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1. Introduction and review of the literature 

 

Buffer allocation problems arise in a wide range of applications: automatic transfer 

lines, production and assembly systems or communication networks. These exist in 

various forms, all aiming to answer the question: how much buffer storage to allocate 

between the processing stations? This question is important because the buffers may 

prevent blocking and/or starving of stations, thus drastically influencing the efficiency 

of the whole system. This is especially important for JIT environment which has as 

objective to reduce the inventory to as close to zero as possible. Therefore, we need to 

limit radically the stock by bounding the storage space between stations. In the context 

of Kanban policy, the buffer allocation problem is equivalent to the calculation of the 

minimal number of Kanbans. 

 

An excellent illustration of the value to industry in solving problems of this type is 

given by A. Patchong, T. Lemoine and G. Kern (2003). The authors demonstrate how 

methods for buffer allocation in designing PSA Peugeot Citroën car-body shop yielded 

substantial profits. The practical importance of the optimization tools for buffers 

allocation was also demonstrated by Tempelmeier (2003). A detailed analysis of 

mathematical models describing the effect of the buffer storage may be found in the 

following books (Buzacott and Shanthikumar, 1993; Gershwin, 1994; Altiok, 1996) and 

comprehensive surveys (Buzacott and Hanifin, 1978; Dallery and Gershwin, 1992; 

Papadopoulos and Heavey, 1996).  

 

In this paper, we consider a tandem production line (see Figure 1), where the parts are 

moved from one machine to the next by some kind of transfer mechanism. The 
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machines are subject to breakdowns: when a breakdown occurs, the corresponding 

machine is unusable for a random repair period. The machines are separated by finite 

buffers. The parts are stocked in these buffers when downstream machines are busy or 

down. 

[Insert Figure 1 about here] 

 

Let N denote the number of the intermediate buffers, and assume that the supply of new 

parts (raw materials) at the start of the line is inexhaustible and finished parts leave the 

machine N+1 immediately.  

 

A machine is subject to failures only when it is operating. The failure and repair times 

are assumed mutually independent and exponentially distributed. Empirical studies 

indicate that this assumption is applicable in many cases – see e. g. (Inman, 1999). Let 

θb
i denote the mean time between failures of machine i, then λi=1/θb

i is its failure rate. 

Similarly, θr
i and µi=1/θr

i are the mean time to repair and the repair rate of machine i, 

respectively, and i = 1, 2, …, N+1.  

 

We study tandem production lines where the machines have deterministic processing 

times (which are possibly non identical for different machines) – for automatic transfer 

and robotic assembly lines, this assumption is usually valid. Thus, machine i is assumed 

to have a constant cycle time θc
i and production rate uj=1/θc

i, i=1, 2,…, N+1.  

 

The performance of this transfer line is measured in terms of production rate, i.e. the 

steady state average number of parts produced per unit time. For the evaluation of this 
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parameter, different types of Markov models have been considered in literature (see e.g. 

Dallery and Gershwin, 1992; Papadopoulos and Heavey, 1996). 

 

In general, the production rate with finite buffers is difficult to analyze precisely with 

the Markov models. Exact performance computation of a production rate of a line with 

more than two machines and one buffer is problematic due to exponential growth of the 

number of states. Therefore, most of the techniques employed for the analysis of such 

systems are in the form of analytic approximations and simulations. Analytical 

approximations are generally based on the two-machines-one-buffer Markov models, 

and either aggregation (De Koster, 1987) or decomposition approach (Dallery et al., 

1989; Gershwin, 1987; Li, 2005). Simulation models are more expensive 

computationally but applicable to a wider class of systems (Dolgui and Svirin, 1995; 

Sörensen and Janssens, 2004). 

 

In this paper, we use two-machines-one-buffer Markov model independently developed 

by Levin & Pasjko (1969), Dubois & Forestier (1982), and Coillard & Proth (1984). For 

each tentative buffer allocation decision, the production rate is evaluated via an 

aggregation algorithm (Dolgui, 1993; Dolgui and Svirin, 1995), which is similar to the 

Terracol and David (1987) techniques. This aggregation approach appears to be 

sufficiently rapid for evaluation of tentative buffer allocations within the optimization 

algorithms.  

 

The aggregation algorithm for production rate evaluation consists in recurrent 

replacement of two adjacent machines by a single machine. The parameters λ*, µ*, u* of 

the resulting single machine are calculated from differential equations corresponding to 
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the two-machines-one-buffer Markov model. After N steps of such aggregation 

procedure the system reduces to one virtual machine with parameters λ*, µ*, u* and the 

estimate of the overall production rate V(H) is given by u*µ*/(λ*+µ*). 

 

Note: the optimization algorithms proposed in this paper are general and can be used 

with other production rate evaluation techniques. 

 

Let H= (h1, h2,…, hN )∈ ZN be the vector of decision variables, where hi is the size of the 

buffer between machines i and i+1. The problem of optimal buffer allocation has been 

considered in literature with respect to different optimality criteria (see e.g. Gershwin 

and Schor, 2000). The most commonly used among them are:  

• Production rate V(H); 

• Total buffers capacity B(H)=h1+h2+…+hN or the cost of buffer equipment (linear 

in H);  

• Average steady state inventory cost Q(H)= c1q1(H)+ …+cN qN(H), where qi(H) is 

the average steady state number of parts in buffer i, for i=1, 2, …, N. 

 

For example, Yamashita and Altiok (1998) suggest a dynamic programming approach 

for the minimization of total buffer space when the required value of production rate 

V(H) is given as a constraint. In (Jafari and Shanthikumar, 1989) the dynamic 

programming is used to maximize V(H) given a total buffer capacity. For similar 

knapsack problem formulations, Vouros & Papadopoulos (1998) suggest a knowledge-

based system, and Gershwin & Schor (2000) present gradient-based methods (here both 

discrete and continuous flows of material are considered). In (Spinellis and 

Papadopoulos, 2000), a genetic heuristic and a simulated annealing algorithm are 
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developed. Shi and Men (2003) present a hybrid Nested Partitions and a Tabu Search 

algorithms for maximizing V(H) under the constraint of a total buffer capacity. An 

original criterion is put forward by Helber (2001): buffer space allocation is considered 

as an investment problem. A gradient algorithm is tested to determine the buffer 

allocation that maximizes the expected net present value of the investment, including 

machines, buffers and inventory. 

 

The optimization method HBBA offered in this paper is based on a branch-and-bound 

algorithm (BBA) that uses an initial approximate solution found by a genetic algorithm 

(GA) analogous to the GA developed by Dolgui et al. (2002).  

 

Note: The GA for finding the initial approximate solution was chosen after testing 

various other versions of GAs and several tabu search (TS) algorithms we developed. 

One of the most efficient versions of the TS algorithm was one which used a random 

neighborhood space and constant length of tabu-list – see e.g. Glover and Laguna 

(1997). However, the selected GA achieved better results. The superiority of the GA vs. 

TS is partly explained by the effects of a population that allows the GA to adaptively 

search in different areas of the decision space. This feature proved to be helpful in the 

Nested Partitions algorithm of Shi and Men (2003), which is also based on information 

accumulation helping to concentrate the search in the most promising areas.  

 

Taking into account that the algorithm HBBA is coupled with an approximate 

production rate evaluation algorithm, it becomes an approximation algorithm as well. 

Nevertheless, the precision of the HBBA is provably close to that of goal function 

evaluation. 
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2   Optimization problem properties 

 

2.1 Criterion 

Let us introduce the following additional notation: 

Tam amortization time of the line (line life cycle); 

R(V) revenue for the sold production per time unit; 

J(H) 

di 

buffers acquisition cost for configuration H; 

maximal admissible size for buffer i, i=1, 2,… , N. 

 

In this paper, we deal with the following criterion: 

 

 Max ϕ(H)=Tam R(V(H)) - J(H).  (1) 

 

The functions R(V) and J(H) are assumed monotone and non-decreasing. These 

functions may incorporate some penalties, fixed costs for different standard buffer sizes, 

overproduction price reduction, etc. Function ϕ(H) is to be maximized subject to the 

constraints h1 ≤ d1, h2 ≤ d2,…, hN ≤ dN. 

 

 

 

 

2.2 Problem complexity 
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In Appendix, we give a proof of NP-hardness for a simple case of parallel-serial lines. 

The problem considered in the main body of this paper is more difficult to analyze, 

since it contains two arbitrary non-decreasing functions R(V) and J(H), which makes the 

usual complexity analysis (as e.g. in Garey and Johnson, 1979) not quite adequate.  

 

Therefore, we analyzed the complexity of the problem in terms of black-box 

optimization (see e.g. Droste et al., 2006). Black-box optimization is used when we do 

not have an access to the specific parameters of the given instance but may collect 

information about the unknown parameters only through goal function evaluations.  

 

Let us call the number of tentative solutions examined by a search algorithm 

(randomized or deterministic), until the optimum is found, the optimization time. The 

complexity of a black-box optimization algorithm is defined as the expected (average) 

optimization time for the worst-case instance, which is a function of the problem size. 

This approach is well suited for analysis of the problem hardness for a wide class of 

modern heuristic methods, such as genetic algorithms, simulated annealing, 

evolutionary strategies, tabu search, etc. (see e.g. Reeves, 1993), where the search 

process is mainly directed by the goal function values of already visited solutions. 

 

Proposition 1. For the buffer space allocation problem for a line consisting of two 

machines separated by a finite buffer, the expected optimization time of any black-box 

optimization algorithm is lower bounded by  d1/2+1. 

 

Proof. Let the integer upper bound d1 for the buffer size h1 be given. In order to 

construct a hard case for optimization, one can define such functions R(V) and J(h1) for 
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this line that φ(h1) will be constant (let it be 0) for all integer values of h1, except at one 

point, where φ(h1) takes its maximal value (assume that here φ(h1) equals 1). This is 

based on the fact that function V(h1) is strictly increasing on [0,d1] (this can be shown 

using the closed-form expressions e.g. from Coillard and Proth, 1984), so the maximum 

of φ(h1) may be "hidden" in any point 0,1,…,d1.  

 

Now we can apply the Yao's minimax principle (see e.g. Motwani and Raghavan, 

1995), which gives the lower bounds on complexity of the randomized black-box 

optimization algorithms through the analysis of deterministic algorithms for the same 

problem. Let us limit the set of problem inputs to those where φ(h1) takes only values 0 

and 1 for h1 in {0,1,…,d1} (this will further simplify the problem). In our situation, for 

any fixed value of d1, the Yao’s minimax principle implies that the optimization time of 

any black-box algorithm for its worst-case function φ(h1) is lower-bounded by the 

expected time of the worst-case optimal deterministic black-box algorithm (for the same 

value of d1) working on the inputs with any given probability distribution of function 

φ(h1).  

 

Taking φ(h1) uniformly distributed on the set of functions with a single maximum 

(equal to 1) in {0,1,…,d1}, we conclude that the expected optimization time of any 

worst-case optimal deterministic black-box algorithm is d1/2+1. Thus, by the Yao's 

minimax principle, the expected optimization time of any black-box algorithm for our 

problem is lower bounded by d1/2+1 (the obtained lower bound is tight, as it follows 

Proposition 2 from Droste et al., 2006). □ 
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Finally, our Proposition 1 demonstrates that the black-box complexity of buffer space 

allocation problem can be arbitrarily large as we increase the maximal admissible buffer 

size d1. In addition, this complexity increases drastically with the number of buffers in 

line.  

 

3   Optimization method 

 

The overall approach of the method HBBA is presented in Figure 2.  

 

[Insert Figure 2 about here] 

 

We use the standard depth-first branching procedure for the BBA. This routine will be 

employed in two different ways: as a single-dimension (one buffer only) optimizer 

inside the GA, then it is denoted BBA1, or as a separate algorithm for solving the full-

scale problem (all buffers), then it is denoted BBAN.  

 

To describe the hybrid optimization algorithm HBBA, we start with the BBA procedure 

used. 

 

3.1 Branch-and-bound algorithm (BBA) 

In our BBA, a node of the branching tree is a 5-tuple (F, a, b, g, j), where F⊂{1,2,…,N} 

is a set of fixed coordinates (buffers for which their size is fixed); j∈{1, 2,…, N}\F is 

the index of a buffer with non fixed size bounded between a and b; FZg ∈  is a vector 

containing the fixed values of coordinates (buffer sizes) for buffers with indices in F.  
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Let us define a set },,...2,1],,0[:{ NidhZHD ii
N =∈∈= . So, each 5-tuple is 

associated with a set of solutions: 

 

S(F, a, b, g, j) = ]},[;,:{ bahFighDH jii ∈∈=∈ . 

 

Branching at node (F, a, b, g, j) is performed as follows: 

If ba ≠ , then the associated subset S(F, a, b, g, j) splits into 

 

),,
2

,,( jgbaaFS +  and ),,,1
2

,( jgbbaFS +
+ . 

 

Otherwise (if ba = ), it divides into 

 

)1,,
2

,0,( 1 +∪ + jg
d

jFS j  

and 

,1
2

,( 1 +∪ +jd
jFS  )1,,1 ++ jgd j . 

 

The upper bound (UB) on the goal function value for the set of the solutions S(F, a, b, g, 

j) is given by  

 

 UB = )())(()),,,,(( minmax HJHVRTjgbaFS am −=ψ , (2) 
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where  

 

ii gh =max , ii gh =min , Fi ∈ , 

bhj =max , ahj =min , 

kk dh =max , 0min =kh , Fk ∉ , jk ≠ . 

 

In particular, for a leaf node (complete solution) in the branching tree, this bound 

coincides with ϕ(H), where H= Hmax = Hmin is the only element of the leaf node. 

 

Validity of this UB follows from the fact that V(H) is an increasing function, i.e. for any 

i∈{1, 2, …, N}, given arbitrary fixed capacities h1,…, hi-1, hi+1,…, hN, V(H) is 

increasing as a function of hi. This fact was proved using the sample path approach (see 

e.g. Glasserman & Yao, 1996 or Buzacott & Shanthikumar, 1993, Chapter 6.6). 

 

The initial lower bound LB is assumed to be -∞, if it is not given explicitly in the input 

of the BBA. In what follows, by “Pure BBA” we mean BBAN started from node 

(∅,0,d1,∅,1) with LB = –∞. 

 

 

 

 

3.2 Local optimization heuristic 
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This local optimization heuristic based on the BBA is used in the GA below – we 

denote it by LOBBA(H). This procedure aims to improve a given solution H with the 

help of the BBA1 applied to one buffer at a time, while the other buffers are fixed: 

 

Algorithm LOBBA(H)  

1. Generate a random permutation (π1, π2, …, πN) of elements {1, 2,…, N}.  

2. For all i from 1 to N do:  

2.1 Set Fi:={ π 1,… π i-1, π i+1,… , πN}; j:= π i;  

  gt:= ht for all t ≠ i. 

2.2 Start BBA1 from node (Fi, 0, dj, g, j). Let H' be the output of BBA1. 

2.3 If ϕ(H)<ϕ(H') then set H:= H'. 

3. Return H. 

 

GA using LOBBA. The general scheme of the GA coincides with that of the genetic 

algorithm proposed in (Dolgui et al., 2002), except for the local optimization procedure. 

A solution (individual) is presented by a vector of components (genes), where each gene 

gives the size of the corresponding buffer. The solutions of the initial population are 

randomly generated according to an a priori defined probability distribution. At each 

iteration, a couple of new solutions are obtained, and they replace a couple of 

“unpromising” solutions chosen in the current population (thus the population size 

remains constant). The best solution is returned when the GA stops. 

 

Construction of a new pair of solutions (offspring) starts with choosing a pair of parents 

from the current population by the means of a probabilistic selection operator. We use 

the s-tournament selection operator which randomly chooses s individuals from the 
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current population and selects the best one as a parent. Then the standard one-point 

crossover operator (see e.g. Reeves, 1993) replaces some coordinates (genes) of one 

parent with the values taken from the corresponding positions of the other. This is done 

with a fixed crossover probability Pcross (otherwise the crossover has no effect). After 

crossover, the strings undergo mutation, where the genes are randomly altered: the size 

of each buffer receives a uniformly distributed random variation of not more than ∆ 

units (parameter ∆ is chosen experimentally before the run of the GA).  

 

The local optimization heuristic LOBBA is applied to the obtained solutions before they 

are added into population. This modification of the GA using the LOBBA has turned out 

to be more advantageous than those suggested in (Dolgui et al., 2002). 

 

3.3 The hybrid algorithm HBBA 

 

The hybrid algorithm HBBA consists in starting the GA before the BBA for finding an 

approximate solution (see Figure 2). This solution is used further in the BBA, defining 

an initial lower bound (LB). If no improving solutions are found in the BBA, then this 

solution is returned as a result of the HBBA: 

 

Algorithm HBBA  

1. Obtain solution H using GA with LOBBA.  

2. Start BBAN from node (∅,0,d1,∅,1) with LB=ϕ(H).  

3. If BBAN finds H', ϕ(H)<ϕ(H') then return H', 

 otherwise return H.  
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As mentioned before, the BBA is used in HBBA both for solving the one-dimensional 

sub-problems in the local optimization procedure of GA and for the full-scale problem 

after running the GA.  

 

3.4 Some remarks on precision of BBA 

 

To implement the BBA with such bounds we need to compute the functions 

ψ( ),,,,( jgbaFS ) and ϕ(H) exactly, which is problematic, since no exact method is 

known to evaluate the production rate V(H). Instead, let us introduce the functions 

)),,,,(( jgbaFSГ  and Ф(H) defined by analogy with ψ( ),,,,( jgbaFS ) and ϕ(H), 

respectively, except for the production rate V which is now substituted by its 

approximate value, computed via a Markov-model aggregation heuristic.  

 

We can formulate an a priori precision of the BBA in terms of deviations of 

)),,,,(( jgbaFSГ  from ψ( ),,,,( jgbaFS ) and Ф(H) from ϕ(H). Let us consider a 

general case and assume that for the problem being considered, the values ε  and ∆ are 

such that  

 

|ϕ(H) - Ф(H)| ≤ ε  for all H∈ D,  

 

and for any 5-tuple (F, a, b, g, j) holds  

 

)),,,,(( jgbaFSГ ≥ ψ( ),,,,( jgbaFS )+∆ . 
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The following simple proposition bounds the precision of the BBA. 

 

Proposition 2. If H* is an optimal solution and H ′  is the output of the BBA, then 

),max()()( * ∆+≤′− εεϕϕ HH . 

 

Proof. Let us assume HH ′≠* . This means that one of the pruned nodes of the 

branching tree was associated with a set of solutions ),,,,( jgbaFS , containing the 

solution H*. If this node is a leaf, then 0)()( * ≥−′ HФHФ , otherwise  

 

.0)),,,,(()'( ≥− jgbaFSГHФ   

 

In the first case we have 

 

0))(()( * >−−+′ εϕεϕ HH , 

εϕϕ 2)()( * ≤′− HH , 

 

and in the second case 

 

,0)),,,,(()())*(()( ≥−′>∆−−+′ jgbafSГHФHH ϕεϕ  

therefore,  

 ∆+≤′− εϕϕ )()( * HH .   □ 
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In our case ∆ = ε , so ϕ( H*)-ϕ( H’)≤ 2ε . Note: the complete enumeration of all feasible 

solutions in the worst case also yields an error 2ε. Thus, the BBA achieves the best 

possible precision in some sense (it does not introduce any additional errors). 

 

4. Computational experiment 

 

The described algorithms were programmed in Delphi 6.0 and tested on a computer 

with Celeron 1,7GHz processor, 128 Mb RAM.  

 

4.1 Randomly generated tests 

In this part of experiments, we used 24 randomly generated series of tests listed in 

Table 1.  

[Insert Table 1 about here] 

 

Each series in Table 1 includes 30 different instances (different lines with the same 

following parameters: number of buffers and maximal buffer size). Here in the notation 

of each series GN_m and WN_m, index N is the number of buffers in the corresponding 

lines and m is the upper limit on the admissible buffers size, i.e. di=m for all i=1, 

2,…, N. 

 

The HBBA was compared to the Pure BBA in terms of the running time and the 

solutions obtained (both algorithms were executed until the branching was finished). 

The GA with LOBBA here (used in HBBA) has the same settings of the internal 

parameters as the GAs in (Dolgui et al., 2002): population size 50, tournament size s=5, 
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maximal admissible variation of each buffer size in mutation ∆=5, Pcross=0.5 and stops 

after 1000 iterations. 

 

Some instances with relatively small cardinality of solutions space were solved by the 

complete enumeration method (CEM). In what follows, we call the GA with LOBBA by 

"GA" for short. We denote the average running times of the HBBA (including Step 1, 

i.e. the work of the GA), Pure BBA, CEM, and GA (only Step 1 of HBBA) by tHBBA, 

tBBA, tCEM and tGA, respectively. These times are measured in seconds. Each algorithm is 

run once per instance. 

 

The instances (lines) of series GN_m were generated with the following parameters: for 

all i=1, 2, …, N+1 we set ui=1 and choose µi∈[1,100], λi∈[1,100] with uniform 

distribution. For all of these lines the buffer acquisition cost J(H) is equal to 10*B(H), 

and the amortization time Tam= 7000. The revenue is R(V(H)) = 10*V(H). 

 

The random series W8_m, m=5, 10, 15, 20, 25 consist of the lines, where the value of 

buffer sizes in the optimal solution is close to the maximum size. Here N=8, and for all 

i=1, 2, …, N+1 we set ui=1 and choose µi∈[10,12], λi∈[11,13] with uniform 

distribution. Other parameters are the same as in the series described above. 

 

In Table 2, we show the minimum min
HBBAt , average tHBBA and maximum max

HBBAt  running 

time of the HBBA as well as the average running time of the CEM and the GA for each 

test series GN_m. 
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To simplify future comparisons with other algorithms, the average number of tentative 

solutions evaluated in the HBBA, including those computed for finding the BBA 

bounds (2), is given in column Sol. 

 

Here for series from G5_20 to G5_35 and for G6_20 we indicate the actual running 

time of the CEM. For the other test series, the time is estimated using the total number 

of elements in the space of solutions as 

),1(
1

0 +Π≈
=

i
N

i
CEM dt τ  

where τ 0 is the time required for a single evaluation of the goal function (1). 

 

[Insert Table 2 about here] 

 

We were unable to compare the proposed algorithms with the CEM on the whole set of 

test series due to the immense computational time required for the CEM for the larger 

problems. However, it turned out that for the series from G5_20 to G5_35 and for 

G6_20, the goal function values of solutions returned by the HBBA were identical to 

those of the solutions obtained by the CEM. Table 2 shows that the running time of the 

HBBA is much smaller than the CEM and this advantage increases with the growth of 

the number and size of buffers.  

 

In order to evaluate the efficiency of hybridization we have compared the running time 

of the Pure BBA to the time of the branch-and-bound-phase (Step 2) of the HBBA. The 

time of the GA-phase (Step 1) of the HBBA is neglected here because usually it takes 
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about one second, as seen from Table 2. In Figure 3 and Figure 4, we give the speed-up 

ratio computed using the running times as  

∑
=

30

130
1

i i
BBA

i
HBBA

τ
τ

, 

where i
BBAτ  denotes the running time of the Pure BBA and i

HBBAτ  is the running 

time of the BBA-phase (Step 2) of the HBBA for the problem number i in a particular 

series. Note that we used 30 instances in each series, so i=1,2,…,30. The confidence 

intervals correspond to 95% level. The results for other series have the same sort of 

behavior. For series GN_m, the speed-up factor is always present on these problems 

and it approaches the ratio 0.6 approximately (see Figure 3). For series W8_m, with the 

growth of problem size, the acceleration becomes more significant, approaching 0.06 

(see Figure 4). 

 

[Insert Figure 3 about here] 

[Insert Figure 4 about here]  

 

 

 

 

4.2 Known knapsack-type tests 

 

Many publications focus on knapsack formulations of buffer space allocation problem. 

Therefore, we also tested our algorithms on two series of 5-machine knapsack-type 

problems vp6.3 - vp6.10 and vp7.3 - vp7.10 which were suggested by Vouros and 

Papadopoulos (1998). In their paper, the overall amount of buffer space was limited 
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from above by the value given in the problem index (i.e. for k = 3, 4, …, 10, the set of 

admissible solutions for vp6.k and vp7.k is restricted by the condition B(H) ≤ k). The 

maximization criterion is the output rate V(H).  

 

In order to take into account the knapsack-type constraint in our case, we have defined 

ϕ(H) combining the output rate with a linear penalty: ϕ(H)=V(H)-10000×max{0,B(H)-

k}. For all of these test examples, we set the buffer acquisition cost J(H) equal to B(H) 

and the amortization time Tam=1, so the revenue is R(V(H)) = V(H). The parameters of 

machines in series vp6.3 - vp6.10 were the following: µ1= µ2= µ3= µ4= µ5= 0.5, λ1= 

0.1, λ2= 0.2, λ3= 0.25, λ4= 0.3, λ5= 0.35, u1= u2= u3= u4= u5= 1. Here we set the 

production rates u1, u2, …, u5 equal to the corresponding mean production rates in 

(Vouros and Papadopoulos, 1998). Similarly we assign the following parameters of 

machines in series vp7.3 - vp7.10: µ1= µ2= µ3= µ4= µ5= 0.5, λ1= λ2= λ3= λ4= λ5= 0.05, 

u1= 1, u2= 1.1, u3= 1.2, u4= 1.3, and u5= 1.4.  

 

In Table 3, we show the solutions for vp6.3-vp6.10 and vp7.3 - vp7.10 obtained by the 

Pure BBA (column H), their goal function values (column ϕ), and the corresponding 

running time.  

[Insert Table 3 about here] 

 

Note that the BBA time for considered knapsack-type problems is very short (<0.2 

sec.), whereas the average running time of the GA for all of these problems was 

relatively large (about 0.55 sec.), therefore the usage of the hybrid scheme obviously 

does not make sense here. 
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5. Discussion of generalizations 

 

A natural generalization of the buffer space allocation problem considered in this paper 

is the extension to the production lines with series-parallel structure. The line can be 

represented by a series-parallel digraph, where the machines correspond to arcs and the 

buffers correspond to nodes. The genetic algorithm (coupled with aggregation 

techniques for performance analysis) discussed above is also applicable to these lines 

(Dolgui et al., 2002).  

 

However, the proposed BBA is harder to generalize, because the series-parallel lines are 

significantly harder with respect to finding appropriate bounds. The UB used in this 

paper is based on monotonicity of the function V(H) which was proved by the sample 

path approach. But, for the series-parallel lines, we found a counterexample with 4 

machines (see Figure 5), which shows that the sample path approach is not applicable 

for the proof of monotonicity of function V(H).  

 

[Insert Figure 5 about here] 

 

In this counterexample, we use the following assumptions: 

• A part goes from Buffer 1 to Machine 2, if Machine 2 is free, otherwise it goes 

to Machine 4, 

• all machines never fail, 

• u1= u2= u4=1, u3=1/2, 

• the last buffer is inexhaustible. 
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Let compare two following examples. Let us assume that the sizes of the first and 

second buffers in the first case are zero: h1= h2=0, and in the second case: h1=0, h2=1. 

 

In Tables 4 and 5, we list the timetable for the movements of parts. The part arrival 

times are given in column “A” and part departure times are given in column “D”. 

 

[Insert Table 4 about here] 

[Insert Table 5 about here] 

 

The tables show that the number of parts processed by the line till time 6 in the first 

case (4 parts) is greater than in the second one (3 parts), so the monotonicity property 

does not hold.  

 

Of course this example does not imply that the monotonicity of V(H) can not be 

established by some other method, different from the sample path. Nevertheless, using 

the simulation (see Dolgui, 1993 for details of the simulation algorithm) on the line with 

the same structure but with other parameters we found that V(H) increases when h2 is 

reduced (with statistical significance level 0.05). The parameters that we used in this 

experiment were λi=µi=1 for all i=1,2,3,4, u1=u2=1, u3=0.5, u4=2, h1=10000, h2=50, h3 

equals 10, 11 and 20, h4=∞. 

 

6. Conclusions 
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A buffer allocation problem for unreliable tandem lines was considered. We suggested a 

method named HBBA. This method has a precision comparable to that of the complete 

enumeration. HBBA is based on the branch-and-bound approach, complemented by a 

genetic algorithm for finding initial solutions. For the evaluation of production rate of 

tentative design decisions we used a Markov-model aggregation method, however our 

optimization technique is quite general and it may be used for other evaluation methods 

and models, provided that V(H) is a non-decreasing function of H. 

 

The computational experiments showed that the usage of an initial solution, obtained by 

the genetic algorithm, in the branch and bound procedure, can shorten the total running 

time as compared to the pure branch-and-bound algorithm. Another new feature of the 

proposed hybrid algorithm HBBA – the insertion of the one-dimensional Branch and 

Bound algorithm into the genetic algorithm for local optimization – turned out to be 

advantageous.  

 

Further research might address the production lines with series-parallel structure. An 

efficient upper bound for this type of line needs to be found. Moreover, it would be 

interesting to use the statistical information collected in the genetic algorithm for 

finding the order of branching that suits a given problem. 

 

Appendix 

It would be worthwhile to investigate the complexity of buffer space allocation problem when the goal 

function is not so broad. For example, many authors use the knapsack-type formulation – in our notation 

it corresponds to the assumption that J(H) is linear, and if V(H) is above a given threshold V 0, then 

R(V(H)) equals to some sufficiently large constant, R(V(H))=0 otherwise. We were not able to obtain any 
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stronger results in this direction for the case of tandem production lines considered in this paper; however 

the knapsack-type problem for series-parallel lines turned out to be NP-hard. To proving this, we need to 

have a procedure that computes the production rate in time bounded by a polynomial in length of 

problem input data. It will be sufficient for us to present such a procedure only for the production systems 

with simple structure. By system with a simple structure, we mean a system consisting of parallel chains 

only, where each chain has at most two sequential machines, there are no links between the chains, and 

all chains start at Machine 1 and terminate at the last machine. 

 

Proposition 3. The problem of finding the buffer space allocation vector H=(h1, h2,…, hn-1)∈Z
+

n-1 

minimizing the criterion ∑
−

=

1

1

n

j
jjhb , subject to constraints V(H)≥ V 0, h1≤ d1, h2≤ d2,…, hn-1≤ dn-1 for line 

with simple structure and rational weights b1,…, bn-1, V 0 and λi, µi, ui, i= 1,…, m is NP-hard.  

 

Proof. Consider a special case of the problem with m=2(n-1), where each chain consists of two 

sequential machines indexed i, i+1, i=1 mod 2. Let j=(i+1)/2 be the index of the buffer between machines 

i, i+1. Assume also that λi= 2ui, µi= 4ui for all i= 1,…, m, d1= d2=…= dn-1= 1 and ui = ui+1 for all i=1 

mod 2. By means of formulas from (Dolgui, 1993) in case hj=1 we obtain: V’j=8u2j /13, where V’j is the 

throughput of chain with buffer j; and in case hj=0 we have: V’j=u2j /2. The throughput of the whole 

system is V(H)=V’1+ V’2+…+ V’n-1 and thus all necessary system parameters are computable in 

polynomial time in length of problem input encoding. 

 

To prove the NP-hardness of the described problem, we reduce the partition problem (Garey and 

Johnson, 1979) to the described problem. The optimization version of partition problem is NP-hard and it 

can be formulated as follows: 

Min ∑
=

N

j
jj ya

1
, 

 

∑
=

N

j
jj ya

1
≥ ∑

=

N

j
ja

12
1 , 
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where a1, a2, ..., aN  are integer and the variables y1, y2 ,..., yN  belong to {0,1}. The required reduction is 

obtained by setting n=N+1, u2j= u2j+1 =aj 26/ 3, bj=aj, j=1,2,…,n-1 and V0= ∑
=

N

j
ja

16
29 . Indeed, in case 

hj=1 we have V’j= aj⋅16 /3 and otherwise V’j= aj⋅13/3. Therefore the total throughput is  

 

V(H)= ∑
=

1

1

n-

j
jV' = ∑

=

1

1

n-

j
jjha + ∑

=

1

13
13 n-

j
ja = ∑

=

1

1

n-

j
jjha + V 0 - ∑

=

1

12
1 n-

j
ja . 

 

The objective functions are identical.   □ 
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Figure 1. Tandem production line 
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Figure 2. Optimization approach 
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Figure 3. Average relative speed-up of HBBA vs. BBA for the series G5_m. 
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Figure 4. Average relative speed-up factor of HBBA vs. BBA for the series W8_m. 

 
 



35

 

Machine 1

Machine 2

Machine 4

Machine 3

Buffer 1 Buffer 3

Buffer 2

 
 
 

Figure 5. The structure of the line for the counterexample 
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N Series 

5 G5_20 G5_25 G5_30 

5 G5_35 G5_40 G5_45 

5 G5_50 G5_55  

6 G6_20 G6_25 G6_30 

6 G6_35 G6_40  

7 G7_15 G7_20 G7_25 

8 G8_10 G8_15 G8_20 

8 W8_5 W8_10 W8_15 

8 W8_20 W8_25  

 

Table 1. Randomly generated series 
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Running time of HBBA 
Series tCEM 

min
HBBAt tHBBA max

HBBAt  
tGA Sol 

G5_20 48.1 0.45 1.33 5.15 0.56 4.8E+04 

G5_25 146.7 0.44 2.25 8.44 0.59 1.0E+05 

G5_30 365.1 0.46 3.77 17.69 0.62 2.0E+05 

G5_35 789.2 0.50 6.54 36.65 0.69 3.7E+05 

G5_40 1538.6 0.52 10.98 69.59 0.72 6.5E+05 

G5_45 2772.7 0.53 17.78 125.22 0.76 1.1E+06 

G5_50 4695.5 0.56 28.00 213.66 0.79 1.7E+06 

G5_55 7562.2 0.57 43.05 356.53 0.82 2.7E+06 

G6_20 1146.8 0.77 19.01 145.31 0.75 9.5E+05 

G6_25 4374.7 0.79 47.97 355.79 0.80 2.5E+06 

G6_30 13062.7 0.79 105.79 699.66 0.85 5.5E+06 

G6_35 32939.3 0.89 214.42 1565.49 0.95 1.1E+07 

G6_40 73394.9 0.88 376.53 2989.73 1.00 2.0E+07 

G7_15 244.2 0.80 13.92 93.10 0.89 5.8E+05 

G7_20 1372.0 0.93 53.88 325.69 1.01 2.4E+06 

G7_25 5233.8 0.94 159.75 983.51 1.06 7.2E+06 

G8_10 2464.5 0.89 23.77 208.47 1.03 8.7E+05 

G8_15 63163.3 0.96 190.85 1782.55 1.14 7.3E+06 

G8_20 630920.5 1.12 929.16 8786.98 1.30 3.6E+07 

Table 2. Running times of CEM and HBBA 
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Problem H ϕ i
BBAτ  

vp6_3 (0,2,5,3) 0.3359 0.000 

vp6_4 (0,0,3,1) 0.3602 0.010 

vp6_5 (0,1,3,1) 0.3782 0.010 

vp6_6 (0,1,3,2) 0.3946 0.020 

vp6_7 (0,1,4,2) 0.4094 0.020 

vp6_8 (0,2,4,2) 0.4215 0.030 

vp6_9 (0,2,5,2) 0.4334 0.040 

vp6_10 (5,3,2,0) 0.4427 0.050 

vp7_3 (2,1,0,0) 0.4515 0.010 

vp7_4 (2,1,1,0) 0.4605 0.020 

vp7_5 (3,1,1,0) 0.3359 0.030 

vp7_6 (3,2,1,0) 0.3602 0.050 

vp7_7 (4,2,1,0) 0.3782 0.071 

vp7_8 (4,3,1,0) 0.3946 0.111 

vp7_9 (5,3,1,0) 0.4094 0.130 

vp7_10 (5,3,2,0) 0.4215 0.170 

 

Table 3. Running times of the Pure BBA and the solutions obtained 
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Machine 1 Machine 2 Machine 3 Machine 4 Buffer 3 

A  D A  D A  D A  D A  

0 1 1 2 2 4 ─ ─ 4 

1 2 2 4 4 6 ─ ─ 6 

2 3 ─ ─ ─ ─ 3 4 4 

3 4 4 6 6 8 ─ ─ 8 

4 5 ─ ─ ─ ─ 5 6 6 

 

Table 4. First case timetable  



40

 

 

Machine 1 Machine 2 Buffer 2 Machine 3 Machine 4 Buffer 3 

A  D A  D A  D A  D A  D A  

0 1 1 2 2 2 2 4 ─ ─ 4 

1 2 2 3 3 4 4 6 ─ ─ 6 

2 3 3 4 4 6 6 8 ─ ─ 8 

3 4 4 6 6 8 8 10 ─ ─ 10 

4 5 ─ ─ ─ ─ ─ ─ 5 6 6 

 

Table 5. Second case timetable  
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