
Automated formal verification for flexible manufacturing systems

E. Carpanzano · L. Ferrucci · D. Mandrioli ·
M. Mazzolini · A. Morzenti · M. Rossi

Received: 19 October 2012 / Accepted: 15 March 2013 / Published online: 30 March 2013 

E. Carpanzano
Istituto di Sistemi e Tecnologie per la Produzione Sostenibile
Scuola Universitaria Professionale della Svizzera Italiana,
Galleria 2, 6928 Manno, Switzerland
e-mail: emanuele.carpanzano@supsi.ch

L. Ferrucci · D. Mandrioli · A. Morzenti ·M. Rossi (B)
Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milan, Italy
e-mail: matteo.rossi@polimi.it

L. Ferrucci
e-mail: luca.ferrucci@polimi.it

D. Mandrioli
e-mail: dino.mandrioli@polimi.it

A. Morzenti
e-mail: angelo.morzenti@polimi.it

M. Mazzolini
Synesis Consortium, Kilometro Rosso Science and Technology Park,
Via Stezzano 87, 24126 Bergamo, Italy
e-mail: mauro.mazzolini@synesis-consortium.eu

Introduction

Manufacturing systems are increasingly required to operate 
in dynamic environments characterized by quick changes of 
the demand, and to deliver highly customized products; 
this, in turn, calls for the agile and fast reconfiguration of 
produc-tion cells. As a consequence, the complexity of 
automation solutions for manufacturing systems has 
become consider-able. At the same time, features like 
interoperability, porta-bility and scalability are the key to 
reduce the huge costs and times needed to design and 
realize a new production system, or to modify an existing 
one. This challenging con-text requires new paradigms, 
based on the distribution of control onto a network of 
embedded components, to make the design, modification, 
integration and reconfiguration of resulting solution more 
agile (Khalgui et al. 2012). Further-more, structured 
approaches to control system design that support design and 
testing of the whole automation system must be adopted 
(Pranevicius 1998). Then, the guidelines, methods and tools 
of a comprehensive development method-ology must be 
defined, that allow developers to specify complex 
automation systems in an easy and safe way; to maintain 
the traceability along the different design phases; and to 
describe the behavior of the target system (Brusaferri et al. 
2011; Basile et al. 2004). A structured methodology 
typically consists of the following steps:

Control system specification in which the process to be
automated is described and the functional activities to be
performed, as well as the purpose of the complete system
are defined.
Control system architecture and functional design in
which the control system is conceived and developed
exploiting concepts and paradigms provided by reference
models and standards.



Software implementation in which the real software solu-
tion is deployed by means of appropriate programming
languages.
Verification and Validation (V&V) in which the structural
correctness of the control code and the compliance of the
behavior of the automation system with its requirements
are verified.

(and possibly the hidden ambiguities) of the design nota-
tion, and it is used to formally check whether user-defined 
properties of interest are satisfied by the system model or 
not. In particular, thanks to the metric nature of the logic-
based language underlying our approach, Stateflow models 
are provided with a precise, metric, notion of time; this is 
exploited, on the one hand, to introduce metric constraints 
in the models (e.g., “the plant remains in state S no longer 
than 3 time units”), and on the other hand to allow users to 
analyze properties such as “does the plant terminate the 
processing within 10 time units of its start?”.

The paper is structured as follows: “Formal methods for 
the verification of automation solutions” section frames this 
work in the context of existing techniques, highlighting the 
features that separate it from them; “Tools: TRIO and Zot” 
section introduces some necessary background; “Methodol-
ogy overview and case study” section illustrates our 
approach to the verification of control designs for 
manufacturing sys-tems, applies it to an example system, 
and presents some experimental results of the verification of 
the example sys-tem, with emphasis on the design errors 
unearthed through the analysis; “Conclusions” section 
concludes.

Formal methods for the verification of automation 
solutions

Verification is the process of checking the robustness and 
reli-ability of the designed control solution by proving its 
compli-ance with a given specification (Vyatkin and 
Hanisch 2003). During the last few years, many research 
efforts focused on exploring and developing new 
methodologies supporting the verification process through 
formal approaches. Differ-ent types of formal models, as 
well as logics for the def-inition of the properties to be 
proved for the model have been investigated. Klein et al. 
(2002) define the model of the control system in terms of 
Signal Interpreted Petri Nets; these models are verified 
using a symbolic model check-ing tool, and are then 
translated into the IEC 61131-SFC language (IEC 2003). 
Vyatkin et al. (2003) develop a for-mal model of 
automation solutions based on Net Condi-tion/Event 
Systems (NCES); models are analyzed through SESA 
model checking and the properties are defined through 
temporal logic. Mazzolini et al. (2010) use Stateflow dia-
grams as the modeling notation; the properties to be proved 
are taken from the model coverage properties proposed by 
the DO 178B standard; the formal verification tool is 
Simulink Design Verifier. Gourcuff et al. (2008) propose a 
represen-tation of programs of logic controllers aiming at 
improving the scalability of model-checking techniques in 
the industrial automation domain. The benefits of this 
representation are shown by means of three examples using 
NuSMV as model checking tool. Thapa et al. (2006) 
translate the developed

In particular, the V&V phase is crucial to obtain a robust 
and reliable automation solution, but there is no commonly 
adopted effective approach for this phase. In fact, in the 
current industrial practice, most operating conditions of the 
developed system are not properly verified, and several 
design and implementation errors often remain unresolved 
until the commissioning phase due to the considerable com-
plexity of the control logic and to the limited development 
time available. Nonetheless, the lack of proper identifica-
tion and correction of such errors before final 
commissioning critically impacts on ramp-up time and costs 
as well as on production downtimes (Wang and Deng 
1999). V&V in con-trol systems can be addressed through 
simulation or formal approaches. Simulation is currently the 
most widely known and adopted technique for V&V of 
industrial automation systems. The deployment and 
implementation of simulation frameworks is quite simple 
thanks to the tools available for software- and hardware-in-
the-loop simulation (Zhang and Anosike 2012). The main 
open problem of such an approach is the definition of the 
test cases to achieve complete and exhaustive model 
analysis. Therefore, the quality of the sim-ulation results 
closely depends on a good definition of testing scenarios 
and verifying any possible behavior of the system still 
remains a difficult task. To overcome this limitation, for-
mal verification approaches, which are able to exhaustively 
explore the execution space of a system model, have been 
studied and proposed for the design of manufacturing sys-
tems (Hanisch et al. 2006). In most instances, formal verifi-
cation techniques are based on modeling notations that are 
separate from those normally used by practitioners in their 
design work, and the mapping from the concepts of one 
nota-tion to those of the other one is often difficult.

This paper presents a formal verification technique for 
models of manufacturing systems whose main ingredients 
are: (i) Stateflow diagrams as the notation for modeling the 
behavior of designed systems; (ii) a semantics of State-flow 
diagrams based on a decidable metric temporal logic;(iii) a 
tool capable of analyzing metric temporal logic models and 
of providing answers to user queries in a “push-button” 
manner.

In our approach, users can rely on a familiar notation 
(Stateflow) to describe their designs; Stateflow has been 
cho-sen as an example to explain the approach; other 
formalisms (e.g. SFC, Petri nets) could be used as well. The 
logic-based semantics precisely captures and resolves the 
intricacies



PLC code into an intermediate language, which is then 
converted to Timed Automata. In this case verification is 
performed through the Uppaal model checker, and CTL for-
mulae are used to define the liveness and safety properties to 
be checked. As described above, several formal methodolo-
gies for the verification of automation solutions have been 
developed. The main differences regard the types of model-
checking tools exploited and the formalisms used to describe 
the control algorithm. Each methodology has its specific ben-
efits and limitations, but none of the approaches mentioned 
above is commonly adopted in the current development 
practice.

The work presented in this paper addresses the verification 
problem by means of: (i) an intuitive semiformal notation for 
the description of designed controllers; we chose Stateflow 
diagrams because they are used by a large community of 
practitioners; our approach, however can be easily adapted 
to any state-based, possibly graphical, notation according to 
the preferences of the selected user community; (ii) a formal 
semantics of the Stateflow-based notation given in terms of 
a metric temporal logic; (iii) a fully-automated formal verifi-
cation tool which allows users to define the system properties 
to be checked through formulae of the metric temporal logic 
mentioned above. This framework provides a high level of 
modeling abstraction, which allows users to formally repre-
sent the developed automation solution in a way that is at 
the same time adherent to the described control logics and 
intuitively understandable by control engineers. “Methodol-
ogy overview and case study” section provides some details 
of the proposed approach and highlights its main benefits. 
In particular, it shows that the introduced logic-based tech-
nique and supporting tool allow designers to verify, on mod-
els described through a notation that is familiar to domain 
experts, a wide range of properties, including ones that cur-
rent tools cannot tackle.

Tools: TRIO and Zot

TRIO (Ciapessoni et al. 1999) is a general-purpose formal 
specification language suitable for describing complex real-
time systems, including distributed ones like Flexible Manu-
facturing Systems. TRIO is a first-order linear temporal logic 
that supports a metric on time. TRIO formulae are built out of 
the usual first-order connectives, operators, and quantifiers, 
as well as a single basic modal operator, called Dist, that 
relates the current time, which is left implicit in the formula, 
to another time instant: given a time-dependent formula F 
(i.e., a term representing a mapping from the time domain 
to truth values) and a (arithmetic) term t indicating a time 
distance (either positive or negative), the formula Dist(F, t) 
specifies that F holds at a time instant whose distance is 
exactly t time units from the current one. Dist(F, t) is in

turn also a time-dependent formula, as its truth value can be 
evaluated for any time instant, so that temporal formulae can 
be nested as usual. While TRIO can exploit both discrete 
and dense sets as time domains, in this paper we assume the 
standard model of the nonnegative integers as discrete time 
domain. For convenience in the writing of specification for-
mulae TRIO defines a number of derived temporal operators 
from the basic Dist through propositional composition and 
first-order logic quantification. Table 1 defines some of the 
most significant ones, including those used in this paper.

The TRIO specification of a system consists of a set of 
basic items, which are primitive elements, such as predicates, 
time-dependent values, and functions, representing the ele-
mentary phenomena of the system. The behavior of a system 
over time is formally described by a set of TRIO formulae, 
which state how the items are constrained and how they vary, 
in a purely descriptive (or declarative) fashion. The goal of 
the verification phase is to ensure that the system S satisfies 
some desired property R, that is, that S |� R. In the TRIO 
approach S and R are both expressed as logic formulae Σ 
and ρ, respectively; then, showing that S |� R amounts to 
proving that Σ ⇒ ρ is valid. TRIO is supported by a variety 
of verification techniques implemented in prototype tools. 
In this paper we use Zot (Pradella et al. 2008), a bounded 
satisfiability checker which supports verification of discrete-
time TRIO models. Zot encodes satisfiability (and validity) 
problems for discrete-time TRIO formulae as propositional 
satisfiability (SAT) problems, which are then checked with 
off-the-shelf SAT solvers. More recently, a new encoding that 
exploits the features of Satisfiability Modulo Theories 
(SMT)(Bersani et al. 2010) solvers has been developed. 
Through Zot one can verify whether stated properties hold 
for the system being analyzed (or parts thereof) or not; if a 
property

Table 1 TRIO derived temporal operatorsOperator Definition

Past(F, t) t ≥ 0 ∧ Dist(F,−t)

Futr(F, t) t ≥ 0 ∧ Dist(F, t)

Alw(F) ∀d : Dist(F, d)

AlwF(F) ∀d ≥ 0 : Futr(F, d)

AlwP(F) ∀d ≥ 0 : Past(F, d)

SomF(F) ∃d ≥ 0 : Futr(F, d)

SomP(F) ∃d ≥ 0 : Past(F, d)

Lasted(F, t) ∀d ∈ (0, t] : Past(F, d)

Lasts(F, t) ∀d ∈ (0, t] : Futr(F, d)

WithinP(F, t) ∃d ∈ (0, t] : Past(F, d)

WithinF(F, t) ∃d ∈ (0, t] : Futr(F, d)

Since(F, G) ∃d ≥ 0 : (∀d ′ ∈ [0, d) : Past
(
F, d ′

)
) ∧ Past(G, d)

Until(F, G) ∃d ≥ 0 : (∀d ′ ∈ [0, d) : Futr
(
F, d ′

)
) ∧ Futr(G, d)



does not hold, Zot produces a counterexample that violates it. 
In “System properties verification and experimental results” 
section we will describe how we use the mechanisms imple-
mented in Zot to verify user-defined properties of the sys-
tems under development; this approach can be replicated in 
any tool environment, such as the symbolic model checker 
NuSMV (Cimatti et al. 2002), that is capable of verifying 
linear-time temporal logic specifications.

Methodology overview and case study

We illustrate our approach through a robotic cell of a flexible 
manufacturing system (FMS). The cell includes a robot arm 
that loads and unloads pallets of two different types on two 
distinct machines. The cell, as shown in Fig. 1, is served by a  
conveyor belt (Conveyor_in), which provides both pallets of 
type A, to be processed by Machine 1, and of type B, to be 
processed by Machine 2. The finished artifacts are released 
by the cell through the conveyor out belt (Conveyor_out).

The control solution for the robotic cell is deployed 
according to the IEC 61499 standard (Lewis 2001; IEC 
2005), which defines function blocks for industrial process 
measurement and distributed control systems. The standard 
is based on a fundamental type of module, the Function Block 
(FB), which represents a software functional unit, associated 
with a hardware resource of the control system. Standard 
IEC 61499 plays a crucial role in supporting the develop-
ment of distributed control solutions for flexible manufac-
turing systems (Vyatkin 2011) where each control module 
encapsulates control logic defined by an Execution Control 
Chart (ECC), consisting of states, transitions and actions,

Fig. 1 Robotic cell

which invokes the execution of algorithms in response to 
input events. An application can be distributed over several 
control system devices. A device uses the causal relation-
ship specified by the application to determine the appropriate 
responses to events. Furthermore, in the IEC 61499 standard 
a resource is a software (and possibly hardware) component 
of a device, which has independent control of its operations. 
Each FB instance is associated with one single resource. The 
control solution for the robotic cell is implemented using 
the ISaGRAF6 environment (ISaGRAF 2012), which com-
pletely supports the development of control applications with 
the IEC 61499 standard. The developed IEC 61499 control 
solution is shown in Fig. 2 and the ECC encapsulated within 
the robot controller module is depicted in Fig. 3

The adoption of the IEC 61499 standard as reference 
model for the control system of the robotic cell fosters the def-
inition of reusable control modules and the re-configurability 
of the solution, since the principles of modularity, encapsu-
lation and standardization of interfaces are effectively sup-
ported. The control logic of each component of the FMS is 
translated into Stateflow diagrams, from the developed IEC 
61499-compliant control solution, for its formal verification. 
To guarantee that the properties and the features of the IEC 
61499 control solution described above are maintained in 
the Stateflow diagrams, the rules defined in Ballarino and 
Carpanzano (2002) to translate an IEC 61499 model into a 
corresponding Stateflow are exploited. More precisely, the 
Simulink Stateflow description of an IEC 61499 model is 
obtained by describing each FB through a Simulink block 
where:

– Input and output data are represented as input and output
signals of Boolean and Double types in the corresponding
Simulink block.

– The ECC and related algorithms are represented by
means of Stateflow diagrams, which can call Matlab func-
tions.

– Input and output events are represented as rising or falling
edges of input and output signals of Boolean type in the
corresponding Simulink block.

– Internal data is represented by means of local Simulink
variables.

Finally, the Stateflow model is obtained by connecting the
Simulink blocks according to the structure of the original
IEC 61499 model.

In FMSs non-deterministic choices within a component
must be avoided. In our example, to deal with multiple
requests from different components we statically assign pri-
orities to the operations performed by the robot: the unload-
ing of workpieces from the machines has higher priority
than their loading; also, unloading pieces from Machine 1
has precedence over unloading from Machine 2. Finally, at



Fig. 2 Developed IEC 61499 control solution

any time the robot arm can switch from automatic to man-
ual mode, where an operator can send commands directly to 
the robot when the need arises to perform operations outside 
the production cycle. The system switches back to automatic 
mode through a suitable command.

The Stateflow diagrams of Figs. 4 and 5 provide a model 
of the behavior of components Robot and Machine 1, respec-
tively. These diagrams are composed through the Simulink 
graph of Fig. 6 to define the model of the robotic cell.

The Stateflow notation is a variation of Statecharts 
(Harel 1987). A Stateflow diagram (Mathworks 2011) is 
composed of:

1. A finite set of typed variables D = DI ∪ DO ∪ DL .
D is partitioned into input variables DI , output variables
DO , and local variables DL . DI and DO include Boolean
variables used to represent input and output events: a
variable vi (resp. vo) modeling an input (resp. output)
event is set to true when the event is received from (resp.
notified to) the environment.

2. A finite set of states S. A state can be associated with three
kinds of actions: entry, exit and during actions; they are
executed, respectively, when the state is entered, exited,
or during the permanence of the system in the state. An

action is the assignment of the value of an expression
over constants and variables of D to an output or local
variable.

3. A finite set of transitions, T , that may include guards (i.e.,
constraints) on the variables of D and actions.

Actions over both states and transitions allow one to write 
Stateflow diagrams in a more concise way, since it is pos-
sible to build a semantically equivalent Stateflow diagram 
with actions over transitions only. For example, an entry 
action of a state is equivalent to an action on any transition 
entering the state; a during action of a state s with a transi-
tion from s to itself is equivalent to a during action on the  
transition.

Simulink diagrams (Mathworks 2011) are used to com-
pose modules evolving in parallel into new components. 
Components can be basic or composed. A basic component 
has a public interface, and its behavior is described through 
a Stateflow diagram. The public interface comprises the set 
of variables DI nt  = DI ∪ DO . Composed components are 
built from basic ones in a hierarchic manner. At the lowest 
level of the hierarchy, a composed component is described 
by a Simulink graph with two or more basic components. 
The interface of a composed component is the union of the



The semantics of a Stateflow diagram is a set of runs, rep-
resenting the reaction of the actual system to a sequence of
input events. A run is a sequence of configurations {ci }i≥0

such that, for each i > 0, ci is obtained from ci−1 by execut-
ing a step. A configuration ci is a pair 〈si , μi 〉where si ∈ S is
the currently active state and μi is a valuation of the variables
of D, i.e. a mapping μi : D→ dom(D). Expressions on the
variables of D are evaluated in the active configuration. A

transition s
g/a→ s′ from state s to s′ with guard g and action

a is enabled in a configuration c = 〈s, μ〉 only if g is true
for μ; the execution of the transition from c produces a new
configuration c′ that is obtained by applying action a to μ.
A transition must be executed as soon as it is enabled, hence
there cannot be more than one transition enabled in the same
configuration, or the model becomes inconsistent (this can
be resolved by prioritizing transitions, as mentioned above).

The semantics of Statecharts (and also of Stateflow) has
proven difficult to pin down precisely, and different solutions

Fig. 3 ECC of the robot controller module

input and output variables of its parts, while its behavior is 
described by the Stateflow diagrams of its modules, whose 
communications are represented graphically through links. 
Each link corresponds to a flow of messages (signals or data) 
sent from a component to another. The communication is 
realized through the assignment of the value of an output 
variable of the sending component to an input variable of the 
receiving one. Simulink diagrams can in turn be composed 
to obtain higher-level components. The detailed features of 
communication are explained in the coming “Semantics” 
section.

Semantics

Our semantics of Stateflow diagrams is based on the 
STATE-MATE semantics of Statecharts (Harel and Naamad 
1996). It includes a composition operator for building 
hierarchical, modular models from simpler ones.



Fig. 4 Stateflow diagram of the controller of the robotic cell of Fig. 1

have been proposed (e.g., Levi 2000; Alur and Henzinger 
1999). Our model is of the so-called run-to-completion 
kind. The system reacts to the input events by performing a 
sequence of actions called macro-steps. In every macro-step, 
a maximal set of enabled transitions is selected and executed 
based on the events generated in the previous macro-step. 
We call micro-step the execution of a transition within a 
macro-step. Conventionally, micro-steps take zero time to

execute; when no transition is enabled the system reaches
a stable configuration, a new input event is received from
the environment, and time advances to the next macro-step.
As in the STATEMATE semantics of Statecharts, compo-
nents sense input events and data only at the beginning of
macro-steps. They communicate output events and data to
the environment only at the end of macro-steps. In summary,
the semantics of a macro-step is as follows:



1. When a macro-step begins, input data and events are
assigned to the corresponding variables of set DI . Sup-
pose for example that the current configuration ci of the
Robot Stateflow of Fig. 4 is ci = 〈Ok P0, {M1Free =
1, M2Free = 0, F M2 = 0, M1 = 0, . . .}〉, and that the
input event I n2 is active, meaning that there is a com-
pleted workpiece on Machine 2. Then the input variables
are updated to false except M2, producing a new config-
uration ci+1 with the current time and state unchanged.

2. As long as there are enabled transitions, micro-steps
are executed in zero time. For example the transition
enabled in configuration ci+1 is the one with guard
[M2 & !M1 & !Swi tch AutoMan & !F M2], so the tran-
sition is made and the system executes action entr y :

Fig. 5 Stateflow diagram of component Machine 1 of Fig. 1

T oM2 = 1 of state GoT oM21, leading to the new con-
figuration ci+2 = 〈GoT oM21, {T oM2 = 1, . . .}〉. As
before, time does not advance.

3. When there are no more enabled transitions to execute, a
stable configuration is reached. At this point the macro-
step is completed, time advances one unit, and output
events and data produced during the macro-step are com-
municated to the environment. In our example, no tran-
sition is enabled in configuration ci+2, so time advances,
the values of the variables and the current state do not
change and the new event T oM2 is produced according
to the Simulink graph of Fig. 6.

A run identifies a sequence of time instants {Ti }i∈N, one 
for each macro-step, hence the time domain is discrete. This is 
consistent with the underlying physical model, as the PLCs 
on which FMS control solutions are built are governed by 
discrete clocks, i.e. each macro-step corresponds to a clock 
cycle of the modeled PLC.

The run-to-completion semantics is based on the assump-
tion that the reaction of the system to the input events is 
instantaneous. The following conditions, which are reason-
able in practice for a large class of systems, including FMSs, 
capture the required assumptions: (i) the environment can 
be described as a discrete process, namely as an infinite 
sequence of inputs {Ii }i∈N occurring at successive instants of 
time; (ii) the system is infinitely faster than the environment, 
so its reaction to inputs Ii is completed before inputs Ii+1 
are produced.

The definition of step in Statecharts (and similar notations) 
has long been debated in the literature, since the assumption 
of instantaneous reaction to inputs produces some 
paradoxes and unexpected situations (Levi 2000), and in 
particular it allows for the presence of Zeno runs. A run 
has Zeno behav-ior if infinitely many actions are executed 
in a finite amount of time. In Stateflow diagrams, this 
corresponds to the situation in which infinitely many micro-
steps are executed during a single macro-step, which in turn 
occurs when the run enters a loop of micro-steps that is 
never exited, thus never triggering

Fig. 6 Simulink diagram of the
robotic cell



the advancement of time. Zeno runs must be avoided
in models because they represent unfeasible behaviors.
“System properties verification and experimental results”
section shows how Zeno runs can be detected using our for-
mal semantics of Stateflow.

The last part of the semantics concerns the composition
of two or more modules according to the Simulink graph.
Given two Stateflow diagrams G1 = 〈D1, S1, T1〉 and G2 =
〈D2, S2, T2〉, we introduce a compositional binary operator ‖
whose result is a new component G = 〈D, S, T 〉where D =
D1 ∪ D2, S = S1 × S2. If we denote the set of all possible
configurations of G1 and G2 with C1 and C2, respectively,
and the evaluation of their input variables with DI1 and DI2 ,
the transition relation of the composed component G is a
function→: C1×C2× DI1 × DI2 �−→ C1×C2 defined by
the following rules:

1. Suppose that G is in configuration c = 〈c1, c2〉, with
c1 = 〈s1, μ1〉 ∈ C1 and c2 = 〈s2, μ2〉 ∈ C2. If there are

two transitions s1
g1/a1→ s′1 and s2

g2/a2→ s′2 of, respectively,
G1 and G2 that are enabled in c1 and c2, then the sys-
tem moves to the new configuration c′ = 〈c′1, c′2〉 where
c′1 = 〈s′1, μ′1〉 and c′2 = 〈s′2, μ′2〉. μ′1 and μ′2 are the new
evaluations of the variables according to the execution of
actions a1 and a2. In this case both components execute
their transition in a real parallel manner and time does
not advance.

2. Suppose that G is in configuration c = 〈c1, c2〉, but

only the transition s1
g1/a1→ s′1 is enabled. In this case

the system moves to the new configuration c′ = 〈c′1, c2〉
(with c′1 = 〈s′1, μ′1〉), i.e., the second component does not
change its local configuration, thus executing a stutter ε

transition, in which the current state is repeated. Time
does not advance, since the first component executes a
non-stutter transition.

3. Suppose finally that G is in a configuration c = 〈c1, c2〉,
but none of the transitions with source states s1 and s2

are enabled in G1 and G2. In this case, both components
have reached a stable configuration. The new configu-
ration c′ is the same as c, except that time advances one
unit. All the output events and data are produced and sent
as input events and data to the corresponding receiving
components according to the Simulink graph links.

From the above description, it follows that the clock of
the composed module G synchronizes the clocks of its com-
ponents, and a component can reach a stable configuration
before the others. Then, each component that is in a stable
configuration must perform stutter transitions until all other
components also reach a stable configuration. This mecha-
nism is exemplified in Fig. 7, which shows the fragments of
the runs of two modules A and B that are composed to realize

A

B

Fig. 7 Example of stutter transitions

a third component C . The figure shows the first macro-step 
of the two runs: for component A the macro-step begins in 
state S0 and ends in state S3; similarly for component B. The  
x axis shows the number of micro-steps executed from the 
beginning of the macro-step: component B reaches a stable 
configuration in state S9 in fewer micro-steps than A, so a  
stutter ε transition is introduced to synchronize the clocks of 
the two components. After the fourth micro-step, both com-
ponents have reached a stable configuration and the clock of 
component C advances to the next time unit.

The composition operator ‖ is such that, when two mod-
ules are composed, their input and output variables become 
input and output variables of the composition, i.e., they do 
not become local to the composed module, hence they cannot 
be hidden. In addition, an input variable cannot be linked to 
more than one output variable, to guarantee the uniqueness 
of the value assigned to the input variable (on the other hand, 
an output variable can be linked to more than one input vari-
able, as in a “multicast” communication). It is easy to prove 
that, thanks to the restrictions above, the parallel composi-
tion operator is associative, so one can build a hierarchy of 
components. Each component is a black box module that an 
engineer can design and verify separately through Zot by 
a compositional verification approach. These modules can 
then can be composed into Simulink graphs using only their 
public interfaces.

Temporal logic encoding

The semantics of Stateflow diagrams is formalized in tempo-
ral logic. We use the qualitative temporal operators of LTL 
(Furia et al. 2012) to describe the sequence of micro-steps, 
and the metric operators specific of TRIO to express quanti-
tative properties of macro-steps. Ultimately, the semantics is 
expressed in the input language of the Zot tool, thus 
allowing users to perform automatic verification of Stateflow 
models. For each variable V ∈ D of the Stateflow model we 
intro-duce a corresponding Zot variable with domain 
dom(V ). When variables have the same domain, we group 
them in Zot arrays (i.e., finite sequences of variables that 
are accessed through an index). In the case of the controller 
of the robotic cell of Fig. 4 we introduce three arrays, 
I n put C  R O  (of 10 elements), OutputC  RO  (of 6 
elements) and LocalC  RO



(of 2 elements), corresponding, respectively, to the sets
DI , DO and DL of the Stateflow model. We also introduce
a Zot variable VS representing the current state of the State-
flow diagram, whose domain dom(VS) corresponds to the set
S of states. In the case of the diagram of Fig. 4, StateC RO
is a variable with domain [0, . . . , 11], where each value cor-
responds to a different state and 0 is the initial state. We use
temporal logic formulae to define constraints defining valid
sequences of micro-steps.

For each Stateflow transition Ti : si
gi /ai→ ti originating

from state si and targeting state ti (with si �= ti ) with guard
gi , we introduce the following formula:

Γi ∧ (S = si ))⇒©(S = ti ) ∧ Ai ∧ Aexsi
∧ Aenti

(1)

where © is the usual LTL next state operator (i.e., ©F
holds in the current state iff F holds in the next state), Γi

is a Boolean formula encoding guard gi , and Ai , Aexsi
and

Aenti
are temporal logic formulae encoding, respectively, the

transition action ai , and the entry and exit actions of states si

and ti . The formula asserts that if the current state is si and
the transition condition Γi holds in the current configuration,
then in the next micro-step the active state must be ti and the
entr y actions of state ti and the exi t actions of state si are
executed. In addition, if no transition is enabled, the config-
uration does not change, which is captured by the following
formula:

(
N∧

i=1

¬(Γi ∧ (S = si ))

)

⇒ N OC H AN G E (2)

where N is the number of transitions of the diagram, and
subformula N OC H AN G E , which we do not detail here,
asserts that in the next micro-step the current state and the
values of all output and local variables do not change. When
no transition is enabled, the model reaches a stable state.
The complete definition of the behavior of the transitions of

the Stateflow diagram is given by
(∧N

i=1(1)i

)
∧ (2).

The time advancement of our run-to-completion seman-
tics is modeled by a predicate called tick, which is added
to the encoding of each Stateflow diagram. Predicate t ick
holds in each micro-step following one in which the diagram
has reached a stable state. When predicate tick is true, time
advances to the next clock cycle. The behavior of predicate
tick is captured by the following formula:

(
N∧

i=1

¬(Γi ∧ (S = si ))

)

⇔©tick (3)

To foster information hiding, instead of relying on a single

the composed system model for the synchronization of the
local ticks.

We introduce a formula asserting that when predicate tick
is false the values of the input variables DI must be the same
as in the preceding micro-step:

�(¬t ick ⇒
⎛

⎝
∧

v∈DI

(∀x←−©(v = x)⇒ (v = x))

⎞

⎠ (4)

where the
←−© and � are, respectively, the yesterday and glob-

ally LTL operators:
←−©F holds if formula F held the previous

state, while �F holds if F is true in the current and in all
future states. The conjunction of formulae

∧N
i=1(1)i , (2–4),

is a formula M O D that characterizes all the runs of the State-
flow diagram, i.e. it encodes the module’s behavior.

Next we encode the semantics of module composition
described through Simulink graphs. We use a modular
approach to hide the details of time advancement of mod-
ules to other components. A special integrator module M is
added that can access the data of the public interfaces of each
component and includes a number of axioms to ensure the
correct behavior of the composed module as defined in the
Simulink graph.

As described in “Semantics” section, the local clock of
a component that is part of a bigger system advances only
when the latter has reached a stable configuration. However
the local t ick predicate of the module does not convey the
information on when such event occurs, since it is not directly
related to the state of the other components. To avoid the use
of a global t ick predicate shared between components, which
would break compositionality, we add two new local predi-
cates to the interfaces of each component module, stable and
t ickext. stable is true when the component reaches a locally
stable configuration and it replaces predicate t ick in formula
(3), thus giving the new formula:
(

N∧

i=1

¬(Γi ∧ (S = si ))

)

⇔©stable (5)

We use predicate t ickext to convey to single modules the
information about the overall system state. This predicate is
set to true by the integrator module M when all its com-
ponents reach a stable configuration. In our compositional
semantics the local t ick of each component is true iff both
stable and t ickext are true, which is captured by the follow-
ing formula:

�(t ick ⇔ stable ∧ t ickext) (6)

Module M has also its own local clock predicates
t ickM , stableM and t ickext

M , so the semantics is composi-
tional in that M itself can be part of bigger modules, but
this does not affect its formulae. If M is the composition of
nM modules, to obtain the synchronization of the clocks of

global predicate modeling time advancement, in our encod-
ing each module has its local t ick  predicate. As explained 
below, additional predicates and formulae are introduced in



the component modules, the following three conditions must
hold:

– Predicate stableM is true iff all the predicates stablei of
the component modules are true. This condition implies
that the local clock of the composed module becomes
true iff the overall system is in a stable configuration.

– Each predicate tickext
i of each component module is

equal to t ickM . This condition implies that all the local
clocks of the component modules become false if the
local clock of the composed module M is false.

– Predicate t ickM is true iff predicates stableM and t ickext
M

hold, as for the local components.

The three conditions above are formalized through the
following formulae of module M :

�
(

stableM ⇔
(

N∧

i=1

stablei

))

(7)

�
(

N∧

i=1

(
t ickM ⇔ tickext

i

)
)

(8)

�(t ickM ⇔ stableM ∧ tickext
M ) (9)

Finally, we formalize the semantics of the relations
between components represented as links in the Simulink
graph, as described in the “Methodology overview and case
study” section. A link between an output variable of a com-
ponent i and an input variable of a component j means that
the corresponding data or events produced by i are sent to
j . This corresponds to synchronizing the value of the input
variables of j to the value of the output variables of i only
when the overall system has reached a stable configuration,
i.e. when the predicate tickM is true. This is captured by the
following formula

�(tickM ⇒ (vouti1 = vin j1)) (10)

where vouti1 is an output variable of component i linked to
the vin j1 input variable of the component j . M contains an
instance of formula (10) for each link of the Simulink graph.

In our compositional semantics, the formula SY S encod-
ing the behavior of the composed system is given by
the conjunction of the local formulae

∧N
i=1(1)i , (4–5) for

each component, plus the formulae (6–10) introduced in
module M .

We remark that, since in the run-to-completion seman-
tics time advances only when macro-steps are performed,
to express metric properties of systems using the TRIO lan-
guage we need to redefine TRIO operators to reflect this
notion of time advancement. We redefine the TRIO Dist oper-
ator, where Dist(F, K ) holds in each instant t such that for-
mula F holds at time t + K . The following formula defines
the meaning of Dist(F, 1), to take into account that time

advances only at the occurrence of t ick, starting from the
operators predicating on micro-steps:

Dist(F, 1)=©(¬t ickU(t ick∧©(¬t ickU(©t ick∧F))))

(11)

where U is the usual binary LTL operator until, and AUB
holds in those states such that there is a future state in
which B holds, and A holds in all states up to that one
(excluded). Formula (11) asserts that Dist(F, 1) holds if,
at the end of the macro-step following the current one,
F holds. The end of the current macro-step occurs the
micro-step right before the next state in which t ick holds
(i.e., the future micro-step in which ©t ick is true and
such that t ick is false in all states in-between). Dist(F, K )

is therefore defined as Dist (. . . Dist (Dist (F, 1) , 1 . . . , 1))

(k times).
We also redefine the Until TRIO operator, to predicate

only on macro-steps. Until(A, B) is defined by the following
formula:

Until(A, B) = ©((©t ick ⇒ A)U(©t ick ∧ B)) (12)

Formula (12) asserts that Until(A, B) holds if there is a future 
state in which the clock ticks, B holds at the end of that macro-
step, and A holds at the end of all macro-steps in between. 
Notice that we evaluate formulae A and B only in the last 
micro-step of a macro-step, when all system variables have 
certainly been updated.

Sf2Trio: a tool to encode Stateflow/Simulink models into 
Trio

Sf2Trio is a prototype tool that supports designers in the con-
struction of Stateflow/Simulink models, avoiding the burden 
to write manually the necessary TRIO formulae. It consti-
tutes a first step towards the development of a completely 
automatic tool to translate a system specified by a State-
flow/Simulink diagram into a set of TRIO formulae that char-
acterize its behavior, using the encoding given in “Temporal 
logic encoding” section to enforce the semantics of “Seman-
tics” section.

Sf2Trio has been developed as a plug-in for the Zot 
bounded model checker (Pradella et al. 2008). The current 
prototype version of the tool provides a set of commands 
to specify a Stateflow diagram for a basic component and 
to define the composition and interactions of several basic 
components into a composed one.

We first illustrate the commands to define the Stateflow 
diagram of a basic component. Each command is specified 
by its syntax, with the name of the command in bold and para-
meters in italic (parameters with a colon, as in :parameter-
name, are optional).



1. (make −module Mod Name)
A module is the entity that, in Sf2Trio, represents a (basic
or composed) component. Parameter ModName is the
module name.

2. (def − variable V Name T ype DomT ype : range
(minvalue maxvalue))
Command def-variable defines a single Stateflow vari-
able, with the following parameters:

– VName is the name of the variable.
– Type is one of three predefined values (*Input*,

*Output* and *Intern*) qualifying the variable as
input, output or internal.

– DomType denotes the type of the variable; in the
present version of the tool only integer (*Int*) and
Boolean (*Bool*) variables may be declared; integer
variables range over finite domains.

– :range specifies the range of an integer variable.

3. (def − state SName I s I ni t : entering Acts : during
Acts : exi ting Acts)
Command def-state defines a single state of the Stateflow
diagram. Its parameters are the following:

– SName is the state identifier.
– IsInit is a Boolean value indicating the unique initial

state for the Stateflow diagram.
– :entering, :during and :exiting each specify a list

of actions Acts that are executed when the state is
respectively entered, exited, or throughout the per-
manence in the state. The syntax of a single action
takes the form (var expression) where expression
denotes the value assigned to var. Arithmetic opera-
tors include the usual+, ∗, − and /; constant expres-
sions must be integers.

4. (def − transition SourceSName Dest SName : con-
dition Expr : action Act)
Command def-transition defines a single transition of
the Stateflow diagram, with the following parameters:

– SourceSName and SourceDestSName are, respec-
tively, the label names of the source and destination
states of the transition.

– :condition specifies the transition condition as a
Boolean expression Expr. If absent, the condition is
always true.

– :action specifies a transition action, which is executed
when the transition is enabled.

The following Sf2Trio commands are used to declare a
composed component.

1. (make − composed−module Mod Name Composed
Modules)

Command make-composed-module specifies the set of
components of the specified composed module.

– ModName is the name of the composed module.
– ComposedModules is a list of pairs (Mod Name

Path), where the first parameter is the name of a
module to compose and the second is the file that
contains its specification.

2. (def − connection SourceV Name DestV Name)
Command def-connection defines an equivalence
between a pair of variables (SourceVName, DestVName);
this corresponds to a link of the Simulink graph that
describes the composed module. The connected variables
must be of the same type, but of different modules.

The following commands, which can be declared in any
module, are used to build the formal model of the module
and to verify user-defined properties thereof.

1. (make −model)
Command make-model builds and returns the temporal
logic formula that represents the module, which can then
be used to perform V&V.

2. (def − axiom Formula)

Command def-axiom defines a TRIO temporal logic for-
mula that specifies a temporal property of the model, e.g.
a constraint that a machine must remain in a busy state
for a fixed number of time instants, which corresponds
to its working time.

– Formula is the TRIO formula, written in the input
language of Zot, that formalizes the desired prop-
erty. States and variables can be referred to in the
formula using the corresponding predicates automat-
ically introduced by the Sf2Trio tool, which have
the form moduleName_elem Name. For example,
formula©Mod_Start defines that, in the next time
instant, module Mod must be in state Start .

3. (zot Bound Length Property)

Command zot is the interface to the Zot bounded model
checker. It performs the verification of a user-defined
property for the specified module.

– BoundLength is the maximum length of runs ana-
lyzed by Zot. It is the length of execution traces ana-
lyzed by the solver.

– Property is the user-defined property, written in
TRIO, that is to be analyzed by Zot.

Figure 8 is the Sf2Trio model of the Stateflow diagram of
the Machine 1 of Fig. 5.



Fig. 8 Model of Machine 1 in
the input syntax of the Sf2Trio
tool

System properties verification and experimental results

We now illustrate how the encoding presented in “Temporal
logic encoding” section can be exploited to check some rel-
evant properties of the robotic cell of Fig. 1. The formulae
analyzed in this section capture but a portion of the kinds
of properties that can be checked through our approach; they
show how the technique presented in this paper can be applied
to study a wide range of features of modeled systems.

We first check that the modeled system does not have Zeno
runs, which would make it unfeasible. The system shows
a Zeno behavior if, from a certain point on, time does not
advance, i.e., predicate tick does not hold. The presence of
Zeno runs is formalized by the formula:

♦(�(¬t ickM )) (13)

where t ickM is the global tick predicate of the robotic cell,
and ♦ is the eventually LTL operator. ♦F holds in a state
if there is a future state in which formula F holds. Formula
(13) holds if, from a certain micro-step on, the clock does not
tick any more. We checked through the Zot tool that formula
SY S∧ (13) is unsatisfiable, which means that there are no
runs of the system that also show property (13), hence the
model does not exhibit Zeno runs.

Since we are now guaranteed that time advances in the
modeled system, we can use the TRIO temporal operators
to predicate on actual time instants (i.e., on macro-steps),
and state metric properties such as “operation OP terminates
within K time units”, etc.

Next, we check for the existence of deadlocks in the sys-
tem model. A model is deadlock-free if it cannot reach a
configuration after which its state does not progress anymore.
The usual definition of deadlock requires that the model never

leaves its state s; in this case, however, we only consider what
happens at the end of macro-steps, and we ignore the interme-
diate micro-steps. In other words, the deadlock is defined over
macro-steps only, considering internal micro-steps states as
transient states, non-observable outside the module. Different
analyses would have been possible with a simple tweak of
the formulae checked. The presence of deadlock does not
depend on the value of the input data since we have a closed-
loop system. We say that the system is in deadlock if all of
its components are in a deadlock state. The following TRIO
formula captures this notion of deadlock: it is true if all com-
ponents c ∈ C (with C the set of system components) can
reach a deadlock state:
∧

c∈C

∨

x∈dom(Sc)

SomF (AlwF (Sc = x)) (14)

where dom(Sc) is the set of states of component c, SomF
and AlwF are the TRIO counterparts of the eventually and
globally LTL operators; they are defined as follows:

SomF(F)
de f= Until(true, F)

AlwF(F)
de f= ¬SomF(¬F) .

Finally, we discuss a property concerning the possibility
to produce and deliver one processed workpiece of any kind
within T time units from the system startup. The property is
captured by the following formula:

WithinF((SRob = GoT oCo1) ∨ (SRob = GoT oCo2), T )

(15)

The formula states that, within T time units from the start of
the system, one of the two states GoT oCo1 or GoT oCo2
of Fig. 4 is reachable. The Stateflow diagram reaches state



Table 2 Test results

Formula Time (s) Memory (Mb) Result

Zeno paths detection (13) 85 264 No

Deadlock detection (14) 17,991 268 No

Workpiece, T = 15 (15) 407 260 No

Workpiece, T = 20 (15) 89 272 Yes

GoT oCo1 if a workpiece of any type has been produced
by Machine 1, and similarly for GoT oCo2 and Machine 2.
WithinF is a TRIO operator derived from Dist:

WithinF(F, T )
de f=

∨

0≤t≤T

Dist(F, T ) .

In our tests, we have used two values, 15 and 20, for T .
Formula (15) does not hold if T = 15, but it does if T = 20.
By analyzing the output of the Zot tool in the latter case we
found that 16 is the minimum number of time units to satisfy
the formula (which can be confirmed by checking formula
(15) with T = 16).

Fig. 9 Deadlocked run returned by Zot

name of the active state of the Controller component of 
Fig. 4, and the values of input variable F M1 and output 
variable T oM1 (the other variables are not shown). The 
label below the micro-step (e.g., t) identifies the macro-
step to which it belongs. When the Controller component 
enters state GoT oM12 at time t , it signals to Machine 1, 
through an output event modeled by variable T oM1, that 
the Robot has just arrived. After working for l instants of 
time, at time t + l + 1 Machine1 signals to the Controller 
the “work termination” event, which is mapped to variable 
F M1. The transition between states GoT oM12 and Start 
becomes enabled and the Controller component returns to 
the initial state, resetting F M1 to signal the end of the com-
munication. The problem occurs if the Controller component 
reaches state GoT oC I n a second time, as at time k. In fact, 
from the time instant k +1, the Controller component cannot 
leave state GoT oC I n anymore since variable F M1 has not 
been reset by Machine1. Hence, no outgoing transitions are 
enabled. After correcting the error, a new check of property 
(14) showed that the modified system model is deadlock-free.

Conclusions

We presented an approach to the formal verification of control 
designs for FMSs based on Stateflow diagrams and temporal 
logic. The approach, which has been implemented in the Zot 
verification tool, allowed us to check significant properties of 
an example FMS, and to unearth an error in an earlier design 
of the controller. In particular, the technique presented in this 
paper allows designers to check the model for the presence 
of so-called Zeno runs, which are unwanted behaviors whose 
detection is not possible with existing automated tools, even 
those that are not specific for FMS (Esteve et al. 2012). In 
addition, our logic-based approach facilitates a rather fine 
analysis of the temporal behavior of Stateflow diagrams, as 
it permits users to separate between and predicate on different 
micro-steps of the same macro-step (e.g., the first vs. the last 
micro-step of the same macro-step). One of the strengths of

Some performance results obtained during the verification 
of properties (13) and (14–15) with the two values of T men-
tioned above are shown in Table 2. In all cases Zot has been 
set up with a bound for the length of analyzed runs equal to 
70. Table 2 shows the time required by the tool to check the 
property, the memory occupation and the result, i.e. whether 
the property holds or not. All tests have been carried out on 
a 3.3 Ghz quad core PC with 4 Gbytes of Ram.

The Stateflow diagram of Fig. 4 has 12 · 218 possible con-
figurations (corresponding to the state space of cardinality 
|S| ·2|D|); the overall system model, which also includes dia-
grams for all the other components, is considerably larger. As 
a consequence, deadlock detection analysis (formula (14)) 
takes a long time, as the tool must exhaustively analyze all 
possible runs. Formulae (13) and (15), instead, formalize 
reachability properties; their analysis is much faster, since 
the tool stops as soon as it finds a run that satisfies the for-
mula.

To conclude this section, we briefly illustrate an example 
of verification that allowed us to detect and correct errors in a 
previous version of the model. By feeding Zot formula (14) 
on an earlier model of the robotic cell, the tool determined 
that deadlock configurations did exist, and it returned a case 
of deadlocked run. By studying this run, we discovered that 
the system model remained forever in configurations with 
state GoT oC I n1, (see Fig. 4). The run, which is summarized 
in Fig. 9, shows a problem in the communication protocol 
between the Robot component and the Machine1 component, 
which also affects the cell Controller.

The run is presented as a timeline, starting from 0. Over 
each micro-step we report the partial configuration with the



our approach is also that it allows designers to create models
that can be formally verified with automated tools starting
from domain-specific notations such as, for example, State-
flow diagrams. This is a necessary step towards the goal of
allowing domain experts that are well-versed in the design
of FMSs, but which have little familiarity with formal verifi-
cation techniques, to carry out formal verification activities
on the models of their choice, rather than those imposed by
the underlying tool.

Future work will focus on creating a complete environ-
ment through which FMS experts can seamlessly move from
the modeling to the verification of their designs, then receive
feedback from the formal verification tool without having to
directly access the formal concepts underlying the environ-
ment. The prototype formal verification tool that supports
the technique presented in this paper shows the feasibility
of our approach. In the future we will study mechanisms for
improving the efficiency of the verification phase, in partic-
ular by exploiting the hierarchical and modular nature of the
analyzed Stateflow/Simulink diagrams. We will also explore
the application of our approach to other industry standards
besides IEC 61499.

References

Alur, R., & Henzinger, T. (1999). Reactive modules. Formal Methods
in System Design, 15, 7–48.

Ballarino, A., & Carpanzano, E. (2002). Modular automation systems
design using the IEC 61499 standard and the simulink/stateflow tool-
boxes. In Proceedings of the asme Japan–USA symposium on flexible
automation.

Basile, F., Chiacchio, P., Vittorini, V., & Mazzocca, N. (2004). Model-
ing and logic controller specification of flexible manufacturing sys-
tems using behavioral traces and petri net building blocks. Journal
of Intelligent Manufacturing, 15, 351–371.

Bersani, M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., & San-
Pietro, P. (2010) Bounded reachability for temporal logic over con-
straint systems. In Proceedings of the 17th international symposium
on temporal representation and reasoning (TIME), pp 43–50.

Brusaferri, A., Ballarino, A., & Capanzano, E. (2011). Reconfigurable
knowledge-based control solutions for responsive manufacturing
systems. Studies in Informatics and Control (SIC), 20, 31–42.

Ciapessoni, E., Crivelli, E., Coen-Porisini, A., Mandrioli, D., Miran-
dola, P., & Morzenti, A. (1999). From formal models to formally-
based methods: An industrial experience. ACM Transactions on Soft-
ware Engineering and Methodology, pp. 79–113.

Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M.,
Roveri, et al. (2002). NuSMV 2: An opensource tool for symbolic
model checking. In Proceedings of the 14th internationl conference
on computer aided verification (CAV), pp. 359–364.

Esteve, M. A., Katoen, J. P., Nguyen, V. Y., Postma, B., & Yushtein, Y.
(2012). Formal correctness, safety, dependability, and performance
analysis of a satellite. In Proceedings of the international conference
on software engineering (ICSE), pp. 1022–1031.

Furia, C. A., Mandrioli, D., Morzenti, A., & Rossi, M. (2012). Modeling
time in computing. EATCS Monographs in Theoretical Computer
Science. Berlin: Springer.

Gourcuff, V., DeSmet, O., & Faure, J. (2008). Improving large sized plc
programs verification using abstractions. In Proceedings of the 17th
IFAC world congress.

Hanisch, H. M., Lobov, A., Lastra, J. M., Tuokko, R., & Vyatkin, V.
(2006). Formal validation of intelligent-automated production sys-
tems: towards industrial applications. International Journal of Man-
ufacturing Technology and Management, 8(1), 75–106.

Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3), 231–274.

Harel, D., & Naamad, A. (1996). The STATEMATE semantics of stat-
echarts. ACM Transactions on Software Engineering and Methodol-
ogy, 5(4), 293–333.

IEC. (2003). International Standard IEC61131-3, Programming Lan-
guages for Programmable Controllers. International Electro-
technical Commission, (IEC), 2nd edn.

IEC. (2005). International Standard IEC61499, Function Blocks, Part
1–4. International Electro-technical Commission, (IEC), 1st edn.

ISaGRAF IT. (2012). Isagraf6 developer web site and online documen-
tation. http://www.isagraf.com.

Khalgui, M., Mosbahi, O., Hanisch, H. M., & Li, Z. (2012). A multi-
agent architectural solution for coherent distributed reconfigurations
of function blocks. Journal of Intelligent Manufacturing, 23, 2531–
2549.

Klein, S., Weng, X., Frey, G., Lesage, J., & Litz, L. (2002). Controller
design for an FMS using signal interpreted Petri nets and SFC. In
Proceedings of the American control conference, pp. 4141–4146.

Levi, F. (2000). Compositional verification of quantitative properties of
statecharts. Journal of Logic and Computation, 11(6), 829–878.

Lewis, R. (2001). Modelling control systems using iec 61499. applying
function blocks to distributed systems. IEEE Publishing.

Mathworks. (2011). Stateflow online documentation. http://www.
mathworks.it/help/toolbox/stateflow/.

Mazzolini, M., Brusaferri, A., Carpanzano, E. (2010). Model-checking
based verification approach for advanced industrial automation solu-
tions. In Proceedings of the international conference on emerging
technologies and factory automation, pp 1–8.

Pradella, M., Morzenti, A., & San Pietro, P. (2008). Refining real-time
system specifications through bounded model- and satisfiability-
checking. In Proceedings of the 23rd IEEE/ACM international con-
ference on automated software engineering, pp. 119–127.

Pranevicius, H. (1998). Formal specification and analysis of distributed
systems. Journal of Intelligent Manufacturing, 9, 559–569.

Thapa, D., Park, C., Dangol, S., & Wang, G. (2006). III-phase verifica-
tion and validation of IEC standard programmable logic controller. In
Proceedings of the IEEE international conference on computational
intelligence for modelling control and automation, pp. 111–111.

Vyatkin, V. (2011). IEC 61499 as enabler of distributed and intelligent
automation: State-of-the-art review. IEEE Transactions on Industrial
Informatics, 7(4), 768–781.

Vyatkin, V., & Hanisch, H. M. (2003). Verification of distributed control
systems in intelligent manufacturing. Journal of Intelligent Manu-
facturing, 14, 123–136.

Vyatkin, V., Hanisch, H. M., & Pfeiffer, T. (2003). Object-oriented mod-
ular place/transition formalism for systematic modeling and valida-
tion of industrial automation systems. In Proceedings of the IEEE
international conference on industrial informatics, pp. 224–232.

Wang, J., & Deng, Y. (1999). Incremental modeling and verification of
flexible manufacturing systems. Journal of Intelligent Manufactur-
ing, 10, 485–502.

Zhang, D., & Anosike, A. (2012). Modelling and simulation of dynam-
ically integrated manufacturing systems. Journal of Intelligent Man-
ufacturing, 23, 2367–2382.

http://www.isagraf.com
http://www.mathworks.it/help/toolbox/stateflow/
http://www.mathworks.it/help/toolbox/stateflow/

	Automated formal verification for flexible manufacturing systems
	Abstract 
	Introduction
	Formal methods for the verification of automation solutions
	Tools: TRIO and Zot 
	Methodology overview and case study
	Semantics
	Temporal logic encoding
	Sf2Trio: a tool to encode Stateflow/Simulink models into Trio
	System properties verification and experimental results

	Conclusions
	References




