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Abstract

Interactions between light and matter during short-pulse laser materials processing are highly nonlinear, and hence acutely
sensitive to laser parameters such as the pulse energy, repetition rate, and number of pulses used. Due to this complexity,
simulation approaches based on calculation of the underlying physical principles can often only provide a qualitative under-
standing of the inter-relationships between these parameters. An alternative approach such as parameter optimisation, often
requires a systematic and hence time-consuming experimental exploration over the available parameter space. Here, we apply
neural networks for parameter optimisation and for predictive visualisation of expected outcomes in laser surface texturing
with blind vias for tribology control applications. Critically, this method greatly reduces the amount of experimental laser
machining data that is needed and associated development time, without negatively impacting accuracy or performance. The
techniques presented here could be applied in a wide range of fields and have the potential to significantly reduce the time,

and the costs associated with laser process optimisation.
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Introduction

Femtosecond lasers allow material processing with
extremely high precision (Mills et al. 2014; Misawa
et al. 2000; Momma et al. 1997), due to the relatively small
heat affected zone from each pulse (Le Harzic et al. 2002).
However, nanosecond lasers offer a more cost-effective solu-
tion and higher material removal rates (Neuenschwander
et al. 2013; Ren et al. 2005). Although exact cost differ-
ences are challenging to determine, both due the unique
set-up requirements and developments in technology, the
number of photons produced per second per dollar cost has
historically been higher for nanosecond, as compared to
femtosecond, lasers. Any method that allows a nanosecond
laser to achieve machining quality that is comparable with
that of femtosecond systems would be highly desirable as it
offers a route to greatly reduce manufacturing costs.
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Many laser machining tasks that are currently carried out
on femtosecond systems could, in principle, be achieved
with nanosecond lasers. However, due to the nonlinear
dependence on laser machining parameters (pulse energy,
repetition rate, number of pulses (Cheng et al. 2009; Grant-
Jacob et al. 2014; Lorbeer et al. 2017)) this may require
extremely precise and repeatable parameter control. The
domain of parameters where such high-quality machining
can be achieved on a nanosecond system may be very narrow,
and hence very challenging to identify without a detailed sys-
temic experimental exploration. Nevertheless, the potential
cost savings mean that for any given laser machining task, it
is worth exploring the feasibility of using nanosecond pulses
before deciding that femtosecond machining is required.

Given that there may be multiple laser parameters,
a systematic experimental exploration can be very time-
consuming, and hence not feasible. For example, 3 inves-
tigated laser parameters, with 10 possible different values
each, corresponds to 1000 total measurements, extending to
1 million combinations if there were instead 100 possibilities
for each input value. In addition, this process would have to
be repeated for any change in laser or material conditions,
for example laser beam quality, or a different material type.
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A systematic experimental approach may be forced then to
discard certain regions of the parameter space, introducing
the risk of human bias. Therefore, a systematic experimental
approach may tend to eliminate high laser pulse energies,
high laser frequencies or a combination of both from the
parameter space. However, it will be shown here that the
use of high repetition rates is in fact required to achieve the
desired machining quality with nanosecond pulses.

One method of finding optimal process parameters for
any experiment is the gradient search method, where the
mismatch between actual machining quality and desired
machining quality is minimised through changing the value
of one parameter at a time. This will certainly lead to a mini-
mum, but due to the nonlinear nature of the parameter space,
is extremely unlikely to be a global minimum. In addition, if
there are only very few possible parameter combinations that
will offer the required quality, then such a solution is unlikely
to be found by a gradient search method, and instead a sys-
tematic experimental exploration will still be needed.

Alternatively, if the entire laser machining process could
be modelled (i.e. starting from equations that accurately
describe all interactions between light and matter) then
the optimal parameter configuration could theoretically be
determined directly, without the need for any experimen-
tal optimisation. Unfortunately this approach is generally
not effective, as many approximations have to be made
to simplify such modelling and simulations of light-matter
interaction rapidly become computationally intractable when
the model size is increased to represent experimentally use-
ful scale dimensions (Mazhukin 2017). It is also challenging
to include subtle effects such as imperfections in the beam
quality or sample surface in such a simulation (Otto et al.
2012). Furthermore, to achieve sufficient accuracy it may be
necessary that the model incorporates complexities such as
chemical reactions, plasma generation, and multiphoton laser
interactions along with many more; typically, this is not pos-
sible and in reality, some important contributing processes
may even be unknown.

A novel alternative to all above, and one that is rapidly
gaining traction across academia and industry, is the applica-
tion of neural networks to produce a simulation of a complex
system directly from a small experimental dataset (Feng
et al. 2019; Zhang and Ling 2018). This approach has been
shown to be extremely effective at simulating laser machin-
ing (Heath et al. 2018; Heath et al. 2018; Mills et al. 2018),
and is considerably faster in terms of computation speed.
Neural networks have demonstrated the capability to learn
and simulate physical phenomena such as the optical diffrac-
tion limit directly from experimental data and without the
need for inclusion of any equations that describe the under-
lying physics (Mills et al. 2018). Artificial neural networks
(ANNS) are therefore an attractive method for simulating
laser machining. One particular advantage is that any experi-
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mental subtleties that are present in the training data, such as
inhomogeneities in the laser beam shape, are automatically
included in the simulation.

ANNS are an area of machine learning inspired by biologi-
cal neural networks. Fundamentally, they consist of an input,
an output, and some number of hidden layers. These layers
are of nodes which are referred to as neurons. In an ANN the
input and output is a vector, with each hidden layer consisting
of neurons that each act as a non-linear function acting on all
inputs. In general, ANNs are fully connected, meaning that
each neuron in one layer is connected to each neuron in the
next layer, all the way until the final layer. The variables asso-
ciated with each neuron of an ANN are generally randomly
initialised and later automatically updated (referred as train-
ing the network) by a technique knowns as backpropagation
(Werbos 1974). This process uses known input—output train-
ing pairs, where the ANN sequentially processes a training
input and generates an output, which is then compared to the
associated output training data component. The difference
between the generated and the real output is determined, and
the ANN parameters are automatically modified accordingly.
A loss function, such as mean squared error, is often used to
measure this performance. The mathematics behind ANNs
and their training can be found in the book ‘Deep Learning’
by Goodfellow et al. (2016).

Previous work in this field generated a model that relates
dimple depth and diameter to the pulse energy used (Yousef
et al. 2003). In this work one ANN takes the numerical val-
ues for the dimple depth and diameter as inputs and predicts
the pulse energy needed to achieve this. A second ANN then
takes the same inputs as the first, along with the predicted
pulse energy and then outputs the expected standard deviation
in both depth and diameter. Casalino et al. (2017) and Cam-
panelli et al. (2013) also show good applications of ANNs to
determine machining characteristics, although the parameter
space used was small and each ANN was used to predict a
single parameter. Teixidor et al. (2015) investigated the per-
formance of a wide range of machine learning techniques
mainly focussing on discrete variables rather than contin-
uous. Two additional machine learning methods were also
investigated as part of this experiment: the Gaussian process
and support vector machines. These techniques were found
to provide inferior results, and the relative accuracies of the
three techniques will be discussed alongside the machine
learning methodology.

Neural networks have also been used to monitor image
based processes using a style of network called convolutional
neural networks (CNNs). Gonzalez-Val et al. (2020) per-
formed experiments in laser metal deposition and welding to
determine machining quality via two different metrics. They
determined that it would be possible to create in in line defect
detection system, allowing for early correction of errors. Kim
et al. (2018) performed a more general investigation into
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smart manufacturing as a field. While very high level, their
work found ANNs and support vector machines to account
for the most promising areas as long as care is taken with the
input parameters. Penumuru et al. (2020) also looked into
how machine learning could be incorporated into the manu-
facturing paradigm of industry 4.0 (Mittal et al. 2019). Their
work looked at a material classification problem and com-
pared several methods including support vector machines
and logistic regression, along with the VGG-16 deep CNN
(Simonyan and Zisserman 2015). Out of the methods tested
they found that support vector machines performed best, with
the deep neural network being too computationally intense.

The use of neural networks has also been extended to other
areas of laser manufacturing, such as laser welding (Asif et al.
2020; Guinther et al. 2014, 2016), additive manufacturing (Li
et al. 2020; Mahato et al. 2020; Mycroft et al. 2020), and a
method to reconstruct laser pulses (Zahavy et al. 2018). Here,
we extend on both these, and previous (Arnaldo et al. 2018),
works in the area of laser surface texturing.

Here we demonstrate the application of neural networks
for identification of the optimal laser parameters for machin-
ing microscale blind holes (referred to here as dimples). Our
motivation for this paper is to firstly show that the neu-
ral network predictions are accurate (which we demonstrate
comprehensively in Table 2 and Fig. 4) and secondly to
explore the methodology for detailed investigation of the neu-
ral network predictions and to illustrate the flexibility of this
approach, an example of which can be seen in Fig. 6. We also
demonstrate the ability of generative neural networks to gen-
erate surface profiles that can recreate the height map of the
experimental results, allowing for further investigation. This
manuscript provides, for the first time, a comparison between
ANN and GAN modelling approaches for the optimisation
of laser machining, highlighting the capabilities of each tech-
nique and contrasting these with the conventional approach
of making a complete, systematic, experimental parameter
sweep. There are two performance criteria that each dim-
ple must meet, which relate to the depth of the crater and the
height of redeposited material, referred to here as the ‘crown’
height. Each dimple crater must be deeper than 4 pm, and
the crown height should be minimised.

Arrays of dimples, with minimised crowns, are widely
used to reduce surface friction, minimise wear and therefore
extend lifetime of critical mechanical components (engine
cylinder liners, pistons, bearings, etc.) (Mezzapesa et al.
2013; Qu et al. 2014; Sakai et al. 2007; Scaraggi et al. 2014).
Fabrication of such surfaces is relatively simpler when using
femtosecond lasers, due to the considerably reduced heat-
affected zone (Sakai et al. 2007). Here, we show that neural
networks can provide the methodology for identification of
the particular laser parameters that enable the fabrication of
anti-friction surfaces using nanosecond pulses, despite the
fact that they offer considerably less precision and a larger

heat-affected zone. Throughout this manuscript, the termi-
nology used will adhere to the standards set out by Stegemann
and Buenfeld (1999). This states that the data used to evalu-
ate the network performance during training but not used to
update weights is the validation set. The test dataset is held
separate from this and used for comparison once the network
had been fully trained, and in this case was held by Oxford
Lasers.

Experimental methods

The proposed methodology was to collect laser machining
data for a limited selection of laser parameters, use this data to
train a neural network, and then to query the neural network
in order to identify the optimal parameters for meeting the
criteria for laser machining dimples that are deeper than 4 pum
and which have a minimised crown.

Experimental data collection

The material chosen for this experiment was grey cast iron
DIN GG20 (ATSM A48 n.30) with 20% max ferrite phase
(the remainder being pearlite phase) as it exhibits favourable
tribological and machining properties (Oloyede et al. 2016).
The samples were laser machined using an ytterbium fibre
laser, M2 < 1.8, operating at a central wavelength of 1060 nm
and with a pulse duration of 0.17 ns. The laser beam passed
through a beam reducer and was focused down to a spot size
of 36 wm diameter (at 1/e* value of maximum intensity as
measured using the D? method (Liu 1982)) using a lens with
a focal length of 100 mm. The material itself was formed
into cylindrical sections cut into 30° segments. 5-axes stages
accurate to 2 um were used to control machining of the inner
surface of the cylindrical segment. There was also control of
the optical axis via galvanometric mirrors combined with f-
theta lenses. After the dimples were machined, the resultant
surface profile was supplied as a 2D array of heights consti-
tuting a height map. The set-up is shown in full in Fig. 1.
The laser repetition rate was adjusted in the range 10 to
1200 kHz (maximum output frequency possible), the laser
pulse energy from 5 to 50 pJ, and the number of incident
laser pulses on target was chosen to be between 50 and 400.
These values are summarised int Table 1. For each input
parameter combination, there were up to 5 associated 3D
profiles. Due to random fluctuations in experimental condi-
tions, such as those associated with laser pulse energy and
beam quality, each of the output profiles were slightly dif-
ferent. The training data therefore included cases where the
same input parameters corresponded to different output pro-
files. Topographies of the resulting laser-machined surfaces
were measured via confocal microscopy and some example
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Fig. 1 Laser machining set-up

Table 1 Full range of parameters for investigation

Minimum value Maximum value

Pulse energy (nJ) 5 50
Number of pulses 50 400
Repetition rate (kHz) 10 1200

datais shown in Fig. 2. This gave 170 total combinations with
884 individual dimples, 155 of the combinations were then
randomly chosen to form the training set, with the remainder
being the validation set.

Although the network was trained on each individual data
point, with multiple 3D profiles per parameter combina-
tion, some contaminated data was removed. An example of
such contamination includes areas with considerable exter-
nal debris where the recorded height did not accurately match
the height of the crown. This, in combination with the fact
that that there were multiple measurements taken for each
parameter combination meant that the effect of non-Gaussian
noises, which can cause issues (Stojanovic and Filipovic
2014; Stojanovic and Nedic 2016) was minimised.

Machine learning methodology

The ANN used in this work was constructed using a series
of three identical blocks followed by two dense layers (also
known as fully connected layers) and a final activation layer
as can be seen in Fig. 3. Each of the dense blocks consisted
of a dense layer with 256 neurons and a leaky ReL.U activa-
tion layer. This was then followed by a 50% dropout layer
and a batch normalisation layer. The output layer consisted
of a further dense layer with 256 neurons and leaky ReLU
activation. A dense layer with 2 neurons and a ReL.U acti-
vation that formed the output from the network which was
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optimised using the Adam optimiser (Kingma and Ba 2014).
The learning rate was chosen specifically in order to ensure a
balance between convergence speed and accuracy. As abso-
lute speed of training wasn’t the primary goal, a lower than
average learning rate of le—5 was chosen. The output from
the neural network was a two-value vector containing crown
height and dimple depth measured in microns. The crown
height was defined as the 99th percentile of the height map,
whilst dimple depth was defined as the 1st percentile of the
height map. Removed volume is defined as the total volume
that is enclosed by the plane where height = 0 wm (the sur-
face prior to laser machining) and the inner surface of the
dimple.

Training of the neural network took approximately 5 min.
In order to determine the predictive capability of the neural
network, 18 of the 155 original parameter combinations were
withheld from the training process for later use as a validation
data set. Once trained, the neural network was used to predict
the crown height for combinations of laser parameters that
corresponded to data in the validation data set.

A comparison of the neural network prediction for crown
height, along with the matching experimental data from the
validation data set, is shown in Fig. 4a. In the majority of
cases, the predicted crown height is very close to the exper-
imentally observed value. Of particular interest to this work
is how the prediction accuracy varies as a function of the
number of experimental data points in the training dataset.
This relationship is shown in Fig. 4b, where subsets of differ-
ent sizes were produced by randomly selecting the required
number of samples from the training data pool. When the
training subset contains a high number of parameter combi-
nations strong agreement with the validation data is shown,
with errors as low as 13%. This is comparable to the standard
deviation of the whole experimental dataset at 12.8%, hence
demonstrating that the neural network had indeed encapsu-
lated the multidimensional trends present in the experimental
data. Interestingly, while it is well known that generally
more training data would result in higher accuracy this plot
suggests that might not always be the case. In fact, if a
20% error in NN prediction is considered acceptable for the
laser machining process, then a dataset that contains only 70
parameter combinations is adequate and can be as effective
as one containing almost twice that number. When evaluating
the efficacy of a reduced number of training data combina-
tions, a randomly chosen subset of the complete training data
set was used for training, and therefore all data on the fig-
ure corresponds to a single experiment. This meant that each
data point from each chosen combination was seen by the
network during training, leading to approximately 5 times
as many data points as parameter combinations. Crucially,
due to the random nature of the subset of data chosen, the
70 combinations will have had a similar range to the origi-
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nal data, allowing the network to train over the full range of
inputs.

Both the Gaussian process and support vector machines
were investigated in order to draw a comparison with the
ANN for this task. For the Gaussian process a single model
was used to predict both the crown height and the depth. The
best performing kernels were the radial-basis function (RBF)

Dense Dropout Batch
Layer P Normalisation

Output
Block

and rational quadratic kernels with mean errors of 36.1%
and 32.0% respectively when predicting the crown height of
the validation dataset. The support vector machine method
performed better, although required two separate models to
predict both the crown height and depth. The best perform-
ing kernel was the RBF kernel with a mean error of 24.4%
when predicting the crown height of the validation dataset. In
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Table 2 Comparison of machine

Testing Index

Number of Training Combinations

learning techniques Neural network Gaussian process Suppgrt vector
machine
Fully connected Radial basis Rational quadratic ~ Radial basis
network function function
Mean percent error  13.0 36.1 32.0 24.4

addition to the higher error, the model also predicted several
negative values for depth and crown height. These results are
summarised in Table 2 and indicate that the ANN provided
superior accuracy for the prediction of the crown height of
the machined dimples.

In general, neural networks are only considered to be
suitable for making predictions that require interpolation
between the training data values, as they can have unde-
fined behaviour for extrapolation outside of these bounds. For
this dataset, if, rather than having to meet a minimum depth,
the only requirement was to minimise the crown height, the
neural network inferred that all of the parameters (repeti-
tion rate, pulse energy, and number of pulses) should be
minimised to their smallest possible values. Of course, this
does indeed result in minimisation of the crown height, since
no laser machining will occur but is not a particularly help-
ful outcome. This result reinforces the fact that the criteria
for optimisation must be carefully selected and accurately
defined.

Justification for ANN structure

There are many hyper parameters (such as learning rate, num-
ber of training epochs, and network size) that can be adjusted
to fine tune ANN performance and hence improve their speed
and accuracy. In general, larger networks will have a better
final accuracy, although they will often take longer to train
and may result in overfitting on small datasets. To ensure
that the ANN used was suitable for the dataset, ANNs of dif-
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ferent sizes were trained for a fixed number of epochs, and
the accuracy investigated. Figure 5 shows the results from
this investigation, with the percentage error of the validation
data displayed against the number of neurons in each layer
of the network. As expected, as the number of neurons was
increased, the percentage error decreased nonlinearly, with
a network with 512 neurons only being 0.8% more accurate
than one with 256. At 512 neurons per layer there was also
small evidence of overfitting as the validation loss increased
to 0.5% above that for the 256 neuron network. Regarding
the time required for training, the network size was not usu-
ally the limiting factor to the time required to train, with the
512 network taking 5 min 4 s, with the others taking approx-
imately 4 min 40 s. Due to these factors the network was
chosen to have 256 neurons per layer.

During this test each size of ANN was trained 10 times
using unique random initialisations for each training run,
proving the error in the results seen in Fig. 4. When using
only 10 neurons per layer the standard deviation in the final
error of the network was 5.8%, reducing to 1.1% for the 256-
neuron network used. This shows that performance of the
network used was largely independent of the initialisation
state of the network, particularly as the size of the network
was increased.

Parameter optimisation by neural network

In traditional optimisation tasks, many complex algorithms
are employed (Desiré et al. 1978) such as ones inspired
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by nature (Prsi¢ et al. 2017; Stojanovic et al. 2016). How-
ever, once trained, interrogating the neural network (to
retrieve crown height and dimple depth predictions) only took
0.77 ms per parameter combination, and hence a detailed
parameter scan, of 50*50*50 = 125,000 predictions, took
less than 100 s. While this method is quick and effective it
will not find a true optimum, only the best out of the sampled
positions. Indeed, no method which is not explicitly equation-
based will be able to find a true optimum position in a fully
continuous parameter space, as a better solution with higher
precision could always be found. However, in the examined
experiment, the parameter space is not truly continuous as,
for example, the number of pulses used must be an integer.
Even seemingly continuous parameters such as pulse energy
have a degree of uncertainty and so the network could indeed
be used to find an optimal combination to that precision.

The parameter scan was performed over the full range of
each parameter as described in Table 1: laser pulse energy
from 5 pJ to 50, number of pulses from 50 to 400, and the
pJ repetition rate from 10 to 1200 kHz. Of these predictions,
the parameter combination that yielded the smallest crown
height but still satisfied the minimum dimple depth of 4 um
was determined to be optimal (best). Table 3 shows this opti-
mal prediction, along with the three best experimental data
values in the available data set. The table shows that in all
cases the repetition rate is kept at or close to the maximum
allowed value of 1200 kHz. A similar condition can be seen
with the number of pulses where all bar one of the optimal
experimental results use 400 pulses. The only result not fol-
lowing this trend is the 3™ best experimental data point. This
result shows that a similar crown height can be achieved by
reducing the repetition rate, the number of pulses and the
pulse energy, although this also results in low dimple depth.
Pulse energy in contrast shows a distinct trend with greater
pulse energy leading to increased crown height.

As the accuracy of the network has been shown in Table 2,
further predictions could be made on the relationship between
parameters that fall outside the combinations taken dur-

Neurons per Layer

ing experimentation. The predicted trade-off between crown
height and number of pulses (Fig. 6a) is particularly inter-
esting as fewer pulses with a constant repetition rate equates
to shorter machining times and hence to lower fabrication
costs. As the number of pulses increases, the minimum crown
height decreases approximately linearly down to around
360 pulses. Beyond this point there seems to be no further
improvement. This data makes it easy to determine how the
machining time affects the quality of the machined dimple
and could prevent unnecessarily long machining times with
diminishing returns in terms of part quality.

Each data point in Fig. 6b was produced by fixing the
number of pulses to a particular value and then querying the
NN for the optimal combination of the remaining parame-
ters that would provide the crown height shown in Fig. 6a.
It was found that, as the number of pulses is reduced, the
NN generally predicts that pulse energy must be increased.
This gradient is shallowest for high numbers of pulses where
the repetition rate is increased to compensate. This occurs
until ~350 pulses where the repetition rate cannot be further
increased and improvements in crown height are also seen to
end. The pulse energy needed for low numbers of pulses is
double that for high numbers while the repetition rate stays
within 20% of the maximum. To reduce machining time,
high repetition rates are desired along with low numbers of
pulses, however the repetition rate is already at its maximum
for many positions, and where it is lower the effect is smaller
than that cause by reducing number of pulses.

Predicted relationship between parameters

Neural networks can help us to understand the relationships
between parameters. From the NN predictions, Fig. 7 shows
the effect of changing a single parameter, whilst holding the
other two parameters constant at values corresponding to
the optimal prediction in Table 1. Figure 7 therefore shows
dimple depth and crown height change for varying (a) rep-
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Table 3 Optimal (best) parameters predicted by the neural network compared to experimental data values that had the lowest crown while maintaining

a dimple depth of 4 um

Repetition rate (kHz) Pulse energy (uJ) Number of pulses Dimple depth (um) Crown height (um)
Prediction by NN 1200 7.62 364 4 1.26
Best from data (1st) 1200 7.58 400 4.04 1.29
Best from data (2nd) 1200 10.1 400 5.25 1.62
Best from data (3rd) 1000 8.91 200 4.19 1.63
Best from data (4th) 1200 124 400 4.44 1.74
Flg.§ The predicted effect of a x. b » o oo | 1200
varying the number of laser 18] x X XX
pulses. a The effect on : Xx B %% XX 1175
minimum crown height. b The X 14 Xx XX —
required pulse energy and €7 X . 5 " 1150 ¢
repetition rate to maintain the = *x 21 X X S
minimum possible crown height £ 16 . 2 X % X 1125 %
. )
corresponding to.the same -g‘ Xx"x g % " * 1100 <
number of pulse in a I L5 - X W ]
é . b X X 1075
2 310 XX @
O 144 o e 1050 o
: X XX, X X X o
X . XX XO0KK 1025
y L
131 o XX %
X0 X %3000 | 1000
100 200 300 400 100 200 300 400

Number of Pulses

Number of Pulses

etition rate, (b) pulse energy, and (c) number of pulses. The
orange and blue curves correspond to the dimple depth and
crown height respectively. The horizontal dotted line shows
the 4 wm criteria for dimple depth.

Figure 7a shows that increasing pulse energy increases
both the dimple depth and crown height, the crown height
approximately linearly. The dimple depth however, shows a
point of inflexion at~22 wJ. Clearly, in order to minimise
crown height, the pulse energy must take the smallest value
possible that still satisfies the 4 um minimum depth (i.e. less
than ~ 10 pJ). Figure 7b shows that increasing the number of
pulses from ~ 50 to ~ 200 increases both the dimple depth and
the crown height. As the number of pulses exceeds 200, the
dimple depth continues to increase whilst the crown height
actually decreases. This means that the optimal number of
pulses is close to the maximum investigated value. Figure 7c
shows that with low pulse energy and a large number of
pulses, repetition rates greater than ~600 kHz are needed in
order to produce a dimple depth that is close to the 4 pwm cri-
teria. To actually meet the >4 pm dimple depth requirement,
a repetition rate greater than 1000 kHz is needed. Crown
height is approximately constant for repetition rates greater
than ~ 850 kHz. Repetition rates less than ~ 130 kHz produce
large crown heights and insufficient depth. There is a sharp
increase in dimple depth between ~480 and ~ 600 kHz. Rep-
etition rates greater than 1000 kHz provide suitable values
for both dimple depth and crown height.
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In summary, Fig. 6 shows that pulse energy must be min-
imised, and repetition rate and number of pulses used to
compensate. This section demonstrates that neural networks
can discern and predict complex patterns of behaviour across
multi-dimensioned parameter spaces using only a small num-
ber of experimental measurements.

Predictive visualisation of laser machining

Neural networks also offer the capability for transforming a
set of scalar values into a two-dimensional array. Accord-
ingly, here the neural network was adapted in order to
transform the three-vector input (pulse energy, number of
pulses, and repetition rate) into a two-dimensional array cor-
responding to the predicted surface profile of the sample after
machining with the input parameters. This neural network
therefore offered the capability for predictive visualisation
of laser machining.

The style of network used was a conditional generative
adversarial network (GAN), which uses two competing net-
works to generate high quality images (I. J. Goodfellow
et al. 2014). GANs have been used extensively for a wide
range of tasks such as creating faces (Karras et al. 2019)
domain-changing image-to-image translation (Grant-Jacob
et al. 2019; Isola et al. 2017; Ledig et al. 2017; Ronneberger
et al. 2015; Zhu et al. 2017) and even video synthesis (Ma
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et al. 2017; Wang et al. 2018). A schematic showing how
conditional GANs work can be seen in Fig. 8.

The network used in this work was a variation on a pro-
gressively growing GAN which starts at low resolution and
slowly increases. The input into the generator was the same
vector as used for the ANN along with random noise. There
was an initial series of fully connected layers to create a
latent space from the input, with this being reshaped to form
a stack of 2d layers. This was then followed by a series of
blocks consisting of two convolution layers and a bicubic
up-sampling, with the latent space being up-sampled to be

Loss
Function

Discriminator

e = e = s s mm e mm e mm .-

concatenated with each output except the last as shown in
Fig. 9. This allows for a flexible network where extra blocks
can be added to increase the resolution. Using the network
to simulate the laser machining process only takes 14 ms,
which shows a clear advantage of using a GAN.

Figure 9 demonstrates the ability of the network to sim-
ulate the machining process. Both (a) and (b) are examples
of experimentally measured dimple profiles for two different
parameter sets, while (c) and (d) are GAN-generated profiles
corresponding respectively to the same two sets of machining
parameters. Neither of the parameters used for (a) or (b) were
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Fig. 9 Block schematic of the GAN generator

included in the training data and so these represent unseen
data. The profiles do not match exactly, but that is expected
due to the variance in laser machining, even between experi-
mental examples with the same parameters. One area where
the GAN falls short, is in the sharpness of the profile. The
generated samples are noticeably smoother than the experi-
mental ones and in particular are missing the crown spikes
that can be seen in (b). Despite this they are able to match
the key parameters of the dimples, with very similar crown
height, depth, and diameter. When tested on the same valida-
tion combinations used in Fig. 3a and calculating the crown
height directly from the results of the GAN, the network
had an error of 14.9%, better than both non-NN methods
discussed and only slightly worse than the dedicated ANN
(Fig. 10).

Comparison between numerical
and visualisation techniques

As discussed in the introduction, conventional optimisation
techniques such as gradient search methods and numerical
modelling are powerful tools but not suited to all applications.
In this work, the complex relationships between parameters
means that a gradient search may find a local rather than
global minimum, providing misleading results. This prob-
lem is also not particularly suited to modelling as a large
number of approximations are required, and even then, avail-
able computing time is often a limiting factor. These factors
provide the motivation for applying NNs for this work.

The two methods discussed in this work have a number
of advantages and disadvantages when compared with each
other, and each clearly is more suitable for different applica-
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tions. The biggest advantage of the ANN is its size and speed,
with the network used here being trained in 4 min 40 s on a
desktop PC with an Intel Core 17-7700, 32 GB of RAM and
an NVidia Titan X GPU. Importantly this time only increased
to 5 min 12 s on a laptop with an Intel Core i5-3210 M 8 GB
of RAM and no graphics card. While a high-end consumer
graphics card was used in this case, the results could have
been duplicated using just a CPU without a large impact on
the training time. Interrogation of the network was performed
on a CPU demonstrating that specialised hardware was not
required for this type of network. ANNs are generally very
reliable in producing accurate results with complex data, pro-
vided sufficient training data is provided. Best used when a
single question needs answering and has numerical input and
output but trends are not easy to predict or visualise.

The GAN, on the other hand, took far longer to train and
required the use of the high-specification GPU. The same is
true for inference where a GPU with comparable RAM would
be needed to run the network. They are, however, very pow-
erful tools that can be used to reproduce experiments and
their results giving them great flexibility. This is especially
apparent when multiple questions must be asked of the net-
work. In this case, for example, if the definition of the crown
height was to change, the ANN would have to be completely
retrained, while the results of the GAN could be immediately
interpreted to provide new the information.

Therefore, where computational time and absolute accu-
racy of a single result are the main goals of the network, an
ANN is likely the preferred choice. However, as discussed
above, a GAN has the potential for being a more flexible and
comprehensive analytical tool.
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Fig. 10 Visualisation of experimental dimples. a Experimental data
machined with a repetition rate of 10 kHz, pulse energy 47.17 nJ and
200 pulses. b Experimental data machined with a repetition rate of

Conclusions

Neural networks offer the capability for accurate interpo-
lation across multidimensional space, when provided with
limited data points. In this work, this principle has been
applied to laser machining of blind dimple craters in metallic
surfaces for friction reduction, in order to provide a pre-
cise optimisation of laser parameters without the need for
a systematic experimental exploration of the entire parame-
ter space. Finally, we have demonstrated a GAN that achieves
realistic, predictive visualisation of the surface topology of
laser machined features directly from numerical data describ-
ing the input laser parameters.

In this proof-of-principle demonstration we have devel-
oped and examined the methodology for optimising hyper-
parameters through the specific example of optimising the
hyperparameter corresponding to the number of neurons at

(d)
s §
0 %
4 P
_8 I

20
’7)/( rOn$40

60

1200 kHz, pulse energy 12.41 pJ and 100 pulses. ¢ GAN predicted
profile with the same machining parameters as (a). d GAN predicted
profile with the same machining parameters as (b)

each layer. The techniques demonstrated here can equally be
applied to the other hyperparameters, such as the leaning rate,
dropout value, and layer specific activation functions. Fur-
thermore, the techniques discussed here could be expanded
to include additional experimental parameters such as the
pulse duration, wavelength and polarisation. In addition, this
proof of principle demonstration could be applied to many
other processes across the additive and subtractive laser-
based manufacturing application space.
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