
an interpretation, showing that, by Definition 4, ∆ is not consistent.

Conversely, assuming that there is no tuple t such that v∆(t) = inc, that is such
that ∆ ⊢ t and ∆ |∼ t, we prove that µ∗ is an interpretation of ∆. Indeed, if a1 and
a2 are two constants in the same attribute domainA such that µ∗(a1)∩µ

∗(a2) 6= ∅,
then by Lemma 1(1), there exist X → A in FD and x over X such that µ∗(x) 6= ∅
and µ∗(x) ⊆ µ∗(a1)∩ µ∗(a2). Thus by Lemma 1(2), for every µ such that µ |= ∆,
µ(x) ⊆ µ(a1) ∩ µ(a2) and µ(x) 6= ∅. We therefore obtain that ∆ |∼ x and ∆ ⊢ x,
thus that v∆(x) = inc, which is a contradiction. Therefore µ∗ is an interpretation,
and the proof is complete. 2

Based on Definition 5, we stress the following important remarks about potentially
true and potentially false tuples in a given ∆ = (D,FD):

– Let t be a potentially true tuple. Since ∆ ⊢ t holds, as a consequence of
Lemma 1, we have that µ∗(t) 6= ∅. Therefore true or inconsistent tuples are
those tuples that are associated with a nonempty set by every T -mapping µ

such that µ |= ∆. This implies that potentially true tuples in ∆ are built
up with constants occurring in D, and thus are in finite number. We provide
in this paper effective algorithms for computing the sets of true tuples and
inconsistent tuples.

– As potentially false tuples t are such that ∆ |∼ t, they may not satisfy ∆ ⊢ t.
Hence, Lemma 1 cannot be used to characterize them. Moreover, if ∆ |∼ t,
then every tuple t′ such that t ⊑ t′ also satisfies ∆ |∼ t′. This is so because in
this case, if ∆ ⊢ (t � a ⊓ a′), then ∆ ⊢ (t′ � a ⊓ a′) holds as well. Thus, the
number of potentially false tuples may be infinite in case some of the attribute
domains are infinite.

– Moreover, since every false tuple t is potentially false and does not satisfy
∆ ⊢ t, it also follows as above that every tuple t′ such that t ⊑ t′ is also false.
Thus, the number of false tuples may be infinite in case some of the attribute
domains are infinite. However, the following proposition allows to characterize
when a given tuple t is false.

Proposition 2 Given ∆ = (D,FD) and a tuple t, v∆(t) = false if and only if
∆ 6⊢ t and v∆t

(t) = inc, where ∆t = (Dt,FD) and Dt = D ∪ {t}.

Proof Assuming that v∆(t) = false indeed entails that ∆ 6⊢ t by Definition 5.
Moreover, as ∆ |∼ t, there exist A in U and a and a′ in dom(A) such that ∆ ⊢
(t � a⊓a′). Now, given µ such that µ |= ∆t, it has been shown that µ also satisfies
that µ |= ∆ (see Appendix B). Hence, µ(t) ⊆ µ(a) ∩ µ(a′) holds, which implies
that ∆t ⊢ (t � a ⊓ a′), that is ∆t |∼ t. Since it holds that ∆t ⊢ t, we obtain that
v∆t

(t) = inc.
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Algorithm 2 Chasing a table

Input: ∆ = (D,FD)
Output: The chased table ∆∗ = (D∗,FD) and a set inc(FD) containing sets of tuples

associated with each X → A in FD
1: D∗ := D
2: for all X → A in FD do

3: inc(X → A) := ∅
4: while D∗ changes do

5: for all X → A ∈ FD do

6: for all t1 in D∗ such that XA ⊆ sch(t1) do

7: for all t2 in D∗ such that X ⊆ sch(t2) and t1.X = t2.X do

8: if A 6∈ sch(t2) then

9: D∗ := D∗ ∪ {t2a1} where a1 = t1.A
10: if A ∈ sch(t2) and t1.A 6= t2.A then

11: Let yi = ti.(sch(ti) \A) and ai = ti.A, for i = 1, 2
12: D∗ := D∗ ∪ {y2a1}

// y1a2 is inserted into D∗ when processing t2 in place of t1
// and t1 in place of t2

13: inc(X → A) := inc(X → A) ∪ {x} where x = t1.X = t2.X
// Reduction: keep in D∗ only maximal tuples

14: for all t1 in D∗ do

15: for all t2 in D∗ do

16: if t2 ⊑ t1 and t1 6= t2 then

17: D∗ := D∗ \ {t2}
18: inc(FD) := {inc(X → A) | inc(X → A) 6= ∅}
19: return ∆∗ = (D∗,FD) and inc(FD)

Conversely, if v∆t
(t) = inc then, by Definition 5, ∆t ⊢ t and ∆t |∼ t hold.

Therefore, there exist A in U and a and a′ in dom(A) such that ∆t ⊢ (t � a⊓ a′),
which by Algorithm 1 and Lemma 2, implies that a and a′ are in t+. We thus
obtain that ∆ |∼ t, which combined with our hypothesis that ∆ 6⊢ t, implies that
v∆(t) = false. The proof is therefore complete. 2

4 Computing the Semantics

Similarly to standard two valued logic, where computing the semantics of ∆ means
computing the set of all tuples true in∆, in our approach, computing the semantics
amounts to compute all true, inconsistent or false tuples, knowing that unknown
tuples are the remaining ones.

However, as mentioned above, the set of false tuples may be infinite, making
it impossible to compute them all. In this work, the case of false tuples is only
partially addressed, and we rather concentrate on potentially true tuples, with the
goal of investigating consistent query answering in our approach (see Section 6).

4.1 The Chase Procedure in our Approach

We first propose an effective algorithm for the computation of all potentially true
tuples in a given ∆. This algorithm is in fact inspired by the standard chase
algorithm [21,24], with the main difference that when a functional dependency
cannot be satisfied, our algorithm does not stop.
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Instead, our chasing algorithm carries on the computation, returning a database
∆∗ = (D∗,FD) and a set inc(FD) based on which inconsistent and true tuples
are shown to be efficiently computed. Before doing so, we illustrate Algorithm 2
in the context of our introductory example.

D Id K M C

i1 k m c
i1 m′

i1 k c
i2 k′ m′ c
i2 k′ m′′

i2 k′ c′

i3 m
i3 k′

D∗ Id K M C

i1 k m c
i1 k m′ c
i2 k′ m′ c
i2 k′ m′′ c
i2 k′ m′ c′

i2 k′ m′′ c′

i3 k′ m

Fig. 2 The table D and its chased version D∗

Example 8 Running Algorithm 2 with the table D shown in Figure 1, and recalled
in Figure 2, produces the table D∗ shown in the right of Figure 2 and the set
inc(FD) = {inc(Id → M), inc(Id → C)} where inc(Id → M) = ∅ and inc(Id →
C) = {i2}. The main steps of the algorithm work as follows:
• First, D∗ is assigned D, and inc(Id → M) and inc(Id → C) are assigned ∅.
• Due to the statement on line 9, the first two rows in D (thus in D∗) generate
the new tuples (i1, k,m

′) and (i1,m
′, c). Similarly, applying Id → K to the last

two rows in D generates the new tuple (i3, k
′,m).

The rows 4 and 5 in D generate (i2, k
′,m′′, c) and the rows 5 and 6 generate

(i2, k
′,m′′, c′). Moreover, due to the statement on line 12, the rows 4 and 6 generate

(i2, k
′,m′, c′) and (i2, k

′, c) and i2 is inserted in inc(Id → C).
• With these new tuples at hand, the loop on line 4 proceeds further, generating
(i1, k,m

′, c) by the statement on line 9. No new tuple is generated at this stage.
• The loop on line 4 is processed once again, producing no new tuple. When
running the reduction step against the current state of D∗, the following tuples are
removed: (i1,m

′), (i1, k,m
′), (i1, m

′, c), (i1, k, c), (i2, k
′,m′′), (i2, k

′, c′), (i2, k
′, c),

(i3,m) and (i3, k
′).

Thus, the output of Algorithm 2 is indeed as expected. It is important to
notice that, although tuples have been added in D∗ during the processing, the
final number of tuples in D∗ is less than that in D. Although this particular result
cannot be proven in general, it will be shown that in the worst case, the size of
D∗ remains polynomial in the size of D.

We emphasize that some nulls present in D have been replaced by actual values
in D∗, thanks to the functional dependencies in FD. For example the second tuple
in D with two nulls has been ‘completed’ into a total tuple in D∗. However, such
a completion has not been possible for every tuple in D∗. Namely, the C-value in
the last tuple of D∗ is left as null.

Keeping in line with our statement that ‘a missing value exists only if it is
inferred from the functional dependencies’, this indicates that the C-value of this
tuple could not be determined based on the content of D and FD, and no other
conclusion can be drawn regarding this null.
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To see why the two insertions mentioned in the statement on line 12 are needed,
we first recall from [24] that, in the traditional case, the chased table characterizes
the semantics of the input table, in case no inconsistency has been detected1. In
this work our goal is similar, but has to be adapted to our context. Namely, we
expect that the chased table D∗ can provide a syntactical characterization of all
possibly true tuples in ∆, that is of all tuples t such that ∆ ⊢ t holds.

In the context of our example, if we assume that (i2, k
′,m′, c′) is not inserted

during the processing then Algorithm 2 would not fit our semantics. Indeed, for
every T -mapping µ such that µ |= ∆, µ(i2) ⊆ µ(c′) holds because of Id → C

applied to the seventh row in D. Thus, µ(i2, k
′,m′, c′) = µ(k′,m′, c′), and since

µ(k′,m′, c′) is nonempty (due to the fifth row in D), ∆ ⊢ (i2, k
′,m′, c′). Hence

(i2, k
′,m′, c′) must appear in D∗ to fulfill our expectation.

Adding such ‘new’ tuples when chasing a table is one of the main features of
our approach, as compared with traditional chase. This step should be seen as a
‘by-product’ of carrying on the computation even after encountering a violation
of a functional dependency. 2

The following lemma shows that Algorithm 2 provides an operational means to
characterize the tuples t such that µ∗(t) 6= ∅.

Lemma 3 Algorithm 2 applied to ∆ = (D,FD) always terminates. Moreover, for
every tuple t, µ∗(t) 6= ∅ holds if and only if t is in LoCl(D∗).

Proof See Appendix C. 2

Recalling that LoCl(D∗) denotes the Lower Closure of D∗, that is the set of all
sub-tuples of tuples in D∗, Lemma 3 shows that D∗ is a ‘tabular’ version of the
set of all tuples t such that µ∗(t) 6= ∅, that is, by Lemma 1, a ‘tabular’ version
of the set of all tuples t such that ∆ ⊢ t. Therefore, D∗ provides a syntactical
characterization of the set of all tuples t such that ∆ ⊢ t, as expected in the
previous example.

4.2 Computing True Tuples and Inconsistent Tuples

As mentioned just above, Lemma 1 and Lemma 3 show that, given ∆ = (D,FD),
a tuple t is in LoCl(D∗) if and only if ∆ ⊢ t holds, that is, if and only if t is
potentially true in ∆, that is if and only if t is either true or inconsistent in ∆.

To see how to compute the set of all inconsistent tuples, we first recall the
notion of closure of a relation scheme as defined in relational database theory [24].

Given a set FD of functional dependencies and a relation schemeX, the closure
of X with respect to FD, or more simply the closure of X, denoted by X+, is the
set of all attributes A in U such that every table D satisfying FD in the sense of
relational tables, also satisfies X → A.

It is well-known that X+ is computed through the following two steps that are
quite similar to the steps of Algorithm 1:

1 In traditional chase, the semantics of a table D containing nulls is the set of all tuples
true in every instance of D, i.e., in every relation R over U with no nulls, that satisfies the
functional dependencies and such that for every t in D, there exists r in R such that r.T = t.
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X+ := X

while X+ changes do

for all Y → B in FD such that Y ⊆ X+ do

X+ := X+ ∪ {B}
return X+

The following proposition shows a strong relationship between the closure of a
relation scheme as recalled above and the closure of a tuple as stated in Definition 3.

Proposition 3 Let ∆ = (D,FD) and t be such that ∆ ⊢ t. For every tuple q and
every a in dom(A) such that q ⊑ t and a ⊑ t, we have: a belongs to q+ if and only
if A belongs to Q+.

Proof See Appendix D. 2

Algorithm 3 Inconsistent tuples in ∆ = (D,FD)

Input: The output of Algorithm 2, that is ∆∗ = (D∗,FD) and inc(FD).
Output: The set Inc(∆)
1: Inc(∆) := ∅
2: for all t in D∗ do

3: for all X → A in FD such that XA ⊆ T do

4: if x = t.X is in inc(X → A) then

5: for all q such that q ⊑ t do
6: if X ⊆ Q+ then

7: Inc(∆) := Inc(∆) ∪ {t.Q}
8: return Inc(∆)

Using the notion of relation scheme closure, we introduce Algorithm 3 which com-
putes the set of inconsistent tuples in ∆. The correctness of this algorithm is shown
in Lemma 4.

Lemma 4 Given ∆ = (D,FD), a tuple t is inconsistent in ∆ if and only if
t ∈ Inc(∆).

Proof See Appendix E. 2

The following proposition characterizes inconsistent and true tuples in ∆ based on
Algorithm 2 and Algorithm 3.

Proposition 4 Given ∆ = (D,FD) and a tuple t:
1. t is inconsistent in ∆ if and only if t ∈ Inc(∆).
2. t is true in ∆ if and only if t ∈ LoCl(D∗) \ Inc(∆).

Proof Immediate consequence of Definition 5, Lemma 3 and Lemma 4. 2

The following examples illustrate Algorithm 3 and Proposition 4.

Example 9 As in Example 7, let ∆ = (D,FD) over U = {A,B,C} where D =
{abc, ac′} and FD = {A → B,B → C}. The tabular version of D is shown on the
left below, whereas D∗ is shown on the right.
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Algorithm 4 Tuple truth value in ∆ = (D,FD)

Input: A tuple t, ∆∗ = (D∗,FD) and Inc(∆)
Output: The truth value of t as one of the truth values true, false, inc or unkn
1: v := unkn

2: if t ∈ LoCl(∆∗) then

3: if t ∈ Inc(∆) then

4: v := inc

5: else

6: v := true

7: else

8: Compute D∗
t using Algorithm 2 applied to D∗ ∪ {t} and FD

9: Compute Inc(∆t) using Algorithm 3 applied to ∆t = (D∗ ∪ {t},FD)
10: if t ∈ Inc(∆t) then

11: v := false

12: return v

D A B C

a b c
a c′

D∗ A B C

a b c
a b c′

Running Algorithm 2, D∗ is first set to D and abc′ is inserted in D∗ by the
statement line 9 due to A → B. Then, b is inserted in inc(B → C) by the statement
line 13, due to the tuples abc and abc′. Thus, the table D∗ output by Algorithm 2
is as shown above and inc(FD) = {inc(A → B), inc(B → C)} where inc(A →
B) = ∅ and inc(B → C) = {b}.

When running Algorithm 3 for abc in D∗, since b is in inc(B → C), b, ab, bc
and abc are inserted into Inc(∆), due to the statement on line 7. This is so because
the schema Q of each of these tuples contains B, and so, satisfies B ⊆ Q+.

Moreover, for q = a, due to A → B, we have A+ = ABC and thus, B ⊆ A+

holds, showing that a is inserted in Inc(∆) on line 7. A similar reasoning holds
for q = ac because B ∈ (AC)+. Thus, ac is also inserted in Inc(∆) on line 7. The
only remaining possibility is q = c, and does not modify Inc(∆) because B 6⊆ C+.
A similar computation is performed with abc′ in D∗, adding bc′, abc′ and ac′ in
Inc(∆). As no other tuple can be inserted in Inc(∆), Algorithm 3 returns

Inc(∆) = {abc, abc′, ab, ac, ac′, bc, bc′, a, b},

which, by Proposition 4(1), is the set of all inconsistent tuples in ∆. As a conse-
quence, by Proposition 4(2), c and c′ are the only true tuples in ∆.

Now, as in Example 7, referring to ∆1 = (D1,FD) with D1 = {ac, ac′}, it is
easy to see that D∗

1 = D1. This implies that ∆1 is consistent, and that ac, ac′, a,
c and c′ are true in ∆1. 2

4.3 The Case of False Tuples

As already noticed, computing all tuples false in a given ∆ = (D,FD) is not
feasible in case of infinite attribute domains. However, given a tuple t and assuming
that ∆∗ and Inc(∆) have been computed, Algorithm 4 allows to compute v∆(t).
In this way, instead of being systematically identified, false tuples are identified
on demand.
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Proposition 5 Given ∆ = (D,FD), and a tuple t and assuming that ∆∗ =
(D∗,FD) and Inc(∆) have been computed, the truth value returned by Algorithm 4
is equal to v∆(t).

Proof Immediate consequence of Definition 5 and Proposition 2. 2

The following example illustrates the algorithm.

Example 10 It has been seen in Example 8 that in the context of our introductory
example, Algorithm 2 returns the table D∗ as shown in Figure 2, and inc(∆) =
{inc(Id → K), inc(Id → C)} where inc(Id → K) = ∅ and inc(Id → C) = {i2}.
Thus, by Algorithm 3, the set Inc(∆) is defined by:

Inc(∆) = {t | i2 ⊑ t ⊑ (i2, k
′,m′, c)} ∪ {t | i2 ⊑ t ⊑ (i2, k

′,m′, c′)}∪
{t | i2 ⊑ t ⊑ (i2, k

′,m′′, c)} ∪ {t | i2 ⊑ t ⊑ (i2, k
′,m′′, c′)}

Applying now Algorithm 4, we have the following:

– v∆(i1, a,m, c) = v∆(i1, k,m
′, c) = true, because line 6 changes the value of v,

since these tuples are in D∗ but not in Inc(∆).
– v∆(i2) = v∆(i2, c) = v∆(i2, c

′) = inc, because line 4 changes the value of v,
since these tuples are in Inc(∆).

– v∆(i1, k
′) = v∆(i1, c

′) = false. Indeed, none of these tuples is in LoCl(D∗),
thus implying that neither line 4 nor line 6 applies. Moreover, when running
Algorithm 4 with (i1, k

′) as input, (i1, k,m, c) and (i1, k
′) are in D∗∪{(i1, k

′)}.
Hence (i1, k

′) is in Inc(∆t), because of Id → K, and by line 11, v∆(k′m) is set
to false. A similar reasoning holds for (i1, c

′), but using Id → C.
– v∆(k′,m) = unkn. Indeed, as above, when running Algorithm 4 with (k′,m)

as input, lines 4 and 6 do not change the value of v (as (k′,m) does not occur
in LoCl(D∗)). Moreover, as D∗ ∪ {(k′,m)} is consistent, the value of v is not
changed by the statement line 11. Consequently, unkn is returned. 2

4.4 Complexity Issues

We argue that the computation of inconsistent and true tuples in ∆ = (D,FD) is
polynomial in the size of the table D and in the order of the ‘number of conflicts
with respect to functional dependencies’ (to be defined shortly). To see this, denot-
ing by |E| the cardinality of a set E, we investigate the complexities of Algorithm 2
and of Algorithm 3.

Regarding Algorithm 2, we first notice that, contrary to the standard chase
algorithm [24], rows are added in the table during the computation, and some
others are then removed by the reduction statement of line 14. To assess the size
of the table D∗ during the processing, we point out the following:

– If no inconsistency is found during the processing of the while-loop on line 4,
at most one tuple is added in D∗ as the ‘join’ of two tuples in D by statement
line 9. Therefore, the cardinality of D∗ remains in the same order as that of
D. Notice in this respect that, upon reduction, one ‘join’ tuple replaces two
tuples in D, which reduces the size of the table D∗ output by the algorithm.

– However, when inconsistent tuples occur, the statement line 9 adds more than
one tuple and statement line 12 inserts tuples resulting from a cross-product.
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To find an upper bound of the size of D∗, for every X → A in FD, let N(x) be the
number of different A-values a such that ∆ ⊢ xa and x belongs to inc(X → A).
We denote by δ the maximal value of all N(x) for all x in inc(FD); in other words
δ = max({N(x) | x ∈ inc(FD)}). δ is precisely what was earlier referred to as the
‘number of conflicts with respect to functional dependencies’.

Given a tuple in D and a functional dependency X → A in FD, each of the
statements line 9 and line 12 generates at most δ tuples. Since several functional
dependencies may apply to t, at most δ|FD| tuples are generated for the given
tuple t. Hence, the number of tuples generated by the statements lines 9 and 12 is

in O
(

|D|.δ|FD|
)

. We therefore obtain that the size of the table D∗ when running

Algorithm 2 is in O
(

|D|.
(

1 + δ|FD|
))

, that is in O
(

|D|.δ|FD|
)

.

Since the number of runs of the while-loop on line 4 is at most equal to the

number of tuples added into D∗, this number is in O
(

|D|.δ|FD|
)

. Since more-

over one run of the while-loop is quadratic in the size of D∗, the computational

complexity of this while-loop is in O
(

|D|3.δ3.|FD|
)

.

The last point to be mentioned here is that the reduction processing on line 14
is performed through a scan D∗ whereby for every t in D∗ every sub-tuple of
t is removed. Such a processing being quadratic in the size of D∗, the overall

computational complexity of Algorithm 2 is in O
(

|D|3.δ3.|FD|
)

.

As the computational complexity of Algorithm 3 is clearly linear in the size of
D∗, the global complexity of the computation of inconsistent and true tuples in ∆

is as stated just above, and therefore polynomial in the size of D.

Regarding Algorithm 4, we notice that its complexity is in O
(

|D|3.δ3.|FD|
)

as well, because it requires a scan of D∗ and then, in case the test line 2 fails,
Algorithm 2 is applied to a table whose cardinality is that of D∗ plus 1. It should
however be kept in mind that, in this case, the algorithm has to be run once
for each tuple, which shows that computing false tuples is not feasible even if all
attribute domains are finite. Indeed, in this case, denoting by DOM the maximal
cardinality of attribute domains, the cardinality of T is in O

(

|U |DOM
)

, thus

yielding a computation in O
(

|U |DOM .|D|3.δ3.|FD|
)

.

We draw attention on the following important points regarding these complex-
ity results:

1. Regarding the computation of false tuples, the above result has to be further
investigated in the following two directions: first the computation of D∗

t pro-
cessed in Algorithm 4 is likely to be optimized using an incremental algorithm
instead of Algorithm 2, and second, it is expected that there exist interesting
and relevant cases whereby the computation of D∗

t is not necessary. We indeed
suspect that this holds in the case of a star schema. This is an important issue
that lies out of the scope of the present paper, but that will be investigated in
the next future.

2. When the database is consistent, δ is equal to 1, thus yielding a complexity in
O(|D|3). This result can be shown independently from the above computations
as follows: In the case of traditional chase the maximum of nulls in D being
bounded by |U |.|D], the number or iterations when running the algorithm is
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n n n n n

f n f n f

Fig. 3 Truth tables of basic connectors

also bounded by |U |.|D|. Since the run of one iteration is in |D|2, the overall
complexity is in O(|U |.|D|3), or in O(|D|3), as |U | is independent from |D|.

3. The above complexity study should be further investigated in order to provide
more accurate results regarding the estimation of the number of actual tests
necessary to the computation of D∗. The results in [11] are likely to be useful
for such a more thorough study of this complexity.

5 Four-Valued Logic and Table Merging

In this section, we first give a brief overview of Belnap’s Four-valued logic and
then we show that our approach has a strong relationship with this formalism in
the context of merging two or more tables.

5.1 Basics of Four-Valued Logic

Four-valued logic was introduced by Belnap in [5], who argued that his formalism
is of interest when integrating data from various data sources. To this end, he
introduced four truth values denoted by t, b, n and f and read as true, both true
and false, neither true nor false and false, respectively. An important feature of
this Four-valued logic is that its truth values can be compared according to two
partial orderings, known as truth ordering and knowledge ordering, respectively
denoted by �t and �k and defined as follows:

n �k t �k b ; n �k f �k b and f �t n �t t ; f �t b �t t.

As a consequence, two new connectors were introduced, denoted by ⊕ and ⊗,
in addition to the standard connectors ∨ (disjunction) and ∧ (conjunction). The
corresponding truth tables, along with that for negation, are displayed in Figure 3
and show that ∨ and ⊕ correspond to the least upper bound (lub) with respect to
�t and �k, respectively; whereas ∧ and ⊗, correspond to the geatest lower bound
(glb) with respect to �t and �k, respectively . It is also shown in [5,13] that
the set {t, b, n, f} equipped with the two orderings �t and �k has a distributive
bi-lattice structure.

Not surprisingly, some basic properties holding in standard logic do not hold in
this setting. For example, Figure 3 shows that formulas of the form Φ∨¬Φ are not
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always true, independently of the truth value of Φ. The reader is referred to the
literature [3,5,13,14,23] for more details on the properties of Four-valued logic.

Based on the truth tables shown in Figure 3, it turns out that the connector
⊕ plays a key role in the context of data integration. Indeed, considering n data
sources S1, . . . , Sn and a fact ϕ, for every i = 1, . . . , n, ϕ is assigned one truth
value vi, among t, b, n, or f in each Si. The ‘integrated’ truth value of ϕ, denoted
by v is then obtained as the expression v = v1 ⊕ . . . ⊕ vn, due to the following
intuition:

– The third row (or third column) of the truth table of ⊕ shows that every vi
such that vi = n plays no role in the resulting truth value v, provided that
one of them be distinct from n (otherwise the ‘integrated’ truth value of ϕ is
obviously n). This fits our intuition that a source in which the truth value of ϕ
is unknown does not provide any piece of information regarding the ‘integrated’
truth value of ϕ. We thus assume hereafter that for every i = 1, . . . , n, vi 6= n.

– For every v among t, b, n or f, if v1 = . . . = vn = v, then v = v. The intuition
here is that, since all sources agree on truth value v, it is obvious to expect v

to be this common value v. For example, if for every i = 1, . . . , n, vi = t, then
it should be obvious that v must be t as well!

– Now, if there exists i0 such that vi0 = b, then v = b. This fits the intuition that
if ϕ is inconsistent in at least one data source, then ϕ remains inconsistent in
the integrated source.

– The last case is when there exist distinct i and j in {1, . . . , n} such that vi 6= vj ,
and no vi is equal to b. In this case we have vi = t and vj = f (or equivalently
vi = f and vj = t), which is the standard case of conflicting data sources in
practice. In this case, it holds that v = b (since t⊕ f = b). This result again
fits our intuition that in case of conflicting data sources, the ‘integrated’ truth
value in inconsistent.

In the next sub-section, we show that, in our approach, the four truth values as
defined in Definition 5 also follow this intuition when it comes to merging two or
more tables over the same universe U .

5.2 Merging two or more Tables

Data merging consists in collecting data from multiple, possibly heterogeneous
sources and putting them in a single destination. The data from each source usually
comes in the form of a CSV file, along with some hints on the data, referred to as
metadata [16,19]. During this process, different data sources are put together, or
merged, into a single data store. Data merging is also related to data consolidation
and to data integration.

When data comes from a broad range of sources, consolidation allows organi-
zations to more easily present data, while also facilitating effective data analysis.
Data consolidation techniques reduce inefficiencies, like data duplication, costs
related to reliance on multiple databases and multiple data management points.

In this section, we consider a simplified, relational scenario of n sources ∆1 =
(D1,FD1), . . . , ∆n = (Dn,FDn), where each source ∆i = (Di,FDi) consists of a
table Di over a fixed universe U , possibly with nulls, and functional dependencies
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FDi. We then explain how to merge these sources in our approach under the
following assumptions:

1. All source tables are over the same universe U .
2. Merging is done in the simplest possible way, namely (a) the merged table is

the union (in the set theoretic sense) of the source tables and (b) the set of
functional dependencies of the merged table is the union of the sets of functional
dependencies of the source tables. That is, the sources are merged through the
pair: ∆ = (D,FD), where D =

⋃i=n
i=1 Di and FD =

⋃i=n
i=1 FDi.

Relying on Belnap’s Four-valued logic, we investigate the relationship between the
truth values a tuple t has in the source tables and the truth value the tuple t has
in the merged table.

First, notice that a ‘natural’ one-to-one mapping h from our set Four = {true,
inc, unkn, false} to Belnap’s set FOUR = {t, b, n, f}, can be defined by:
h(true) = t, h(inc) = b, h(unkn) = n and h(false) = f. Then, the connec-
tor ⊕ defined on FOUR induces a connector ⊕ over Four defined by: v1⊕v2 =
h−1(h(v1)⊕ h(v2)) for all v1 and v2 in Four.

Moreover, we can define a partial ordering on Four isomorphic to the knowledge
ordering of FOUR that allows us to compare truth values in Four. Denoting this
partial ordering by ⊳, we have:

unkn ⊳ false ⊳ inc and unkn ⊳ true ⊳ inc

The following proposition shows that the truth value of a tuple t in the merged
table is always greater (with respect to ⊳) than any of the truth values that t has
in the source tables in which it appears. In other words, when merging tables,
the knowledge about tuples always increases, compared to the knowledge we have
about tuples in the source tables.

Proposition 6 Let ∆i = (Di,FDi) (i = 1, . . . , n) be n data sources over the same
universe, and let ∆ = (D,FD) be defined by D =

⋃i=n
i=1 Di and FD =

⋃i=n
i=1 FDi.

For every tuple t the following holds:
⊕

i=n
i=1 v∆i

(t) ⊳ v∆(t).

Proof For every i = 1, . . . , n, let∆′
i = (Di,FD). We first prove that for every tuple

t, v∆i
(t) ⊳ v∆′

i
(t) holds. Indeed, for every i = 1, . . . , n, let D∗

i , respectively (D′
i)

∗,
the chased table of Di with respect to FDi, respectively FD. Since FDi ⊆ FD
holds, it is easy to see that for every qi in (D′

i)
∗ there exists q inD∗

i such that qi ⊑ q.
Hence, for every q in T , [q+]i ⊆ [q+]′i, where [q+]i, respectively [q+]′i, denotes the
closure of q in ∆i, respectively ∆′

i. Therefore, if ∆i ⊢ t, respectively ∆i |∼ t, then
∆′

i ⊢ t, respectively ∆′
i |∼ t, and so, for every i = 1, . . . , n, v∆i

(t) ⊳ v∆′

i
(t).

Considering ∆′
i (i = 1, . . . , n) and ∆, it can be seen that for every i = 1, . . . , n

and every qi in D′∗
i there exists q in D∗ such that qi ⊑ q. Consequently, for every

i = 1, . . . , n, and every q in T , [q+]′i ⊆ q+, where q+ denotes the closure of q in
∆. Therefore, if for some i, ∆′

i ⊢ t, respectively ∆′
i |∼ t, then ∆ ⊢ t, respectively

∆ |∼ t, and so, for every i = 1, . . . , n, v∆′

i
(t) ⊳ v∆(t). The proposition follows from

the transitivity of ⊳ and from the fact that ⊕ defines the least upper bound (lub)
with respect to ⊳, in the same way as ⊕ defines the lub with respect to �k. 2

In what follows, we identify cases where the equality
⊕

i=n
i=1 v∆i

(t) = v∆(t) holds
and cases where it does not. To simplify, we assume that n = 2.
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First, if for i = 1 or i = 2, v∆i
(t) = inc, then the proposition implies that

v∆(t) = inc, because inc is maximal with respect to ⊳. In this case, the equality
always holds. Another case where the equality holds is if v∆1

(t) = true and
v∆2

(t) = false. Indeed, in this case we have ∆ ⊢ t and ∆ |∼ t, showing that
v∆(t) = inc. Therefore, v∆(t) = v∆1

(t)⊕ v∆2
(t).

To see cases where the equality v∆1
(t)⊕ v∆2

(t) = v∆(t) does not hold, let
U = {A,B,C}, ∆1 = ({abc}, ∅) and ∆2 = ({bc′}, {B → C}).

In this case, ∆ = (D,FD) where D = {abc, bc′} and FD = {B → C}. Hence,
D∗ = {abc, abc′} and Inc(∆) = {b, bc, bc′, abc, abc′}, and so:

– v∆1
(b) = v∆2

(b) = true, whereas v∆(b) = inc.
– v∆1

(bc′) = unkn, v∆2
(bc′) = true, thus implying that v1 ⊕ v2 = true, whereas

v∆(bc′) = inc.

We further illustrate Proposition 6 in the the context of our introductory example.

Example 11 We recall that in our introductory example, we have two data sources
∆1 = (D1,FD) and ∆2 = (D2,FD), where FD = {ID → K, ID → C}.

Based on D1 and D2 as shown in Figure 1 and displayed in Figure 4, applying
Algorithm 2 produces D∗

1 and D∗
2 also shown in Figure 4, and returns Inc(∆1) =

Inc(∆2) = ∅.

D1 Id K M C

i1 k m c
i1 m′

i2 k′ m′ c
i2 k′ m′′

i3 m

D2 Id K M C

i1 k c
i2 k′ c′

i2 k′ m′′

i3 k′

D∗
1 Id K M C

i1 k m c
i1 k m′ c
i2 k′ m′ c
i2 k′ m′′ c
i3 m

D∗
2 Id K M C

i1 k c
i2 k′ m′′ c′

i3 k′

Fig. 4 The source tables of our introductory example and their chased versions

Hence, as already mentioned, ∆1 and ∆2 are consistent. Referring to Exam-
ple 10 and Figure 2, applying Proposition 6 entails the following:

– v∆1
(i1, k,m, c) = true, v∆2

(i1, k,m, c) = unkn and v∆(i1, k,m, c) = true.
v∆1

(i1, k,m
′, c) = true, v∆2

(i1, k,m
′, c) = unkn and v∆(i1, k,m

′, c) = true.
These are cases of equality because true⊕ unkn = true.

– v∆1
(i2, c) = true, v∆2

(i2, c) = false and v∆(i2, c) = inc.
This is another case of equality because true⊕ false = inc.

– v∆1
(i2) = true, v∆2

(i2) = true and v∆(i2) = inc.
This is a case where equality does not hold because true⊕ true 6= inc. Notice
however that true ⊳ inc holds. 2
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6 Consistent Query Answering

In this section, considering true tuples and false tuples only (i.e., forgetting about
false tuples), we address the important problem of consistent query answering. We
first provide a brief review of the abundant related literature, and then, we show
that our approach provides new insights in the problem of consistent query answer-
ing. Moreover, we also argue that in our approach, the ‘quality’ of such consistent
answers can be assessed, based on the notion of tuple truth value. However, this
issue lies out of the scope of the present paper, and will be the subject of further
research in the next future.

6.1 Related Work

The problem of query answering in presence of inconsistencies has motivated im-
portant research efforts during the past two decades and is still the subject of
current research. As mentioned in the introductory section, the most popular ap-
proaches in the literature are based on the notion of ‘repair’, a repair of D being
intuitively a consistent database R ‘as close as possible’ to D; and an answer to a
query Q is consistent if it is present in every repair R of D.

However, it has been recognized that generating all repairs is difficult to imple-
ment - if not unfeasible. This is a well known problem in practice which explains,
for instance, why data cleansing is a very important but tedious task in the man-
agement of databases and data warehouses [18]. This issue has been thoroughly
investigated in [15], where it has been shown that computing repairs of a given
relational table in the presence of functional dependencies is either polynomial
or APX-complete2, depending on the form of the functional dependencies. The
reader is referred to [1] for theoretical results on the complexity of testing whether
R is a repair of D, when considering a more generic context than we do in this
work (more than one table and constraints other than functional dependencies).
A Prolog based approach for the generation of repairs can be found in [4].

Dealing with repairs without generating them is thus an important issue, also
known as Consistent Query Answering in Inconsistent Databases. One of the first
works in this area is [8] and the problem has since been addressed in the context
of various database models (mainly the relational model or deductive database
models) and under various types of constraints (first order constraints, key con-
straints, key foreign-key constraints). Seminal papers in this area are [2] and [27],
while an overview of works in this area can be found in [6].

The problem considered in all these works can be stated as follows: Given
a database D with integrity constraints IC, assume that D is inconsistent with
respect to IC. Under this assumption, given a query Q against D, what is the
consistent answer to Q? The usual approach to alleviate the impact of inconsistent
data on the answers to a query is to consider that an answer to Q is consistent if
it is present in every repair R of D.

Complexity results regarding the computation of the consistent answer have
been widely studied in [9]. For example one important case is when IC consists

2 Roughly, APX is the set of NP optimization problems that allow polynomial-time approx-
imation algorithms (source: Wikipedia).
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in having one key constraint per database relation and Q is a conjunctive query
containing no self-join (i.e., no join of a relation with itself). In this case computing
the consistent answer is polynomial whereas if self-joins occur then the problem is
co-NP-complete.

Another important problem in considering repairs is that there are many ways
of defining the notion of repair. This is so because there are many ways of defining
a distance between two database instances, and there is no consensus as to the
‘best’ definition of distance. Although the distance based on symmetric difference
seems to be the most popular, other distances exist as well based for example
on sub-sets, on cardinality, on updates or on homomorphism [26]. Notice in this
respect that the results in [15] are set for two distances: one based on sub-sets and
one based on updates.

6.2 Consistent Query Answering in our Approach

In our work we do not use any notion of repair, thus we avoid the above problem of
choosing among all possible ways of defining repairs. Instead, we use set theoretic
semantics for tuples and functional dependencies that allow us to associate each
tuple with one truth value among true, false, inconsistent or unknown.

In what follows, we outline the process of consistent query answering in our
approach, and then compare it to the approaches based on repairs. In doing so
we follow the intuition of the repairs-approach where an answer to a query is
consistent if it is present in every repair; and we transpose it in our approach by
considering that a tuple is in the consistent answer to the query if its truth value
is true in the sense of our model.

As usual when dealing with a single table with nulls, a query Q is an SQL-like
expression of one of the following two forms:

Q : SELECT X or Q : SELECT X WHERE Γ

In either of these forms, X is an attribute list seen as a relation schema, and in
the second form, the WHERE clause specifies a selection condition Γ . It should
thus be clear that, as in SQL, the where clause in a query is optional. The generic
form of a query Q is denoted by Q : SELECT X [WHERE Γ ].

A selection condition Γ is a well formed formula involving the usual connectors
¬, ∨ and ∧ and built up from atomic boolean comparisons of one of the forms
Aθ a or AθA′, where θ is a comparison predicate, A and A′ are attributes in U

whose domain elements are comparable through θ, and a is in dom(A).

Moreover, a tuple t satisfies Aθ a if A is in sch(t) and if t.A θ a holds, and
t satisfies AθA′ if A and A′ are in sch(t) and if t.A θ t.A′ holds. Based on this,
determining whether t satisfies Γ follows the rules usual in First Order Logic
regarding connectors. For instance, referring to our introductory example, the
tuple t = (k,m) such that sch(t) = KM satisfies the conditions (K = k) and
(M = m ∨C = c′) but does not satisfy the condition (M = K), assuming that m
and k are comparable but distinct constants.

Given ∆ = (D,FD), the answer to Q in ∆ is the set of the restrictions to X of
all tuples t in D∗ such that X ⊆ sch(t) and such that t satisfies Γ , when present
in Q. It follows that answers to queries contain only tuples without nulls.
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Now, roughly speaking, the consistent answer to Q is the set of all true tuples
defined over X that satisfy the condition in Q. However, as the following example
shows, this rough definition should be carefully stated in particular with regard to
the functional dependencies to be taken into account for tuple truth value.

Example 12 In the context of our introductory example, let ∆ = (D,FD) where
FD = {Id → K, Id → C} and where D is displayed in Figure 1. As seen in
Example 8, Algorithm 2 returns D∗ as shown below and inc(FD) = {inc(Id →
K), inc(Id → C)} where inc(Id → K) = ∅ and inc(Id → C) = {i2}.

D∗ Id K M C

i1 k m c
i1 k m′ c
i2 k′ m′ c
i2 k′ m′′ c
i2 k′ m′ c′

i2 k′ m′′ c′

i3 k′ m

We also recall from Example 10 that Inc(∆) is defined by:

Inc(∆) = {t | i2 ⊑ t ⊑ (i2, k
′,m′, c)} ∪ {t | i2 ⊑ t ⊑ (i2, k

′,m′′, c)}∪
{t | i2 ⊑ t ⊑ (i2, k

′,m′, c′)} ∪ {t | i2 ⊑ t ⊑ (i2, k
′,m′′, c′)}

Let Q1 and Q2 be two queries (without conditions) as defined below:

Q1 : SELECT Id,K,C and Q2 : SELECT Id,K,M

Projecting the tuples in D∗ over the attributes Id, K, C for Q1 and over Id, K,
M for Q2 produces the tables Π1 and Π2 shown below.

Π1 Id K C

i1 k c
i2 k′ c
i2 k′ c′

Π2 Id K M

i1 k m
i1 k m′

i2 k′ m′

i2 k′ m′′

i3 k′ m

Since in these two tables, the tuples whose Id-value is i2, are inconsistent in ∆,
it seems justified to exclude them from any consistent answer. In other words,
according to this intuition, the expected consistent answers to Q1 and Q2 are
respectively {(i1, k, c)} and {(i1, k,m), (i1, k,m

′), (i3, k
′,m)}.

We explain below why it makes sense to exclude the two tuples in the case of
Q1, whereas the removal in the case of Q2 is debatable.

1. Regarding Q1, the tuples (i2, k
′, c) and (i2, k

′, c′) in Π1 clearly violate Id → C

from FD, and thus can not occur in the consistent answer to Q1.
2. Regarding Q2 however, no functional dependency is violated by the tuples in

Π2, and thus, there is no reason for removing any of them when producing the
consistent answer to Q2.

Another way of explaining this situation is to notice that, in D∗, the only non
satisfied functional dependency is Id → C and that

1. attributes Id and C occur in the SELECT clause of Q1, making it necessary to
check functional dependency satisfaction;

2. attribute C does not occur in the SELECT clause of Q2, implying that checking
functional dependency satisfaction makes no sense.
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Another important point to take into account is the impact of selection conditions
on tuple truth value in the answer to a query. To illustrate this point, first notice
that, when considering the query Q1 the only functional dependency to be checked
is Id → C, with respect to which the table Π1 shows inconsistencies regarding i2.
However, let now Q′

1 be the query defined by:

Q′
1 : SELECT Id,K,C WHERE C = c′

Only the fifth and sixth tuples in D∗ satisfy the selection condition and thus,
the only possible tuple in the consistent answer to Q′

1 is (i2, k
′, c′), which alone,

trivially satisfies the functional dependency Id → C.

However, the consistency of the answer to Q′
1 may seem counter-intuitive, since

the tuple (i2, k
′, c′) is seen as inconsistent in the answer to Q1, where the same

attributes are involved. To cope with this counter-intuitive situation, we rather
consider that the consistent answer of Q′

1 is empty, i.e., that consistency has to
be checked independently from selection conditions, based only on the functional
dependencies involving only attributes from the SELECT clause in the query.

In what follows, we provide the formalism and the definitions to account for
these remarks. 2

Given a table D over U , a subset X of U and a selection condition Γ , we denote
by σΓ (D), πX(D) and πX(FD) the following sets:

– σΓ (D) is the set of all tuples t in D such that t satisfies Γ .
– πX(D) is the set of the restrictions to X of all tuples in D whose schema

contains X; that is πX(D) = {t | (∃q ∈ D)(X ⊆ sch(q), t = q.X)}.
– πX(FD) is the set of all functional dependencies that involve attributes in X

only; that is πX(FD) = {(Y → B) ∈ FD | Y B ⊆ X}.

These notation are used in the following definition where the notion of consistent
answer to a query is introduced.

Definition 6 Given ∆ = (D,FD) and Q : SELECT X [WHERE Γ ], let ∆X be
defined by ∆X = (πX(D∗), πX (FD)).

The answer to Q in ∆, denoted by ans∆(Q), is the set πX(σΓ (D
∗)). Moreover,

for every tuple x in ans∆(Q), the truth value of x in ans∆(Q) is defined by v∆X
(x).

The consistent answer to Q in ∆, denoted by ans+∆(Q), is the set of all tuples
x in ans∆(Q) such that v∆X

(x) = true.

It is important to notice that, according to Definition 6, given ∆ and Q, two
distinct truth values may be given to a tuple t, namely, its truth value in ∆, i.e.,
v∆(t), and its truth value in ∆X , i.e., v∆X

(t). Since these truth values are not
determined using the same set of functional dependencies, they might be distinct.

Referring to Example 12, based on the notation introduced in Definition 6,
for X1 = IdK C, πX1

(FD) = FD, and so, ∆X1
= (Π1,FD). In this case, for

every tuple x over X1, v∆X1
(x) = v∆(x). On the other hand, for X2 = IdKM ,

πX2
(FD) = {Id → K}, and so, ∆X2

= (Π2, {Id → K}). Since Π2 satisfies
Id → K, for x = (i2, k

′, m′), v∆X2
(x) = true. However, as x is a super-tuple of

i2, we have v∆(x) = inc, showing that v∆X2
(x) 6= v∆(x).

The following proposition shows that ans+∆(Q) is computed from D∗ and
inc(FD), using Algorithm 5.
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Algorithm 5 Consistent answer ans+∆(Q)

Input: A query Q : SELECT X [WHERE Γ ], ∆∗ = (D∗,FD) and inc(FD)

Output: The set ans+
∆
(Q)

1: ans+
∆
(Q) := ∅

2: for all t in D∗ do

3: if sch(t) contains all attributes in X then

4: if for every Y → B in πX(FD), t.Y is not in inc(Y → B) then

5: if t satisfies Γ then

6: // This test always succeeds if Q involves no selection condition

7: ans+
∆
(Q) := ans+

∆
(Q) ∪ {t.X}

8: return ans+
∆
(Q)

Proposition 7 Given ∆ = (D,FD) and Q : SELECT X [WHERE Γ ], Algorithm 5
correctly computes ans+∆(Q).

Proof In this proof, denoting by ans the output of Algorithm 5, we prove that
ans = ans+∆(Q). To prove that ans ⊆ ans+∆(Q), we notice that, by Algorithm 5,
every tuple x in ans x is the projection over X of a tuple t in D∗ satisfying Γ .
Thus, x belongs to πX(σΓ (D

∗)), that is to ans∆(Q). Moreover, since for every
t in D∗ such that t.X is in ans and every Y → B in πX(FD), t.Y is not in
inc(Y → B), it holds that v∆X

(x) = true. It thus follows that x is in ans+∆(Q).
Conversely, assuming that x is in ans+∆(Q) implies that x is in ans∆(Q). Hence,

D∗ contains a tuple t that satisfies Γ and t.X = x, meaning that sch(t) contains
X and that t satisfies the if-condition on line 5 in Algorithm 5. Moreover, since
we also have v∆X

(x) = true, for every Y → B in πX(FD), t.Y cannot be in
inc(Y → B). This shows that the if-condition on line 4 in Algorithm 5 is satisfied,
and thus that x belongs to ans, which completes the proof. 2

Regarding complexity, Proposition 7 shows that, assuming that D∗ has been com-
puted, the computation of the consistent answer is linear in the size of D∗.

If we assume moreover that Inc(∆) has also been computed, labelling each
tuple in ans+∆(Q) by its truth value in ∆ is an option to investigate, because it
has been seen from Definition 6 that the truth value of a tuple t in ∆, i.e., v∆(t),
may be different than the truth value of t in ans∆(Q), i.e., v∆X

(t).
Knowing that a tuple in the consistent answer, thus having truth value true

in this answer, has truth value inc in the database it comes from, may indeed be
relevant in case the user is interested in data quality, as is the case when dealing
with data lakes [16]. Investigating further issues related to query answering in our
approach, including issues related to data quality is the subject of future work.

Example 13 Running Algorithm 5 with the queries Q1, Q′
1 and Q2 as in Ex-

ample 12, returns ans+∆(Q1) = {(i1, k, c)}, ans+∆(Q′
1) = ∅ and ans+∆(Q2) =

{(i1, k,m), (i1, k,m
′), (i2, k

′,m′), (i2, k
′,m′′), (i3, k

′,m)}, as expected.
As earlier noticed regarding ans+∆(Q2), for x = (i2, k

′,m′) or x = (i2, k
′,m′′),

we have v∆(x) 6= v∆X2
(x). In this case, smart users could find it relevant to be

informed of this situation, which can be done by labelling the two tuples (i2, k
′,m′)

and (i2, k
′,m′′) by inc, that is, their truth value in ∆. We notice that this piece

of information cannot be provided by any of the existing approaches.

Considering now the query Q3 : SELECT M,C WHERE K = k′, Algorithm 5
discards the first two tuples of D∗ (because their K-value is not equal to k′), and
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also the last tuple of D∗ (as this tuple has no C-value). When processing the
remaining four tuples in D∗, no functional dependency has to be taken care of,
and so, we obtain ans+∆(Q3) = {(m′, c), (m′, c′), (m′′, c), (m′′, c′)}. 2

6.3 Comparison with Repair-Based Approaches

Comparing our approach with approaches to consistent query answering from the
literature, we point out that when constraints are functional dependencies only,
as in our approach, repairs are defined using set-theoretic inclusion as follows.

Definition 7 Given ∆ = (D,FD), denoting by D∗ the chased table associated
with D, a repair of ∆ is a table R over U such that: (1) R ⊆ D∗, (2) R satisfies
FD, and (3) R is maximal among the sets satisfying (1) and (2).

We notice that in the above definition, inclusion is understood in its strict set-
theoretic meaning, disregarding the presence of nulls in the tuples. For example
{ab, a′bc} ⊆ {abc, a′bc} does not hold whereas {ab, a′bc} ⊆ {ab, abc, a′bc} does.

Repairs of ∆ can be generated based on the tuples stored in inc(FD) according
to the following algorithm:

R := D∗

for all X → A in FD do

for all x in inc(X → A) do

choose an A-value a among all α such that xα occurs in D∗

R := R \ {q | XA ⊆ sch(q), q.X = x, q.A 6= a}

return R

Indeed, based on Definition 7, R as computed above is a repair because: (1)R ⊆ D∗

clearly holds, (2) R satisfies FD holds since for every X → A in FD, there exist q
and q′ in R such that q.X = q′.X and q.A 6= q′.A, and (3) R is maximal because
inserting any of the removed tuples leads to violation of a functional dependency.

Given a query Q : SELECT X [WHERE Γ ], denoting by Rep(∆) the set of all
repairs of ∆, the consistent answer to Q based on repairs can be formally defined
in the following two ways:

1. ans
↓
∆(Q) = πX

(

⋂

R∈Rep(∆) σΓ (R)
)

.

2. ans
↑
∆(Q) =

⋂

R∈Rep(∆) πX(σΓ (R)).

Intuitively, ans↓∆(Q) is obtained by evaluating the query against the intersection

of all repairs, whereas ans↑∆(Q) is obtained by evaluating the query against each
repair and by taking the intersection of all these answers.

Example 14 Computing the repairs of D∗ as shown in Example 12 produces the
tables R1 and R2 shown below.

R1 Id K M C

i1 k m c
i1 k m′ c
i2 k′ m′ c
i2 k′ m′′ c
i3 k′ m

R2 Id K M C

i1 k m c
i1 k m′ c
i2 k′ m′ c′

i2 k′ m′′ c′

i3 k′ m

Thus, regarding the queries Q1, Q
′
1, Q2 and Q3 of Example 12, we have:
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Algorithm 6 Repair-based consistent answers ans↓∆(Q), ans↑∆(Q)

Input: A query Q : SELECT X [WHERE Γ ], ∆∗ = (D∗,FD) and inc(FD)
Output: The sets ans↓(Q) and ans↑(Q)
1: ans↓(Q) := ∅ ; ans↑(Q) := ∅
2: for all t in D∗ do

3: if sch(t) contains all attributes in X then

4: if t satisfies Γ then

5: // This test always succeeds if Q involves no selection condition
6: if for every Y → B in FD such that Y B ⊆ sch(t), t.Y is not in inc(Y → B)

then

7: ans↓(Q) := ans↓(Q) ∪ {t.X}
8: if for every Y → B in FD such that Y B ⊆ sch(t) and B ∈ X, t.Y is not in

inc(Y → B) then

9: ans↑(Q) := ans↑(Q) ∪ {t.X}
10: return ans↓(Q), ans↑(Q)

– ans
↓
∆(Q1) = {(i1, k, c)} ; ans↑∆(Q1) = {(i1, k, c)}

– ans
↓
∆(Q′

1) = ∅ ; ans↑∆(Q′
1) = ∅

– ans
↓
∆(Q2) = {(i1, k,m), (i1, k,m

′), (i3, k
′,m)} ;

ans
↑
∆(Q2) = {(i1, k,m), (i1, k,m

′), (i2, k
′,m′), (i2, k

′,m′′), (i3, k
′,m)}

– ans
↓
∆(Q3) = ∅ ; ans↑∆(Q3) = ∅

It should be noticed that computing all repairs before computing the answers
is not realistic in practice. In what follows, we provide an efficient algorithm to
compute these answers and we prove that they are always ‘smaller’ with respect
to set theoretic inclusion than the answers as defined in Definition 6. 2

The following proposition deals with the computation of ans↓∆(Q) and of ans↑∆(Q),
and compares these answers with ans+∆(Q).

Proposition 8 Given ∆ = (D,FD) and a query Q : SELECT X [WHERE Γ ],

Algorithm 6 correctly computes ans
↓
∆(Q) and ans

↑
∆(Q). Moreover, the following

holds: ans↓∆(Q) ⊆ ans
↑
∆(Q) ⊆ ans+∆(Q).

Proof See Appendix F. 2

To illustrate the inclusions in Proposition 8, it can be seen from Example 13 and
Example 14 that:

− ans
↓
∆(Q1) = ans

↑
∆(Q1) = ans+∆(Q1);

− ans
↓
∆(Q′

1) = ans
↑
∆(Q′

1) = ans+∆(Q′
1);

− ans
↓
∆(Q2) ⊂ ans

↑
∆(Q2) and ans

↑
∆(Q2) = ans+∆(Q2);

− ans
↓
∆(Q3) = ans

↑
∆(Q3) and ans

↑
∆(Q3) ⊂ ans+∆(Q3).

Regarding complexity, is important to note that, if the chased tableD∗ is available
then any of the three ways to compute consistent query answers is linear in the size
of D∗. Moreover, when providing any of these consistent answers, our approach
allows for pointing to the user possible problematic tuples, namely those tuples
that are inconsistent in ∆, although not inconsistent in the answer.
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7 Concluding Remarks

In this paper we have introduced a novel approach to handle inconsistencies in
a table with nulls and functional dependencies. Our approach uses set theoretic
semantics and relies on an extended version of the well known chase procedure
to associate every possible tuple with one of the four truth values true, false,
inconsistent and unknown. Moreover, we have seen that true and inconsistent
tuples can be computed in time polynomial in the size of the input table. We have
also seen that our approach applies to consistent query answering and we have
shown that it provides larger answers than the repair-based approaches.

Building upon these results, we currently pursue four lines of research: (1)
applying our approach to the particular but important case of key-foreign key
constraints in the context of a star schema or a snow-flake schema; (2) designing
incremental algorithms to improve performance in case of updates, (3) extending
our approach to constraints other than functional dependencies, such as inclusion
dependencies as done in [7], (4) investigating the issue of data quality in the
framework of our approach, and (5) extending our approach to account for the
presence of tuples declared as false.
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A Proof of Lemma 1

Lemma 1. For every ∆ = (D,FD), the sequence (µi)i≥0 has a unique limit µ∗ that satisfies

that µ∗ |= ∆. Moreover:

1. For all a1 and a2 in the same attribute domain dom(A), if µ∗(a1)∩µ∗(a2) 6= ∅ then there

exist X → A in FD and x over X such that µ∗(x) 6= ∅ and µ∗(x) ⊆ µ∗(a1) ∩ µ∗(a2).
2. For all α and β, ∆ ⊢ (α ⊓ β) holds if and only if µ∗(α) ∩ µ∗(β) 6= ∅ holds.

Proof We recall that the sequence (µi)i≥0 is defined by the following steps:

1. For every t in D, assign a ‘fresh’ integer id(t) to t;
2. Let µ0 be the mapping defined for every domain constant a by:

µ0(a) = {id(t) | t ∈ D and a ⊑ t};
3. While there exists X → A in FD, x over X and a in dom(A) such that µ(xa) 6= ∅ and

µ(x) 6⊆ µ(a), define µi+1 by: µi+1(a) = µi(a) ∪ µi(x) and µi+1(α) = µi(α) for any other
constant α.

The sequence (µi)i≥0 is increasing in the sense that for every α, µi(α) ⊆ µi+1(α), and bounded

in the sense that for every α, µi(α) ⊆ {id(t) | t ∈ ∆}. Hence the sequence has a unique limit.
Moreover, for every t inD, µ∗(t) 6= ∅ holds because id(t) always belongs to µ∗(t), and µ∗ |= FD,
because otherwise µ∗ would not be the limit of the sequence. Therefore µ∗ |= ∆, which shows
the first part of the lemma.

(1) Regarding the first item in the second part of the lemma, we first notice that by definition
of µ0, we have µ0(a1)∩µ0(a2) = ∅, because it is not possible that a tuple in D has two distinct
values over an attribute.

Since we assume that µ∗(a1) ∩ µ∗(a2) 6= ∅, there exists i0 ≥ 0 such that µi0 (a1) ∩
µi0 (a2) = ∅ and µi0+1(a1)∩µi0+1(a2) 6= ∅. By definition of the sequence (µi)i≥0, for j = 1, 2,

µi0+1(aj ) = µi0 (aj ) ∪M(aj) where M(aj) is the union of all µi0 (xj) such that Xj → A is in
FD, µi0 (xj) ∩ µi0 (aj) 6= ∅ and µi0 (xj) 6⊆ µi0 (aj ). Hence,
µi0+1(a1) ∩ µi0+1(a2) = (µi0 (a1) ∪M(a1)) ∩ (µi0 (a2) ∪M(a2))

= (µi0 (a1) ∩ µi0 (a2)) ∪ (µi0 (a1) ∩M(a2)) ∪
(M(a1) ∩ µi0 (a2)) ∪ (M(a1) ∩M(a2))

Since µi0+1(a1)∩µi0+1(a2) 6= ∅, at least one of the four terms of the above union is not empty.
But since µi0 (a1) ∩ µi0 (a2) = ∅, only the last three cases are investigated below.

(i) If µi0 (a1) ∩ M(a2) 6= ∅, M(a2) contains x2 such that µi0 (a1) ∩ µi0 (x2) 6= ∅. Thus, there
exists X2 → A is in FD such that X2 = sch(x2), µi0 (a1) ∩ µi0 (x2) 6= ∅ and µi0 (a2) ∩
µi0 (x2) 6= ∅. Since both a1 and a2 are in dom(A), we have µi0+1(x2) ⊆ µi0+1(a1) and
µi0+1(x2) ⊆ µi0+1(a2). Thus µ∗(x2) ⊆ µ∗(a1) ∩ µ∗(a2).

(ii) If µi0 (a2) ∩ M(a1) 6= ∅, it can be shown in a similar way that there exist X1 → A is in
FD and x1 over X1 such that µ∗(x1) ⊆ µ∗(a1) ∩ µ∗(a2). The proof is omitted.

(iii) If M(a1) ∩ M(a2) 6= ∅, for j = 1, 2, M(aj) contains xj such that µi0 (x1) ∩ µi0 (x2) 6= ∅.
Thus, for j = 1, 2, there exist Xj → A in FD such that Xj = sch(xj), µi0 (xj) ∩ µi0 (aj ) 6= ∅
and µi0 (x1) ∩ µi0 (x2) 6= ∅. Hence, µi0+1(xj) ⊆ µi0+1(aj), for j = 1, 2 and µi0+1(x1) ∩
µi0+1(x2) 6= ∅. It follows that, when computing µi0+2, we obtain the additional inclusions
µi0+2(x1) ⊆ µi0+2(a2) and µi0+2(x2) ⊆ µi0+2(a1), which implies that for j = 1, 2, µ∗(xj) ⊆
µ∗(a1) ∩ µ∗(a2) holds. This part of the proof is thus complete.

(2) Regarding the second item in the second part of the lemma, assume first that ∆ ⊢ (α⊓ β).
Since µ∗ |= ∆, we obviously have that µ∗(α) ∩ µ∗(β) 6= ∅.

Conversely, assuming that µ∗(α)∩µ∗(β) 6= ∅, we show that ∆ ⊢ (α⊓ β), that is, for every
µ such that µ |= ∆, µ(α)∩µ(β) 6= ∅. The proof is by induction on the steps of the construction
of µ∗, assuming α in dom(A) and β in dom(B).
• The result holds for i = 0. Indeed, if µ0(α) ∩ µ0(β) 6= ∅ then there exists u in D such that
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α ⊑ u and β ⊑ u. Hence for every µ such that µ |= ∆, we have µ(u) 6= ∅ and µ(u) ⊆ µ(α)∩µ(β),
implying that µ(α) ∩ µ(β) 6= ∅ holds.
• For i0 > 0, assuming that µi0 satisfies that for all ζ and η such that µi0 (ζ)∩ µi0 (η) 6= ∅, we
have µ(ζ) ∩ µ(η) 6= ∅ for every µ such that µ |= ∆, we show that the result holds for µi0+1.

Indeed, let i0 such that µi0 (α) ∩ µi0 (β) = ∅ and µi0+1(α) ∩ µi0+1(β) 6= ∅. By definition
of the sequence (µi)i≥0, and as in (1) just above, µi0+1(α) = µi0 (α) ∪ M(α) where M(α) is
the union of all µi0 (x) such that X → A is in FD, µi0 (x) ∩ µi0 (α) 6= ∅ and µi0 (x) 6⊆ µi0 (α).
Similarly, µi0+1(β) = µi0 (β) ∪M(β) where M(β) is the union of all µi0 (y) such that Y → B
is in FD, µi0 (y) ∩ µi0 (β) 6= ∅ and µi0 (y) 6⊆ µi0 (β). Thus:
µi0+1(α) ∩ µi0+1(β) = (µi0 (α) ∪M(α)) ∩ (µi0 (β) ∪M(β))

= (µi0 (α) ∩ µi0 (β)) ∪ (µi0 (α) ∩M(β)) ∪
(M(α) ∩ µi0 (β)) ∪ (M(α) ∩M(β))

Since µi0+1(α)∩µi0+1(β) 6= ∅, at least one of the four terms of the above union is non empty.
But since µi0 (α) ∩ µi0 (β) = ∅, only the last three cases are investigated below.

(i) If µi0 (α)∩M(β) 6= ∅, there exist Y → B in FD and y over Y such that µi0 (α)∩µi0 (y) 6= ∅
and µi0 (β) ∩ µi0 (y) 6= ∅. By our induction hypothesis, for every µ such that µ |= ∆, we have
µ(α) ∩ µ(y) 6= ∅ and µ(y) ⊆ µ(β), which implies that µ(α) ∩ µ(β) 6= ∅.

(ii) If µi0 (β) ∩M(α) 6= ∅, the case is similar to (i) above. The proof is omitted.

(iii) If M(α) ∩ M(β) 6= ∅, there exist X → A and Y → B in FD, x over X and y over
Y , such that µi0 (x) ∩ µi0 (y) 6= ∅, µi0 (α) ∩ µi0 (x) 6= ∅ and µi0 (β) ∩ µi0 (y) 6= ∅. By our
induction hypothesis, for every µ such that µ |= ∆, we have µ(x) ∩ µ(y) 6= ∅, µ(x) ⊆ µ(α) and
µ(y) ⊆ µ(β). Hence, µ(α) ∩ µ(β) 6= ∅ also holds in this case, and the proof is complete. 2

B Proof of Lemma 2

Lemma 2. Let ∆ = (D,FD) and t a tuple. Then Algorithm 1 computes correctly the closure

t+ of t.

Proof In this proof, we denote by cl(t) the output of Algorithm 1, and we show that cl(t) = t+,
that is that cl(t) ⊆ t+ and t+ ⊆ cl(t) both hold. Before proceeding to these proofs, we draw
attention on that for every T -mapping µ such that µ(t) 6= ∅, µ |= ∆ if and only if µ |= ∆t,
where ∆t is defined by the statement line 1 in Algorithm 1. Indeed:
• If µ |= ∆t then for every q ∈ Dt µ(q) 6= ∅ and µ |= FD. Since D ⊂ Dt, µ(q) 6= ∅ for every
q ∈ D, implying that µ |= ∆ holds.
• Conversely, if µ |= ∆ then as µ(t) is supposed to be nonempty, µ(q) 6= ∅ for every q in Dt.
Since µ |= FD holds, µ |= ∆t also holds.

To first prove that cl(t) ⊆ t+, we consider a T -mapping µ such that µ |= ∆, and we prove
that µ(t) ⊆ µ(a) for every a in cl(t). We first observe that if µ(t) = ∅ then µ(t) ⊆ µ(α) holds
for every constant α. Therefore, µ(t) ⊆ µ(a) holds.

Now, if µ(t) 6= ∅ then µ |= ∆t, as shown above. The proof that µ(t) ⊆ µ(a) is done by
induction on the steps of the execution of Algorithm 1. Denoting by cl0, cl1, . . . the sequence
of the assignments of cl(t) during execution, the following holds for every a in cl(t).
• If a is in cl0 as computed on line 2, a occurs in t. It is thus clear that µ(t) ⊆ µ(a).
• We now assume that, for j ≥ 0, every α in clj is such that µ(t) ⊆ µ(α) and we show that
this holds for a in clj+1 but not in clj . In this case, according to the condition in line 5 of
Algorithm 1, there exist X → A in FD and x over X such that ∆t ⊢ xa and for every b
in x, b ∈ clj . Thus µ(x) ∩ µ(a) 6= ∅ (because µ |= ∆t) and µ(t) ⊆ µ(b) for every b in x (by
our induction hypothesis, because b is in clj). Hence µ(t) ⊆ µ(x) and µ(x) ⊆ µ(a) hold, thus
implying that µ(t) ⊆ µ(a).

As a consequence, we have shown that for every µ such that µ |= ∆, for every a in cl(t),
µ(t) ⊆ µ(a). Therefore, by Definition 3, cl(t) ⊆ t+ holds.

Conversely, t+ ⊆ cl(t) is shown by contraposition: assuming that a 6∈ cl(t), we prove that
a 6∈ t+. To this end, we exhibit a T -mapping µt such that µt |= ∆ and µt(t) 6⊆ µt(a).

We denote by µ∗
t the T -mapping built up as µ∗, but starting from ∆t as defined line 1 in

Algorithm 1. Thus, µ∗
t |= ∆t, and since µ∗

t (t) 6= ∅, it has been seen above that µ∗
t |= ∆.

Thus, if µ∗
t (t) 6⊆ µ∗

t (a) then µ∗
t is the T -mapping we are looking for, and thus, we set

µt = µ∗
t . Assuming that µ∗(t) ⊆ µ∗(a), let k be an integer not in µ∗

t (α) for any α occurring in
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∆t, and let µt be the T -mapping defined for every constant α by:
− µt(α) = µ∗

t (α) ∪ {k}, if α ∈ cl(t)
− µt(α) = µ∗

t (α), otherwise.
We show that µt satisfies that: (1) µt(t) 6⊆ µt(a) and (2) µt |= ∆.

(1) Since every α in t is in cl(t), k is in µt(t) and since a is not in cl(t), k is not in cl(a). It
thus follows that µt(t) 6⊆ µt(a).

(2) Since for every constant α, µ∗
t (α) ⊆ µt(α) holds, for every q in D, it holds that µ∗

t (q) ⊆
µt(q), which implies µt(q) 6= ∅, because µ∗

t (q) 6= ∅ holds as a consequence of µ∗
t |= ∆.

To prove that µt |= Y → B for every Y → B in FD, let y over Y and b in dom(B) such
µt(y) ∩ µt(b) 6= ∅. To show that µt(y) ⊆ µt(b), we consider the two cases according to which
µ∗
t (y) ∩ µ∗

t (b) is or not empty.
• If µ∗

t (y) ∩ µ∗
t (b) = ∅, then by definition of µt, for µt(y) ∩ µt(b) to be nonempty, it must be

that µt(y) = µ∗
t (y) ∪ {k} and µt(b) = µ∗

t (b) ∪ {k}. Writing y as β1 . . . βp, this implies that
every βi (i = 1, . . . , p), and b are in cl(t). Then, as we know that cl(t) ⊆ t+ holds, all these
constants are in t+, implying that µ∗

t (t) ⊆ µ∗
t (βi) (i = 1, . . . , p) and µ∗

t (t) ⊆ µ∗
t (b), because

µ∗
t |= ∆. Since µ∗

t (t) 6= ∅, we have µ∗
t (y) ∩ µ∗

t (b) 6= ∅, which contradicts our hypothesis that
µ∗
t (y) ∩ µ∗

t (b) = ∅. This case in thus not possible.
• If µ∗

t (y) ∩ µ∗
t (b) 6= ∅, then as µ∗

t |= FD, µ∗
t (y) ⊆ µ∗

t (b) holds, and by Lemma 1 applied to
∆t, we also have that ∆t ⊢ yb. Since µ∗

t (y) ⊆ µ∗
t (b) holds, assuming that µt(y) ⊆ µt(b) does

not hold implies that k belongs to µt(y) but not to µt(b). Hence, every βi (i = 1, . . . , p) is in
cl(t) whereas b is not. This is a contradiction with line 5 of Algorithm 1, where it is stated
that β is inserted into cl(t) (because ∆t ⊢ yb and every βi (i = 1, . . . , p) is in cl(t)). Thus,
µt(y) ⊆ µt(b) holds showing that ∆t |= Y → B. The proof is therefore complete. 2

C Proof of Lemma 3

Lemma 3. Algorithm 2 applied to ∆ = (D,FD) always terminates. Moreover, for every

tuple t, µ∗(t) 6= ∅ holds if and only if t is in LoCl(D∗).

Proof The tuples inserted into D∗ when running the while-loop line 4 of Algorithm 2 are built
up using only constants occurring in ∆. Thus, the number of these tuples is finite, and so,
Algorithm 2 terminates.

The proof that for every t in LoCl(D∗), µ∗(t) 6= ∅ holds is conducted by induction on the
steps of Algorithm 2. If (Dk)k≥0 denotes the sequence of the states of D∗ during the execution,
we first note that since D0 = D, for every t in LoCl(D0), µ∗(t) 6= ∅ holds.

Assuming now that for i > 0, for every t in LoCl(Di), µ∗(t) 6= ∅, we prove the result
for every t in LoCl(Di+1). Indeed, let t′ in Di+1 such that t ⊑ t′. If t′ is in Di, the proof is
immediate; we thus now assume that t′ is not in Di, that is that t

′ occurs in Di+1 when running
Algorithm 2, that is, there exist X → A in FD, t1 and t2 in Di such that t1.X = t2.X = x,
t1.A = a and either (i) t2.A is not defined or (ii) t2.A is defined but not equal to t1.A. Writing
t1 as t′1xa, we have the following:

(i) If t2.A is not defined, then t2 is written as t′2x and, according to the statement line 9,
t′ is of the form t′2xa. By our induction hypothesis, µ∗(t1) and µ∗(t2) are nonempty, and
thus µ∗(x) ∩ µ∗(a) 6= ∅. Hence, µ∗(x) ⊆ µ∗(a) (because µ∗ |= X → A), and so, µ∗(t′) =
µ∗(t′2) ∩ µ∗(x) ∩ µ∗(a) = µ∗(t′2) ∩ µ∗(x), showing that µ∗(t′) = µ∗(t2). Hence µ∗(t′) 6= ∅, and
so, µ∗(t) 6= ∅ also holds, since µ∗(t′) ⊆ µ∗(t).
(ii) If t2.A is defined but t1.A 6= t2.A. for i = 1, 2, ti is written as t′ixai where ai = ti.A.
statement line 12, t′ is one of the tuples t′1xa2 or t′2xa1, and each of these cases can be treated
as in (i) above,

We therefore have shown that if t is in LoCl(D∗) as computed by the main loop line 4 of
Algorithm 2, then µ∗(t) 6= ∅. Since the last loop line 14 does not change this set LoCl(D∗),
this part of the proof is complete.

Conversely, we show that for every t, if µ∗(t) 6= ∅ then t is in LoCl(D∗). The proof is done
by induction on the construction of µ∗. By definition of µ0, it is clear that if µ0(t) 6= ∅ then
t is in LoCl(D) and thus in LoCl(D∗). Now, if we assume that for every i > 0 and every t, if
µi(t) 6= ∅ then t belongs to LoCl(D∗), we prove that this result holds for µi+1.
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Let t be such that µi(t) = ∅ and µi+1(t) 6= ∅. For every α, writing µi+1(α) as µi(α)∪M(α),
where M(α) is the union of all µi(x) such that x is a tuple over X, where X → A ∈ FD,
α ∈ dom(A), µi(x) ∩ µi(α) 6= ∅, and µi(x) 6⊆ µi(α), we have the following:

µi+1(t) =
⋂

α⊑t µi+1(α)

=
⋂

α⊑t (µi(α) ∪M(α)) (1)

= µi(t) ∪
(

⋃

t=t1t2

(

µi(t1) ∩
(

⋂

β⊑t2
M(β)

)))

∪
(

⋂

α⊑t M(α)
)

(2)

Equality (2) above is obtained from (1) by applying the distributivity of intersection over union
with the convention that t = t1t2 refers to any split of t into two tuples t1 and t2. Assuming
µi(t) = ∅ and µi+1(t) 6= ∅ implies that in Equality (2) either the second or the last term of
the union is nonempty.

• If
⋃

t=t1t2

(

µi(t1) ∩
(

⋂

β⊑t2
M(β)

))

6= ∅, there exist t1 and t2 such that t = t1t2 and

µi(t1) ∩
(

⋂

β⊑t2
M(β)

)

6= ∅. Given such a split of t, writing t2 as β1 . . . βp implies that, for

k = 1, . . . , p,M(βk) contains yk such that Yk → Bk is inFD and µi(yk)∩µi(βk) 6= ∅. Moreover,

we have that µi(t1)∩
(

⋂k=p
k=1 µi(yk)

)

6= ∅. Thus by our induction hypothesis, LoCl(D∗) contains

a tuple of the form q1t1y1 . . . yp and p tuples of the form q′
k
ykβk (k = 1, . . . , p).

Now, given k = 1, . . . , p, if q1t1y1 . . . yp is not defined over Bk, q1t1y1 . . . ypβk appears in
D∗ due to the statement line 9 of Algorithm 2. Assume now that q1t1y1 . . . yp is defined over
Bk but with a value different than βk, say β′

k
.

By construction of t1 and t2, Bk is not in sch(t1), and so, Bk is either in sch(q1) or in
Yi for some i = 1, . . . , p. In any case, denoting sch(q1y1 . . . yp) by Q, we write q1t1y1 . . . yp
as rkt1b

′
k

where rk = (q1y1 . . . yp).(Q \ Bk). Considering that rkt1b
′
k

and q′
k
ykβk have the

same Yk-value yk, the statement line 12 of Algorithm 2 applies and rkt1βk is inserted in D∗.
During the subsequent iterations, a similar argument shows that D∗ contains a tuple of the
form rt1β1 . . . βp, that is rt1t2 or rt. It thus follows that t is in LoCl(D∗).
• If

⋂

α⊑t M(α) 6= ∅, the same reasoning as above applies considering that t1 is empty and

t2 = t. After the iterations, D∗ contains a tuple of the form rβ1 . . . βp, that is rt. Thus, in this
case again, t is in LoCl(D∗), and the proof is complete. 2

D Proof of Proposition 3

Proposition 3. Let ∆ = (D,FD) and t be such that ∆ ⊢ t. For every tuple q and every a in
dom(A) such that q ⊑ t and a ⊑ t, we have: a belongs to q+ if and only if A belongs to Q+.

Proof Assuming first a in q+, we show by induction on the steps of Algorithm 1 that A is in
Q+. It is important to notice that since q ⊑ t and ∆ ⊢ t, ∆ ⊢ q holds. Hence when running
Algorithm 1 with ∆ and q as input, as shown in the proof of Lemma 2, µ |= ∆ holds if and
only if µ |= ∆q holds. Thus, for every tuple τ , ∆ ⊢ τ holds if and only if ∆q ⊢ τ holds.

If a is in q+ because of line 2 in Algorithm 1, then A is in Q, showing that A is in Q+. If
a is inserted in q+ because of line 5, then there exist X → A in FD and x over X such that
every b in x belongs to q+ and ∆q ⊢ xa, that is ∆ ⊢ xa. Assuming that the proposition holds
for every b in x implies that every B in X is in Q+. Thus, X ⊆ Q+ holds, and so A is in Q+.

Conversely, let A be in Q+. If A is in Q, then q.A = a, and so, a is in q+. Let us now
assume that A is not in Q, and let us show by induction on the execution of the loop computing
Q+ that a belongs to q+. Indeed, denoting by Q′ the current value of Q+ when A is inserted
in Q+, there exists X → A in FD such that X ⊆ Q′. Thus, by our induction hypothesis, every
α in q.X is in q+. Moreover, since ∆ ⊢ t and xa = t.XA, ∆ ⊢ xa. Hence, ∆q ⊢ xa, and by the
statement line 5 of Algorithm 1, a belongs to q+. The proof is therefore complete. 2

E Proof of Lemma 4

Lemma 4. Given ∆ = (D,FD), a tuple t is inconsistent in ∆ if and only if t ∈ Inc(∆).
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Proof We note first that for every x in inc(X → A) there exist a1, . . . , ak (k ≥ 2) in dom(A)
such that for every i = 1, . . . , k, xai ∈ LoCl(D∗), thus such that ∆ ⊢ xai. Therefore, for every
i = 1, . . . , k, ai belongs to x+, and so, ∆ ⊢ (x � a1 ⊓ . . . ⊓ ak) holds, showing that x is
inconsistent in ∆.

We now prove that if q belongs to Inc(∆) then q is inconsistent in ∆. Indeed, by Algo-
rithm 3, there exist t in D∗, X → A in FD, such that Q ⊆ T , t.Q = q, t.X ∈ inc(X → A),
and X ⊆ Q+. Since ∆ ⊢ t, Proposition 3 applies, showing that for every α in x, α belongs
to q+, where q = t.Q. Hence, every ai in x+ is also in q+, and thus for every i = 1, . . . , k,
∆ ⊢ (q � ai), implying that q is inconsistent in ∆.

Conversely, if q is inconsistent in ∆, then ∆ ⊢ q and ∆ |∼ q. Thus, there exist A in U and a
and a′ in dom(A) such that ∆ ⊢ (q � a⊓a′), implying that ∆ ⊢ qa and ∆ ⊢ qa′. By Lemma 3,
D∗ contains two rows t and t′ such that qa ⊑ t and qa′ ⊑ t′. This implies that A can not be
in Q because otherwise, we would for instance have qa = q and thus qa′ = qaa′, which does
not define a tuple. Since, by Definition 3, ∆ ⊢ (q � a ⊓ a′) implies that a and a′ are in q+, by
Proposition 3, A is in Q+. Since A is not in Q, FD contains X → A such that X ⊆ Q+. It
follows that A is in X+, t.XA = xa and t′.XA = xa′. Therefore x belongs to inc(X → A).

Summing up, we have found a tuple t in D∗ and X → A in FD such that t.X belongs to
inc(X → A), q ⊑ t and X ⊆ Q+. It thus follows from line 7 of Algorithm 3 that q belongs to
Inc(∆), which completes the proof. 2

F Proof of Proposition 8

Proposition 8. Given ∆ = (D,FD) and a query Q : SELECT X [WHERE Γ ], Algo-

rithm 6 correctly computes ans
↓
∆
(Q) and ans

↑
∆
(Q). Moreover, the following holds: ans

↓
∆
(Q) ⊆

ans
↑
∆
(Q) ⊆ ans+

∆
(Q).

Proof In this proof we respectively denote by ans↓ and ans↑ the two sets returned by Algo-
rithm 6 and we successively show that ans↓ = ans↓(Q) and ans↑ = ans↑(Q).

First it is clear that all selected tuples are defined over X and that they satisfy Γ . Moreover,
assuming that the previous two conditions are satisfied, a tuple t generates an X-value in

ans
↓
∆
(Q), if and only if t is in every repair R of ∆, that is if and only if t contains no

conflicting value with respect to some dependency in FD. This condition being precisely that

on line 6 of Algorithm 6, we obtain that ans↓ = ans
↓
∆
(Q).

Now, given x in ans
↑
∆
(Q), assume that the condition on line 8 is not satisfied. In this case

there exist t in D∗ and Y → B in FD such that t satisfies Γ , t.Y is in inc(Y → B), t.X = x
and t.B occurs in x. Thus, by the statement on line 9 in Algorithm 2, D∗ contains a tuple
t′ such that sch(t) ⊆ sch(t′), t′.Y = t.Y and t′.B 6= t.B. Hence, writing x as x′b, Rep(∆)
contains a repair R where x′b occurs and a repair R′ where x′b does not occur, showing that

x cannot belong to ans
↑
∆
(Q). This is a contradiction showing that ans

↑
∆
(Q) ⊆ ans↑ holds.

Conversely, we first notice that for every tuple q occurring in a repair R but not in another
repair R′, there exist q′ in R′, B in sch(q) and Y → B in FD such that q.Y = q′.Y = y,
y ∈ inc(Y → B) and q.B 6= q′.B. Now, if x is a tuple over X for which the condition on line 8
is satisfied, then there exists t in D∗ such that t satisfies Γ , t.X = x and for every Y → B in
FD such that y is in inc(Y → B), B is not in X. Therefore, it turns out that x = t.X occurs

in πX(σΓ (R)) for every R in Rep(∆), which shows that x is in ans
↑
∆
(Q).

As for the inclusions, in Algorithm 6, the condition on line 6 implies that on line 8, showing
the first inclusion. Moreover, this second condition implies the one on line 4 of Algorithm 5,
showing the second inclusion. The proof is therefore complete. 2
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