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Abstract Coordination of multi agent systems remains as a problem since there is
no prominent method to completely solve this problem. Metaheuristic agents are
specific implementations of multi-agent systems, which imposes working together
to solve optimisation problems with metaheuristic algorithms. The idea borrowed
from swarm intelligence seems working much better than those implementations
suggested before. This paper reports the performance of swarms of simulated an-
nealing agents collaborating with particle swarm optimization algorithm. The pro-
posed approach is implemented for multidimensional knapsack problem and has
resulted much better than some other works published before.

Keywords metaheuristic agents, · swarm intelligence, · particle swarm optimiza-
tion, · simulated annealing

1 Introduction

Metaheuristic agents are collaborating agents to solve large scale optimisation
problems in the manner of multi agent systems in which metaheuristic algorithms
are adopted by the agents as the problem solvers. They are multi-agent systems
identified to describe teams of search agents to operate for optimisation. This
type of multi-agent systems is specific to implementations of metaheuristics to
solve large scale optimisation problems (Aydin 2007). Coordination of multi agent
systems remains as a problem since there is no prominent method to completely
solve this problem. The-state-of-the-art of coordinating multi agents via machine
learning has been extensively discussed in Panait and Luke (2005) while Vazquez-
Salcada et al (2005) and Kolp et al (2006) bring forward organizational and archi-
tectural issues of multi-agent systems. Since metaheuristic agents are more spe-
cific and heavily loaded in duty, their coordination is more than those are used in
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modelling social problems. The coordination problem with metaheuristic agents
constitutes of the eminent problem with metaheuristics, which is that there is no
guarantee provided to find optimum solutions within a reasonable time with any
metaheuristic algorithm. Instead, they usually provide with local optimum, which
may not be satisfactory sometimes. One way to overcome this problem is to di-
versify the search conducted with the heuristics. On the other hand, distributed
problem solving is mainly expected to bring more simplicity and reduction in
computational time and complexity, which leads to more diversity, and more rea-
sonable solutions. A well studied multi agent system can tackle multiple regions
of the search space simultaneously. Multiple independent runs of the algorithms,
which offer distributing the systems over the particular metaheuristic agents, have
capabilities to carry out concurrent search within search spaces.

In this paper, the coordination problem of multi-agent systems has been tack-
led once again, but, with swarm intelligence algorithms this time. It is observed
as expected that swarm intelligence algorithms help for better interactions and
information/experience exchange. We illustrated the idea in coordinating simu-
lated annealing agents with particle swarm optimisation algorithms implemented
to solve multidimensional knapsack problem. Although there are various hybrid
implementations of particle swarm optimisation and simulated annealing to solve
combinatorial problems (Chan et al 2006;Dong and Qui 2006;Wang et al 2007), we
have not come across with implementation of particle swarm optimisation algo-
rithms to coordinate any metaheuristic agent such as simulated annealing agents
neither any distributed versions of such hybrid algorithms. In addition, multidi-
mensional knapsack problem has not been tackled with such hybrid algorithm
either.

Previously, a couple of multi agent coordination approaches applied to meta-
heuristic agent teams to examine their performance in coordinating them (Aydin
2007; Hammami and Ghediera 2005). Obviously, each one provides with different
benefits in tackling search and problem solving. However, swarm intelligence has
not been considered for this coordination problems, whereas the notion of swarm
intelligence is to substantiate artificial societies inspiring of the natural life. That
is that the individuals form up a swarm are to be considered as particular agents.
In contrary, the individuals remain as ordinary solutions not agents enabled with
various artificial skills. In this paper, we try to prove the concept of coordinating
agents with swarm intelligence algorithms.

Multidimensional knapsack problem is one of the most tackled combinatorial
optimisation problems due to its flexibility in convertibility into the real world
problems. The problem briefly is to maximise the total weighted p index subject
to the constraints where x is a binary variable and r is a matrix of coefficients that
is imposed to limit the capacities and b is the vector of upper limits.

Maximise

n
∑

j=1

pjxj (1)

Subject to:
n
∑

j=1

rijxj ≤ bii = (1, ..., m) (2)

xj ∈ [0,1]j = (1, ..., n) (3)
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Equation (1) is the objective function which measures the overall capacity of the
knapsacks used while Equation (2) and (3) provide the hard constraints where (2)
declares the upper limit of each knapsack and (3) makes sure that the decision
variable, x, can only take binary integer values. The knapsack problem has been
inspired by many application areas such as networking problems, supply chain
modeling problems etc. Wilbaut et al (2008) introduce a survey on the variety of
knapsack problems and the ways to solve them.

The rest of the paper is organised as follows. The second section is to briefly
introduce the notions of metaheuristic agents and swarm intelligence with short
presentation of considered metaheuristics within the study; they are particle swarm
optimisation (PSO), bee colony optimisation (BCO), and simulated annealing
(SA) algorithms. The third section is to describe how to deliver the coordination
of a swarm of simulated annealing agents using BCO and PSO. The experimental
results are provided in section four following by the conclusions in section five.

2 Metaheuristic Agents and Swarm Intelligence

The concept of metaheuristic agents is identified to describe multi agent systems
equipped with metaheuristics to tackle hard optimisation problems. The idea of
multi agency is to build up intelligent autonomous entities whose form up teams
and solve problems in harmony. The agents equipped with metaheuristics aim to
solve hard and large-scale problems with their own intelligent search skills. Since
standalone heuristic search usually face with local minima, ideas such as memetic
algorithms, hybrid algorithms etc. have received intensive attention to overcome
such shortcomings. On the other hand, the idea of multi agency eases building
collaboration among various methods and approaches in a form of collaborating
independent computational entities (Panait and Luke 2005;Vazquez-Salcada et al
2005;Kolp et al 2006).

Metaheuristic applications have been implemented as mostly standalone sys-
tems in an ordinary sense and examined under the circumstances of their own
standalone systems. Few multi agent implementations in which metaheuristics
have been exploited are examined in the literature. Various implementations of
metaheuristic agents have been overviewed with respect to topologies and achieve-
ments in Aydin (2007) and Hammami and Ghediera (2005).

Swarm intelligence is referred to artificial intelligence (AI) systems where an
intelligent behaviour can emerge as the outcome of the self-organisation of a col-
lection of simple agents, organisms or individuals. Simple organisms that live in
colonies; such as ants, bees, bird flocks etc. have long fascinated many people for
their collective intelligence that is manifested in many of the things that they do.
A population of simple units can interact with each other as well as their envi-
ronment without using any set of instruction(s) to proceed, and compose a swarm
intelligence system.

The swarm intelligence approaches are to reveal the collective behaviour of
social insects in performing specific duties; it is about modelling the behaviour
of those social insects and use these models as a basis upon which varieties of
artificial entities can be developed. In such a way, the problems can be solved by
models that exploit the problem solving capabilities of social insects. The moti-
vation is to model the simple behaviours of individuals and the local interactions
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with the environment and neighbouring individuals, in order to obtain more com-
plex behaviours that can be used to solve complex problems, mostly optimisation
problems (Colorno et al 1994; Kennedy and Eberhart 1995; Tasgetiren et al 2007).

2.1 Bee colonies

Bee colonies are rather recently developed sort of swarm intelligence algorithms,
which are inspired of the social behaviour of bee colonies. This family of algo-
rithms has been successfully used for various applications such as modelling oh
communication networks (Farooq 2008), manufacturing cell formation (Pham et
al 2007), training artificial neural networks (Pham et al 2006). There is a rather
common opinion on that bee colony algorithms are more successful in continuous
problems than combinatorial problems. The main idea behind a simple bee colony
optimisation algorithm is to follow the most successful member of the colony in
conducting the search. The scenario followed is that once a bee found a fruitful
region, then it performs the waggle dance to communicate to the rest of the colony.
Once any member of the colony realises that there is a waggle dance performance
by a peer fellow, then it moves to that member’s neighbourhood to collect more
food. Inspiring of this natural process, bee colony optimisation algorithms are
implemented for efficient search methodologies borrowing this idea to direct the
search to a more fruitful region of the search space. That would result a quicker
search for an appropriate solution to be considered as a neat near-optimum. For
further information Pham et al (2006), (2007) and Farooq (2008) can be seen.

2.2 Particle swarm optimisation (PSO)

PSO is a population-based optimization technique inspired of social behaviour of
bird flocking and fish schooling. PSO inventors were implementing such scenarios
based on natural processes explained below to solve the optimization problems.
Suppose the following scenario: a group of birds are randomly searching for food
in an area, where there is only one piece of food available and none of them knows
where it is, but they can estimate how far it would be. The problem here is ”what
is the best way to find and get that food”. Obviously, the simplest strategy is to
follow the bird known as the nearest one to the food. In PSO, each single solution,
called a particle, is considered as a bird, the group becomes a swarm (population)
and the search space is the area to explore. Each particle has a fitness value
calculated by a fitness function, and a velocity of flying towards the optimum,
food. All particles search across the problem space following the particle nearest
to the optimum. PSO starts with initial population of solutions, which is updated
iteration-by-iteration.

The pure PSO algorithm builds each particle based on, mainly, two key vectors;
position xi, and velocity vi. Here, xi = {xi1, ..., xin}, denotes the i

th position vector
in the swarm, where xik, is the position value of the ith particle with respect to
the kth dimension (k = 1, 2,3, , n), while vi = {vi,1, ..., vi,n} denotes the ith velocity

vector in the swarm, where vik is the velocity value of the ith particle with respect
to the kth dimension. Initially, the position and velocity vectors are generated as
continuous sets of values randomly uniformly. Personal best and global best of the
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swarm are determined at each iteration following by updating the velocity and
position vectors using :

vik(t+ 1) = δ(wtvik(t) + c1r1(yik(t)− xik(t)) + c2r2(gk(t)− xik(t))) (4)

where w is the inertia weight used to control the impact of the previous velocities
on the current one, which is decremented by β, decrement factor, via wt+1 = wt×β,
δ is constriction factor which keeps the effects of the randomized weight within
the certain range. In addition, r1 and r2 are random numbers in [0,1] and c1 and
c2 are the learning factors, which are also called social and cognitive parameters.
The next step is to update the positions in the following way.

xik(t+ 1) = xik(t) + vik(t). (5)

After getting position values updated for all particles, the corresponding solu-
tions with their fitness values are calculated so as to start a new iteration if the
predetermined stopping criterion is not satisfied. For further information, Kennedy
and Eberhart (1995) and Tasgetiren et al (2007) can be seen.

PSO has initially been developed for continuous problems not for discrete ones.
As MKP is a discrete problem, we use one of discrete PSO, which is proposed by
Kennedy and Eberhart (1997). The idea is to create a binary position vector based
on velocities as follows:

xik(t+ 1) =
1

evik(t+1)
. (6)

where equation (5) is replaced with (6) so as to produce binary values for
position vectors.

2.3 Simulated annealing

Simulated annealing (SA) is one of the most powerful metaheuristics used in op-
timisation of many combinatorial problems, which relies on a stochastic decision
making process in which a control parameter called temperature is employed to
evaluate the probability of moving within the neighbourhood of a particular so-
lution. The algorithm explores across the whole search space of the problem un-
dertaken throughout a simulated cooling process, which gradually cools a given
initial hot temperature to a predefined frozen level. Given a search space S, and a
particular state in search space, x ∈ S, a neighbourhood function, N(x), conducts
a move from x, to x́ ∈ S, where the decision to promote the state is made subject
to the following stochastic rule:-

xi+1 =







x́i ∆x > 0

x́i e
−∆x

ti ≥ ρ

xi otherwise

(7)

where ∆x = x́i − xi, i is the iteration index, ρ is the random number gen-
erated for making a stochastic decision for the new solution and ti is the level
of temperature (at the ith iteration), which is controlled by a particular cooling
schedule, f(ti). This means that, in order to make the new solution, x́i, qualified
for the next iteration, either the arithmetic difference, ∆x, needs to be negative or
the probability determined with e−∆x/ti is required to be higher than the random
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number generated, ρ, where the probability is decayed by cooling the temperature.
Every state qualified to the next iteration as the consequence of the abovemen-
tioned stochastic rule gives away to a perturbation in which the solution state
can be refreshed and diversified to prevent the possible local optima. A prede-
fined number of moves attempted in this stage are repeated per iteration so as
to stabilise cooling the temperature. Obviously, the stochastic rule does not allow
only promoting the better solutions, but also the worse ones. However, since the
probability of promoting a worse state exponentially decays towards zero, it is get-
ting harder to exploit the perturbation facility in advanced stages of this process.
That is because the temperature approaches zero as the number of iterations goes
higher. More details can be found in literature such as Kolonko (1999), Aydin and
Fogarty (2004) and Hammami and Ghediera (2005).

3 SA agents collaborating with swarm intelligence

As explained above, simulated annealing (SA) is one of the most commonly used
metaheuristic approaches that offer a stochastic problem solving procedure. It
is used for numerous and various successful applications (Kolonko 1999; Aydin
and Fogarty 2004) in combinatorial and real optimisation domains. However, it
is realised that the performance of implementations significantly depend on the
neighbourhood structure as well as the hardness of the problem. In order to avoid
poor performance due to such reasons, SA has been either hybridised with other
peer metaheuristic algorithms such as genetic algorithm or parallelised. The main
problem remains as the diversification of the search in one way or another. In this
study, agents enabled with simulated annealing algorithm are used and named as
SA agents.

The original idea of swarm intelligence is to form up populations of enabled
individuals for collaboratively problem solving spurposes. However, due to com-
putational complexity and the hardship in furnishing the enabled individuals with
multiple advanced functionalities, swarms are usually designed as population of
individual static solutions evolved with various genetic and/or heuristic opera-
tors/algorithms. In this study, individuals forming up the swarms are agentified
with various advance functionalities such as problem solving and communicating
independently.The idea is cultivated as follows: a population of agents is created
and developed with a search skill operating in the way of simulated annealing
algorithm. Then, the population is organised to team up a swarm to solve the
problems with their search functionalities and interaction abilities. Previously, SA
agents have been organised in a variety of fashions such as with hill climbing al-
gorithm or metropolis rule (Aydin and Fogarty 2004; Aydin 2007). The idea was
to build a way of collaboration through system architecture, and gained a slight
improvement in performance.

This study has aimed to find out a better way of organising agents in a more
proactive collaboration so that the agents are to be enabled with contributing
problem solving whilst coordinating. For this purposes, few algorithms have been
examined; evolutionary simulated annealing, bee colony optimization and particle
swarm optimization algorithms. Evolutionary simulated annealing is the one ex-
amined earlier for a similar purpose, to solve some other combinatorial problems
(Aydin and Fogarty 2004; Yigit et al 2006; Kwan et al 2009) in which a population
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Fig. 1 The progress of evolving solutions through a typical swarm of SA agents

of solutions is created and then evolved with a fast-track simulated annealing oper-
ator on generation basis. It imposes that once an individual solution is operated by
an SA, the resulting new solution is replaced with the old one. On the other hand,
bee colony optimisation algorithm applies waggle dance principle of bee colonies
in which the best found solution is given to every agent to kick-off a fresh search
around the most promising neighbourhood. The resulted solutions are counted
and sorted accordingly, and the best of them is chosen for the next generation.
Ultimately, the third examined algorithm , which is found as the most promising
method, is particle swarm optimization algorithm. It considers a swarm of SA
agents interacting in the way of particle swarm optimisation algorithm operating.

Figure 1 sketches the progress of searching for optimum solution through gener-
ations reflecting how each agent plays its role and how the collaboration algorithm
merges the intelligence produced by each agent. First of all, a swarm of SA agents
is created, where each agent starts searching with a randomly generated prob-
lem state, xi(0). Once they finish a single run, the improved solutions, x′

i
(0), are

collected into a pool and applied with a particular collaboration algorithm for ex-
changing information purpose. This step puts very significant impact on the speed
of approximation with which the collected solutions are operated with a second
algorithm to exchange information for further steps, which helps the search with
diversification. There, whichever algorithm is operating will shake up and reshuffle
the set of solutions, and as a result the diversifications will be re-cultivated each
time. This brings an easy way of switching to different neighbourhoods within the
search space. This procedure continues until a pre-defined criterion is satisfied,
which is indicated in Figure 1 as the termination state of the process. The final
set of results, x′

i
(t), are merged into the final pool, and a near optimum is finally

determined.

The interaction of the SA agents in this way reminds the idea of variable neigh-
bourhood search (Hansen et al 2004; Sevkli and Aydin 2006) where a systematic
switch-off between search algorithms is organised in order to diversify the solu-
tions. In an overall point of view, the swarm of SA agents sounds borrowing this
idea to implement it in a wider context of exploration.
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The multidimensional knapsack problem is represented in a binary way to
be inline with the integer programming model in which a decision variable of
x = {x1, ..., xK} plays the main role in process of optimisation, where x is a vector
of K binary variables. This is also the way how to present a problem state. Here,
once a corresponding amount is decided to be included in knapsack k, then xk
becomes 1 otherwise 0. The heuristic search for optimum value is conducted via use
of neighbourhood structure of inverter function, which simply inverts the value of
a randomly selected variable at a time. The main search is conducted by a so-called
fast-track SA algorithm embedded in each agent with inverting values of up to 3
variables at a time. A complete search operation by a SA agent is measured based
a cost/fitness function, which relates each state of the problem to a corresponding
real value.

fi : xi(t) −→ ℜ (8)

where xi is the ith vector of decision variables within the swarm, which corre-
sponds to the ith SA agent. In the case of multidimensional knapsack problem,
the fitness/cost function, fi, corresponds to the objective function (Equation (1)).
An agent embedded with fast-track SA explores for better state of the problem
taking xh

i = xi(t) and producing x
f
i = x′

i(t) following the main procedure of SA
algorithm,

x
f
i = SAi(x

h
i ) (9)

where i is the index for agents, h and f represent ”hot” and ”frozen” keywords 1

and SAi(.) is the problem solving process of the ith agent. There, the improvement
towards the optimum value is measured as fhot to ffrozen. As expected, the overall
search by the whole swarm of SA agents is conducted generation-by-generation as
is done in other evolutionary methodologies. Hence, implementing these multiple
SA agents, there will be N number of initial states of the problem considered by
N agents and N number of improved results produced per generation. The whole
swarm will include a set of fitness values representing the state of the swarm with
respect to the solution quality. F(t) = {f0, ..., fK} is the fitness vector of genera-
tion t through the overall problem solving process. The swarm of SA agents will
find the best of the generation, xb(t), based on the fitness vector, which provides
fbest. Moving to the next generation is subject to the level of satisfaction with the
solution quality. If it is not sufficiently optimised, yet, the next generation will be
gone through the determination of new set of hot solutions, where a coordination
algorithm is needed to combine all the experiences of the agents, and let them
select their new hot states. As explained before, the coordination algorithms con-
sidered in this research are evolutionary simulated annealing (ESA), bee colony
optimisation (BCO) and particle swarm optimisation (PSO). ESA imposes each

agent to take up x
f
i (t) as x

h
i (t+1), where t is the index for generations, while BCO

imposes xb(t) to every agents to kick off search for next generation. PSO runs the
usual interaction procedure, which explained above, to determine the new hot so-
lutions. Therefore, a new hot solution will be produced as the result of xh

i (t+ 1)

= psot(x
f
i ,x

pb
i ,xb), where x

pb
i and xb are personal and global best solutions. The

whole procedure of coordination by PSO lasts between pso0(.) and psoT (.), where
T is the final generation through the whole process.

1 ”Hot” and ”frozen” are two preferred keywords to express the ”initial” and ”final”, re-
spectively, in order to be inline with the jargon used in simulated annealing studies.
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4 Experimental Study

This experimental study is not especially to solve multidimensional knapsack prob-
lem (MKP), but to test the performance of various approaches including swarm
intelligence to coordinate metaheuristic agents. The abovementioned swarm in-
telligence model for SA agents has been examined with solving multidimensional
knapsack problem, which is one of well-known NP-Hard combinatorial optimiza-
tion problems. For this purpose, a swarm of SA agents, each was configured with
a fast-track SA procedure, was created. Three approaches are examined for the
purpose of an efficient coordination: an evolutionary simulated annealing (ESA)
algorithm (Aydin and Fogarty 2004), a bee colony optimisation (BCO) algorithm
(Pham et al; 2006;2007), and a binary represented PSO algorithm (Kennedy and
Eberhart 1997), were implemented to work as a coordinator algorithm. The mul-
tidimensional knapsack problem was represented with a binary coding scheme.

SA procedure to be run by each agent was investigated for whether to be a 100
iteration long SA to run through 300 generations or a 200 iteration long SA to run
300 generations. The preliminary results confirmed that a 200 iteration long SA
algorithm with varying number of generations (Aydin 2008). That was inline with
previous researches. In addition, the size of swarm was investigated in a range of
5 to 50. The experimentation is conducted with only two moderately hard MKP
benchmarks, namely MKP6 and MKP7 collected from OR library (Beasley 1990).
The results are summarised in Table 1, 2 and 3 with the solution quality and com-
putational time, where the solution quality is measured with relative percentage
of error (RPE).

RPE =
fopt − favrg

fopt
(10)

where fopt and favrg are the optimum and the average values of experimented
results. The average value, favrg , is the mean calculated over 50 replications. The
second performance measure is the averaged CPU time, which is the mean of the
50 replications. The performance with respect to the solution quality is primarily
considered and the one with respect to CPU is secondarily considered in case of
any tight comparisons.

The implementation of the systems has been done using POP C++, which
is a GRID programming language developed by Nguyan and Kuonen (2007). It
is such a unique distributed programming language that uses object distribution
over the targeted infrastructure, and arrange automatic communications among
the distributed entities. This property of POP C++ eases its use in development
of multi agent systems. All experiments were conducted on GRID infrastructure
in Computer Science department of Applied University of Western Switzerland in
Fribourg.

Table 1 presents experimental results with the most fast-track SA agents coor-
dinated with all three approaches against various swarm sizes. The SA algorithm
is configured to run 200 iterations without any inner replications, which means
that the cooling schedule allows operating once per level of temperature. All three
algorithms, ESA, BCO and PSO, are separately applied to the same swarm of SA
agents under the same circumstances. The swarm size varies between 5 and 50
agents. The multidimensional knapsack benchmark problems tackled are MKP6
and MKP7 in all cases. All experiments are replicated for 50 times. The worst
level of achievement with respect to quality of solution is delivered by BCO while
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Table 1 Experimental results of the swarm of fast-track SA agents with single inner iteration
and coordinated with various approaches

Swarm Size ESA BCO PSO

RPE CPU RPE CPU RPE CPU

5 0.03495 0.11 0.02808 0.73 0.00257 0.84
10 0.01183 0.43 0.02021 1.29 0.00214 1.38
15 0.00899 0.86 0.01694 1.73 0.00170 2.31

MKP6 20 0.01052 1.08 0.01530 2.25 0.00203 2.40
30 0.00762 1.80 0.01344 2.79 0.00098 2.56
40 0.00768 1.86 0.01226 4.34 0.00122 3.67
50 0.00633 2.56 0.01093 5.28 0.00061 4.09

5 0.03748 0.14 0.04077 0.59 0.00307 0.78
10 0.02170 0.52 0.03270 1.18 0.00175 1.30
15 0.01528 1.01 0.02782 1.57 0.00112 1.31

MKP7 20 0.01407 1.17 0.01906 2.10 0.00064 1.31
30 0.00961 2.34 0.01516 2.95 0.00014 0.93
40 0.00821 2.20 0.01736 4.35 0.00030 1.21
50 0.00865 2.66 0.01979 5.38 0.00028 1.15

PSO has the best and ESA has an intermediate level of achievement. On the other
hand, the shortest computational time achieved by ESA while the longest one is
done by BCO and PSO is in the middle. The overall gain by PSO over BCO, which
is the worst case, remain between 90-95% and 25-33% by ESA. The time-wise gain
is 49% and 31% by ESA and PSO, respectively. The swarm-size-wise performance
is a significant too. For both benchmarks, the size of the swarm indicates a gradual
increase in performance in all cases; the solution quality index linearly decreases.
Another most interesting fact is that the error level indicated by PSO is nearly
about 10% of both ESA’s and BCO’s levels.

Table 2 presents the results of experimentations sets which considered 5 inner
iterations per SA cycle. These results are much better ones comparing to the single
inner iteration case. All three algorithms that coordinate fast-track SA agents, with
5 inner iterations per cycle this time, and improve their performance gradually
through the growing size of the swarm. ESA hits 100% achievement with 30 and
40-agent swarms, while PSO hits about 99% in both cases. BCO remains improving
in comparison with the single inner case, but outperformed by both ESA and PSO.
The overall gain by PSO over BCO, which is the worst case remain between 65-
95% and 84-95% by ESA. The gain with respect to CPU times is 82% and 39%
by ESA and PSO, respectively.

Table 3 shows the experimental results of more focused SA agents, which are
replicating 10 times per step of cooling schedule. Since this way of search is more
focused, the results of both ESA and PSO hit the optimum 100% with swarm
size of 20. Therefore, the experimentation has not proceeded further. As the table
manifests, PSO and ESA compete each other, but outperform BCO with respect
to both quality of solution and computational time, where the gain over BCO in
terms of solution quality is 82-89% and 82-92% by ESA and PSO, respectively.
The achievement via CPU time is 64% and 22% by ESA and PSO, respectively.

Fig. 2 indicates the averaged-RPE results of each coordinating approach per
benchmark per level of inner iterations in fast-track SA agents. The averaged
results are tabulated across horizontal axis pointing out the overall achievement
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Table 2 Experimental results of swarm of fast-track SA agents with 5 inner iterations and
coordinated with various approaches

Swarm Size ESA BCO PSO

RPE CPU RPE CPU RPE CPU

5 0.00069 0.03 0.00182 0.64 0.00076 0.70
10 0.00031 0.34 0.00139 1.21 0.00066 1.07

MKP6 15 0.00013 0.32 0.00143 1.65 0.00068 1.81
20 0.00005 0.29 0.00100 1.64 0.00042 1.33
30 0.00000 0.27 0.00090 1.91 0.00021 1.08
40 0.00000 0.20 0.00121 2.73 0.00011 1.42

5 0.00031 0.08 0.00190 0.56 0.00013 0.24
10 0.00009 0.30 0.00128 0.92 0.00004 0.26

MKP7 15 0.00006 0.32 0.00118 1.15 0.00009 0.51
20 0.00003 0.28 0.00120 1.27 0.00009 0.65
30 0.00000 0.25 0.00078 1.37 0.00002 0.57
40 0.00000 0.28 0.00082 1.59 0.00002 0.44

Table 3 Experimental results of ESA agents with 10 inner iterations and coordinated with
various approaches

Swarm Size ESA BCO PSO

RPE CPU RPE CPU RPE CPU

5 0.00027 0.09 0.00086 0.44 0.00029 0.48
MKP6 10 0.00002 0.17 0.00063 0.66 0.00013 0.66

15 0.00000 0.14 0.00066 0.80 0.00008 0.49
20 0.00000 0.14 0.00060 0.97 0.00000 0.33

5 0.00072 0.16 0.00141 0.45 0.00019 0.35
MKP7 10 0.00000 0.13 0.00130 0.62 0.00013 0.55

15 0.00000 0.13 0.00070 0.64 0.00002 0.44
20 0.00000 0.14 0.00073 0.75 0.00000 0.48

of each approach, where the benchmark problems are indicated as MPK6 and
MPK7 with each inner iteration case. INN 1, INN 5 and INN 10 indicate the inner
iteration level of 1, 5 and 10. As both the graph and the tabulated values reveal, the
performance of ESA and PSO comparable beyond the inner iterations of 5 onward.
However, their achievements remain significantly different in the case of inner
iteration 1, which is the simplest form of cooling process in SA procedure. PSO
clearly and significantly outperform both ESA and BCO approaches, while ESA
does better than BCO. Depending on their level of difficulty, simulated annealing
algorithms are configured with the level of inner iterations, whereas some problems
favour of higher level of inner iterations, but some do not do at all, especially those
are time sensitive such as resource scheduling problem of radio access networks
(Kwan et al 2009), where the speed of the algorithms are measured in nano-
second level. Therefore, more focused and intensified search will not help solving
such problems at all.
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Fig. 2 Average performance of agent swarms in various sizes operating with all three algo-
rithms and all three inner-iteration levels

5 Conclusions

Metaheuristic agent swarms need collaboration in one way or another to deliver
an efficient problem solving services. In this paper, three collaboration algorithms
have been examined with respect to efficiency in solution quality. The agents form
up the swarms, which are configured as simulated annealing agents to solve mul-
tidimensional knapsack problem. Evolutionary simulated annealing, bee colony
optimisation and particle swarm optimisation algorithms are used for collabora-
tion purposes. The algorithm found best to be paired with SA agents is PSO,
which is a relatively newer swarm intelligence approach that has good record for
continuous problems, but usually needs a local search embedded in for combina-
torial problems. On the other hand SA needs to incorporate with other search
methods for diversification. It is significantly concluded that collaborating meta-
heuristic agents with swarm intelligence algorithm adds up value into the quality
of solution. This incorporation works in the form of a variable search algorithm in
an overall point of view. It also keeps the properties of ESA (Yigit et al 2006) as
it reheats the temperature, and works with a population.
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