
1

HBBA: Hybrid Algorithm for Buffer Allocation in Tandem

Production Lines

Alexandre DOLGUI 1,†, Anton V. EREMEEV 2, and Viatcheslav S. SIGAEV 3

1 Division for Industrial Engineering and Computer Sciences, Ecole des Mines de Saint Etienne, FRANCE,

dolgui@emse.fr
2 Discrete Optimization Laboratory, Omsk Branch of Sobolev Institute of Mathematics, Omsk, RUSSIA,

eremeev@ofim.oscsbras.ru
3 Department of Mathematics, Omsk State University, Omsk, RUSSIA, SigVS@yandex.ru

Abstract. In this paper, we consider the problem of buffer space allocation for a tandem

production line with unreliable machines. This problem has various formulations all aiming to

answer the question: how much buffer storage to allocate between the processing stations?

Many authors use the knapsack-type formulation of this problem. We investigate the problem

with a broader statement. The criterion depends on the average steady-state production rate of

the line and the buffer equipment acquisition cost. We evaluate black-box complexity of this

problem and propose a hybrid optimization algorithm (HBBA), combining the genetic and

branch-and-bound approaches. HBBA is excellent in computational time. HBBA uses a Markov

model aggregation technique for goal function evaluation. Nevertheless, HBBA is more general

and can be used with other production rate evaluation techniques.

Keywords: Production line, Buffer allocation, NP completeness, Black-box complexity, Genetic

algorithm, Branch-and-Bound method, Hybrid algorithm.

Submitted: May 12, 2005

Revised version: August 7, 2006

† Corresponding author: Dr. Alexandre Dolgui, Professor, Division Director and Department Head,
Division for Industrial Engineering and Computer Science, Ecole des Mines de Saint Etienne, 158, Cours
Fauriel, 42023 cedex France, FAX: +33 (0)4.77.42.66.66

2

1. Introduction and review of the literature

Buffer allocation problems arise in a wide range of applications: automatic transfer

lines, production and assembly systems or communication networks. These exist in

various forms, all aiming to answer the question: how much buffer storage to allocate

between the processing stations? This question is important because the buffers may

prevent blocking and/or starving of stations, thus drastically influencing the efficiency

of the whole system. This is especially important for JIT environment which has as

objective to reduce the inventory to as close to zero as possible. Therefore, we need to

limit radically the stock by bounding the storage space between stations. In the context

of Kanban policy, the buffer allocation problem is equivalent to the calculation of the

minimal number of Kanbans.

An excellent illustration of the value to industry in solving problems of this type is

given by A. Patchong, T. Lemoine and G. Kern (2003). The authors demonstrate how

methods for buffer allocation in designing PSA Peugeot Citroën car-body shop yielded

substantial profits. The practical importance of the optimization tools for buffers

allocation was also demonstrated by Tempelmeier (2003). A detailed analysis of

mathematical models describing the effect of the buffer storage may be found in the

following books (Buzacott and Shanthikumar, 1993; Gershwin, 1994; Altiok, 1996) and

comprehensive surveys (Buzacott and Hanifin, 1978; Dallery and Gershwin, 1992;

Papadopoulos and Heavey, 1996).

In this paper, we consider a tandem production line (see Figure 1), where the parts are

moved from one machine to the next by some kind of transfer mechanism. The

3

machines are subject to breakdowns: when a breakdown occurs, the corresponding

machine is unusable for a random repair period. The machines are separated by finite

buffers. The parts are stocked in these buffers when downstream machines are busy or

down.

[Insert Figure 1 about here]

Let N denote the number of the intermediate buffers, and assume that the supply of new

parts (raw materials) at the start of the line is inexhaustible and finished parts leave the

machine N+1 immediately.

A machine is subject to failures only when it is operating. The failure and repair times

are assumed mutually independent and exponentially distributed. Empirical studies

indicate that this assumption is applicable in many cases – see e. g. (Inman, 1999). Let

θb
i denote the mean time between failures of machine i, then λi=1/θb

i is its failure rate.

Similarly, θr
i and µi=1/θr

i are the mean time to repair and the repair rate of machine i,

respectively, and i = 1, 2, …, N+1.

We study tandem production lines where the machines have deterministic processing

times (which are possibly non identical for different machines) – for automatic transfer

and robotic assembly lines, this assumption is usually valid. Thus, machine i is assumed

to have a constant cycle time θc
i and production rate uj=1/θc

i, i=1, 2,…, N+1.

The performance of this transfer line is measured in terms of production rate, i.e. the

steady state average number of parts produced per unit time. For the evaluation of this

4

parameter, different types of Markov models have been considered in literature (see e.g.

Dallery and Gershwin, 1992; Papadopoulos and Heavey, 1996).

In general, the production rate with finite buffers is difficult to analyze precisely with

the Markov models. Exact performance computation of a production rate of a line with

more than two machines and one buffer is problematic due to exponential growth of the

number of states. Therefore, most of the techniques employed for the analysis of such

systems are in the form of analytic approximations and simulations. Analytical

approximations are generally based on the two-machines-one-buffer Markov models,

and either aggregation (De Koster, 1987) or decomposition approach (Dallery et al.,

1989; Gershwin, 1987; Li, 2005). Simulation models are more expensive

computationally but applicable to a wider class of systems (Dolgui and Svirin, 1995;

Sörensen and Janssens, 2004).

In this paper, we use two-machines-one-buffer Markov model independently developed

by Levin & Pasjko (1969), Dubois & Forestier (1982), and Coillard & Proth (1984). For

each tentative buffer allocation decision, the production rate is evaluated via an

aggregation algorithm (Dolgui, 1993; Dolgui and Svirin, 1995), which is similar to the

Terracol and David (1987) techniques. This aggregation approach appears to be

sufficiently rapid for evaluation of tentative buffer allocations within the optimization

algorithms.

The aggregation algorithm for production rate evaluation consists in recurrent

replacement of two adjacent machines by a single machine. The parameters λ*, µ*, u* of

the resulting single machine are calculated from differential equations corresponding to

5

the two-machines-one-buffer Markov model. After N steps of such aggregation

procedure the system reduces to one virtual machine with parameters λ*, µ*, u* and the

estimate of the overall production rate V(H) is given by u*µ*/(λ*+µ*).

Note: the optimization algorithms proposed in this paper are general and can be used

with other production rate evaluation techniques.

Let H= (h1, h2,…, hN)∈ ZN be the vector of decision variables, where hi is the size of the

buffer between machines i and i+1. The problem of optimal buffer allocation has been

considered in literature with respect to different optimality criteria (see e.g. Gershwin

and Schor, 2000). The most commonly used among them are:

• Production rate V(H);

• Total buffers capacity B(H)=h1+h2+…+hN or the cost of buffer equipment (linear

in H);

• Average steady state inventory cost Q(H)= c1q1(H)+ …+cN qN(H), where qi(H) is

the average steady state number of parts in buffer i, for i=1, 2, …, N.

For example, Yamashita and Altiok (1998) suggest a dynamic programming approach

for the minimization of total buffer space when the required value of production rate

V(H) is given as a constraint. In (Jafari and Shanthikumar, 1989) the dynamic

programming is used to maximize V(H) given a total buffer capacity. For similar

knapsack problem formulations, Vouros & Papadopoulos (1998) suggest a knowledge-

based system, and Gershwin & Schor (2000) present gradient-based methods (here both

discrete and continuous flows of material are considered). In (Spinellis and

Papadopoulos, 2000), a genetic heuristic and a simulated annealing algorithm are

6

developed. Shi and Men (2003) present a hybrid Nested Partitions and a Tabu Search

algorithms for maximizing V(H) under the constraint of a total buffer capacity. An

original criterion is put forward by Helber (2001): buffer space allocation is considered

as an investment problem. A gradient algorithm is tested to determine the buffer

allocation that maximizes the expected net present value of the investment, including

machines, buffers and inventory.

The optimization method HBBA offered in this paper is based on a branch-and-bound

algorithm (BBA) that uses an initial approximate solution found by a genetic algorithm

(GA) analogous to the GA developed by Dolgui et al. (2002).

Note: The GA for finding the initial approximate solution was chosen after testing

various other versions of GAs and several tabu search (TS) algorithms we developed.

One of the most efficient versions of the TS algorithm was one which used a random

neighborhood space and constant length of tabu-list – see e.g. Glover and Laguna

(1997). However, the selected GA achieved better results. The superiority of the GA vs.

TS is partly explained by the effects of a population that allows the GA to adaptively

search in different areas of the decision space. This feature proved to be helpful in the

Nested Partitions algorithm of Shi and Men (2003), which is also based on information

accumulation helping to concentrate the search in the most promising areas.

Taking into account that the algorithm HBBA is coupled with an approximate

production rate evaluation algorithm, it becomes an approximation algorithm as well.

Nevertheless, the precision of the HBBA is provably close to that of goal function

evaluation.

7

2 Optimization problem properties

2.1 Criterion

Let us introduce the following additional notation:

Tam amortization time of the line (line life cycle);

R(V) revenue for the sold production per time unit;

J(H)

di

buffers acquisition cost for configuration H;

maximal admissible size for buffer i, i=1, 2,… , N.

In this paper, we deal with the following criterion:

 Max ϕ(H)=Tam R(V(H)) - J(H). (1)

The functions R(V) and J(H) are assumed monotone and non-decreasing. These

functions may incorporate some penalties, fixed costs for different standard buffer sizes,

overproduction price reduction, etc. Function ϕ(H) is to be maximized subject to the

constraints h1 ≤ d1, h2 ≤ d2,…, hN ≤ dN.

2.2 Problem complexity

8

In Appendix, we give a proof of NP-hardness for a simple case of parallel-serial lines.

The problem considered in the main body of this paper is more difficult to analyze,

since it contains two arbitrary non-decreasing functions R(V) and J(H), which makes the

usual complexity analysis (as e.g. in Garey and Johnson, 1979) not quite adequate.

Therefore, we analyzed the complexity of the problem in terms of black-box

optimization (see e.g. Droste et al., 2006). Black-box optimization is used when we do

not have an access to the specific parameters of the given instance but may collect

information about the unknown parameters only through goal function evaluations.

Let us call the number of tentative solutions examined by a search algorithm

(randomized or deterministic), until the optimum is found, the optimization time. The

complexity of a black-box optimization algorithm is defined as the expected (average)

optimization time for the worst-case instance, which is a function of the problem size.

This approach is well suited for analysis of the problem hardness for a wide class of

modern heuristic methods, such as genetic algorithms, simulated annealing,

evolutionary strategies, tabu search, etc. (see e.g. Reeves, 1993), where the search

process is mainly directed by the goal function values of already visited solutions.

Proposition 1. For the buffer space allocation problem for a line consisting of two

machines separated by a finite buffer, the expected optimization time of any black-box

optimization algorithm is lower bounded by d1/2+1.

Proof. Let the integer upper bound d1 for the buffer size h1 be given. In order to

construct a hard case for optimization, one can define such functions R(V) and J(h1) for

9

this line that φ(h1) will be constant (let it be 0) for all integer values of h1, except at one

point, where φ(h1) takes its maximal value (assume that here φ(h1) equals 1). This is

based on the fact that function V(h1) is strictly increasing on [0,d1] (this can be shown

using the closed-form expressions e.g. from Coillard and Proth, 1984), so the maximum

of φ(h1) may be "hidden" in any point 0,1,…,d1.

Now we can apply the Yao's minimax principle (see e.g. Motwani and Raghavan,

1995), which gives the lower bounds on complexity of the randomized black-box

optimization algorithms through the analysis of deterministic algorithms for the same

problem. Let us limit the set of problem inputs to those where φ(h1) takes only values 0

and 1 for h1 in {0,1,…,d1} (this will further simplify the problem). In our situation, for

any fixed value of d1, the Yao’s minimax principle implies that the optimization time of

any black-box algorithm for its worst-case function φ(h1) is lower-bounded by the

expected time of the worst-case optimal deterministic black-box algorithm (for the same

value of d1) working on the inputs with any given probability distribution of function

φ(h1).

Taking φ(h1) uniformly distributed on the set of functions with a single maximum

(equal to 1) in {0,1,…,d1}, we conclude that the expected optimization time of any

worst-case optimal deterministic black-box algorithm is d1/2+1. Thus, by the Yao's

minimax principle, the expected optimization time of any black-box algorithm for our

problem is lower bounded by d1/2+1 (the obtained lower bound is tight, as it follows

Proposition 2 from Droste et al., 2006). □

10

Finally, our Proposition 1 demonstrates that the black-box complexity of buffer space

allocation problem can be arbitrarily large as we increase the maximal admissible buffer

size d1. In addition, this complexity increases drastically with the number of buffers in

line.

3 Optimization method

The overall approach of the method HBBA is presented in Figure 2.

[Insert Figure 2 about here]

We use the standard depth-first branching procedure for the BBA. This routine will be

employed in two different ways: as a single-dimension (one buffer only) optimizer

inside the GA, then it is denoted BBA1, or as a separate algorithm for solving the full-

scale problem (all buffers), then it is denoted BBAN.

To describe the hybrid optimization algorithm HBBA, we start with the BBA procedure

used.

3.1 Branch-and-bound algorithm (BBA)

In our BBA, a node of the branching tree is a 5-tuple (F, a, b, g, j), where F⊂{1,2,…,N}

is a set of fixed coordinates (buffers for which their size is fixed); j∈{1, 2,…, N}\F is

the index of a buffer with non fixed size bounded between a and b; FZg ∈ is a vector

containing the fixed values of coordinates (buffer sizes) for buffers with indices in F.

11

Let us define a set },,...2,1],,0[:{ NidhZHD ii
N =∈∈= . So, each 5-tuple is

associated with a set of solutions:

S(F, a, b, g, j) =]},[;,:{ bahFighDH jii ∈∈=∈ .

Branching at node (F, a, b, g, j) is performed as follows:

If ba ≠ , then the associated subset S(F, a, b, g, j) splits into

),,
2

,,(jgbaaFS + and),,,1
2

,(jgbbaFS +
+ .

Otherwise (if ba =), it divides into

)1,,
2

,0,(1 +∪ + jg
d

jFS j

and

,1
2

,(1 +∪ +jd
jFS)1,,1 ++ jgd j .

The upper bound (UB) on the goal function value for the set of the solutions S(F, a, b, g,

j) is given by

 UB =)())(()),,,,((minmax HJHVRTjgbaFS am −=ψ , (2)

12

where

ii gh =max , ii gh =min , Fi ∈ ,

bhj =max , ahj =min ,

kk dh =max , 0min =kh , Fk ∉ , jk ≠ .

In particular, for a leaf node (complete solution) in the branching tree, this bound

coincides with ϕ(H), where H= Hmax = Hmin is the only element of the leaf node.

Validity of this UB follows from the fact that V(H) is an increasing function, i.e. for any

i∈{1, 2, …, N}, given arbitrary fixed capacities h1,…, hi-1, hi+1,…, hN, V(H) is

increasing as a function of hi. This fact was proved using the sample path approach (see

e.g. Glasserman & Yao, 1996 or Buzacott & Shanthikumar, 1993, Chapter 6.6).

The initial lower bound LB is assumed to be -∞, if it is not given explicitly in the input

of the BBA. In what follows, by “Pure BBA” we mean BBAN started from node

(∅,0,d1,∅,1) with LB = –∞.

3.2 Local optimization heuristic

13

This local optimization heuristic based on the BBA is used in the GA below – we

denote it by LOBBA(H). This procedure aims to improve a given solution H with the

help of the BBA1 applied to one buffer at a time, while the other buffers are fixed:

Algorithm LOBBA(H)

1. Generate a random permutation (π1, π2, …, πN) of elements {1, 2,…, N}.

2. For all i from 1 to N do:

2.1 Set Fi:={ π 1,… π i-1, π i+1,… , πN}; j:= π i;

 gt:= ht for all t ≠ i.

2.2 Start BBA1 from node (Fi, 0, dj, g, j). Let H' be the output of BBA1.

2.3 If ϕ(H)<ϕ(H') then set H:= H'.

3. Return H.

GA using LOBBA. The general scheme of the GA coincides with that of the genetic

algorithm proposed in (Dolgui et al., 2002), except for the local optimization procedure.

A solution (individual) is presented by a vector of components (genes), where each gene

gives the size of the corresponding buffer. The solutions of the initial population are

randomly generated according to an a priori defined probability distribution. At each

iteration, a couple of new solutions are obtained, and they replace a couple of

“unpromising” solutions chosen in the current population (thus the population size

remains constant). The best solution is returned when the GA stops.

Construction of a new pair of solutions (offspring) starts with choosing a pair of parents

from the current population by the means of a probabilistic selection operator. We use

the s-tournament selection operator which randomly chooses s individuals from the

14

current population and selects the best one as a parent. Then the standard one-point

crossover operator (see e.g. Reeves, 1993) replaces some coordinates (genes) of one

parent with the values taken from the corresponding positions of the other. This is done

with a fixed crossover probability Pcross (otherwise the crossover has no effect). After

crossover, the strings undergo mutation, where the genes are randomly altered: the size

of each buffer receives a uniformly distributed random variation of not more than ∆

units (parameter ∆ is chosen experimentally before the run of the GA).

The local optimization heuristic LOBBA is applied to the obtained solutions before they

are added into population. This modification of the GA using the LOBBA has turned out

to be more advantageous than those suggested in (Dolgui et al., 2002).

3.3 The hybrid algorithm HBBA

The hybrid algorithm HBBA consists in starting the GA before the BBA for finding an

approximate solution (see Figure 2). This solution is used further in the BBA, defining

an initial lower bound (LB). If no improving solutions are found in the BBA, then this

solution is returned as a result of the HBBA:

Algorithm HBBA

1. Obtain solution H using GA with LOBBA.

2. Start BBAN from node (∅,0,d1,∅,1) with LB=ϕ(H).

3. If BBAN finds H', ϕ(H)<ϕ(H') then return H',

 otherwise return H.

15

As mentioned before, the BBA is used in HBBA both for solving the one-dimensional

sub-problems in the local optimization procedure of GA and for the full-scale problem

after running the GA.

3.4 Some remarks on precision of BBA

To implement the BBA with such bounds we need to compute the functions

ψ(),,,,(jgbaFS) and ϕ(H) exactly, which is problematic, since no exact method is

known to evaluate the production rate V(H). Instead, let us introduce the functions

)),,,,((jgbaFSГ and Ф(H) defined by analogy with ψ(),,,,(jgbaFS) and ϕ(H),

respectively, except for the production rate V which is now substituted by its

approximate value, computed via a Markov-model aggregation heuristic.

We can formulate an a priori precision of the BBA in terms of deviations of

)),,,,((jgbaFSГ from ψ(),,,,(jgbaFS) and Ф(H) from ϕ(H). Let us consider a

general case and assume that for the problem being considered, the values ε and ∆ are

such that

|ϕ(H) - Ф(H)| ≤ ε for all H∈ D,

and for any 5-tuple (F, a, b, g, j) holds

)),,,,((jgbaFSГ ≥ ψ(),,,,(jgbaFS)+∆ .

16

The following simple proposition bounds the precision of the BBA.

Proposition 2. If H* is an optimal solution and H ′ is the output of the BBA, then

),max()()(* ∆+≤′− εεϕϕ HH .

Proof. Let us assume HH ′≠* . This means that one of the pruned nodes of the

branching tree was associated with a set of solutions),,,,(jgbaFS , containing the

solution H*. If this node is a leaf, then 0)()(* ≥−′ HФHФ , otherwise

.0)),,,,(()'(≥− jgbaFSГHФ

In the first case we have

0))(()(* >−−+′ εϕεϕ HH ,

εϕϕ 2)()(* ≤′− HH ,

and in the second case

,0)),,,,(()())*(()(≥−′>∆−−+′ jgbafSГHФHH ϕεϕ

therefore,

 ∆+≤′− εϕϕ)()(* HH . □

17

In our case ∆ = ε , so ϕ(H*)-ϕ(H’)≤ 2ε . Note: the complete enumeration of all feasible

solutions in the worst case also yields an error 2ε. Thus, the BBA achieves the best

possible precision in some sense (it does not introduce any additional errors).

4. Computational experiment

The described algorithms were programmed in Delphi 6.0 and tested on a computer

with Celeron 1,7GHz processor, 128 Mb RAM.

4.1 Randomly generated tests

In this part of experiments, we used 24 randomly generated series of tests listed in

Table 1.

[Insert Table 1 about here]

Each series in Table 1 includes 30 different instances (different lines with the same

following parameters: number of buffers and maximal buffer size). Here in the notation

of each series GN_m and WN_m, index N is the number of buffers in the corresponding

lines and m is the upper limit on the admissible buffers size, i.e. di=m for all i=1,

2,…, N.

The HBBA was compared to the Pure BBA in terms of the running time and the

solutions obtained (both algorithms were executed until the branching was finished).

The GA with LOBBA here (used in HBBA) has the same settings of the internal

parameters as the GAs in (Dolgui et al., 2002): population size 50, tournament size s=5,

18

maximal admissible variation of each buffer size in mutation ∆=5, Pcross=0.5 and stops

after 1000 iterations.

Some instances with relatively small cardinality of solutions space were solved by the

complete enumeration method (CEM). In what follows, we call the GA with LOBBA by

"GA" for short. We denote the average running times of the HBBA (including Step 1,

i.e. the work of the GA), Pure BBA, CEM, and GA (only Step 1 of HBBA) by tHBBA,

tBBA, tCEM and tGA, respectively. These times are measured in seconds. Each algorithm is

run once per instance.

The instances (lines) of series GN_m were generated with the following parameters: for

all i=1, 2, …, N+1 we set ui=1 and choose µi∈[1,100], λi∈[1,100] with uniform

distribution. For all of these lines the buffer acquisition cost J(H) is equal to 10*B(H),

and the amortization time Tam= 7000. The revenue is R(V(H)) = 10*V(H).

The random series W8_m, m=5, 10, 15, 20, 25 consist of the lines, where the value of

buffer sizes in the optimal solution is close to the maximum size. Here N=8, and for all

i=1, 2, …, N+1 we set ui=1 and choose µi∈[10,12], λi∈[11,13] with uniform

distribution. Other parameters are the same as in the series described above.

In Table 2, we show the minimum min
HBBAt , average tHBBA and maximum max

HBBAt running

time of the HBBA as well as the average running time of the CEM and the GA for each

test series GN_m.

19

To simplify future comparisons with other algorithms, the average number of tentative

solutions evaluated in the HBBA, including those computed for finding the BBA

bounds (2), is given in column Sol.

Here for series from G5_20 to G5_35 and for G6_20 we indicate the actual running

time of the CEM. For the other test series, the time is estimated using the total number

of elements in the space of solutions as

),1(
1

0 +Π≈
=

i
N

i
CEM dt τ

where τ 0 is the time required for a single evaluation of the goal function (1).

[Insert Table 2 about here]

We were unable to compare the proposed algorithms with the CEM on the whole set of

test series due to the immense computational time required for the CEM for the larger

problems. However, it turned out that for the series from G5_20 to G5_35 and for

G6_20, the goal function values of solutions returned by the HBBA were identical to

those of the solutions obtained by the CEM. Table 2 shows that the running time of the

HBBA is much smaller than the CEM and this advantage increases with the growth of

the number and size of buffers.

In order to evaluate the efficiency of hybridization we have compared the running time

of the Pure BBA to the time of the branch-and-bound-phase (Step 2) of the HBBA. The

time of the GA-phase (Step 1) of the HBBA is neglected here because usually it takes

20

about one second, as seen from Table 2. In Figure 3 and Figure 4, we give the speed-up

ratio computed using the running times as

∑
=

30

130
1

i i
BBA

i
HBBA

τ
τ

,

where i
BBAτ denotes the running time of the Pure BBA and i

HBBAτ is the running

time of the BBA-phase (Step 2) of the HBBA for the problem number i in a particular

series. Note that we used 30 instances in each series, so i=1,2,…,30. The confidence

intervals correspond to 95% level. The results for other series have the same sort of

behavior. For series GN_m, the speed-up factor is always present on these problems

and it approaches the ratio 0.6 approximately (see Figure 3). For series W8_m, with the

growth of problem size, the acceleration becomes more significant, approaching 0.06

(see Figure 4).

[Insert Figure 3 about here]

[Insert Figure 4 about here]

4.2 Known knapsack-type tests

Many publications focus on knapsack formulations of buffer space allocation problem.

Therefore, we also tested our algorithms on two series of 5-machine knapsack-type

problems vp6.3 - vp6.10 and vp7.3 - vp7.10 which were suggested by Vouros and

Papadopoulos (1998). In their paper, the overall amount of buffer space was limited

21

from above by the value given in the problem index (i.e. for k = 3, 4, …, 10, the set of

admissible solutions for vp6.k and vp7.k is restricted by the condition B(H) ≤ k). The

maximization criterion is the output rate V(H).

In order to take into account the knapsack-type constraint in our case, we have defined

ϕ(H) combining the output rate with a linear penalty: ϕ(H)=V(H)-10000×max{0,B(H)-

k}. For all of these test examples, we set the buffer acquisition cost J(H) equal to B(H)

and the amortization time Tam=1, so the revenue is R(V(H)) = V(H). The parameters of

machines in series vp6.3 - vp6.10 were the following: µ1= µ2= µ3= µ4= µ5= 0.5, λ1=

0.1, λ2= 0.2, λ3= 0.25, λ4= 0.3, λ5= 0.35, u1= u2= u3= u4= u5= 1. Here we set the

production rates u1, u2, …, u5 equal to the corresponding mean production rates in

(Vouros and Papadopoulos, 1998). Similarly we assign the following parameters of

machines in series vp7.3 - vp7.10: µ1= µ2= µ3= µ4= µ5= 0.5, λ1= λ2= λ3= λ4= λ5= 0.05,

u1= 1, u2= 1.1, u3= 1.2, u4= 1.3, and u5= 1.4.

In Table 3, we show the solutions for vp6.3-vp6.10 and vp7.3 - vp7.10 obtained by the

Pure BBA (column H), their goal function values (column ϕ), and the corresponding

running time.

[Insert Table 3 about here]

Note that the BBA time for considered knapsack-type problems is very short (<0.2

sec.), whereas the average running time of the GA for all of these problems was

relatively large (about 0.55 sec.), therefore the usage of the hybrid scheme obviously

does not make sense here.

22

5. Discussion of generalizations

A natural generalization of the buffer space allocation problem considered in this paper

is the extension to the production lines with series-parallel structure. The line can be

represented by a series-parallel digraph, where the machines correspond to arcs and the

buffers correspond to nodes. The genetic algorithm (coupled with aggregation

techniques for performance analysis) discussed above is also applicable to these lines

(Dolgui et al., 2002).

However, the proposed BBA is harder to generalize, because the series-parallel lines are

significantly harder with respect to finding appropriate bounds. The UB used in this

paper is based on monotonicity of the function V(H) which was proved by the sample

path approach. But, for the series-parallel lines, we found a counterexample with 4

machines (see Figure 5), which shows that the sample path approach is not applicable

for the proof of monotonicity of function V(H).

[Insert Figure 5 about here]

In this counterexample, we use the following assumptions:

• A part goes from Buffer 1 to Machine 2, if Machine 2 is free, otherwise it goes

to Machine 4,

• all machines never fail,

• u1= u2= u4=1, u3=1/2,

• the last buffer is inexhaustible.

23

Let compare two following examples. Let us assume that the sizes of the first and

second buffers in the first case are zero: h1= h2=0, and in the second case: h1=0, h2=1.

In Tables 4 and 5, we list the timetable for the movements of parts. The part arrival

times are given in column “A” and part departure times are given in column “D”.

[Insert Table 4 about here]

[Insert Table 5 about here]

The tables show that the number of parts processed by the line till time 6 in the first

case (4 parts) is greater than in the second one (3 parts), so the monotonicity property

does not hold.

Of course this example does not imply that the monotonicity of V(H) can not be

established by some other method, different from the sample path. Nevertheless, using

the simulation (see Dolgui, 1993 for details of the simulation algorithm) on the line with

the same structure but with other parameters we found that V(H) increases when h2 is

reduced (with statistical significance level 0.05). The parameters that we used in this

experiment were λi=µi=1 for all i=1,2,3,4, u1=u2=1, u3=0.5, u4=2, h1=10000, h2=50, h3

equals 10, 11 and 20, h4=∞.

6. Conclusions

24

A buffer allocation problem for unreliable tandem lines was considered. We suggested a

method named HBBA. This method has a precision comparable to that of the complete

enumeration. HBBA is based on the branch-and-bound approach, complemented by a

genetic algorithm for finding initial solutions. For the evaluation of production rate of

tentative design decisions we used a Markov-model aggregation method, however our

optimization technique is quite general and it may be used for other evaluation methods

and models, provided that V(H) is a non-decreasing function of H.

The computational experiments showed that the usage of an initial solution, obtained by

the genetic algorithm, in the branch and bound procedure, can shorten the total running

time as compared to the pure branch-and-bound algorithm. Another new feature of the

proposed hybrid algorithm HBBA – the insertion of the one-dimensional Branch and

Bound algorithm into the genetic algorithm for local optimization – turned out to be

advantageous.

Further research might address the production lines with series-parallel structure. An

efficient upper bound for this type of line needs to be found. Moreover, it would be

interesting to use the statistical information collected in the genetic algorithm for

finding the order of branching that suits a given problem.

Appendix

It would be worthwhile to investigate the complexity of buffer space allocation problem when the goal

function is not so broad. For example, many authors use the knapsack-type formulation – in our notation

it corresponds to the assumption that J(H) is linear, and if V(H) is above a given threshold V 0, then

R(V(H)) equals to some sufficiently large constant, R(V(H))=0 otherwise. We were not able to obtain any

25

stronger results in this direction for the case of tandem production lines considered in this paper; however

the knapsack-type problem for series-parallel lines turned out to be NP-hard. To proving this, we need to

have a procedure that computes the production rate in time bounded by a polynomial in length of

problem input data. It will be sufficient for us to present such a procedure only for the production systems

with simple structure. By system with a simple structure, we mean a system consisting of parallel chains

only, where each chain has at most two sequential machines, there are no links between the chains, and

all chains start at Machine 1 and terminate at the last machine.

Proposition 3. The problem of finding the buffer space allocation vector H=(h1, h2,…, hn-1)∈Z
+

n-1

minimizing the criterion ∑
−

=

1

1

n

j
jjhb , subject to constraints V(H)≥ V 0, h1≤ d1, h2≤ d2,…, hn-1≤ dn-1 for line

with simple structure and rational weights b1,…, bn-1, V 0 and λi, µi, ui, i= 1,…, m is NP-hard.

Proof. Consider a special case of the problem with m=2(n-1), where each chain consists of two

sequential machines indexed i, i+1, i=1 mod 2. Let j=(i+1)/2 be the index of the buffer between machines

i, i+1. Assume also that λi= 2ui, µi= 4ui for all i= 1,…, m, d1= d2=…= dn-1= 1 and ui = ui+1 for all i=1

mod 2. By means of formulas from (Dolgui, 1993) in case hj=1 we obtain: V’j=8u2j /13, where V’j is the

throughput of chain with buffer j; and in case hj=0 we have: V’j=u2j /2. The throughput of the whole

system is V(H)=V’1+ V’2+…+ V’n-1 and thus all necessary system parameters are computable in

polynomial time in length of problem input encoding.

To prove the NP-hardness of the described problem, we reduce the partition problem (Garey and

Johnson, 1979) to the described problem. The optimization version of partition problem is NP-hard and it

can be formulated as follows:

Min ∑
=

N

j
jj ya

1
,

∑
=

N

j
jj ya

1
≥ ∑

=

N

j
ja

12
1 ,

26

where a1, a2, ..., aN are integer and the variables y1, y2 ,..., yN belong to {0,1}. The required reduction is

obtained by setting n=N+1, u2j= u2j+1 =aj 26/ 3, bj=aj, j=1,2,…,n-1 and V0= ∑
=

N

j
ja

16
29 . Indeed, in case

hj=1 we have V’j= aj⋅16 /3 and otherwise V’j= aj⋅13/3. Therefore the total throughput is

V(H)= ∑
=

1

1

n-

j
jV' = ∑

=

1

1

n-

j
jjha + ∑

=

1

13
13 n-

j
ja = ∑

=

1

1

n-

j
jjha + V 0 - ∑

=

1

12
1 n-

j
ja .

The objective functions are identical. □

Acknowledgments

The research is supported by INTAS (projects 00-217 and 03-51-5501). The authors thank Chris

Yukna for checking the English of this paper.

References

Altiok T. (1996) Performance analysis of manufacturing systems, Springer, New York.

Buzacott J. A. and Hanifin L.E. (1978) Models of automatic transfer lines with

inventory banks: a review and comparison, AIIE Transactions, 10 (2), 197-207.

Buzacott J. A. and Shanthikumar J. G. (1993) Stochastic models of manufacturing

systems, Prentice Hall, New Jersey.

Coillard P. and Proth J.M. (1984) Effet des stocks tampons dans une fabrication en

ligne, Revue belge de Statistique, d’Informatique et de Recherche Opérationnelle,

24 (2), 3-27.

27

Dallery Y. and Gershwin S.B. (1992) Manufacturing flow line systems: a review of

models and analytical results, Queuing Systems Theory and Applications,

Special Issue on Queuing Model of Manufacturing Systems, 12, 3-94.

Dallery Y., David R. and Xie X. (1989) Approximate analysis of transfer lines with

unreliable machines and finite buffers, IEEE Transactions on Automatic

Control, 34, 943-953.

De Koster M.B.M. (1987) Estimation of line efficiency by aggregation, International

Journal of Production Research, 25, 615-626.

Dolgui A. (1993) Analyse de performances d'un atelier de production discontinue:

méthode et logiciel, Research Report INRIA 1949, 44 pages.

Dolgui A., Eremeev A., Kolokolov A., and Sigaev V. (2002) A genetic algorithm for

the allocation of buffer storage capacities in a production line with unreliable

machines, Journal of Mathematical Modelling and Algorithms, 1 (2), 89-104.

Dolgui A.B. and Svirin Y.P. (1995) Models of evaluation of probabilistic productivity

of automated technological complexes, Vesti Akademii Navuk Belarusi: phisika-

technichnie navuki, n°1, 59-67 (in Russian).

Droste S., Jansen T. and Wegener I. (2006) Upper and lower bounds for randomized

search heuristics in black-box optimization. Theory of Computing Systems, 39 (4),

525-544.

Dubois D. and Forestier J.P. (1982) Productive et en-cours moyens d'un ensemble de

deux machines séparées par une zone de stockage, RAIRO Automatique, 16 (2),

105-132.

Garey M.R. and Johnson D.S. (1979) Computers and Intractability. A Guide to the

theory of NP-completeness, W.H. Freeman and Company, San Francisco.

28

Gershwin S. B. (1987) An efficient decomposition method for the approximate

evaluation of tandem queues with finite storage space and blocking, Operations

Research, 35 (2), 291-305.

Gershwin S.B. (1994) Manufacturing systems engineering, Prentice Hall, New Jersey

Gershwin S.B. and Schor J.E. (2000) Efficient Algorithms for Buffer Space Allocation,

Annals of Operations Research, 93, 117-144.

Glasserman P. and Yao D.D. (1996) Structured buffer-allocation problems. Journal of

Discrete Event Dynamic Systems, 6, 9-42.

Glover F. and Laguna M. (1997). Tabu search. Kluwer Academic Publishers.

Helber S. (2001) Cash-flow-oriented buffer allocation in stochastic flow lines,

International Journal of Production Research, 39, 3061-3083.

Inman R. R. (1999). Empirical evaluation of exponential and independence assumptions

in queueing model of manufacturing systems, Production and Operations

Management, 8 (4), 409-432.

Jafari M.A. and Shanthikumar J.G. (1989) Determination of optimal buffer storage

capacities and optimal allocation in multistage automatic transfer lines, IIE

Transactions, 21 (2), 130-135.

Levin A.A. and Pasjko N.I. (1969) Calculating the output of transfer lines, Stanki i

Instrument, 8, 8-10 (in Russian).

Li J. (2005). Overlapping decomposition: a system-theoretic method for modeling and

analysis of complex manufacturing systems, IEEE Transactions on Automation

Science and Engineering, 2 (1), 40-53.

Motwani R. and Raghavan P. (1995). Randomized algorithms. Cambridge University

Press.

29

Papadopoulos H.T. and Heavey C. (1996). Queueing theory in manufacturing systems

analysis and design: A classification of models for production and transfer lines,

European Journal of Operational Research, 92, 1-27.

Patchong A., Lemoine T. and Kern G. (2003). Improving car body production at PSA

Peugeot Citroen, Interfaces, 33 (1), 36-49.

Reeves C.R. (1993). Modern heuristic techniques for combinatorial problems, John

Wiley & Sons, New York, NY.

Shi L. and Men S. (2003). Optimal buffer allocation in production lines, IIE

Transactions, 35, 1-10.

Sörensen K. and Janssens G.K. (2004). A Petri net model of a continuous flow transfer

line with unreliable machines. European Journal of Operational Research, 152,

248-262.

Spinellis D. and Papadopoulos C. (2000). Stochastic algorithms for buffer allocation in

reliable production lines, Mathematical Problems in Engineering, 5, 441-458.

Tempelmeier H. (2003). Practical considerations in the optimization of flow production

systems, International Journal of Production Research, 41 (1), 149-170.

Terracol C. and David R. (1987). An aggregation method for performance valuation of

transfer lines with unreliable machines and finite buffers, Proceedings of the IEEE

International Conference on Robotics and Automation, 1333–1338.

Vouros G.A. and Papadopoulos H.T. (1998). Buffer allocation in unreliable production

lines using a knowledge based system, Computers and Operations Research, 25

(12), 1055-1067.

Yamashita H. and Altiok T. (1998). Buffer capacity allocation for a desired throughput

in production lines, IIE Transactions, 30, 883-891.

30

31

Machine 1 Machine 2 Machine
N+1

Buffer 1 Buffer 2 Buffer N

...

Figure 1. Tandem production line

32

BBAN
GA with

BBA1

Initial solution

Agregation
Algorithm

based on Two
Machines

One Buffer
Markov Model

Performance evoluation

h1,h2,…, hN

Figure 2. Optimization approach

33

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

G5_20 G5_25 G5_30 G5_35 G5_40 G5_45 G5_50 G5_55

Figure 3. Average relative speed-up of HBBA vs. BBA for the series G5_m.

34

0

0,5

1

1,5

2

2,5

W8_5 W8_10 W8_15 W8_20 W8_25

Figure 4. Average relative speed-up factor of HBBA vs. BBA for the series W8_m.

35

Machine 1

Machine 2

Machine 4

Machine 3

Buffer 1 Buffer 3

Buffer 2

Figure 5. The structure of the line for the counterexample

36

N Series

5 G5_20 G5_25 G5_30

5 G5_35 G5_40 G5_45

5 G5_50 G5_55

6 G6_20 G6_25 G6_30

6 G6_35 G6_40

7 G7_15 G7_20 G7_25

8 G8_10 G8_15 G8_20

8 W8_5 W8_10 W8_15

8 W8_20 W8_25

Table 1. Randomly generated series

37

Running time of HBBA
Series tCEM

min
HBBAt tHBBA max

HBBAt
tGA Sol

G5_20 48.1 0.45 1.33 5.15 0.56 4.8E+04

G5_25 146.7 0.44 2.25 8.44 0.59 1.0E+05

G5_30 365.1 0.46 3.77 17.69 0.62 2.0E+05

G5_35 789.2 0.50 6.54 36.65 0.69 3.7E+05

G5_40 1538.6 0.52 10.98 69.59 0.72 6.5E+05

G5_45 2772.7 0.53 17.78 125.22 0.76 1.1E+06

G5_50 4695.5 0.56 28.00 213.66 0.79 1.7E+06

G5_55 7562.2 0.57 43.05 356.53 0.82 2.7E+06

G6_20 1146.8 0.77 19.01 145.31 0.75 9.5E+05

G6_25 4374.7 0.79 47.97 355.79 0.80 2.5E+06

G6_30 13062.7 0.79 105.79 699.66 0.85 5.5E+06

G6_35 32939.3 0.89 214.42 1565.49 0.95 1.1E+07

G6_40 73394.9 0.88 376.53 2989.73 1.00 2.0E+07

G7_15 244.2 0.80 13.92 93.10 0.89 5.8E+05

G7_20 1372.0 0.93 53.88 325.69 1.01 2.4E+06

G7_25 5233.8 0.94 159.75 983.51 1.06 7.2E+06

G8_10 2464.5 0.89 23.77 208.47 1.03 8.7E+05

G8_15 63163.3 0.96 190.85 1782.55 1.14 7.3E+06

G8_20 630920.5 1.12 929.16 8786.98 1.30 3.6E+07

Table 2. Running times of CEM and HBBA

38

Problem H ϕ i
BBAτ

vp6_3 (0,2,5,3) 0.3359 0.000

vp6_4 (0,0,3,1) 0.3602 0.010

vp6_5 (0,1,3,1) 0.3782 0.010

vp6_6 (0,1,3,2) 0.3946 0.020

vp6_7 (0,1,4,2) 0.4094 0.020

vp6_8 (0,2,4,2) 0.4215 0.030

vp6_9 (0,2,5,2) 0.4334 0.040

vp6_10 (5,3,2,0) 0.4427 0.050

vp7_3 (2,1,0,0) 0.4515 0.010

vp7_4 (2,1,1,0) 0.4605 0.020

vp7_5 (3,1,1,0) 0.3359 0.030

vp7_6 (3,2,1,0) 0.3602 0.050

vp7_7 (4,2,1,0) 0.3782 0.071

vp7_8 (4,3,1,0) 0.3946 0.111

vp7_9 (5,3,1,0) 0.4094 0.130

vp7_10 (5,3,2,0) 0.4215 0.170

Table 3. Running times of the Pure BBA and the solutions obtained

39

Machine 1 Machine 2 Machine 3 Machine 4 Buffer 3

A D A D A D A D A

0 1 1 2 2 4 ─ ─ 4

1 2 2 4 4 6 ─ ─ 6

2 3 ─ ─ ─ ─ 3 4 4

3 4 4 6 6 8 ─ ─ 8

4 5 ─ ─ ─ ─ 5 6 6

Table 4. First case timetable

40

Machine 1 Machine 2 Buffer 2 Machine 3 Machine 4 Buffer 3

A D A D A D A D A D A

0 1 1 2 2 2 2 4 ─ ─ 4

1 2 2 3 3 4 4 6 ─ ─ 6

2 3 3 4 4 6 6 8 ─ ─ 8

3 4 4 6 6 8 8 10 ─ ─ 10

4 5 ─ ─ ─ ─ ─ ─ 5 6 6

Table 5. Second case timetable

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

