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Abstract: The flexible job shop scheduling problem (FJSP) is vital to manufacturers 

especially in today’s constantly changing environment. It is a strongly NP-hard problem and 

therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing 

metaheuristics and heuristics, however, have low efficiency in convergence speed. To 

overcome this drawback, this paper develops an elitist quantum-inspired evolutionary 

algorithm. The algorithm aims to minimise the maximum completion time (makespan). It 

performs a global search with the quantum-inspired evolutionary algorithm and a local 

search with a method that is inspired by the motion mechanism of the electrons around 

atomic nucleuses. Three novel algorithms are proposed and their effect on the whole search 

is discussed. The elitist strategy is adopted to prevent the optimal solution from being 

destroyed during the evolutionary process. The results show that the proposed algorithm 

outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks.   
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1. Introduction 

Efficiently solving the job shop scheduling problem is vital for many manufacturers in 

today’s constantly changing environment (Gen and Lin 2014). It has therefore attracted 

considerable researcher for recent decades (see Ho and Tay 2004, Xia et al.2005, 

Baykasoglu et al 2004, Xing et al. 2009 for example). The flexible job shop scheduling 

problem (FJSP) is an extension of the job shop scheduling problem (JSP). Different from JSP, 

FJSP allows operations to be processed on any of available machines. As a result, two new 

challenges facing FJSP are (1) to assign each operation to an appropriate machine and (2) 

further to schedule the assigned operations on the machine. It has been proved that the 

FJSP is strongly NP-hard in 1993 (Brandimarte, 1993). It is therefore natural to look for 

heuristics or metaheuristics to search the optimal or near-optimal solutions for FJSP.  

The FJSP was first addressed by Brucker and Schlie (1990) and it can be categorised 

into two groups: (1) the group aiming at the single objective FJSP and (2) the group aiming 

at the multi-objective FJSP.  

The single objective FJSP only takes the makespan as the optimization objective. In this 

category, the existing heuristic algorithms can be further classified into two sub-categories: 

the hierarchical and the integrated. The hierarchical one assigns operations to machines 

and then optimises the sequence of the assigned operations on the machines separately, 

whereas the integrated one combines the two steps together. The hierarchical algorithms 

attempt to solve the difficulty of the FJSP by decomposing a FJSP into a sequence of 

sub-problems. Brandimarte (1993) was the first to apply a hierarchical taboo search (TS) 

algorithm to solve the FJSP, with an emphasis on the minimum makespan problem. Ho and 

Tay (2004) integrated dispatching rules and genetic algorithm to solve the two 

sub-problems, respectively. In contrast, the integrated approaches generally achieve better 

results (Dauzère-Pérès and Paulli, 1997) although they are much more difficult in 

implmentation. Many heuristics and metaheuristics are proposed to solve FJSP, such as the 

TS algorithm (Dauzère-Pérès and Paulli ,1997), the greedy algorithm (Mati et al.,2001), the 

climbing discrepancy search approach (Hmida et al., 2010), the genetic algorithm (Pezzella 
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et al., 2008, Nagamani et al., 2012), the parallel variable neighborhood search algorithm 

(Yazdani et al., 2010), the ant colony optimization algorithm (Xing et al., 2010), the 

bi-population based estimation-of-distribution algorithm (Wang et al., 2012), etc..  

As for the multi-objective FJSP, the machine load and the maximal total load have been 

taken as the optimization objectives as well as makspan. This is to balance the working load 

on machines. Following a hierarchical approach, Kacem et al. (2002) adopted a local search 

algorithm to select machines and solved the operation scheduling problem with the genetic 

algorithm. They aimed to optimise the makespan, total machine load and the maximal load. 

Similarly, Xia and Wu (2005) used particle swarm optimisation algorithm to solve the 

machine assignment problem and used the simulated annealing algorithm to solve the 

operation scheduling problem. Recently, Chen et al. (2012) developed a scheduling 

algorithm based on GA. As to the integrated approach, Loukil, et al. (2005) utilised the 

simulated annealing algorithm to solve the FJSP. Gao et al. (2008) proposed a genetic 

algorithm hybridizing with the variable neighborhood search. Li and Pan (2012) proposed 

an effective discrete chemical-reaction optimisation algorithm for solving the FJSP subject 

to maintenance activity constraints. 

In summary, various methods for solving the FJSP have been proposed in the existing 

literature. Nevertheless, an open challenge is how the convergence speed of the search 

process can be improved, especially for large-size FJSP. Many heuristics and metaheuristics 

spend thousands of iterations before reaching the optimal solution. Such low efficiency may 

hamper their practical applications because the production scheduling requires rapid 

responses to changing demands. This may be also the reason that so many different 

evolutionary algorithms have been developed to solve the FJSP. In this paper, we will 

propose an evolutionary algorithm, the quantum-inspired evolutionary algorithm (QEA), 

which was originally introduced by Shor (1994), to tackle the FJSP. QEA has found a wide 

spectrum of applications in recent years due to its fast convergence speed (see Shor 1994, 

Wang et al. 2012a, Lu and Yu 2013, for example). This strength attracts us to use it to solve 

the FJSP.  

It is noteworthy that, to the best of our knowledge, QEA has not been previously used 
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for FJSP. In this paper, we develop a fast algorithm based on QEA to solve the FJSP. The 

global search is performed with the QEA and the local search is performed with a novel 

method inspired by the mechanism of the motion of the electrons around an atomic nucleus. 

Besides, a new chromosome representation is proposed to enrich the FJSP representation 

ways.   

The rest of this paper is organised as follows. Section 2 formulates the problem. Section 

3 proposes a new algorithm for FJSP. Section 4 shows the experiment results. Section 5 

concludes our research. 

2. Model Formulation for FJSP   

2.1 Notations and assumptions 

Some notations are given in Table 1.  

Table1 Notations for FJSP formulation 

Notations Description 

n total number of jobs  

m total number of machines 

Jj
 

job index, j=1,2,…n 

nj number of operations of job Jj 

Mk Machine index, k=1,2,…m 

Oij i-th operation of job Jj 

pijk processing time of the operation Oij on machine Mk  

Sij set of available machines for the operation Oij 

Cij
 

 completion time of operation Oij 

Cmax The makespan 

𝑋𝑖𝑗𝑘 Xijk=1 if machine Mk is selected for operation Oij, Xijk=0 otherwise 

𝑌ℎ𝑔𝑖𝑗 
= {

−1 𝑂ℎ𝑔  is executed immediately before 𝑂𝑖𝑗

  0     𝑂ℎ𝑔  and 𝑂𝑖𝑗  is nonadjacent on machine 𝑀𝑘

 1 𝑂ℎ𝑔  is executed  immediately after 𝑂𝑖𝑗

 

𝑔𝑎𝑝 idle time interval between two adjacent operations 
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Assumptions are set as following. 

(1) All jobs and machines are available at time 0.  

(2) Jobs have no associated priority.  

(3) At a time point, a machine cannot perform more than one operation. 

(4) The value pijk is given in advance. 

(5) Setup time for each operation is negligible. 

(6) Non-preemptive. An operation must be completed without interruption once started.  

(7) Jobs are available for processing on a next machine immediately after completing 

processing on the previous machine. 

2.2 Model Formulation 

The single objective FJSP can be defined as follows. There are n jobs indexed by J= (J1, J2,…, 

Jn) to be processed on m machines. Job Jj comprises nj operations to be executed one after 

another according to a pre-specified sequence. More than one machine (Sij) is available for 

each operation Oij. The ith operation of job Jj can be processed by machine Mk from the m 

machines (Oijk) and occupies the machine Mk for pijk
 
time units. The scheduling problem is to 

assign operations to machines in an appropriate way and to schedule the job operations to 

optimise makespan subject to the above assumptions.  

We formulate the FJSP based on the recommendation from Demir and Kürşat Işleyen 

(2013). 

The objective: min 𝐶𝑚𝑎𝑥 = min (max (𝐶𝑖𝑗))
 

                    (1) 

s.t. 

𝐶𝑖𝑗 − 𝐶(𝑖−1)𝑗 ≥ 𝑝𝑖𝑗𝑘𝑋𝑖𝑗𝑘       𝑖 = 2,3, … , 𝑛𝑗                                             (2)                                                                                                                                   

(𝐶𝑖𝑗 − 𝐶ℎ𝑔 − 𝑝𝑖𝑗𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (
𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 − 1) + (𝐶ℎ𝑔 − 𝐶𝑖𝑗 − 𝑝ℎ𝑔𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (

𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 +

1) ≥ 0  
     

                                               (3)                                                                                                                                          

𝑔𝑎𝑝 =

(𝐶𝑖𝑗 − 𝐶ℎ𝑔 − 𝑝𝑖𝑗𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (
𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 − 1) + (𝐶ℎ𝑔 − 𝐶𝑖𝑗 − 𝑝ℎ𝑔𝑘)𝑋ℎ𝑔𝑘𝑋𝑖𝑗𝑘 (

𝑌ℎ𝑔𝑖𝑗

2
) (𝑌ℎ𝑔𝑖𝑗 + 1)    

(4) 

∑ 𝑋𝑖𝑗𝑘𝑘 = 1, 𝑘 ∈ 𝑆𝑖𝑗 , ∀𝑖, 𝑗
 

                                                       (5)  
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𝑌ℎ𝑔𝑖𝑗 ∈ {−1,0,1}
                                                          

     (6) 

𝑋𝑖𝑗𝑘 ∈ {0,1}                                                                   (7)  

Equation (1) is the objective function. Inequality (2) is the precedence constraints. 

Inequality (3) ensures that there are no overlaps between operations on each machine. 

Equation (4) computes the length of each idle time interval. Equations (5) - (7) are constraints 

on the decision variables. 

Table 2 shows an FJSP example. The number in each entry is pijk. If pijk=0, it means the 

machine is not available for Oij.  

Table 2 An instance of FJSP 

  Machine 1 Machine 2 Machine 3 

 

J1 

O11 2 3 0 

O21 0 5 2 

O31 3 6 4 

 

J2 

O12 0 4 5 

O22 5 5 6 

O32 2 4 8 

J3 O13 4 0 6 

O23 4 4 4 

 O33 5  6 7 

3. Elitist Quantum-inspired Evolutionary Algorithm for FJSP 

This section investigates how to solve the FJSP with QEA for obtaining the minimal 

makespan. 

3.1 Procedure of EQEA for FJSP 

QEA utilises the concepts of a quantum bit, a superposition of states and the collapse of 

states. Like other evolutionary algorithms, QEA is also characterised by the representation 

of the individuals, the evaluation function and the population dynamics. Instead of using 

binary, numeric or symbolic sequences to represent feasible solutions, QEA uses quantum 

bit (Q-bit) chromosomes to encode probabilistic representation. A Q-bit chromosome can 

represent a linear superposition of states in the search space. As such, the Q-bit 

representation has a better characteristic of population diversity than any other 
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representation. Meanwhile, a quantum rotation gate is used as the updating mechanism.  

The mechanism helps guide the search direction to the optimal area, and therefore increase 

the convergence speed. 

To avoid the oscillation, the elitist strategy can be integrated into the QEA. As such an 

integrated QEA is formed. We name it elitist QEA (EQEA) for short. The main structure of 

the algorithm (Fig. 1) creates novelty in the following four aspects. 

 a new representation for the FJSP; 

 the integration of the niche technology, which can prevent the simple QEA from 

converging to local optima;  

 the integration of the elitist strategy, which can thoroughly  prevent the 

convergence process from oscillation and can also speed up the convergence 

process efficiently; and 

 the local search process, which enhances the local search ability. 

The forementioned four points will be elaborated in Section 3.2. 

Initialise a population

Decode and evaluation 

Execute the niche 
technology 

Is the local best individual?

Local search with
 the energy-jumping algorithm 

Y

Update with
 the rotation gate operation

N

Merge the individuals

Terminate?

Output the best solution

Y

N
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 Fig. 1. The framework of the EQEA 

3.2 Details of the EQEA  

3.2.1 Q-bit chromosome encoding and the population initialisation 

The EQEA evolves with a population like GA. The population comprises a number of 

chromosomes. A chromosome is made up of Q-bit genes. Unlike the binary, numeric, or 

symbolic representation, the state of a Q-bit gene can be represented by (8). 

0 1                   (8) 

where 0  and 1  represent bit values ‘0’ and ‘1’, respectively; α and β are complex 

numbers that specify the probability amplitudes of the corresponding states. 
2

  and 

2
 , satisfying 

2 2
1   , denote the probability of the Q-bit gene that will be found in 

the state ‘1’ or the state ‘0’, respectively. A Q-bit gene may be in state ‘1’, state ‘0’, or in any 

linear superposition of the two. The advantage of using the Q-bit gene is that it can 

represent a linear superposition of solutions. For example, if there is a system represented 

by q Q-bits, the system can represent 2q states at the same time. However, in the act of 

observing a quantum state, it collapses to a single state. For simplicity, we refer this Q-bit 

gene as a q-Q-bit gene, where q is the number of Q-bits in a gene. Each q-Q-bit is the 

smallest unit of information. 

A Q-bit chromosome consists of a certain number of q-Q-bit genes. For example, if q=1, 

the chromosome is defined by:  

1 2

1 2

   

   

f

f

  

  

 
 
  

  (9) 

where |𝛼𝑖|2 + |𝛽𝑖|2 = 1, 𝑖 = 1,2, … 𝑓 and there are f units separated by vertical lines. 

For simplicity, the sine function and the cosine function are used to generate α and β, 

respectively. Obviously, the condition |𝛼|2 + |𝛽|2 = 1 is satisfied whatever value the angle 

has. Therefore, the angle is computed by a random number γ ∈ (0,1) multiplied with 2π. 

For example, if f=6, a chromosome composing of the 1-Q-bit genes is generated as the 

following: 
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-0.8452    0.7849    0.9346   -0.6023    0.3865    0.9981
=

 0.5344   -0.6196    0.3558    0.7983   -0.9223    0.0619
ip
 
 
   

The evolving process is executed on a population. A population is initialised by 

randomly generating a group of Q-bit chromosomes. 

3.2.2 Chromosome converting mechanism for FJSP 

The chromosome composing of m-Q-bit genes cannot directly be used to represent 

FJSP. A converting mechanism, therefore, is needed. When we structure converting 

mechanism, we must consider the characters of the FJSP presentation firstly to propose a 

targeting chromosome representation as the converting target.  

(1) Targeting chromosome representation  

In existing literature, there are four types of chromosome representations for FJSP.  

Chromosome A (Chen et al, 1999) comprises two integer strings (A1 and A2). The 

length of each string equals the total number of operations. String A1 assigns a machine 

index to each operation. The value of the j-th position of the string A1 indicates the machine 

performing the j-th operation. String A2 encodes the order of operations on each machine.  

Chromosome B (Paredis, 1992) also comprises two strings (B1 and B2). String B1 is 

identical to A1. String B2 is a bit string that gives the order of any pair of operations. A bit 

value of 0 indicates that the first operation in the paired-combination must be performed 

before the second operation.  

Chromosome C (Ho and Tay, 2004) is composed of two strings (C1 and C2), too. It 

represents an instance of the FJSP. String C1 encodes the order of the operations. It does not 

specify the order of operations for the same job as this is already implied by its index value. 

String C2 represents the machine assignment to operations (like A1 and B1) but with a 

twist. To ensure solution feasibility, the machine index is manipulated so that the string will 

always be valid.  

Chromosome D (Tay and Wibowo, 2004) is composed of strings like that in 

chromosome B and C. It comprises three strings (D1, D2 and D3). D1 and D2 are equivalent 

to C1 and C2, respectively, while D3 is similar to B2. 
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Different from the aforementioned four representation ways, a new chromosome 

representation for FJSP is proposed. This is the targeting chromosome and we name it 

chromosome E according to the naming rule in Tay and Wibowo (2004). 

Chromosome E modifies the operation-based encoding (Gen et al.,1994). Each 

chromosome is composed of n×max{nj} numbers and each number corresponding a job 

occurs max{nj} times. A surplus part represents those jobs whose operation number are 

less than max{nj}. The surplus part is referred to as virtual operations that don’t take any 

machine time. For the 3×3 problem (Table 2), a feasible chromosome encoded with job 

number is [2 1 3 3 2 2 1 1 3]. The matchup between the chromosome and the sequence of 

the operations is described in Fig. 2. 

 

Fig. 2. Matchup between the chromosome and the operations  

The space complexity of the chromosome E is less than the others. Following Tay and 

Wibowo (2004), we denote T as the total number of job operations in an FJSP. In the best 

case when the numbers of operations for each job are the same, the length of chromosome 

E is T. In the worst case, however, when there is a special job whose operation number is 

far greater than those of the others (assuming there is only 1 operation for these jobs), the 

length of the chromosome is n*(T-n+1). The worst case occurs with a very low probability 

because there are always similar jobs to be processed in a practical production workshop. 

So one can confidently conclude that the length of the chromosome E is normally shorter 

than that of the others. To make a comparison, we list the space complexity of the five 

chromosome representations in Table 3. Variable d denotes the length of the string D3 (Tay 

and Wibowo 2004).  

Table 3 Space complexity of the representations 

Chromosome representation  Chromosome length 

Chromosome A (Chen et al., 1999) 2T 

Chromosome B (Paredis, 1992 ) T + 0.5T (T – 1) 

2       1       3       3      2       2       1       1      3

O12  O11    O13   O23   O22   O32   O21   O31   O33 

Chromosome 

Operations 
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Chromosome C (Ho and Tay, 2004) T + 0.5T (T – 1) 

Chromosome D (Tay and Wibowo, 2004) 2T + d 

Chromosome E n×max{nj}∈[T,n(T-n+1)] 

(2) Converting mechanism 

Once having determined the structure of the targeting chromosome presentation, one 

can convert the Q-bit chromosome to the targeting chromosome with the following 

converting algorithm.  

First, convert a Q-bit chromosome to a binary row vector Bstring. Observe a state, i.e., if 

|𝛼𝑖|2 > |𝛽𝑖|2, then let Bstring[i] =1, otherwise, let Bstring[i] =0.  

Second, convert the binary row vector Bstring to a decimal row vector Dstring 

according to the binary to decimal conversion rule. It is notable that this conversion is 

calculated in an information unit which consists of q Q-bit genes.  

Third, convert the decimal row vector Dstring to the targeting chromosome vector 

Ostring. To keep a higher diversity, a new converting method is presented. Different from 

Shor (1994), where the job numbers to replace the decimal elements follows a predefined 

order, we don’t predefine the order of the job numbers. Instead, we adopt a random order 

which provides more chance to generate more diversity among chromosomes. The steps 

are illustrated as following. 

Step 1. Randomly rank all the job numbers and form a set randorder, which has n 

elements. 

Step 2. Copy the Dstring to the Ostring. 

Step 3. From the beginning of the Ostring, locate the first n minimal genes and 

replace them with job numbers in randorder one by one. Then locate the second n 

minimal genes and replace them by randorder, etc, until all the genes are replaced.  

To summarize the converting process, we use Fig. 3(a) to illustrate the converting result 

for the FJSP (Table 2) with the following steps.  

(1) Encode the 1-Q-bit chromosome,  

(2) Convert the 1-Q-bit chromosome to a binary chromosome, 

(3) Convert to a decimal chromosome, and  
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(4) Finally to convert to the targeting chromosome. 

In these steps, we assume the random order set of the job numbers randorder to be [2 1 

3]. The elements in the 2nd, 3rd, and 6th are the first minimal 3 genes, so [2 1 3] are set 

their positions respectively. The elements in the 7th, 1st and 4th are the second minimal 3 

genes, so [2 1 3] are set to these positions. The 5th, 8th and 9th are the last minimal 3 genes, 

set [2 1 3] to the respective positions. As such, we obtain the final targeting chromosome is 

[1 2 1 3 2 3 2 1 3]. 

To make a comparison, we also give an example, shown in Fig. 3(b), following Shor 

(1994). Assume a pre-defined job number order is [1 2 3], hence each position in the first n 

minimal elements are replaced with “1” (see the 2nd, 3rd, and 6th positions), each position 

in the second n minimal elements are replaced with “2” (see the 7th, 1st and 4th positions), 

and each position in the last n minimal elements are replaced with “3” (see the 5th, 8th and 

9th positions). Thus, the Ostring=[2 1 1 2 3 1 2 3 3]. Comparing [1 2 1 3 2 3 2 1 3] with [2 1 

1 2 3 1 2 3 3], one can see that the entropy of Ostring in Fig. 3(a) is larger than that in Fig. 

3(b). Moreover, different randorder is generated when we convert each Q-bit chromosome 

to Ostring. Hence the gene in the same position is different in most cases. When the method 

(Shor,1994) is used, however, the same order is adopted for each chromosome. This causes 

a problem that the diversity is weakened. 

 0.9941    0.3484   -0.2876   -0.9955    0.7517   -0.5098   -0.6631    0.6372   -0.9133
-0.1084   -0.9373   -0.9577    0.0943    0.6595   -0.8603    0.7486    0.7707   -0.4073

    1               0               0               1               1               0               0                1               1

1               2                1               3               2                3                2              1              3   

1-Q-bit 
chromosome

Bstring

Ostring

    1               0               0              1               1                0               0                1               1Dstring

 

(a) A chromosome with randorder 
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 0.9941    0.3484   -0.2876   -0.9955    0.7517   -0.5098   -0.6631    0.6372   -0.9133
-0.1084   -0.9373   -0.9577    0.0943    0.6595   -0.8603    0.7486    0.7707   -0.4073

    1               0               0               1               1               0               0                1               1

2               1               1               2               3               1               2                3               3   

1-Q-bit 
chromosome

Bstring

Ostring

    1               0               0              1               1                0               0                1               1Dstring

(b) A chromosome with a predefined order  

Fig. 3. An example of the converting mechanism 

3.2.3 Decoding and fitness evaluation 

Before evaluation, each chromosome should be decoded to be a scheduling solution. 

Thus, a scheduling algorithm is needed. We first give two variables. 

Machine sequence matrix JM－define the available machines for each operations. Its 

element JM(i, j) denotes the available machine for the (⌈𝑗/𝑚⌉ + 1)-th operation of the job Ji 

(where the symbol ⌈ ⌉ is to get integral part of a float number). Each row JM(i, :) denotes 

all the available machines for the operations of job Ji. The length of JM(i, :) equals 

(max𝑗=1
𝑛 𝑛𝑗) × 𝑚. In each row, from the beginning, every m numbers form a fragment which 

denotes all the available machines for an operation. Among the machines, if machine Mk is 

available for an operation, we denote it as Mk; otherwise we denote it 0. In the total FJSP, 

where each operation can be processed on any of the machines, the fragment equals to ‘1 

2 … m’. As for the partial FJSP, where all machines are not always available, we can use ‘0’ to 

ensure the length of the fragments. For example, in the FJSP (Table 2), the operation O11 can 

be processed on machine M1 and machine M2 only, so the first fragment of JM(1, :) should be 

‘1 2 0’; the operation O21 can be processed on machine M2 and machine M3 only, so the 

second fragment of JM(1, :) should be ‘2 3 0’; the operation O31 can be processed on all the 

machines, so the third fragment of JM(1, :) should be ‘1 2 3’. Thus, JM(1, :)=[1 2 0 2 3 0 1 2 3]. 

The number of fragments is determined by the maximum operation number max𝑗=1
𝑛 𝑛𝑗. For 

those jobs whose operation number is less than max𝑗=1
𝑛 𝑛𝑗, it is designed to arrange the 

available machines following the above rule firstly and then set ‘0’ (max𝑗=1
𝑛 𝑛𝑗 − 𝑛𝑖) × 𝑚
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times to achieve the length max𝑗=1
𝑛 𝑛𝑗 × 𝑚.  

Processing time matrix T－define the processing time on an available machine. Its 

element T(i, j) denotes the processing time on machine JM(i, j) for the operation ⌈𝑗/𝑚⌉ + 1 

of the job Ji. If JM(i, j)=0, it means the machine mod(𝑗/𝑚) (where the symbol “mod” is a 

function to obtain the reminder of 𝑗/𝑚) is not available for the operation ⌈𝑗/𝑚⌉ + 1, its 

processing time is, therefore, set to 0 as well. For example, in the FJSP in Table 2, the 

operation O11 can be processed on machine M1 and machine M2 only and occupies 2 and 3 

units of time respectively, so the first fragment of T(1, :) should be ‘2 3 0’. 

As such, the machine sequence matrix and the processing time matrix for the FJSP (Table 

2) can be defined as follows: 

1 2 0 2 3 0 1 2 3

2 3 0 1 2 3 1 2 3

1 3 0 1 2 3 1 2 3

 
 


 
  

MJ

,  

2 3 0 5 2 0 3 6 4

4 5 0 5 5 6 2 4 8

4 6 0 4 4 4 5 6 7

 
 


 
  

T

.

 

Once JM and T have been structured, a targeting chromosome can be decoded to a 

scheduling solution. The decoding algorithm is illustrated in Fig.4. The process is shown as 

following. 

Step 1. Obtain a chromosome chrom and set x=1; 

Step 2. Repeat when x is less than the length of the chromosome (=len(chrom) ) 

Step 2.1. Obtain the x-th gene chrom(x), which is a job number; 

Step 2.2. Determine the operation order r (=count(chrom(x))) according to the 

appearing times of chrom(x). Search the available machines for the current 

operation Or,chrom(x), and select the one on which the operation can be finished at 

the earliest time en(chrom(x), r). Note, en is a matrix recording the ending time 

of the operation Or,chrom(x). If there is more than one machine available, select the 

one on which the processing time pchrom(x), r, k is the shortest. 

Step 2.3: Compare the idle time of machine Mk, if the processing time pchrom(x), r, k is 

shorter than the idle time idletime(k), go to step 2.4; otherwise go to step 2.5; 

Step 2.4: Insert the operation Or,chrom(x) and determine its beginning time 

st(chrom(x),r) and ending time en(chrom(x), r). Update the available time and 
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the idle time of machine Mk. Go to step 2.6. 

Step 2.5: Append the operation Or,chrom(x) at the end of machine Mk and set its 

beginning time st(chrom(x), r) to be the ending time of the machine (mach(k)). 

Update its the ending time en(chrom(x), r) and the ending time mach(k) of 

machine Mk by adding pchrom(x), r,k to st(chrom(x), r). Go to step 2.6. 

Step 2.6: Obtain the next gene, set x=x+1, and return to the step 2.1. 

Step 3: output the scheduling solution.  

Initialise chrom x=1

Get chrom(x)

Set r=Count(chrom(x))

Min(en(chrom(x),r))

Get Or, chrom(x)

JM, T

Idletime(k)>pr, chrom(x),k?

Insert Or, chrom(x)

Update  st(chrom(x),r ), 
en(chrom(x),r ), mach(k)

x=x+1

x>len(chrom)?

Output a scheduling solution 

Set st(chrom(x),r )=en(mach(k))

Y N

Y

N

 

Fig. 4. The decoding algorithm  

An operation can be inserted into a machine’s idle interval [t1, t2] if and only if its 

current operation processing time is shorter than t2-t1. The algorithm solves the machine 

assignment problem and the operation sequence problem simultaneously. The algorithm 

outputs a scheduling solution from which we can evaluate the fitness of the targeting 

chromosome according to the following fitness function. 
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

max (𝐶𝑖𝑗)
   (10) 

The decoding algorithm proposed in this paper has similar computational complexity 

to that of the existing methods. The major computational complexity lies in the loop of step 

2. This loop needs repeating n×max𝑗=1
𝑛 𝑛𝑗 times. The time on running step 2.1 is O(1). All 

the available machines for the current operation should be considered. In the worst case 

scenario, the running time of the step 2.2 is O(m×n×max𝑗=1
𝑛 𝑛𝑗). The time on running step 

2.3 is O(1). The running time for step 2.4 or step 2.5 is O(1). But only one of them should be 

executed. The running time on step 2.6 is O(1). Therefore, the time complexity of the 

decoding algorithm is given by, 

Ta=O(( n×max𝑗=1
𝑛 𝑛𝑗)×(1+m× n×max𝑗=1

𝑛 𝑛𝑗+1+1+1)) 

=O(mn2(max𝑗=1
𝑛 𝑛𝑗)2+4(n×max𝑗=1

𝑛 𝑛𝑗)) 

= O(mn2(max𝑗=1
𝑛 𝑛𝑗)2) 

= O(T2). 

All the time complexity of converting the five types of chromosome representations to 

scheduling solutions is listed in Table 4 in which the variable c denotes the number of 

precedence constraints.  

Table 4 Conversion complexity of the representations 

Chromosome representation   Conversion complexity  

Chromosome A (Chen et al 1999) O(T+c) 

Chromosome B (Paredis 1992 ) O(T2+c) 

Chromosome C (Ho and Tay 2004) O(T+c) 

Chromosome D (Tay and Wibowo 2004) O(T+c+d) 

Chromosome E O(T2) 

3.2.4 Updating operation for the Q-bit chromosome  

The difference among all the population-based evolutionary algorithms is their 

population updating mechanism. Updating destroys old individuals and generates 

offsprings. During the destroy-and-generate process, simply exchanging part of 

genes of two parents usually generates an infeasible solution. Therefore, the 

existing crossover operations for FJSP, including partial-mapped crossover (PMX), 
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order crossover (OX), position-based crossover (PBX), order-based crossover (OBX), 

cycle crossover (CX), liner order crossover (LOX), subsequence exchange crossover 

(SXX), partial schedule exchange crossover (PSXX), precedence preservative 

crossover (PPX) and precedence operation crossover (POX) (Akay B., Yao X.,2013), 

most need extra computing steps to adjust the infeasible solution to a feasible one. 

As a result, the computing time is added necessarily, and thus the convergence 

speed is influenced mostly. Hence, a simple and easy-to-conduct updating operator 

is vital to an evolutionary algorithm.  

 The dynamics of the evolution in the EQEA are controlled by the Schrödinger’s 

equation. We choose the rotation gate (RG) to update the Q-bit chromosome. Its form is 

given by Eq. (11). 

𝑈(𝜃) = [
𝑐𝑜𝑠𝜃𝑖    − 𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖       𝑐𝑜𝑠𝜃𝑖
]                           (11) 

where 𝜃𝑖 is the rotation angle and 𝜃𝑖 = 𝑠(𝛼𝑖𝛽𝑖)∆𝜃𝑖. The values of ∆𝜃𝑖 and 𝑠(𝛼𝑖𝛽𝑖) are 

determined in Table 5, where bi and xi are the ith gene of the best chromosome and the 

current chromosome in the current population, respectively. Each Q-bit gene can be 

updated according to Eq. (12). 

[
𝛼𝑖

𝑡+1

𝛽𝑖
𝑡+1] = [

𝑐𝑜𝑠𝜃𝑖    − 𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖       𝑐𝑜𝑠𝜃𝑖
] [

𝛼𝑖
𝑡

𝛽𝑖
𝑡]                       (12) 

Table 5 The lookup table of 𝜃𝑖   

xi bi ( ) ( )f x f b  i  ( )i is    

0i i    0i i    0i   0i   

0 0 False 0 0 0 0 0 

0 0 True 0 0 0 0 0 

0 1 False 0 0 0 0 0 

0 1 True 0.05π -1 +1 ±1 0 

1 0 False 0.01π -1 +1 ±1 0 

1 0 True 0.025π +1 -1 0 ±1 

1 1 False 0.005π +1 -1 0 ±1 

1 1 True 0.025π +1 -1 0 ±1 

 

From (12), one can see that the rotation gate updating mechanism in EQEA 

only needs one simple step. To make a comparison, Table 6 lists the computing 
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steps of the existing crossover operators plus the rotation gate. The offspring 

are all feasible in that the generated quantum-based chromosome still needs to 

be converted to the target chromosome. Such advantages all benefit from this 

special quantum chromosome. It is, therefore, confidently to conclude that 

quantum-based representation helps facilitate problem very well.   

Table 6 Computing steps of crossover operators  

 PMX OX PBX OBX CX LOX SXX PSXX PPX POX rotation gate 

Steps  3 4 3 3 5 3 2 4 2 3 1 

 

3.2.5 The niche technology  

Since the rotation gate operation for each gene is the same, it is, however, easy to 

trap into the local optima and lack of diversity of genes when the population evolves 

more than certain times. Therefore, we integrate the niche technology. 

The niche technology is proposed by Hyun et al. (1998). It can avoid trapping into local 

optima when there are too many similar individuals in the population. A niche domain is 

the space whose sizes are determined by Eq. (13). 

𝜎𝑡 =
max 𝑡−min 𝑡

𝑃𝑠
                               (13) 

where max t and min t are the maximal and the minimal of the objective during the tth 

generation, respectively, and Ps is the population size. The more chromosomes there are in 

the space, the more similar they are. Therefore, the structure of the niche has a direct 

impact on the quality of the diversity. We count the total number of the similar 

chromosomes in the range 𝜎𝑡 for each chromosome. The one which has the most similar 

chromosome is focused. Half of its similar chromosomes are replaced by generating 

randomly new chromosomes to increase the diversity of the population.  

3.2.6 The elitist selection  

To speed up the convergence, the elitist strategy is adopted to prevent the loss of the 

best chromosome during the evolutions. The best chromosome with highest fitness 
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individual will be identified and recorded. If the best chromosome is lost or becomes 

weaker after evolution, it will be inserted back into the evolving population. The 

integration of the elitist strategy with the QEA speeds up the convergence and reduces the 

influence of the random factors during the evolutionary process.  

3.2.7 A local search based on the atom structure energy distribution  

It is widely accepted that a local search procedure is efficient in improving the solutions 

generated by QEA (Zheng, T., Yamashiro, M., 2010). Inspired by the mechanism of the 

motion of the electrons around an atomic nucleus, we design a local search to enhance the 

local exploitation around the best solution. 

Scientists have discovered that an atom consists of a nucleus and electrons. For example, 

Fig.5 shows the atom structure of natrium, which comprises 11 protons in the nucleus, 2 

electrons in the first orbit, 8 electrons in the second orbit and 1 electron in the outermost 

orbit. The energy of an electron depends on the position of the orbit and is lower in smaller 

orbits. The atoms are stable in the state with the smallest orbit in that there is no orbit of 

lower energy into which the electron can jump. The closer to the atomic nucleus an electron 

is, the lower energy it has. That is, those electrons located in the larger orbits have larger 

energy and are less stable.  

 

Fig. 5. The atom structure of natrium 

Inspired by this phenomenon, we regard a solution for the FJSP as an atom, each 

operation corresponds to an electron, and each electron orbit corresponds to an energy 

level. To improve the scheduling solution, the operations compete to jump from a higher 

energy level to a lower one. We define the energy level of a gene according to its position in 

the targeting chromosome. The more frontal the gene lies in the chromosome, the lower 

energy it has. A more stable solution may therefore be obtained. 

The local search process is designed by letting the critical operation jump from the 

position with a higher level energy to another position with a lower level energy. We call it 

+11 2 8 1
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an energy-jumping process. This process is executed only on the best individual. According 

to the decoding algorithm (Fig. 4), moving the last gene forward in the critical path gives it 

more chance to select better machines so that the whole energy of the new solution 

decreases. If the result becomes better after the local search, we replace the best individual 

with this new individual. If the result is no better than the original best individual, we keep 

the original best individual. Based on the jumping extent, a shallow energy-jumping 

algorithm, a deep energy-jumping algorithm, and a moderate-jumping algorithm can be 

developed. The common point among the three algorithms is to move the operations in the 

critical path. The distinction among them is how to and when to jump the operations.   

The shallow energy-jumping algorithm is to move the last operation in the critical path 

to the next position of its previous operation. A chromosome for the FJSP (Table 2) is 

shown in Fig. 6. The last gene ‘3’ jumps to the fifth position and the gene ‘2’ in the fifth 

position moves to the last position. After the jumping is completed, the makespan is 

shortened from 16 to 15 so that the solution quality is improved.  

1 2 3 3 2 1 1 2 3

1 2 3 3 3 1 1 2 2

1-1 3-1 3-2 2-3

2-1 2-2 3-3

1-2 1-3

M1

M2

M3

1-1 3-1 3-2

2-32-1 2-2

3-3

1-2 1-3

M1

M2

M3

2 4 6 8 10 12 14 16

2 4 6 8 10 12 14 16

Machine

Machine

Time

Time

0

0

 

Fig. 6. The shallow energy-jumping algorithm 

 The deep energy-jumping algorithm is to move all the operations in the critical path to 

the frontal of the chromosome. A chromosome for the FJSP (Table 2) is shown in Fig. 7. The 

job number in the critical is ‘3’, therefore all the ‘3’s move forward and the replaced genes 

moves back to the original position of the gene ‘3’ in turn. After the jumping is finished, the 

makespan is shortened from 15 to 14 so that the solution quality is improved.   
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In some cases, there are multiple jobs in the critical path. The job with the longest total 

processing time (we name it the most troublesome job) has the first chance to move to the 

front of the chromosome. Next, the job with the second longest total processing time moves 

behind the end of the most troublesome job, etc.  

1 3 2 2 3 3 2 1 1

3 3 3 1 2 2 2 1 1

1-1 3-1 3-2

2-32-1 2-2

3-3

1-2 1-3

M1

M2

M3

3-1 3-2

2-3

2-1

2-2

3-3

1-2 1-3

M1

M2

M3

2 4 6 8 10 12 14 16

2 4 6 8 10 12 14 16

Machine

Machine

Time

Time

0

0

 

1-1

Fig.7. The deep energy-jumping algorithm 

The moving strategy in the moderate energy-jumping algorithm is between that in the 

shallow energy-jumping algorithm and that in the deep energy-jumping algorithm. If the 

last gene in the critical path is just next to its previous operation, then we execute the deep 

energy-jumping algorithm. Otherwise, we execute the shallow energy-jumping algorithm.  

4. Evaluation 

4.1 Design of experiment 

To compare our approach with the existing methods (Hmida et al. 2010, Pezzella et al. 

2008, Wang et al. 2012b, Gao et al. 2008, Mastrolilli and Gambardella 2000, Li et al. 2012, 

Chiang and Lin 2013), we conduct five groups experiments:  

(1) Setting parameters, 

(2) Comparing three local search methods,  

(3) Comparing the success rates,  

(4) Comparing the convergence speed, and  

(5) Comparing the two technologies for diversity. 
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All the experiments were conducted in a desktop computer with a Pentium dual-core 

CPU E6600 3.0-GHz CPU, 2.0G RAM, WIN-XP OS, and Matlab©. Four groups of benchmark 

instances (Table 6) are adopted. Columns 1, 2, 3 and 4 show the names of the instances, the 

ranges of the job numbers, the ranges of the machine numbers, and the ranges of the 

operations numbers for all jobs, respectively.  

Table 6 Benchmark instances and their settings 

instance name No. of jobs No. of machines No. of operations  

Kacem_Data (Kacem et al., 2002) 4--15 5--15 12--56 

BR_data (Brandimarte, 1993) 10--20 4--15 55--240 

BC_data (Barnes et al., 1996) 10--15 11--18 100--225 

DP_data (Dauzère-Pérès et al., 1997) 4--15 5--10 196--387 

4.2 Computaional Results 

4.2.1 Setting parameters  

Parameters influence an algorithm’s performance. Four parameters are included:  

(1) population size, 

(2) iteration times, 

(3) Q-bit number q in an information unit, and 

(4) niche size Ns.  

When more chromosomes are generated to form a population, more solutions are 

provided so that the probability to find the optimal solution within fewer steps increases. 

But this will take more computing time and space. We therefore set a medium population 

size, i.e. 50. Similarly, the number of iterations is proportional to the searching result. We 

set it as 200.  

To determine the values of the Q-bit number and the niche size, 2 groups of 

experiments are conducted on MK03 instance (Brandimarte, 1993). 4 levels, q=1,2,3,4, of 

the Q-bit numbers are considered. The niche size has 4 levels: Ns=0.5d, d, 1.5d, 2d, where  

 𝑑 =
max(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛)−min (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛)

𝑃𝑠 2⁄
. 
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We fix one parameter value and change another parameter value from the first level to 

the fourth level. Each test runs 10 times. Fig. 8 presents the results influenced by the 

different levels of the niche size when q=3. Results show that Ns=d can output the best 

solutions. Fig. 9 presents the results influenced by the different levels of the Q-bit numbers 

when Ns=d. Results indicate that q=3 and q=4 generate the same optimal value. For saving 

computing resource, we choose q=3. 

In all, all of the parameters are set as: the population size: 50, the iteration times: 200, 

the Q-bit number: 3, and the niche size: d. 

 

Fig.8. Results influenced by Ns 

 

Fig.9. Results influenced by q 

4.2.2 Comparing the three local search algorithms 

To evaluate the three local search algorithms’ influence on the search process, two 

groups of experiments are conducted on the MK03 instance (Brandimarte, 1993): EQEA 

with or without local search. In the first group of EQEA, the three local search algorithms 
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240

260
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are also compared furtherly. Each test runs 10 times to obtain an average result. Table 7 

lists the iteration times that the best result (makespan=204) appears by each local search 

algorithm, and the total CPU computing time that the 200 iterations costs totally in seconds. 

The average values are listed in the last row. 

Table 7 Comparison result for the local search algorithms 

 EQEA with local search EQEA without local 

search 

No. 
 Shallow Moderate Deep 

iteration time iteration time iteration time iterations time 

1 2 63.61 7 69.63 37 68.21 17 62.22 

2 1 63.33 25 68.64 13 67.32 47 63.98 

3 2 63.68 18 63.35 38 69.19 8 63.06 

4 6 64.49 1 64.47 20 63.63 53 62.77 

5 1 64.16 5 64.49 5 63.84 21 62.99 

6 19 64.08 10 64.04 5 63.49 45 63.01 

7 9 67.51 19 64.26 44 63.47 7 63.43 

8 32 63.22 4 65.19 7 64.02 5 63.56 

9 9 63.87 9 64.46 9 63.98 13 62.98 

10 2 66.38 2 62.81 26 64.64 4 62.82 

Mean 8.3 64.43 10 65.13 20.4 65.17 22 63.082 

  

 Results (Table 7) indicate that even the worst result (from deep energy-jumping 

algorithm) in the first group outperforms that in the second group. Furtherly, in the first 

group, the shallow energy-jumping algorithm performs best (which only needs 8.3 

iterations averagely), followed by the moderate energy-jumping algorithm (which needs 10 

iterations averagely), and the deep energy-jumping algorithm (which needs 20.4 iterations 

averagely). Since the local search process is only executed on the current best solution, the 

shallow energy-jumping algorithm only exploits its neighborhood, which can ensure most 

excellence genes can be preserved in the population. From this perspective, the deep 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E4%BB%8E%E8%BF%99%E4%B8%AA%E8%A7%92%E5%BA%A6%E6%9D%A5%E7%9C%8B
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E4%BB%8E%E8%BF%99%E4%B8%AA%E8%A7%92%E5%BA%A6%E6%9D%A5%E7%9C%8B
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energy-jumping algorithm destroys most of the genes in the best chromosome so that it 

takes more time to achieve to the best solution. However, it can help to explore a new area 

and help protect the search process from trapping to prematurity. Of course, it may guide 

the searching process to a worse area. To avoid deterioration, we compare the solutions 

before and after the local search. If the deterioration appears, we cancel the local search 

result. Thus, the deep energy-jumping algorithm is an effective method to avoid the 

prematurity. The moderate energy-jumping algorithm performs slightly inferior to the 

shallow energy-jumping algorithm, which implies that the probability that the last gene in 

the critical path is located close to its previous operation is very low.  

Based on the above analysis, we adopt the moderate energy-jumping algorithm. We 

dynamically check the frequency of the current best solutions. If it exceeds a given 

threshold (20 iterations, e.g.), we call the deep energy-jumping algorithm. This strategy can 

balance the exploration ability and the exploitation ability of the search process. 

4.2.3 Comparing the success rates 

We repeatedly run the EQEA for 10 times on each of the benchmark instances and 

report the best result. The results from some of the existing research are compared with 

our algorithm. 

Table 8 illustrates the comparison of the success rates between the EQEA and those in 

the literatures (Wang et al. 2012b, Li et al. 2012, Chiang et al. 2013) on the Kacem_data 

instances(Kacem et al., 2002). The first column reports the instance name. The second 

column is the problem size: the number of jobs×the number of machines. Columns 3-5 

report the results from other studies. Column 6 reports our best makespan over 10 runs of 

EQEA. The success rate is the ratio of the number of those instances whose optimal 

solutions can be sought by an algorithm to the total number of the instances. It can be seen 

that all algorithms obtain the optimal solution with a 100% success rate.  

Table 8 Results for the Kacem_data instances 

Instance  Job×machine Wang et al., 2012b Li et al., 2012 Chiang et al., 2013 EQEA 

Kacem 1 4×5 11 11 11 11 

Kacem 2 8×8 14 14 14 14 
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Kacem 3 10×7 11 11 11 11 

Kacem 4 10×10 7 7 7 7 

Kacem 5 15×10 11 11 11 11 

Success rate 100% 100% 100% 100% 

Wang et al. 2012b: implemented in C++ on a 3.2 GHz Intel Core i5 processor 

Li et al. 2012: implemented in C++ on a Pentium IV 1.8 GHz with 512 M memory. 

Chiang et al. 2013: not given 

 

Table 9 reports the results of the BR_data instances (Brandimarte, 1993). Results from 

Hmida et al.(2010), Pezzella et al.(2008), Wang et al. (2012), and Gao et al.(2008) are 

compared with the EQEA, respectively. The table has a similar structure as Table 8, except 

that the third column reports the lower bound and the upper bound. It can be found that 

the EQEA has a 90% success rate, whereas the algorithms shown in Hmida et al.(2010), 

Pezzella et al.(2008), Wang et al. (2012), and Gao et al.(2008) achieved success rates of 

90%, 60%, 90%, 90% and 90%, respectively.  

Table 9 Results for the BR_data 10 instances 

Instance  Job× 

machine 

(LB, UB) Hmida et 

al.,2010  

Pezzella  

et al.,2008 

Wang et 

al., 2012b 

Gao et 

al.,2008  

EQEA 

MK01 10×6 (36,42) 40 40 40 40 40 

MK02 10×6 (24,32) 26 26 26 26 26 

MK03 15×8 (204,211) 204 204 204 204 204 

MK04 15×8 (48,81) 60 60 60 60 60 

MK05 15×4 (168,186) 173 173 172 172 172 

MK06 10×15 (33,86) 58 63 58 58 58 

MK07 20×5 (133,157) 139 139 139 139 139 

MK08 20×10 (523) 523 523 523 523 523 

MK09 20×10 (299,369) 307 311 307 307 307 

MK10 20×15 (165,296) 197 212 198 212 212 

Success rate 90% 60% 90% 90% 90%  

Hmida et al.2010: implemented in C on an Intel Core 2 Duo 2.9GHz Personal Computer with 2GB of 

RAM. 

Pezzella F et al.2008: implemented on a 1.8MHz Pentium IV processor 

Wang et al. 2012b: implemented in C++ on a 3.2 GHz Intel Core i5 processor 

Gao et al.2008: implemented in Delphi on a 3.0GHz Pentium. 

 

Table 10 reports the results of the BC_data instances (Barnes et al., 1996). Results of 

Hmida et al.(2010), Gao et al.(2008), and Mastrolilli et al.(2000) are compared with the 

EQEA, respectively. Results show that the EQEA has a 86% success rate, whereas the 
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algorithms shown in Hmida et al. (2010), Gao et al. (2008), and Mastrolilli et al.(2000) 

achieved success rates of 81%, 62% and 86%, respectively.  

Table 10 Results for the BC_data 22 instances 

Instance  Job×machine (LB, UB) Hmida et 

al.,2010 

Gao et 

al.,2008 

Mastrolilli 

et al.,2000 

EQEA 

mt10x 10×11 (655,929) 918 918 918 918 

mt10xx 10×12 (655,929) 918 918 918 918 

mt10xxx 10×13 (655,936) 918 918 918 918 

mt10xy 10×11 (655,913) 906 905 906 905 

mt10xyz 10×12 (655,849) 849 849 847 849 

mt10c1 10×11 (655,927) 928 927 928 928 

mt10cc 10×12 (655,914) 910 910 910 910 

setb4x 15×11 (846,937) 925 925 925 925 

setb4xx 15×12 (846,930) 925 925 925 925 

setb4xxx 15×13 (846,925) 925 925 925 925 

setb4xy 15×12 (846,924) 916 916 916 916 

setb4xyz 15×13 (838,914) 905 905 905 905 

setb4c9 15×11 (857,924) 919 914 919 919 

setb4cc 15×12 (857,909) 909 914 909 909 

seti5x 15×16 (955,1218) 1201 1204 1201 1201 

seti5xx 15×17 (955,1204) 1199 1202 1199 1199 

seti5xxx 15×18 (955,1213) 1197 1204 1197 1197 

seti5xy 15×17 (955,1148) 1136 1136 1136 1136 

seti5xyz 15×18 (955,1127) 1125 1126 1125 1125 

seti5c12 15×16 (1027,1185) 1174 1175 1174 1174 

seti5cc 15×17 (955,1136) 1136 1138 1136 1136 

Success rate  81% 62% 86% 86% 

Hmida et al.2010: implemented in C on an Intel Core 2 Duo 2.9GHz Personal Computer with 2GB of 

RAM. 

Gao et al.2008: implemented in Delphi on a 3.0GHz Pentium. 

Mastrolilli et al.2000: implemented in C++ on a 266 Pentium. 

Table 11 reports the results of the DP_data instances (Dauzère-Pérès et al., 1997). The 

results from Hmida et al.(2010), Gao et al.(2008), and Mastrolilli et al.(2000) are compared 

with the EQEA, respectively. The EQEA achieves a success rate of 83%, whereas the 

algorithms of Hmida et al. (2010), Gao et al. (2008) and Mastrolilli et al. (2000) had 89%, 61% 

and 67.7%, respectively.  

Table 11 Results for the DP_data 18 instances 

Instance  Job× 

machine 

(LB, UB) Hmida et 

al.,2010 

Gao et 

al.,2008 

Mastrolilli 

et al.,2000 

EQEA 
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01a 

10×5 

(2505,2530) 2518 2518 2518 2518 

02a (2228,2244) 2231 2231 2231 2231 

03a (2228,2235) 2229 2229 2229 2229 

04a (2503, 2565) 2503 2515 2503 2503 

05a (2189, 2229) 2216 2217 2216 2216 

06a (2162, 2216) 2196 2196 2203 2196 

07a 

15×8 

(2187, 2408) 2283 2307 2283 2305 

08a (2061, 2093) 2069 2073 2069 2069 

09a (2061, 2074) 2066 2066 2066 2066 

10a (2178, 2362) 2291 2315 2291 2291 

11a (2017, 2078) 2063 2071 2063 2065 

12a (1969, 2047) 2031 2030 2034 2031 

13a 

20×10 

(2161, 2302) 2257 2257 2260 2257 

14a (2161, 2183) 2167 2167 2167 2167 

15a (2161, 2171) 2165 2165 2167 2165 

16a (2148, 2301) 2256 2256 2255 2255 

17a (2088, 2169) 2140 2140 2141 2140 

18a (2057, 2139) 2127 2127 2137 2127 

Success rate  89% 61% 67.7% 83% 

 

To conclude, results of the tests on the Kacem_data (Kacem et al., 2002) prove that the 

perfect convergence speed of the EQEA, On the other hand, the results of the tests on the 

BR_data (Brandimarte, 1993), BC_data (Barnes et al., 1996) and the DP_data 

(Dauzère-Pérès et al., 1997) show good exploration and exploitation ability of the EQEA. 

Fig.10 includes four figures comparing the success rates on the four group benchmark 

instances. Those comparisons show the outstanding performance of the EQEA.  

 

(a) Success rates on Kacem_Data    
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(b) Success rates on BR_data 

 

(c) Success rates on BC_data 

 

(d) Success rates on DP_data 

Fig. 10. Comparison of success rates on different benchmark instances 
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4.2.4 Comparing the convergence speed 

Table 12 compares the CPU computing time in seconds based on the Kacem_data 

(Kacem et al., 2002) with the EQEA and the one developed by Wang et al. (2012). The 

results show that the EQEA outperforms the algorithm developed by Wang et al. (2012). 

Table 12 The comparison of computing time (s) 

Instance Job×machine Wang et al., 2012b EQEA 

Kacem1 4×5 0.01 0.008 

Kacem2 8×8 0.23 0.122 

Kacem3 10×7 0.3 0.071 

Kacem4 10×10 0.42 0.347 

Kacem5 15×10 14.88 9.694 

4.2.5 Comparing the two technologies for diversity 

From the comparison of the success rate (Section 4.2.3) and the convergence speed 

(Section 4.2.4), it can be concluded that the proposed EQEA yields good performance. 

Compared with other algorithms, the EQEA adopts two technologies---the niche technology, 

and an energy-jumping local search---to increase diversity of the solutions. Another 

interesting question is which component makes a better contribution to the performance. 

To cater to such an interest, we conduct some more experiments to analyze the impact of 

these components. 

The first experiment is to analyze the impact of the niche technology. We delete the 

niche technology from the EQEA and run this new EQEA 10 times. The iterations that the 

optimal solution (makespan=204) appears and the total computing time (200 iterations) 

are listed in columns 2 and 3 in Table 13. The second experiment is to analyze the impact of 

the local search. Similarly, we delete the local search from the EQEA and run this new EQEA 

10 times. The iterations that the optimal solution (makespan=204) appears and the total 

computing time (200 iterations) are listed in columns 4 and 5. The results of EQEA 

(makespan=204) are listed in columns 6 and 7 to make a comparison. Their average value is 

listed in the last row. One can see that it takes 36.6 iterations and 22 iterations on average, 

respectively, when there is no niche technology or local search. Hence, it can be concluded 

that the niche technique influences the convergence speed of EQEA more than the local 
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search algorithm. This is due to the extent to be affected by these two technologies. The 

niche technology is executed on the whole population and the local search is only executed 

on the local best individual. 

Table 13. Comparison of the two technologies for population diversity 

No. No niche No local search EQEA 

iterations time iterations time iterations time 

1 4 73.74 17 62.22 7 69.63 

2 18 65.83 47 63.98 25 68.64 

3 13 65.17 8 63.06 18 63.35 

4 104 65.04 53 62.77 1 64.47 

5 14 65.02 21 62.99 5 64.49 

6 6 64.64 45 63.01 10 64.04 

7 127 64.71 7 63.43 19 64.26 

8 53 64.65 5 63.56 4 65.19 

9 17 65.36 13 62.98 9 64.46 

10 10 65.44 4 62.82 2 62.81 

average 36.6 65.96 22 63.082 10 65.134 

5. Conclusions 

In this study, a new fast algorithm that integrates the quantum-inspired evolutionary 

algorithm with the elitist strategy was developed to solve the FJSP. Two novel methods were 

proposed to increase the diversity of the population: one is the niche technology conducted 

on the whole population aiming to reduce the similarity among individuals, and the other is 

a new local search technology, inspired by the motion mechanism of the electrons around 

an atomic nucleus, conducted on the elitist individual. The local search comprises three 

energy-jumping algorithms aiming at exploiting a better neighbor solution. The 

performance of the proposed approach was assessed on well- known benchmarks. The 

results show the proposed approach can solve the FJSP more efficiently and effectively than 

those compared in this paper.  
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In addition, to the best of our knowledge, this is the first reported application of the 

quantum-inspired evolutionary algorithm to solve FJSP. In the future, it will be interesting 

to investigate on the following issues: 

1) to improve the local search process; 

2) to develop multi-objective EQEA to solve the FJSP with multi-objectives; and 

3) to explore more practical constraints such as the random breakdown or the 

preventive maintenance activities. 
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