J Intell Manuf (2012) 23:1733-1743
DOI 10.1007/s10845-010-0478-0

A soft computing system using intelligent imputation strategies
for roughness prediction in deep drilling

Maciej Grzenda - Andres Bustillo - Pawel Zawistowski

Received: 30 July 2010 / Accepted: 21 October 2010 / Published online: 19 November 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract A soft computing system used to optimize deep
drilling operations under high-speed conditions in the man-
ufacture of steel components is presented. The input data
includes cutting parameters and axial cutting force obtained
from the power consumption of the feed motor of the mill-
ing centres. Two different coolant strategies are tested: tra-
ditional working fluid and Minimum Quantity Lubrication
(MQL). The model is constructed in three phases. First, anew
strategy is proposed to evaluate and complete the set of avail-
able measurements. The primary objective of this phase is to
decide whether further drilling experiments are required to
develop an accurate roughness prediction model. An impor-
tant aspect of the proposed strategy is the imputation of miss-
ing data, which is used to fully exploit both complete and
incomplete measurements. The proposed imputation algo-
rithm is based on a genetic algorithm and aims to improve
prediction accuracy. In the second phase, a bag of multilayer
perceptrons is used to model the impact of deep drilling set-
tings on borehole roughness. Finally, this model is supplied
with the borehole dimensions, coolant option and expected
axial force to develop a 3D surface showing the expected
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borehole roughness as a function of drilling process settings.
This plot is the necessary output of the model for its use under
real workshop conditions. The proposed system is capable of
approximating the optimal model used to control deep dril-
ling tasks on steel components for industrial use.

Keywords Deep drilling - Incomplete data - Imputation -
MQL - Surface roughness - Multilayer perceptron

Introduction
Deep drilling and lubrication systems

In recent years, interest has grown in performing machining
operations under dry or near-dry conditions, which may be
partly explained by health and also economic reasons (Nandi
and Davim 2009). One of the most complex manufacturing
processes to change from high pressure conventional flood
cooling to near-dry cut is the drilling of deep holes, also
known as deep drilling. This change is because the coolant
is a key factor in chip evacuation from the cutting area. Dry
cutting does not allow chip evacuation and tool life is greatly
reduced under these cutting conditions. New lubrication sys-
tems have therefore been developed such as Minimum Quan-
tity Lubrication (MQL) (Braga et al. 2002). In MQL, a very
small amount of oil (less than 30 ml/h) is pulverized into the
flow of compressed air to cool the surface, and, even more
importantly in deep drilling, to assist chip evacuation from
the tooltip to the external surface of the hole.

The ecological impact of MQL systems is clearly lower
than the traditional high-pressure coolant fluid systems.
Doubts persist, however, over the degree of productivity and
quality that these systems will be able to achieve. Among the
main reasons for these doubts are the problems that relate
to the investigation and visualization of the impact of cut-
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ting conditions on the key attribute of a drill hole i.e. its
roughness. In reality holes that are bored under exactly the
same experimental conditions, using exactly the same tool
settings will often have differing roughness measurement
values. Some of the reasons for this phenomenon are related
to the cutting process itself. There are also other reasons
related to the limited precision of roughness measurement.
Cutting processes depend also on many variables that can not
be easily measured, the most important being: irregularities
in the metal blank to be drilled, tool wear, inhomogeneities
in cooling performance and chip formation (Benardos and
Vosniakos 2003). Therefore, some process variables, such
as axial force, are measured, as accurately as possible, dur-
ing the drilling process to take these factors into account.
The roughness measurement of the drill also has an instru-
mental error. In addition, the whole drill length can not be
measured, which therefore adds a further error. Moreover, to
decide on optimal tool settings, a process engineer should
be provided with surface plots showing the impact of tool
settings on roughness. These plots should approximate the
data coming from real experiments, taking into account the
aforementioned diversity of roughness measurements under
the same cutting conditions. However, only a limited num-
ber of experiments may be set up for such surfaces. Hence, a
model is needed that approximates existing data and predicts
roughness values for tool settings that are not covered by
experimental values. Such a model would contribute to max-
imising the industrial use and development of MQL High
Speed deep drilling on steel components. High-speed dril-
ling is an especially interesting industrial process, due to the
broad use of steel as a base material for different kinds of high
value industrial components. In fact, one of its main indus-
trial applications is the drilling of boreholes for knockout
pins or coolant circuits in moulds and dies.

There is no standard definition for deep drilling, although
it is usually defined by considering the length-to-diameter
ratio of the drill-hole. Whenever drill-hole length is 2-3 times
larger than its diameter, almost no cutting fluid reaches the
drill tip, mainly because the drill and the counter-flow of
chips restrict further penetration (Kubota and Tabei 1999).
When the drill-hole length is 3times larger than the drill-
hole diameter, drilling with conventional flood cooling may
be considered a near-dry cutting process, which is the main
reason why MQL is often preferable. MQL industrial appli-
cations are therefore appropriate for drill-hole lengths that
are 4 times larger than the drill-hole diameter (4 x D). In line
with other authors (Hayajneh 2001; Weinert et al. 2004) and
for the purposes of the experimental tests described in this
study, deep drilling will be therefore defined as any drill-hole
length that is 4 times larger than the drill-hole diameter.

Research on MQL deep drilling is still mainly focused
on aluminium, as dry deep drilling is not possible on this
material, because of its high adhesion to the drill flutes
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(Braga et al. 2002; Davim et al. 2006). On steel, research
has mainly focused on experimental tests to define tool wear
(Heinemann et al. 2007), tool life (Heinemann et al. 2006;
Filipovic and Stephenson 2006) and surface quality (Davim
et al. 2006; Zhang and Chen 2009) in relation with MQL and
cutting conditions. Certain studies have attempted to predict
chatter phenomena in deep drilling using analytic solutions
(Mehrabadi et al. 2009). With regard to soft computing tech-
niques, many publications are either devoted to drilling mod-
elling (Chandrasekaran et al. 2010) or refer to the problem
(Choudhary et al. 2009), but not so many examine deep dril-
ling and even fewer study MQL deep drilling, where the phys-
ical phenomena differ from standard drilling. Fuzzy logic
has been used to predict forces and surface quality on MQL
deep drilling of aluminium (Nandi and Davim 2009), drill life
(Biglari and Fang 1995; Jantunen and Vaajoensuu 2010) and
better cutting conditions (Hashmi et al. 2000) in deep dril-
ling of steel with conventional flood cooling. Artificial neu-
ral networks (ANN) modelling approaches have been used
for predicting burr size (Davim et al. 2006) and drill wear
(Sanjay et al. 2005) in deep drilling of steel with conven-
tional flood cooling. Finally, genetic algorithms have been
applied to maximise metal removal rate in a standard drilling
process (Zang et al. 2000).

However, the way soft computing techniques can be
applied to predict borehole roughness under MQL deep dril-
ling conditions remains an open issue. The term roughness is
used in the remainder of this paper to refer to the roughness
of a borehole as a result of deep drilling.

Although all these approaches could lead to good results
under laboratory conditions, a further fundamental require-
ment has to be fulfilled under industrial conditions. In the
world of manufacturing, experimental testing is particu-
larly expensive as it often involves the use of high-precision
machinery and costly processes. But these experimental tests
are essential to adjust the mathematical models that simulate
the manufacturing processes. Among these models, artifi-
cial intelligence (AI) techniques have been shown to provide
good accuracy in industrial problems governed by high com-
plexity phenomena and a large number of variables that influ-
ence the outcome. But Al techniques generally require the
production of reliable models and the completion of an exten-
sive battery of experimental tests with a significant variation
of the process parameters, in many cases outside optimal
working limits. This implies a high experimental cost and,
ultimately, it means that these techniques might be adjusted
with overly limited data sets, which would therefore pres-
ent high error rates under industrial conditions. This lack of
broad datasets is accentuated by the fact that some of the tests
that could be done under industrial conditions are not com-
pleted. Usually the datasets contain variables that are not
always measured because data acquisition is frequently
not considered a core task in many enterprises. In the case
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of drilling data used for this study, a significant part of the
data set was incomplete. On the other hand, as in many other
cases, it remained unclear whether sufficient data was forth-
coming from the experiments that had already been carried
out to obtain a high-quality model of the process. Frequently,
incomplete data is removed from the data set, which may
negatively impact the quality of a model. Thus, among its
objectives, our work investigates the way incomplete data
can be fully exploited to deliver a prediction model of bore-
hole roughness and assesses the need to perform further
experiments to acquire additional input data for modelling
purposes.

Dealing with incomplete data

Numerous techniques have been proposed to deal with
incomplete data. In general, there are two approaches when
faced with incomplete data that are used to model industrial
processes. One possibility is to revise the data set and delete
all the impaired instances or even attributes (this approach is
sometimes called complete case analysis). However, when
the data are valuable and scarce, this approach may signifi-
cantly reduce the quality of a model. Thus, another solution
is to impute the missing values using a proper method. The
imputation approach makes it possible to avoid deleting pos-
sibly useful information, but can equally introduce errors into
the data set. Nevertheless, in many cases imputation is the
best solution to incompleteness.

Filling in missing data requires choosing, from among
all the available methods, the one that gives the best possible
results. One of the most popular methods is probably the EM-
algorithm presented, among others, by Dempsteretal. (1977)
and Schafer (1997). The procedure assumes a distribution of
the missing values and then fills them in using a two step
iterative procedure: the E-step estimates the expected val-
ues of the missing data and the M-step changes the param-
eters of the distribution to maximize the likelihood of the
data. Another interesting iterative method called non-inva-
sive imputation has been proposed by Gediga and Diintsch
(2002). Abdella and Marwala (2005) proposed the use of
neural networks as an imputation method. A framework for
dealing with incomplete data for use in data mining was also
proposed by Wei and Tang (2003). One-class classifiers were
proposed as a method by Juszczak and Duin (2004). One of
the most popular techniques, the kNN algorithm was used
as an imputation method by Acufia and Rodriguez (2004),
Batista and Monard (2001), Hu et al. (1998) and Jonsson and
Wohlin (2006). Finally, Hu et al. (1998) gave an overview of
popular imputation methods. Last but not least, simple, yet
popular techniques of replacing missing values with mean or
median values are used. A further issue to consider is that
some imputation techniques such as these based on k-means
clustering require method parameters to be set.

When there is a need to fill in missing values for more than
one attribute of a data set, the choice of a single method to
perform all the imputations becomes even more difficult, or
impossible. In particular, no single method suitable for all the
attribute types may exist at all. In the latter case, performing
imputation means finding the combination of different impu-
tation techniques and their settings.

Solution overview

As the problem of finding the optimal set of imputation meth-
ods and their attributes is a difficult optimisation task, an evo-
lutionary algorithm was applied in the case under analysis to
search for the best imputation strategy. Moreover, the strate-
gies are evaluated in view of the problem for which the data
set is used. In other words, the suitability of an imputation
strategy is evaluated in terms of its impact on the prediction
process that is performed using the data set. This approach
has been shown to outperform different standard imputation
techniques (Zawistowski and Grzenda 2009).

The framework used in this work combines genetic algo-
rithms and multilayer perceptrons. Genetic algorithms have
been used to evolve method vectors representing imputation
strategies. Multilayer perceptrons (MLP) have been applied
to represent roughness prediction models. The error rate of
prediction performed for the data sets, which are imputed
using a strategy, provides the basis for a fitness function. In
other words, the higher the accuracy of the roughness predic-
tion performed on the imputed data set, the better the impu-
tation strategy used to fill in the missing values. Once the
imputation strategy has been determined, the impact of data
set size on the roughness prediction accuracy may be inves-
tigated. This was done using both incomplete and complete
records.

Finally, the MLP-based model presented in this work eval-
uates the impact of cutting conditions and lubrication systems
on the surface quality of a borehole. This provides the basis
for an industrial solution i.e. the set of 3D models showing
the impact of drilling process settings on the expected rough-
ness. The entire data flow is summarised in Fig. 1.

The remainder of this work is organised as follows:

— Data collection process and industrial experiments are
discussed in section “Experimental procedure and data
collection”,

— The imputation algorithm used to increase the number of
measurement records available for modelling purposes is
outlined is section “Imputation algorithm”. In particular,
the formal method of evaluating the quality of imputation
in terms of prediction modelling is proposed. This pro-
vides the basis for analysing the results of the imputation
of roughness data set and to decide whether further exper-
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Fig. 1 Data acquisition, axial force and roughness modelling

iments could result in new models that might improve
roughness prediction accuracy.

— Once the size of the data set is determined to be suffi-
cient, the results of roughness modelling are summarised
in section “Roughness modelling results”.

— The way the model can be used by process engineers
is outlined in section “Industrial applications”. A sam-
ple roughness surface, which can be used to optimise the
drilling process is also provided.

— Finally, the conclusions are summarised under section
“Conclusions and future works”.

Experimental procedure and data collection

Two different milling centres were used to obtain the exper-
imental data: one for traditional coolant tests and the other
for MQL tests. In both cases the blank material used for
the tests was F114 steel. Considering the dimensions of
bore holes for knockout pins, two holes diameters were cho-
sen: 5 and 10mm. Two hole lengths were tested for each
diameter: 5times the diameter (5xD) and 8xD. The tools
were selected from two different providers to test different
geometries: HAM and Mitsubishi. More extensive tests were
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Table 1 Cutting conditions proposed by the tool supplier

Tool code Ve av
(m/min) (mm/rev)

Tool model

HAM-286 (5xD), 5mm diameter
HAM-286 (8 xD), 5Smm diameter
HAM-292 (5xD), 10 mm diameter
HAM-292 (8xD), 10 mm diameter
Mitsubishi MPS0500-DIN-C VP15TF
Mitsubishi MPS0500-L8C VP15TF

1 80-128 0.10-0.2
1 70-112 0.10-0.2
2 80-128 0.10-0.2
2 70-112 0.10-0.2
3 50-100 0.15-0.25
4 50-100 0.15-0.25

done with HAM drills because they showed better perfor-
mance. The tool references are as follows: Tool 1—5xD
HAM-286; Tool 3—Mitsubishi MPS0500-DIN-C VP15TF;
Tool 2—8xD HAM-292; Tool 4—Mitsubishi MPS0500-
L8C VPI5STE.

Cutting conditions were chosen to reproduce real indus-
trial conditions. Each tool was tested under those conditions
that provide higher productivity depending on the lubrication
system. In this way a comparison of productivity and quality
between the two lubrication systems could be obtained for
the same set of tools. In any case, all the cutting conditions
for the tests were defined within the cutting range proposed
by the tool manufacturer. These cutting ranges are summa-
rised in Table 1.

The experimental tests should provide datasets with 7
input variables: tool type, tool diameter, hole length, fed-
erate per revolution av, cutting speed Ve, type of lubri-
cation system and axial cutting force. The experimental
design includes combinations of three such variables: tool
diameter, hole length and coolant system. For the other
variables, which relate to the cutting conditions, the experi-
mental design aims to achieve higher productivity, lower cut-
ting forces and good surface quality (roughness lower than
1pwm). The whole experimental test includes 90 different con-
ditions. All the tests were repeated to increase the amount of
data. Thus, a data set of 220 records was obtained. Table 2
shows the selected values for each variable in each test.

The tests were performed along the Z-Axis of the milling
centres. Hence, the monitoring of the Z-Axis feed motor con-
sumption provided the axial cutting force during the drilling
operation because both variables are proportional. Rough-
ness was measured using a rugometer Mitutoyo SV-2000N2.
The roughness of the boreholes is obtained as a mean value
of the roughness measured along the first 10 or 15 mm of the
hole, depending on its total length.

After the experiments, the measurement process and data
that had been collected were carefully investigated. Unfor-
tunately, it was revealed that some axial forces had not been
correctly measured, so they had to be removed from the data
set. As a consequence, the experimental data was incomplete.
This is very often an industrial reality, where not all the test
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Table 2 Cutting conditions
selected for the experimental Tool Diam. Hole length (mm) av (mm/rev) V¢ (m/min) Coolant
fests 1 5 25 0.12,0.15,02,025  70,80.90,100,125,130 1

1 10 50 0.2,0.25,0.3 70,80,90,100,110,125 1

1 5 25 0.12,0.15, 0.2, 0.25 70,80,90,100 2

1 10 50 0.15,0.2,0.25 70,90,100 2

2 5 40 0.1, 0.15,0.2, 0.25 70,80,100,125 1

2 10 80 0.15, 0.2, 0.25,0.3 80,90,100,125 1

2 5 40 0.1,0.12,0.14 70,80,90,100 2

2 10 80 0.1,0.12,0.14 80,90,100 2

3 5 25 0.15,0.2,0.25 70,90,100,110,125 1

4 5 40 0.15,0.2,0.25 70,90,100,110,125 1

results are acceptable, because some of the variables are not
properly acquired. In the presented case, axial force is one of
the main inputs to model the drilling process. Unfortunately,
it can not be calculated directly from the other variables. In
44 experiments, this variable was not reliable and had to be
removed from the data set. Therefore 20% of the data set was
incomplete because of the lack of this variable.

Imputation algorithm
Motivation

As in the case of many other data sets, some attribute val-
ues were missing from the original data set. Thus, imputa-
tion techniques were considered to increase the number of
complete records. The primary objective of using imputa-
tion was to improve the accuracy of roughness prediction by
building prediction models that take account of all available
records, including those which were originally incomplete.
Moreover, imputed data were used to decide whether further
experiments, as well as the additional records that would be
collected were the experiments conducted, would result in
significant improvements in terms of roughness prediction
accuracy.

Model-based evaluation

When evaluating an imputation method, the distances
between the original and the filled in values are often used as
a performance measure. However when the data set is noisy,
and this is often the case, such an approach may lead to efforts
to recreate noise. Bearing in mind the goal, which is rough-
ness prediction, the methods that impute the missing datain a
way that does not distort the prediction model can be consid-
ered suitable for roughness prediction. There is no need to try
to find a method which could recreate the missing part pre-
cisely, with all the noise that might have been present in the

original measurements. Model-based evaluation of imputa-
tion methods is therefore applied (Zawistowski and Grzenda
2009). The algorithm presented below, which is based on the
evolutionary development of method vectors, was applied to
select both the imputation method and its parameters.

Method selection

For a given set of imputation methods I' and a given data
set D , in which attributes ay, ..., a, suffer from incom-
pleteness, let V. = [my, ..., my,] be a method vector, and
m; € I'—the imputation method used to fill in missing val-
ues of attribute ;. Thus, method vectors are vectors in an
n-dimensional imputation method space defined by a spe-
cific data set D and a specific set of imputation methods T.
Such vectors are used to fill in the incomplete data sets. The
goal is of course to achieve the best possible results.

Let M denote a model to be used. The role of this model
is to address the problem for which the data set is used. In the
presented case, the role of the model is to perform roughness
prediction. Thus, in general M : RN — RC, while D c RN
andn < N.In particular, all attributes can miss some values.
In the latter case, n = N. In case of classification or predic-
tion of a single signal, the number of output signals produced
by model M is C = 1. Model M can be implemented using
different techniques. In our case, the model is implemented
using a bag of multilayer perceptrons.

Continuing the notation, let ej; (D) denote the mean abso-
lute error of model M on data table D. Furthermore Dy is
the data table created from D by filling in all the missing
values using methods from vector V. Some of the methods
in I have parameters and in such situations not only the
method vectors have to be found, but also their parameters.
Let P(V) ={p : p € Pms1 X Pm‘K} denote the parameter
space for vector V, where K < n and Pm; is the parameter

space for the i-th parametric method. D€ denotes the data
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table created from D by filling in all the missing values using
methods from vector V with parameters p € P(V).

The objective of finding the best imputation method vec-
tor with parameters, means actually finding the best pair
[V*, p*], where p € P(V™), and it follows that:

em (DY) = miny pepv) em(DY). (1)

An imputation procedure that uses method vectors may
now be proposed. For a given data model and a given incom-
plete data table, the imputation procedure proposed in Algo-
rithm 1 is used. This formulates quite a difficult optimization

Input: I" - a set of imputation methods to be used, D - an
incomplete data table, M - a model to be used for data
table D
Result: D(;*, which is a complete data set to be used by model M
begin
[V*; p*] = find a pair for which Eq. 1 holds;
Dsi = fill in the incomplete data table D using methods
defined in vector V* with parameters p*;
return Dﬁi;
end

Algorithm 1: Method vector based imputation procedure

task, which can be solved using a genetic algorithm. Obvi-
ously, in most cases only suboptimal solutions may be found.

The genetic algorithm works on a population of method
vectors. Each individual consists of n genes representing
imputation methods used for individual incomplete attri-
butes. To simplify the notation, it can be assumed that there
are two types of genes: non-parametric genes—used for
non-parametric methods and parametric genes applied for
parametric methods. This means that parametric genes are
actually pairs [m, p,,] where m is an imputation method,
and p,, is the vector of parameter values for this method.

The proposed algorithm uses two types of genetic opera-
tors to diversify the population, namely crossover and muta-
tion. Both operators have two versions. One version is used
for non-parametric and one for parametric genes. In general,
in the first stage of the algorithm, changes can occur to the
set of methods and the parameters of methods comprising
the imputation strategies. In the final stage of the algorithm,
changes are applied only to the parameters. These changes
are applied by a mutation procedure. Further details on the
method, mutation and crossover operators and the results of
benchmark tests can be found in (Zawistowski and Grzenda
2009).

Evaluation of imputation results

When filling in missing data, some criterion is needed to eval-
uate whether or not the obtained results are acceptable. The
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following two scenarios are considered, assuming a data set
with one incomplete attribute for the sake of simplicity.

In a classic scenario, a complete data set is obtained, split
into training and testing subsets from which some attribute
values are removed. The training subset is then used to tune
the parameters of the imputation method and the testing
subset—to select the best available method. Performance
evaluation in such a scenario is done by measuring the dis-
tance between the original and the filled-in attribute values.

The classic scenario has two important requirements: the
complete data set has to be sufficiently large (the precise
meaning of sufficiently large of course depends on the data
setitself) and the distribution of the actual missing values has
to be considered. Because these demands may be difficult to
meet when solving real life problems, using a model-based
evaluation scenario might be a feasible alternative.

In a simple model-based evaluation scenario, an incom-
plete data set is split into training and testing subsets. The
training subset is used to prepare imputation methods and
the testing subset—to select the best one. These steps are
similar to the classic scenario, however the difference lies in
the imputation method evaluation procedure. When a method
is evaluated, itis used to prepare a complete data set on which
a model is trained and tested using cross-validation. The
model’s performance is the evaluation value of the method.
This scenario does not involve preparing an incomplete data
set from a previously complete one. It does however facili-
tate the best choice of imputation method with respect to a
given model.

When selecting an imputation method for incomplete data
sets obtained from industrial experiments, the following fac-
tors should be considered:

— The real values of incomplete attributes are actually
unknown, thus they can not be used for evaluating the
method. The solution would be easy if the missing values
were available for comparison purposes, so one approach
could be based on using artificially removed data for
testing different imputation techniques. Such a valida-
tion procedure could however lead to problems with the
proper estimation of the missing data distribution. In other
words, when an incomplete data set is artificially cre-
ated, the existing values are replaced with null values in
randomly selected instances. Hence, the imputation tech-
nique found to deal with such an incomplete set might be
optimal, but for the set containing randomly placed null
values, not for the set of actually incomplete instances
arising from partly successful measurements. Expressed
more simply, the distribution of actual incompleteness
may not follow an a priori chosen distribution over the
entire set of experiments e.g. uniform distribution. This
phenomenon is very likely to occur due to technical rea-
sons i.e. problems with completeness/correctness of the
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experimental data may affect experiments sharing some
common features.

— Apart from that, in the case of attributes originating from
measurements, the errors which are present in the com-
plete values also have to be considered. The question of
whether the imputation method provides correct values
may be answered more easily, if we put the question in
the proper context. As in our case, the goal is to use
the imputed data to create a model predicting borehole
roughness, the question is how to determine the impact of
training using imputed data on the obtained roughness
prediction model. A procedure to evaluate whether the
training process using imputed data produces prediction
models that are as good as the training process that only
uses complete data is proposed to determine this impact.
To perform such an evaluation, a characteristic relating
training set size to the obtained model’s mean square error
can be used. This characteristic describes changes in the
performance of the models when the training set size
increases. The imputed data can be considered correct
if the characteristic obtained while using imputed data is
similar to the characteristic that is obtained when using
only complete data. Therefore, the correlation calculated
between the two aforementioned characteristics can be
used as the imputed data validation measure.

— The other factor to consider is that the mean squared error
of the testing set, in the case of a limited data set size,
strongly depends on the division of the available data into
training and a testing part. Thus, cross-validation should
be applied.

— To make the evaluation of imputation techniques fully
objective, all the performance measures should be calcu-
lated on the testing sets, that are not used for the training
and that only contain originally complete instances.

Thus, an algorithm is proposed to train the prediction mod-
els on the data sets of the same size. The idea is to train
the models using the data sets of the same size, but using
complete data in one case and imputed data together with
originally complete instances in the other. What is impor-
tant, in both cases is that the models trained on the data sets
containing an identical number of instances should be used
for comparison. For every training set size, a cross-validation
algorithm is run, as stated in Algorithm 4. The evaluation of
the imputed data is performed using the quality of the rough-
ness prediction models verified on the testing data sets, as
summarized in Algorithm 3. In this way, performance rates
are calculated for the two cases: a training set that only con-
tains originally complete instances and a training set that
contains imputed instances with a number of originally com-
plete instances that are added to make the size of the lat-
ter set identical to the set of originally complete instances.
Thus, the method described in Algorithms 2, 3, and 4 can be

summarized as follows: an investigation is performed if the
models trained using imputed data provide predictions for
testing instances that are as good as the corresponding mod-
els trained with the originally complete data, assuming both
training data sets contain an identical number of instances.

In particular, Algorithm 2 calculates Pearson’s correlation
coefficient between the two described characteristics. If this
coefficient is close to 1 then the we might assume that the
imputed data are safe to use (i.e. do not distort the results). As
the proposed algorithm depends on the order in which data
instances occur in data table DC, its results are averaged for
different permutations of those instances.

Input: D€ - data table containing only instances that were
originally complete; D' - data table with imputed
instances only; m - the model to be used; k - the number
of cross-validation folds; / - number of training set sizes
to check, & - minimal size of individual D; set

Constraints: 3, gcz+ |DC| =Ixkxa A D[ =ax(k—1)xp

Result: Imputation validity coefficient

begin
(DS, ..., DF} = Divide(D€, 1);
DC
a= -
k’
D = ¢,
ec=10,...,01", ¢, =10,...,0]";
N——— N——
1 1
fori =1,...,1do
D=DUDS;

ecli]l = Evaluate(m, D, @, k);
er[il = Evaluate(m, D, D!, k);
end
ec = lecli] : El_ji*(k—1)>x<oe:j>x<(k—1)>x<a+|DI|};
ey ={efli] : Elji*(k—1)*0{+|D’|:j*(k—1)*a};
return Pearson’s correlation between ec and €y,
end

Algorithm 2: Validate(Dc, Dy, m) : Algorithm used to
validate imputation results. Algorithms 4,3 are used as sub
procedures.

Imputation of the roughness data set

The purpose of using the roughness data set was to create a
model that is capable of predicting roughness, given the other
six attribute values. Because of the limited size of the data
set and its incompleteness, an attempt to fill in the missing
values using the presented approach was made to preserve as
many data rows as possible.

In order to use this method, a roughness modelling tech-
nique had to be established, which could be used to per-
form model-based evaluation. A robust black box method
that could be applied to this problem is the multilayer per-
ceptron. As the goal is to fill in the missing data in a way that
will maximize the quality of the models created with that data
set, the individuals in the evolutionary algorithm were eval-
uated according to errors of bags of MLP neural networks
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trained on the imputed data tables. The bagging technique
(Breiman 1996) was used in order to lower the influence of
noise and outliers and obtain more robust models.

Input: m - model to be used, D - a complete data table for
cross-validation, D - data table with additional training
data, k - number of cross-validation folds

Result: Model m’s error

begin

{D1, ..., Dy} = Divide(D, k);
e=10,...,0]7;
——

k

fori =1,..., kdo )
m; = train model m on data set (D — D;) U D;
e[i] = calculate the mean square error of model m; on data
set D;;

end

return mean(e[l], ..., e[k]);

end

Algorithm 3: Evaluate(m, D, ﬁ, k) : Model performance
evaluation. Algorithm 4 is used as a sub procedure.

Input: D - data table, k - number of sub-tables

Result: Dy, ..., Dy
begin
o=
{dy,...,d|p|} - all data instances from D;

fori =1,..., kdo
B=>G—Dxa+1;

D; ={dg, ..., dnin+a, D)}
end
return Dy, ..., Dy;

end

Algorithm 4: Divide(D, k) : Data division.

When an individual was evaluated, it was first used to fill in
all the missing values. A 10-fold cross validation procedure
was then applied to the imputed data set. In each fold, a bag
of 10 MLP networks was trained and tested on the appropri-
ate training/testing subsets. The Mean Squared Error (MSE)
of all the cross validation network test errors was used as
the evaluation value of the individual. The networks created
during this procedure had a single hidden layer with 3 neu-
rons and a hyperbolic tangent transfer function. Training was
performed using 50 epochs of the resilient back propagation
algorithm.

The incomplete data set consisted of 219 rows among
which 44 rows had missing axial force values. As only one
of the attributes suffered from incompleteness, it is impor-
tant to note, that evolution only played a significant role in
the parametric domain (to fine tune the methods’ parame-
ters), while a full search was actually done in the imputation
method domain (to choose the best possible method).

The imputation methods available to the algorithm were
as follows :
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— random imputation with data distribution estimated using
the complete instances

— mean/mode/median imputation

— non-invasive imputation (Gediga and Diintsch 2002)

— k-nearest neighbour clustering with mean/mode/median
as aggregate functions

— Self-Organizing Map (SOM) clustering with mean
/mode/median as aggregate functions.

The algorithm was run 50 times, with 50 generations of 10
individuals for each run. The best imputation method found
by the algorithm was k-Nearest Neighbours with k=2 and
mode as the aggregate function. This method was used to
produce a complete data set which then was used to validate
the effects of imputation.

Validation was performed using Algorithm 2. The algo-
rithm was run 100times for different permutations of the
complete data table which resulted in an averaged correla-
tion coefficient value of 0.992. This value suggests, that the
imputed values are valid. The values obtained during valida-
tion are presented in Table 3 and in Fig. 2.

— The quality of the models trained on complete and
imputed data is virtually the same as the quality of the
models trained on only complete data set of the same size.
Figure 2 clearly shows the benefits drawn from increasing
the training set size. Although, in both cases, the results
for smaller sets are distorted due to high variance in the
testing sets, once the total number of records in the train-
ing set exceeds 110, the number of complete instances
is sufficient for training and testing the model properly.
Thus, the value of the imputed data in terms of its impact
on modelling is almost identical to the value of complete
instances and can be used to increase the training set size
and thereby improve the model’s performance.

— What should be emphasized is that in cases where the
training set sizes are the same, the error rate shown by a
model trained only with originally complete instances is
slightly lower. This is illustrated in Fig. 2. Moreover exact
error rates reported for training data sets of the same size
clearly show this tendency, as may be seen in Table 3.
Nevertheless, by using imputed instances, we can bene-
fit from a higher overall number of instances present in
the training data set. This results in better estimation of
prediction model parameters. Thus, the performance of
the models trained with all available complete instances
and imputed instances turns out to be better than the per-
formance of a model that is not trained with imputed
instances i.e. trained with a lower number of instances.

— The error rate of the models trained on the set contain-
ing all available complete training instances and imputed
instances (0.1115) is lower than the corresponding error
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Table 3 Results used to calculate the correlation coefficient during
validation

Training set size ~ Complete data Complete+Imputed data

MSE Std. dev. MSE Std. dev

8 0.4406  0.4760 — -

16 0.3304 0.2709 — -

24 0.2800 0.1803 — -

32 0.2461  0.1353 - —

40 0.2274  0.1222 - —

48 0.2009  0.1000 0.2695 0.4544
56 0.1857  0.0912 0.2214  0.2478
64 0.1665 0.0751 0.2004  0.1660
72 0.1545 0.0634 0.1772  0.1217
80 0.1462  0.0576 0.1646  0.1146
88 0.1404  0.0499 0.1510  0.0801
96 0.1342  0.0435 0.1469  0.0756
104 0.1283  0.0455 0.1392  0.0666
112 0.1230  0.0410 0.1288  0.0564
120 0.1214  0.0360 0.1270  0.0517
128 0.1178  0.0325 0.1247  0.0444
136 0.1151  0.0325 0.1220  0.0448
144 — — 0.1189  0.0440
152 — - 0.1155 0.0360
160 - - 0.1138  0.0346
168 — - 0.1123  0.0333
176 — - 0.1115 0.0328

As the imputed data were added only to the training sets, the test set
sizes were the same. For example, the two italicized values depict the
variation of tests performed on sets of equal size

of the models trained with complete training instances
being 0.1151. In other words, after adding imputed
instances an error reduction of 0.0036 is observed. There-
fore, on the one hand, further error reduction caused by the
use of imputed data has been achieved. On the other hand,
taking into account a similar value of imputed and com-
plete data, additional experiments that aim to increase the
number of available instances are not justified due to lim-
ited error reduction. The same conclusion can be drawn
from Fig. 2.

To sum up, imputed data can be used as a valid replacement
of missing data. The roughness prediction models trained
with extended data sets including the imputed instances show
lower MSE error rates than their originally complete subsets.
At the same time these models provide a valuable insight
into further error reduction tendency. Taking into account
the error reduction curve shown on Fig. 2, the existing set
of measurements can be considered to be sufficient from the
modelling perspective.

0.5
0.45 Training on complete rows i
: —x— Training on complete and imputed rows
04r 1
@ 0.35 1
»
7]
2
- 03f 1
o
% Data used to calculate the correlation
S 025
02r
0.15
0.1 I I 1 | | I I L
0 20 40 60 80 100 120 140 160 180

Training set size

Fig. 2 Model performance characteristics used to validate imputation
results

Table 4 Roughness modelling results

Model MSE OMSE
MLP 0.090161 0.004449
Naive 0.396846 0.001952

Roughness modelling results

The imputed data set was used to create an MLP neural net-
work bag predicting roughness using the given attributes.
This model was compared with a naive approach, which
predicted roughness as the mean roughness value from its
training set. This comparison made it possible to judge
whether the MLP approach was actually generating reason-
able results. The structure of the MLP-based model was the
same as during the imputation phase (i.e. it consisted of a
bag of 10 single hidden layer perceptrons, with 3 neurons
and a hyperbolic tangent transfer function). A 10-fold cross
validation procedure was applied 10times for different per-
mutations of the data table in order to evaluate the MLP based
and the naive approach. The results are given in Table 4 and
indicate that the use of neural networks results in improve-
ments over a naive approach. These results may provide a
baseline for comparison with future work connected with
roughness prediction.

Industrial applications

From the industrial point of view, it is not sufficient to dem-
onstrate that the developed soft computing model is accurate
enough. Certain figures of merit or, better still, certain plots
are required for the workshop to make use of the information
collected in the model. The reality of a machining work-
shop usually fixes most of the parameters that have been
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Fig. 3 Roughness prediction for different drilling parameters

considered in the soft computing model. For example, only
one lubrication system (MQL or traditional coolant fluid)
may be used in each milling centre. Furthermore, if the work-
piece is defined by the customer, both tool and drill geom-
etry are also fixed. In our case, the model should help the
workshop technical office to prepare the Computer Aided
Manufacturing (CAM) program. This program fixes tool tra-
jectories and cutting conditions to machine the workpiece.
Therefore, a plot that provides information on how the cutting
conditions, specially av and V ¢, affect workpiece roughness
would be very useful. Thus, a figure showing predicted bore-
hole roughness for a given tool type, diameter, hole length
and lubrication system should be developed.

To do so, the third stage of the algorithm has to be per-
formed:

— First of all, a simple model using MLP network to pre-
dict axial force is developed. The model is trained using
the real data collected during experiments and provides
expected axial force based on the input data: tool type,
diameter, hole length, av, V¢ and lubrication system.

— Then, not only different av and V ¢ settings together with
known and fixed tool types, hole diameters and lengths
and the lubrication system, but also the expected axial
force are used as inputs in the bag of MLP networks. The
MLP bag described above is used to predict borehole
roughness.

Figure 3 shows an example obtained with this method.
MQL cooling is considered for a 50 mm drill with a 10 mm
diameter using tool 1. av and V¢ are varied across all pos-
sible working ranges and are plotted on the X and Y axes.
The Z axis shows the calculated roughness. In this case, it is
easily concluded that av out of the range [0.22-0.24] and V¢
in the range [90-120] will yield lower roughness. Productiv-
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ity, but usually tool wear as well, increases with av and V¢
values. Therefore, the final decision can be made on-site by
an industry expert using this figure and taking into account
other factors, tool wear being one of the most important of
them. In particular, in this case a balance between low rough-
ness, high productivity and a limited risk of quick tool wear

may be expected for av = 0.2872% and Ve = 110

Conclusions and future works

A prediction model to optimize High-Speed deep drilling
operations using both MQL and traditional working fluid has
been proposed. The dataset was obtained from experiments
performed on two different milling centres. The selected
cutting conditions were chosen to reproduce real industrial
conditions. Each tool was tested under those conditions that
provide higher productivity in accordance with the lubrica-
tion system in use. In this way, a comparison of productivity
and quality between the two lubrication systems could be
obtained for the same set of tools. The input data include
cutting parameters and axial cutting force measured by sen-
sors on the milling centres. The output variable is the inner
surface quality of the drill-hole measured by its roughness as
defined by industrial standard ISO 4288:1996. Surface qual-
ity is considered an output variable due to its high industrial
importance. Some of the tests were performed without prop-
erly recording all the input variables. This is a very often
industrial situation, where not all the tests are useful because
some of the variables are not properly acquired.

Therefore, a soft computing solution has been developed
to address real life industrial needs. First of all, the algo-
rithm using a combination of evolutionary approach and
MLP networks was used to select the imputation strategy and
to increase the number of measurements available for rough-
ness modelling. Moreover, a formal method of evaluating
imputation strategies in the context of roughness prediction
has been proposed. Additionally, the question of whether
the set of available measurements is sufficient for roughness
modelling, has been assessed. Once the number of experi-
ments was determined to be optimal, and incomplete records
were imputed with the strategy selected by the algorithm, a
bag of MLP networks was developed to obtain smooth rough-
ness prediction and avoid susceptibility to noisy experimen-
tal data. Finally, the way in which roughness plots can be
produced and used by domain experts to set optimal drilling
parameters has been proposed. This is illustrated in a sam-
ple figure developed for process engineers working with the
milling centres.

Future work will focus on the study and application of
the model to other kinds of materials of industrial interest,
especially aeronautical aluminium because of the huge num-
bers of drilling tasks involved in the manufacture of different
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structural aeronautical components. Moreover, the applica-
tion of this model to the optimization of slightly different
industrial problems is envisaged. Among these industrial
applications, the drilling of multicomponent plates for the
aeronautical industry will be considered.
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