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Abstract
This paper presents a smart supervisory framework for a single process controller, designed for Industry 4.0 shop floors. This 
digitization of a full supervisory suite for a single process controller enables self-awareness, self-diagnosis, self-prognosis, 
and self-healing (by definition, these "self" elements are missing from other supervisory frameworks diagnosing numerous 
controllers in parallel). The proposed framework is aligned with the concept of a Cyber Physical System (CPS), since its 
implementation generates a rich cyber physical entity of the controlled process. This CPS entity can either be considered as 
the process digital twin, or can provide a solid basis for generating it. Finally, the framework includes the main character-
istics of Industry 4.0, such as advanced use of Artificial Intelligence (AI) and big data analysis. The framework is based on 
four modules: (1) Control and Awareness module—performing both continuous process control and adjustments, as well 
as machine learning (ML) and statistical process control (SPC) for identifying abnormalities that require further diagnosis; 
(2) Process -diagnosis module—performing continual (recurrent) analysis of the process state and trends; (3) Prognosis and 
Healing module—performing prognosis and automated intervention via parameter changes, re-configurations, and automated 
maintenance; (4) External Interaction Platform—an interactive module for interfacing with experts, presenting them with 
the process analysis information and obtaining feedback from them as part of a learning process. Using an implementation 
showcase to illustrate the methodological framework’s applicability, we demonstrate its real-world potential. The proposed 
framework could serve as a guide for implementing smart process control and maintenance systems in Industry 4.0 shop 
floors. It could also provide a firm basis for comparison with future suggested frameworks. Future research directions could 
include pursuing improvements to the proposed process control framework and validating the framework by case studies of 
its implementation.

Keywords  Industry 4.0 · Intelligent manufacturing · Predictive maintenance · Self-awareness · Automatic process control · 
Process diagnosis · Self-healing · Statistical process control · Automated process control

Introduction

The advent of Industry 4.0 (e.g., Moeuf et al. 2018) and 
the coming of age of the internet of things (IoT), artificial 
intelligence (AI), and machine learning (ML) (Cohen et al. 
2019b) have created a major opportunity for integrating 
smart control and maintenance of manufacturing processes 
(Cohen et al. 2019a; Lu et al. 2016; Voisin et al. 2018; Zheng 
et al. 2018; Zhong et al. 2017a, 2017b). A framework for the 

sustainable control and maintenance of production equip-
ment would contribute to the efficiency of these advanced 
manufacturing systems (Jasiulewicz-Kaczmarek and Gola 
2019).

Many researchers advocate for such an undertaking (e.g., 
Akkermans et al. 2016; Bokrantz et al. 2019; He et al. 2019; 
Kumar and Galar 2018; Lu et al. 2016) and many papers 
have suggested frameworks that integrate monitoring, con-
trol and maintenance (see Table 1). However, recent rapid 
advances in technology create a need for an updated model 
that is fully aligned with current Industry 4.0 concepts and 
technologies.

This paper presents a smart, holistic, process-controller 
framework, designed for current Industry 4.0 shop floors. 
The framework spans the monitoring, control and mainte-
nance of a single, smart, process controller. The framework 
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is described as a complete package that contains all the mod-
ules for a single controller. It is therefore implemented as a 
unified control solution. In such a setting, the issues of inter-
operability, data/information, representation, and exchange 
formats are related to the single controller interface with 
the external digital world. Consequently, a special smart 
gateway deals with these issues, as discussed and explained 
in “Discussion on implementation and validation” section.

The big challenge is devising a framework compatible 
with Industry 4.0 and Cyber Physical Systems (CPS) con-
cepts and practices. Examples of Industry 4.0 and CPS con-
cepts are: self-awareness, self-diagnosis, self-prognosis, and 
self-healing. Examples of these practices are the use of arti-
ficial intelligence (AI) techniques such as machine learning 
(ML) and case-based reasoning (CBR), the use of internet 
of things (IoT) communications, the use of digital twins, and 
the use of predictive maintenance.

It is assumed that a holistic framework compatible 
with the above Industry 4.0 concepts, and practices can be 
devised, which includes the following six components: (1) 
automatic process control (APC); (2) statistical process con-
trol (SPC); (3) recurrent machine learning (RML); (4) smart 
process diagnosis; (5) smart process prognosis for predictive 
maintenance and intervention; (6) interaction platform with 
humans, the manufacturing system, and external IoT.

Several other frameworks have proposed some parts of 
this suggested approach, and each of them has its limita-
tions and drawbacks. Saif et al. (2011) suggested a fuzzy 
integrated Statistical Process Control/Automated Process 
Control (SPC/APC) scheme for controlling process qual-
ity and robustness. However, the scheme did not include 
any maintenance aspects, and fuzzy implementation is not 

suitable for many (if not most) SPC/APC systems. Ben-Gal 
and Singer (2004) and Singer and Ben-Gal (2007) proposed 
an SPC methodology based on Markov models and context 
modeling of finite-state processes with engineering process 
control (EPC) to monitor nonlinear and finite-state processes 
that often result from feedback-controlled processes. Sid-
diqui et al. (2015) illustrated the integration of SPC and EPC 
into a heating process, but the proposed framework only 
enabled low-level control over the process. The frameworks 
described by both Algabroun et al. (2017) and Mishra and 
Mungi (2018) were extremely general. For example, Alga-
broun et al. (2017) only named the general steps ("abnormal-
ity detection", "diagnosis", "prognosis", etc.), with no fur-
ther details. Similarly, Mishra and Mungi (2018) proposed 
a "cooperation of several systems with regards to manufac-
turing, overhauling, assembly, ecology, economics, society, 
and environment". However, Mishra and Mungi (2018) did 
not explain how to implement their suggestions. Jantunen 
et al. (2018) did not propose a new framework, but rather 
presented the European research initiative to solicit such a 
framework—the ECSEL-MANTIS project—and described 
how it aims to revolutionize maintenance by using CPS 
to attain Maintenance 4.0. In recent decades, advances in 
self-x capabilities (self-awareness, process diagnosis, self-
prognosis, self-healing, etc.) have brought process control 
closer to process maintenance (Bokrantz et al. 2017; Dutt 
et al. 2016). Barco et al. (2012) described a framework for 
self-healing in wireless networks. However, this frame-
work cannot be extended beyond the realm of wireless net-
works. Vassev and Hinchey (2011) reviewed awareness in 
state-of-the-art autonomic systems and service-component 
ensembles. Emmanouilidis and Pistofidis (2010) discussed 

Table 1   Comparison of the proposed framework to other selected references

References # Modules Target system Main problem AI model and 
parameter readjust-
ments

Human 
supervisory 
interaction

This paper 4 Process controller Smart controller full solution Yes Yes
Lee et al. (2015) 5 Control architecture layers Layer architecture of Industry 4.0 

control
No Yes

Chang et al. (2016) 3 Process controller EPC/SPC integration No No
Wu et al. (2017) 4 Cyber Mfg. control architecture Data explosion No No
Peres et al. (2018) 3 Cyber physical Mfg. System Real-time data explosion and Possible (implicit) Yes
Atluru et al. (2012) Many CNC supervisory system Smart maintenance No Yes
Wang (2016) 4 Major

4 Minor
Intelligent Predictive Mainte-

nance
Industry 4.0 predictive mainte-

nance
No Implicit

Terissa et al. (2016) 7 Multi factory service Service architecture for Prog-
nostics

No Yes

Algabroun et al. (2017) 4 Systems
4 Modules

Manufacturing system develop maintenance sys. for 
Industry 4.0

No Yes

Ansari et al. (2019) 4 Cyber-physical production 
systems

Digitization No No
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the prospects for achieving machinery self-awareness using 
wireless sensor networks, as well as the potential for sustain-
able machinery operation. Based on these examples, there is 
clearly a gap between the existing literature and the desired 
framework for smart control and maintenance. This paper 
fills this gap by presenting a comprehensive framework that 
integrates machine-learning techniques into smart control 
and maintenance. While IoT connects everything to every-
thing (Cohen et al. 2019b; Perera et al. 2014), the cheapest 
and fastest method of dealing with abnormalities is to equip 
systems, or even subsystems, with the ability to monitor, 
diagnose, and heal themselves (Seebach et al. 2010; Moeuf 
et al. 2018). Some recent papers present advanced usage of 
ML for controlling processes (e.g., Kanawaday et al. 2017; 
Simba et al. 2018; Shang and You 2019).

Individual state-of-the-art ML papers do not, however, 
present a full holistic control framework. The purpose of 
this paper is to present a holistic framework that will suit 
current and future generations of ML techniques. This paper 
does not, and should not, compete with any ML-specific 
technique.

The proposed framework focuses on the most challenging 
part of the control system: the smart controller logic. See 
Fig. 1, which depicts a typical block diagram of a manufac-
turing process control system in which a smart controller is 
embedded.

The proposed framework assumes that the sensors, and 
other sub-systems and systems, practice self-awareness and 
maintain their own reliability. In developing the methodo-
logical framework of the controller, we integrated APC and 
corrective actions, where such actions are undertaken either 
as part of the smart control or by a human expert.

The rest of the paper is structured as follows. Section 2 
presents a literature review. Section 3 introduces the pro-
posed smart-controller framework; Sect. 4 presents imple-
mentation showcase of the framework for its validation. Sec-
tion 5 discusses the implementation and validation of the 
framework. Finally, sect. 6 concludes the paper.

Literature review

The literature review mainly focuses on models and frame-
work suggestions that combine process monitoring and 
maintenance. Not surprisingly, the models have many things 
in common with one another. However, most models and 
frameworks are not at all concerned with self-awareness, 
or self-diagnosis, or self-prognosis. Therefore, the lessons 
learned from these models are still innovative when applied 
to a single controller. Some models combined process moni-
toring and maintenance long before the age of Industry 4.0. 
For example, the international standard ISO 13,374 has six 
steps: data acquisition, data manipulation, state detection, 
health assessment, prognostic assessment and advisory gen-
eration. Iung et al. (2009) suggested a conceptual framework 
for e-maintenance. This framework encompasses a business 
process view of activities related to e-maintenance. They 
describe four major consecutive activities that lead to main-
tenance decisions: (1) to acquire and process signals; (2) to 
monitor data and diagnose; (3) to prognosticate; (4) to sup-
port decisions. Atluru et al. (2012) propose a supervisory 
framework that integrates process planning, health main-
tenance, and tool condition monitoring. The machine con-
troller receives information and commands from a separate 

Fig. 1   A smart controller in 
a block diagram of a typical 
manufacturing process control 
system (arrows signify signals 
and data)
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manufacturing process monitoring module. This monitoring 
module interacts with the process planning module, with 
human supervisors, with other controllers, and external sen-
sors. The model presented was very much tailored to the 
CNC case study presented. Siddiqui et al. (2015) proposed 
integration of multivariate statistical process control and 
engineering process control—a novel framework. Chang 
et al. (2016) integrates SPC, EPC, and pattern recogni-
tion of artificial neural networks (ANN) for system process 
monitoring, fault diagnosis, and automatic system control. 
This approach, while simple, is a significant step towards 
adding system diagnosis to the automated process control. 
Wang (2016) proposes a framework for intelligent predictive 
maintenance in Industry 4.0 settings. He describes a general 
architecture for a shop floor or manufacturing system, in 
which the activity of the controllers is limited to actuation 
and data collection. All the data-related activities are carried 
out in the cloud away from the controllers. These include 
data processing, calculated process compensations, diagno-
sis, prognosis, decisions and actions. A similar approach 
is taken by Terrissa et al. (2016) where all the supervisory 
control functions would be services on the internet.

Lee et al. (2015) proposed a cyber-physical systems archi-
tecture for Industry 4.0-based manufacturing systems. Their 
model includes the following five major levels: (1) Smart 

connection (related to IoT); (2) Data to information conver-
sion (data processing); (3) Cyber level (twin models and 
state characterization); (4) Cognition level (updating human 
supervisor, and performing analytics and decision making); 
(5) Configuration level (actions such as self-configure and 
self-adjust). This model is very general and in that sense 
analogue to the historical 7-layer OSI model (Open Sys-
tems Interconnection) of the internet. In that sense, our 
paper proposes how to implement most of this general layer 
architecture for a single process controller. The similarities 
and differences between this paper and the proposed model 
appear in Tables 1 and 2.

Wu et al. (2017) develops a fog-based computational 
framework that enables remote real-time sensing for shop-
floor control. Case studies provide proof of concept of their 
model. The framework consists of four integral elements: 
a workflow, sensor networks, communication protocols 
and predictive analytics. The workflow includes: (1) data 
collection; (2) data streaming; (3) cloud-based diagnostic 
and prognostic modeling; (4) application of the diagnostic 
and prognostic models. The work is focused on the issue of 
processing massive amounts of real-time data with minimal 
latency. While Wu et al. (2017) propose sampling as a means 
of reducing the amount of ML processing, our approach 
is different: we advocate close local monitoring that only 

Table 2   Modules versus functions in various process supervisory models

Function Related module

This paper Peres et al. (2018) Lee et al. (2015) Wang (2016) Ansari et al. (2019) Wu et al. (2017)

Data acquisition Control and aware-
ness

CPPS component Smart connection 
level

IoT: Various chan-
nels

Data acquisition & 
pre-proc

Step 1

Data processing Control and aware-
ness

CPPS reasoning 
component

Data to info. con-
version level

DM: Signal pre-
process;

Data acquisition 
and pre-proc

Step 2

APC Control and aware-
ness

N/A Data to info. con-
version level

CPS: Error correc-
tion & Compen-
sation

N/A N/A

Condition assess-
ment

Control and aware-
ness

Run-time evalu-
ation

Data to info. con-
version level

DM: Feature 
extraction

Data acquisition 
and pre-proc

N/A

SPC Control and aware-
ness

Knowledge 
management 
component

Data to info. con-
version level

DM: Feature 
extraction

Data analysis and 
simulation

Step 3

Diagnostics Diagnosis Knowledge 
management 
component

Cyber level DM: Fault diag-
nosis

Data analysis & 
simulation

Step 3

Prognostics Prognosis Consult rules store Cyber level DM: Fault prog-
nosis

Reaction model Step 3

Decision Support Prognosis Rules store Cyber level; & 
Cognition level

IOS: KPI Prescriptive main-
tenance decision

N/A

Automated inter-
vention

Prognosis Adaptation 
(Knowledge 
management 
component)

Configuration level CPS: Error cor-
rection and 
compensation

Reaction model Step 4: Apply 
predictive 
models

HMI External interac-
tion platform

Prediction output 
and visualization

Cognition level IOS: KPI, optimi-
zation

Maintenance plan-
ning

N/A
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transfers data that is deemed or is suspected to be related 
to an exception. Comparison of similarities and differences 
between Wu’s paper and our proposed model appears in 
Tables 1 and 2.

Both Matyas et al. (2017) and Ansari et al. (2019) pro-
pose a circular model with four steps: (1) data acquisition 
and re-processing; (2) data analysis and simulation; (3) reac-
tion model; (4) prescriptive maintenance decision support. 
Algabroun et al. (2017) propose "maintenance 4.0" frame-
work. This framework divides a manufacturing system to: 
(1) managing system; (2) change management; (3) media-
tor; (4) managed system. While the sensors and actuators 
(and obviously the controller) are in the managed system, 
all the data processing monitoring and decisions are carried 
out in the "change management" part. Within the "change 
management" part, there are four modules: (1) monitor; (2) 
analyzer; (3) planner; (4) executor. Their framework lacks 
significant use of AI, and lack the capability for continual 
model adjustment.

Peres et al. (2018) propose the "Intelligent Data Analysis 
and Real-Time Supervision" (IDARTS) framework. IDARTS 
is composed of three main components: (1) "Cyber Physical 
Production System" (CPPS)—digital twin of the shop floor 
with digital representation of its entities; (2) real-time data 
analysis (predictions and visualization for evaluation and 
decision making); (3) knowledge management (analytics). It 
is interesting to note that data acquisition and pre-processing 
are done in the CPPS and that the pre-processed data goes 
through the real-time module and the knowledge manage-
ment module before coming back to the evaluation & deci-
sion-making part of the CPPS. A comparison of similarities 
and differences between this paper and the proposed model 
appears in Tables 1 and 2. Ge (2018) describes a distributed 
predictive modeling framework for prediction and diagnosis 
of key performance indices in plant-wide processes. While 
this paper does not even mention Industry 4.0, it supports 
the approach of distributing control of the shop floor to the 
various process controllers. Mishra and Mungi (2018) sug-
gest a sustainable maintenance framework which will "incor-
porate cooperation with numerous other frameworks, with 
respect to manufacturing, overhauling, assembly, ecology, 
economics, society, and environment while carrying out the 
maintenance act."

In addition, numerous papers have proposed frameworks 
for other subjects (not manufacturing process control) that 
have some overlap with the proposed framework. For exam-
ple, Barco et al. (2012) proposed a unified framework for 
self-healing in wireless networks. Golan et al. (2019) pro-
posed a framework for operator–workstation interaction in 
Industry 4.0; Amini and Chang (2018b) proposed a process 
monitoring framework for 3D metal printing on an indus-
trial scale. Franciosi et al. (2020) undertook a systematic 
literature review on measuring the impact of maintenance. 

They suggest a three-dimensional framework model, where 
the dimensions are: maintenance process, sustainability cat-
egory, type of impact. A comparison of selected references 
is presented in Table 1.

The smart controller framework

This section describes the proposed smart controller frame-
work and its main components. The proposed methodologi-
cal framework is based on the following CPS characteristics: 
(1) It includes the physical manufacturing process; (2) It 
controls that process; (3) It involves intensive computations 
including extensive use of AI; (4) It includes real -time com-
munications with the process related sensors and actuators; 
(5) It has a gateway through which it communicates with 
the manufacturing network, the internet, and the operator. 
Other CPS characteristics are related to "Self-x" technology: 
self-awareness, and self-diagnosis, self-prognosis and self-
healing. Each level in this hierarchy requires input from its 
predecessor in order to perform its function. (Cohen et al. 
2019a; Dutt et al. 2016; Seiger et al. 2018). Recently, the 
use of digital twin has been closely associated with CPS 
and Industry 4.0. A digital twin for the manufacturing pro-
cess and its controller is part of the suggested prognosis 
and healing module. Finally, AI techniques have become the 
hallmark of CPS computations and Industry 4.0 intelligence. 
The proposed framework is heavily based on AI techniques 
such as machine learning (ML), root-cause analysis (RCA), 
case-based reasoning (CBR) (Ruschel et al. 2017). However, 
the aim of the paper is to provide a generic holistic frame-
work that would suit a wide range of ML techniques for 
current and future generations of ML methods; this frame-
work does not, and is not intended to, compete with any 
ML-specific technique.

As interaction and interoperability are crucial elements 
in CPS and Industry 4.0 manufacturing systems, an external 
interaction module is dedicated to interacting and solving 
interoperability issues. While the Industry 4.0 environment 
is highly automated, it typically supports human operators 
rather than replaces them (Golan et al. 2019; Mattsson et al. 
2020). Accordingly, we assign high importance to attrib-
utes such as human knowledge, experience, flexibility, skill, 
wisdom, and judgement. Therefore, the external interaction 
module includes a special sub-module for human interaction.

Figure 2 depicts the four major modules of the frame-
work, and the relationships between them. The main mod-
ules are designated by rectangles, information flows are des-
ignated by continuous arrows, and interventions are marked 
by dashed arrows. The framework is implemented on a smart 
controller and has four main modules:
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•	 Control & awareness module: The word "control" rep-
resents the element of automated process control (APC), 
while the word "awareness" refers to process monitoring 
using SPC and ML.

•	 Process-diagnosis module: This module is invoked only 
when a process abnormality is detected or when the pro-
cess is drifting or is out of control. It analyzes the process 
with the purpose of identifying: (1) changes in process 
factors, (2) new process factors, (3) process drifting, and 
(4) problems. In the case of identifying problems, the 
module should support root-cause analysis (RCA). Popu-
lar RCA methods are case-based reasoning (CBR) and 
big-data search.

•	 Prognosis & healing module: This module produces a 
prognosis and decides on action items, which may do 
one of the following: (1) automatically intervening, (2) 
asking for a human decision, or (3) doing nothing. In the 
case of automated intervention, the module performs the 
automatic intervention, and then sends minor modifica-
tions to the ML weights, or updates to the ML model 

in the control and awareness module. When significant 
system changes occur in the behavior or the environment, 
the prognosis and healing module revises the ML model. 
Each such revision generates a new ML model that 
replaces the existing ML model. This process of creat-
ing new ML versions is referred to as recurrent machine 
learning (RML).

•	 External Interaction Platform module. This module is 
responsible for all interaction between the controller 
and external entities except for the process sensors and 
actuators. The communication is with a human opera-
tor, other machines and processes on the shop floor, and 
the internet. To communicate with other digital enti-
ties, the module deploys a smart gateway. Communica-
tions with a person are mainly done for the following 
purposes: (1) conveying alarms and other information 
to the human operator, (2) implementing intervention 
orders (e.g., shut-down) from the operator, (3) receiv-
ing information supplied by the human operator, and 
(4) ML-supervised training.

Fig. 2   The proposed smart 
process control framework and 
its main elements
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The modules communicate by sending and receiving 
information, as depicted by the nine numbered arrows in 
Fig. 2. A brief description of each of these arrows follows:

	 1.	 Arrow 1: The process sensors transmit directly all the 
relevant data and information to the control & aware-
ness module. These data include product measures, 
process measures, and context-related data.

	 2.	 Arrow 2: Carries information from the control & 
awareness module to the process-diagnosis module. 
The information includes all relevant data for diagno-
sis, including granular history of the process param-
eters (product measures, process measures, and context 
related data), fault detection and anomalies detection, 
and controller-awareness information.

	 3.	 Arrow 3: Carries (and shares) information from the 
process-diagnosis module to the prognosis & healing 
module. This information is needed for prognostics 
and simulating the effects of various compensation 
or correction alternatives, for continual correction or 
compensation, or for automated configuration changes.

	 4.	 Arrow 4: Carries information gathered and processed 
by the process-diagnosis module to the human inter-
action module. On the one hand, it carries the infor-
mation related to the ML-supervised training stage; 
this information is crucial for getting expert supervi-
sor feedback. On the other hand, it includes warnings 
regarding the appearance of new factors and changes 
in factor values. It also includes any information that 
may spur a human decision or intervention.

	 5.	 Arrow 5: Carries human feedback from the human 
interaction module to the process-diagnosis module. 
Includes feedback intended for the supervised ML 
model.

	 6.	 Arrow 6: Carries human feedback from the External 
Interaction Platform to the self-healing module. This 
information is important for improving or correcting 
the automatic intervention of the self-healing module.

	 7.	 Arrow 7: Carries information from the self-healing 
module to the human interaction module (to be passed 
on to the human operator). This information includes 
prognosis warnings and alarms (if any), self-healing 
intervention details, as well as queries related to feed-
back and to guidance for the self-healing module.

	 8.	 Arrow 8: Carries all the information and queries from 
the controller modules to the human operator. The 
arrow originates at the External Interaction Platform 
module, which is an intermediary instrument for con-
veying data, information, and queries, to and from the 
operator.

	 9.	 Arrow 9: Carries information from the human operator 
to the External Interaction Platform, which can then be 
conveyed to the various modules. For example, human 

feedback related to the supervised training stages of 
the RML process is passed on to the process-diagnosis 
module by Arrow 5, while Arrow 6 conveys human 
feedback to the self-healing module.

	10.	 Arrow 10: Carries information from the External Inter-
action Platform to the Industrial Internet of Things 
(IIoT). This includes continual posting of current pro-
cess status, replying to various queries and requests 
(providing process-related information and history), 
and sending queries to various IIoT entities.

	11.	 Arrow 11: Carries information from the Industrial 
Internet of Things (IIoT) to the External Interaction 
Platform. This information may be responses to que-
ries, some shop-floor supervisory information or sys-
tem orders.

	12.	 Arrow 12: To provide the process-diagnosis module 
with information that may be relevant for most of its 
various diagnosis activities. Arrow 12 carries informa-
tion from the shop floor and its related systems through 
the Industrial Internet of Things (IIoT) directly to the 
process-diagnosis module.

	13.	 Arrow 13: Carries information from the external Inter-
net/Web to the process-diagnosis module, mainly to 
support the big-data search, the CBR and RCBR. This 
information includes cases of other similar controllers 
in similar processes to expand the learning and experi-
ence of the single controller. It may also include some 
healing recommendations for various situations.

Intervention arrows (dashed) designate either: (a) changes 
to the process actuators and/or switches initiated either by 
the human operator or by the self-healing module; or (b) 
major changes to the ML model (in the control and aware-
ness module) initiated by the process-diagnosis module. 
Human operator interventions are communicated through 
an intervention interface on the human interaction module. 
These are passed directly to the control and awareness mod-
ule for implementation. The self-healing module initiates 
interventions for automatic process tuning and correction, 
or in some cases, for changes to the manufacturing system’s 
configuration. The remainder of the paper explains each of 
the modules in detail.

Control and awareness module

Automated manufacturing processes must be closely moni-
tored and controlled to ensure acceptable quality and to iden-
tify failures and problems. The established classical tech-
nique for carrying out monitoring and control is automated 
process control (APC). We incorporate APC in the proposed 
framework as its lowest level. At the next level we incorpo-
rate data granularity, which is required for effective conver-
sion of data to information. Different uses of granularity 



1982	 Journal of Intelligent Manufacturing (2021) 32:1975–1995

1 3

may dictate different granularity levels. For example, "pro-
cess state" may have different granularity than parameter 
granularity. In addition, in the proposed framework, col-
lecting information regarding process quality is part of the 
awareness of this module and enables determining whether 
a further action is in order. Thus, we extend monitoring and 
control beyond the elementary feedback-loop using statisti-
cal process control (SPC) techniques (enhanced SPC may be 
carried out by ML). Combining SPC, APC, and maintenance 
of a manufacturing system has many advantages (He et al. 
2019; Lu et al. 2016; Park et al. 2012; Saif 2019). Thus, in 
our framework, the focus is on combining these methods to 
identify significant change automatically, and, upon identi-
fying the change, making the necessary updates to reflect 
reliably the recent dependencies in the data. These methods 
are implemented in the first proposed module called "process 
control and awareness". Recently, integrating sensor fusion 
and an IoT approach has enabled the use of machine learning 
for better control and for predictive maintenance (Siddiqui 
et al. 2015). Moreover, the availability of smart sensors and 
systems has elicited the advent of self-aware systems. How-
ever, when integrating SPC and APC, in many cases the 
presence of autocorrelation, as well as specific patterns in 
the data, make it impossible to detect and classify the exist-
ing fault quickly and accurately, at least when classical SPC 
methods are employed (Psarakis 2011).

In our framework, therefore, we propose implementing 
SPC using ML algorithms, which do not assume any pre-
defined model and learn automatically the dependencies in 
the output observations that resulted from the APC (Amini 
and Chang 2018a; De Ketelaere et al. 2015; Rato et al. 2016; 
Shao and Hu 2020). Since the word "control" appears in both 
APC and SPC, we chose to name the framework’s first mod-
ule the "control and awareness" module. The awareness part 
of the name refers to the ability of the module to distinguish 
between different states of a process measure (e.g., fluctuat-
ing, deteriorating, increasing, abnormal).

Thus, the proposed control and awareness module is 
composed of the following four parts: (1) APC, (2) data 
granularity and its storage, (3) ML/SPC, and (4) controller 
awareness. These parts are depicted in Fig. 3.

Process‑diagnosis module

The control and awareness module is designed to implement 
an effective compensation process deploying ML. However, 
in manufacturing systems, it is usually the case that not all 
data that may affect the controlled target are available, and 
furthermore, the autocorrelation and patterns within the 
monitored target can change dynamically, which can sig-
nificantly reduce the performance of machine-learning 
algorithms with regard to anomaly detection (Kholerdi et al. 
2018). In other words, these models can behave accurately 

during training, or during a specific monitoring period, as 
long as the data or patterns do not change dramatically. In 
other testing periods, however, the test error or false-positive 
rate can increase due to over-fitting. Thus, a self-awareness 
ability is needed to identify when the models used are no 
longer accurate, meaning that updated machine-learning 
algorithms should be derived and implemented (Ollivier 
2015; Srivastava et al. 2014).

The process-diagnosis module plays key roles in the func-
tioning of the smart controller. Its first role is to uncover new 
factors and identify changes in old factors. This means that 
the module acts as an agent that scans the surroundings of 
the controller to identify environmental factors, as well as 
tracking existing factors to detect changes when they occur. 
The continual feedback that is conveyed to the process com-
pensation ML model makes it a dynamic recurrent learn-
ing process (RML). Another diagnostic role is to perform 
root-cause analysis (RCA), which may require a specialized 
AI procedure, known as a big-data search, as well as case-
based reasoning (CBR), which is done on a continual basis 
(RCBR). The process-diagnosis module of the smart con-
troller is depicted in Fig. 4.

The process-diagnosis module receives all the data from 
the controller process-awareness level. This includes the 
SPC data, APC data, and the sensors’ self-awareness data. 
In addition, it receives data via IoT from other close-by sen-
sors and controllers. The above data are used for several 
important purposes: (1) root-cause analysis; (2) discovery 
of new factors; (3) discovery of new rules; and (4) process 
state classification. Smart diagnosis necessitates internet 
accessibility for big-data searches and analytics. Figure 5 
depicts the flow of data and information generated by the 
process-diagnosis module.

The diagnosis stage is the most intensive stage in terms 
of data and information analysis. The main sources of data 
and information, as depicted in Fig. 5, are: (1) historical pro-
cess data; (2) current process data; (3) information related 
to the neighboring processes and controllers, the informa-
tion passing through a gateway to ensure interoperability; 
(4) information related to deep search queries on the internet 
related to experience gathered in similar processes, in simi-
lar controllers, and in similar situations. The unstructured 
data on the internet raises a host of compatibility and inter-
operability issues. This information therefore passes through 
a gateway that must deal with these issues and ensure inter-
operability; (5) history of diagnosis findings and results.

Internet use and big data searches appear in Fig. 5 and in 
Fig. 6 and deserve special attention in the age of digitization. 
An excellent and broad coverage of the use of big data and 
related technologies in maintenance is given by Baum et al. 
(2018). A more focused coverage on controllers is provided 
by Gao et al. (2016). O’Donovan et al. (2015) describe a 
set of data and system requirements for implementing 
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equipment maintenance applications in industrial environ-
ments. They also describe an information system model that 
uses big data pipeline for integrating, processing and analyz-
ing industrial equipment data. Bumblauskas et al. (2017) 
describe decision-support system for maintenance based on 
corporate big data analytics. Yu et al. (2019) describe a big 
data ecosystem for fault detection in predictive maintenance. 
Finally, Zhang et al. (2020) achieve automatic anomaly 
detection using a big data platform of intelligent mainte-
nance. From all these references, it is clear that a special 
mechanism should be constructed to deal with the interoper-
ability, streaming, and other issues that characterizes use of 
big-data searches. The natural place for such a mechanism in 
the proposed framework is within the gateway of the Exter-
nal Interaction Module.

While Fig. 5 illustrates the flow of the data and the main 
purposes for which the data are used, it does not convey 
the broad range of techniques and methods that may be 

invoked at this stage. Thus, the proposed framework has 
been designed to allow flexibility in terms of its precise 
implementation.

Prognosis and healing module

This module performs three major tasks: (1) prognosis, (2) 
deciding how to proceed, and (3) managing the automated 
healing (in cases where automated healing is the chosen 
course of action). This module is the main user of a digital 
twin of the process controller. The digital twin enables not 
only an accurate snapshot of the current process situation, 
but also simulation of the controller system behavior due 
to hypothetic intervention. The digital twin is a major pil-
lar of cyber-physical systems (CPS) and its use is also a 
hallmark of Industry 4.0 systems.

The major tasks of the prognosis and healing module 
are now described in greater detail.

Fig. 3   The proposed control and 
awareness module and its main 
elements
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Fig. 4   The proposed process-
diagnosis module and its main 
elements Control & Awareness Module:
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1.	 Prognosis: This task produces projections of the process 
and its parameters. A digital twin may be used to per-
form the projections. The projections may be based on 
the current state and the trajectory of previous states, or 
they may be based on a simulation of future behavior. 
The module can utilize the digital twin to run "what-if" 
scenarios to determine the effectiveness of interventions. 
The prognosis module gets the results of predictive 
maintenance for predicting future process trajectories. 
The prognosis task should be able to efficiently handle 
the complex logic of an automated process with a large 
quantity of input data and should provide support for 
decision-making at various levels.

2.	 Deciding how to proceed requires choosing one of three 
alternatives based on the prognosis: (a) do nothing, (b) 
seek human interaction, or (c) perform automated heal-
ing. This task is described in Fig. 6.

	   As depicted in Fig. 6, minor changes or questionable 
results lead to refraining from action. Changes that need 
to be implemented manually, and equivocal or question-
able candidate factors, that need to be verified by an 
expert, lead to human interaction. Finally, if there are 
changes in the existing-factor values, or if automated 

configuration changes are required, the intervention 
is handled automatically by the prognosis and healing 
module. In addition to decisions that are based on the 
type of identified or required change, Fig. 6 shows that 
decisions are sometimes made in the light of the identi-
fication of new rules, or new factors for process mainte-
nance and improvement.

3.	 Automated healing: The controller must have absolute 
control over the related processes of automated healing. 
Thus, prior to any automated intervention, a progno-
sis based on this intervention should be computed. The 
healing process can assume various forms. For example, 
it can be a reset (or a restart), a shut-down of the system 
(or just a sub-system), the replacement of a workpiece, 
or some process activation such as cooling, heating, or 
lubricating.

The inputs to the prognosis and healing module are based 
on conclusions and information generated by the process-
diagnosis module. This information is composed of identi-
fied problems or problematic trends and identified causes 
for these problems or problematic trends. The healing 
sub-module must choose the most appropriate method of 

Fig. 6   The intervention decision 
logic of the proposed prognosis 
and healing module
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intervention. In some cases, this decision may be straight-
forward, but in other cases it may be a complex task. The 
healing process must be able to identify and compare differ-
ent alternative treatments. It also needs to run a prognosis 
based on the selected treatment.

External interaction platform

The External Interaction Platform is the platform from 
which all human contact is organized and implemented. This 
platform interacts not only with the human expert, but also 
with all the modules of the proposed framework. Figure 7 
depicts the human interaction module and its main informa-
tion exchanges.

Special attention should be paid to candidate factors that 
may be affecting the manufacturing process, also referred 
to as "undecided factors". Dealing with a candidate factor 
involves deciding between three alternatives: (1) adding the 
factor to the models as a new factor; (2) eliminating the fac-
tor from consideration; or (3) letting the factor remain unde-
cided. Figure 7 shows these alternatives and their related 
information flows.

The following definitions are used in Fig. 8

W—Vector of verified new factors affecting the relevant 
process.

W’—Vector of candidate, undecided factors (i.e., their 
effect needs to be verified).

Validation through an implementation 
showcase

This section describes an implementation of the con-
trol and awareness and process diagnosis modules in 
a smart controller, deployed in a silicon wafers manu-
facturing process with the main aim of maintaining 
a desired thickness. The purpose of this section is to 
serve as a proof of concept and to validate the sug-
gested methodological framework. The showcase 
not only demonstrates the feasibility of the proposed 
framework, but also shows its real-world potential and 
effectiveness.
In the semiconductor industry, silicon wafers are 
widely used for fabricating integrated circuits. For 
proper performance of the integrated circuits, the 
silicon wafers are required to have specific thickness. 
Thus, monitoring of wafer thickness based on the scan 

Fig. 7   The main interactions 
between the External Interaction 
Platform and the other elements
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data of a laser probe is usually used (Zhu et al. 2020). 
A common technique for achieving the desired thick-
ness is fine double-sided polishing (Lee et al. 2009; 
Schwandner et  al. 2014). Following Zhong et  al. 
(2017a, b), the quality and uniformity of the accepted 
thickness across the entire wafer may be affected by 
several parameters related to the polishing technique, 
such as: (i) distribution of pressure, relative velocity 
and temperature; (ii) flow of polishing fluid; and (iii) 
properties of the polishing pad. Those parameters are 
adjusted by a production worker in specific environ-
mental conditions. Thus, different workers’ condition 
(e.g., fatigue, working hours, attention levels) together 
with environmental condition (e.g., temperature, 
humidity) may influence the accuracy of the accepted 

values compared to the desired values of the polishing 
parameters (Golan et al. 2019; Strauch 2017).
Figure 9 presents the interfaces between the control 
and awareness module and process-diagnosis module 
in a silicon wafers manufacturing process. In the con-
trol and awareness module, the process-specific target 
is the desired wafer thickness. We measure the thick-
ness by scanning each produced wafer with a laser 
probe, using SPC charts based on machine-learning 
algorithms. The results of the monitoring are trans-
ferred to the automatic process control mechanism, 
in which the polishing-control parameters’ values are 
adjusted to correct the differences between the wafer’s 
thickness and the desired thickness. The monitored 
thickness values of the wafers, including the anomaly 
indications from desired thickness target, and values 

Fig. 8   Elicitation, classification 
and treatment of new factors by 
the human expert
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of the polishing parameters, were transferred to the 
process diagnosis module. In this module, the workers’ 
and environmental conditions are collected and root-
cause analysis is performed to identify case-based rea-
soning for significant differences between the wafer’s 
thickness and the desired thickness.
Figure 10 presents examples of monitoring charts, 
from the control and awareness module, showing the 
wafer thickness value (our target) and the velocity of 
the fine double-side polishing, which is one of the 
automatic controlled parameters. The upper graph 
presents 25 thickness values of wafers, relative to 
upper and lower control limits (25 µm and 75 µm 
respectively), which indicate significant deviation 
from our desired thickness target value of 50µm. 
The lower graph indicates the values of the velocity 

polishing relative to four different levels of velocity 
intensity (low, medium, high, very high). It can be 
seen from the graphs that the higher the velocity, 
the lower the thickness. Furthermore, towards the 
last thickness measurements in the graph, it can be 
seen that when the velocity is low, the thickness is 
high and an out-of-control indication is accepted. 
Deterioration of the velocity to low values that led 
to a consistent increase in thickness may indicate 
that the automatic process control was not effective. 
These data were transferred to the process diagnosis 
module, in order to identify the reasons for deterio-
ration of the polishing velocity among the param-
eters that relate to the workers’ and environmental 
conditions. Root cause analysis was performed on 
historical data to find the reasons and changes that 
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thickness
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lead to deterioration of the polishing velocity that 
resulted in high thickness wafers, using machine 
learning algorithms. In our showcase, we would 
use an ordinal decision tree algorithm (Singer and 
Marudi 2020; Singer et al. 2020) to apply root cause 
analysis as a way of identifying which parameters 
may be influencing the levels of velocity intensity 
(i.e., low velocity, medium velocity, high velocity, 
very high velocity). This ordinal machine learning 
algorithm is suitable for the process-diagnosis mod-
ule in our example, for two main reasons. First, the 
algorithm considers the deviations from the target 
thickness variable for evaluating the desired changes 
in the level of velocity of polishing the wafer. Sec-
ondly, the ordinal decision tree produces an inter-
pretable model, which yields practical insights 
regarding the relationship between the wafer-pol-
ishing velocity level and, the wafer’s defects (Singer 
and Cohen 2020).

Figure 11 is an example of an accepted ordinal deci-
sion tree. This shows that 10% of the time the pol-
ishing velocity is low, 30% of the time the polishing 
velocity is medium, 50% of the time the polishing 
velocity is high and 10% of the time the polishing 
velocity is very high. The velocity distribution is 
presented by (0.1, 0.3, 0.5, 0.1). However, when 
the level of humidity is high, and the fatigue of the 
worker is great, the probability of low velocity is 
50%. These insights are transferred via the human 
interaction platform to the production line managers, 
in order to develop working mechanisms for monitor-
ing and controlling of polishing velocity, in environ-
mental conditions of high humidity and high fatigue.

Fig. 10   Examples of monitor-
ing charts for wafer’s thickness 
value and polishing velocity 
from the control and awareness 
module of a silicon wafer’s 
manufacturing process
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Discussion on implementation 
and validation

In Sect. 4, we demonstrate the applicability of the control 
and awareness and process diagnosis modules in the pro-
posed methodology framework, deployed in a silicon wafers 
manufacturing process with the main aim of maintaining a 
desired thickness. The showcase emphasizes the importance 
of the interfaces between the modules. We illustrated the use 
of control charts for monitoring the wafer’s thickness and 
the parameters that may directly affect its values. Then we 
presented an example that illustrated the implementation of 
an ordinal decision tree algorithm as a root-cause analysis 
tool in the diagnosis module, based on the outputs accepted 
from the control charts and historical data regarding produc-
tion worker and environmental conditions. The insights from 
the diagnosis module are transferred to the production line 
managers to assist in deriving practical decisions to prevent 
future wafer defects of this type in the silicon wafers manu-
facturing process.

Since the framework deals with a single controller of a 
single process, it is strongly recommended that the frame-
work be implemented as one unified project using the same 
programming language, same data-format scheme, and 
same team of developers. The framework could therefore 
be treated as an embedded software package within the 
shopfloor. In addition, the framework’s internal modules are 
meant to operate only within the proposed framework and 
it may be hazardous to try to fit or replace internal modules 
by existing legacy modules.

With the exception of the interaction with local sensors 
and actuators and the human supervisor, the framework 
deploys a smart gateway that enables it to communicate 
and cooperate with the legacy shop floor systems. The 
advantage of this, is that implementing the framework 

as a unified system, enables the controller’s software to 
be embedded in larger systems. As a result, having this 
controller’s software for a certain process may need a 
small number of adjustments for duplicating it in similar 
processes.

Interoperability is an issue of great importance to the 
implementation of any manufacturing control system, 
including to the implementation of process controllers. 
Noura et al. (2019) present several types of interoperability.

(1)	 Device interoperability is concerned with (i) the 
exchange of information between heterogeneous 
devices and heterogenous communication protocols 
and (ii) the ability to integrate new devices into any 
IoT platform.

(2)	 Network interoperability: deals with mechanisms to 
enable seamless message exchange between systems 
through different networks (networks of networks) for 
end-to-end communication.

(3)	 Syntactic interoperability refers to interoperation of 
the format as well as the data structure used in any 
exchanged information. Syntactic interoperability prob-
lems arise when the sender’s encoding rules are incom-
patible with the receiver’s decoding rules

(4)	 Semantic interoperability: Even if two different systems 
have the same data, differences between data models 
and information models will cause different descrip-
tions or understandings.

(5)	 Platform interoperability: Problems arise with com-
munication between different operating systems (OSs), 
programming languages, data structures, architectures 
and access mechanisms for things and data (Noura 
et al. 2019).

Since this paper focuses on the framework of a single 
process controller, its implementation must be an integral 
part of the process-related operating system. Platform inter-
operability should therefore be dealt with at a higher system 
level, and is beyond the scope of this paper. The controller 
system is in large part a real-time system or a near real-time 
system. This implies that the proposed framework should 
be implemented as a single unified system and operate on 
the same network. Moreover, a process controller is typi-
cally part of the local manufacturing network. So network 
interoperability should be dealt at the network level and is 
beyond the scope of this paper. We assume that the proposed 
framework is implemented as one integral project with a sin-
gle programming language and unified treatment of data and 
information formats, meaning, and manipulation. This is not 
only reasonable but also expected for single-controller soft-
ware. Thus, internally to the framework, only device inter-
operability may be an issue. Therefore, data arriving from 
devices such as sensors and actuators are pre-processed in 
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Fig. 11   Ordinal classification tree for root-cause analysis of polish-
ing velocity (low velocity; medium velocity; high velocity; very high 
velocity) from the process-diagnosis module
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the control and awareness module to ensure format compat-
ibility, and correct treatment of the collected data.

Communication with external entities (outside the imple-
mented framework) may indeed be subject to syntactic and 
semantic interoperability issues. A number of solutions are 
found in the literature (Jardim-Goncalves et al. 2016). For 
example, Khilwani and Harding (2016) focus on semantic 
web concepts and tools that enable computers to automati-
cally process and understand information that both machines 
and humans can understand. Delaram and Valilai (2017) 
proposed a solution for manufacturing interoperability ful-
fillment using interoperability service providers. Kamiński 
(2020) proposed an integration platform for common stand-
ards and interoperability technologies (such as: SOA, XML, 
Web-Services). Several papers suggested treating interoper-
ability by means of a gateway (Aloi et al. 2016; Vargas and 
Salvador 2016; Adesina et al. 2019; Jiang et al. 2020). This 
is also the way we suggest when encountering interoperabil-
ity in the suggested framework. There should be a software 
gateway that has the capability to convert the most prevalent 
IoT standards (e.g., OPCUA (Open Platform Communica-
tions Unified Architecture) and MQTT (Message Queuing 
Telemetry Transport)). The gateway should be able to solve 
issues of device interoperability, syntactic interoperability 
and semantic interoperability. The proposed gateway is 
shown in Figs. 2 and 3.

The proposed control and awareness module is supported 
by several research studies that focused on the development 
of an online monitoring and control (OMC) system to detect 
and isolate defects and to manufacture parts with particu-
lar desired qualities (Armini & Chang 2018b; Imani et al. 
2018; Yao et al. 2018). A particularly important aspect of 
the proposed framework is that it may accommodate any 
combination of ML and SPC techniques for fault detection. 
This is in line with recent research studies which suggest 
the use of machine learning algorithms for monitoring pur-
poses, rather than using traditional statistical process control 
techniques (Bacher and Ben-Gal 2017; Chou et al. 2020; 
Schuster et al. 2018). There are two main reasons for using 
such data-driven approaches (Amini and Chang 2018a):

1.	 They do not assume a particular data distribution 
in advance, and they cover all possible patterns and 
dependencies within the data.

2.	 They can be useful for monitoring manufacturing pro-
cesses with a high number of dimensions. These are 
becoming increasingly common due to the proliferation 
of smart sensors and data streaming, which generate 
enormous quantities of data daily.

While the proposed framework incorporates only a single 
controller, it shares many largely general similarities with 
other proposed frameworks. Table 2 compares the proposed 

framework to some of the other frameworks in terms of their 
organization (how the functionality is arranged).

The aim of this paper is to provide a generic framework 
that will suit a wide range of ML techniques for current and 
future generations of ML methods. Consequently, it does 
not and should not compete with any ML specific technique. 
For the various ML techniques used with fault detection and 
predictive maintenance see Carvalho et al. (2019), Lo et al. 
(2019) and Angelopoulos et al. (2020). However, the frame-
work advocates and supports the use of recurrent machine 
learning capabilities suggested here; these capabilities 
include dynamically changing the ML model itself (not just 
weights) and incorporating new factors in the model itself. 
This approach is relatively new at the time of writing, but its 
popularity is expected to grow significantly.

The schema of process monitoring and control have 
been extended in some manufacturing industries to include 
closed-loop control for defect prevention purposes. For 
example, in additive manufacturing, several research stud-
ies (Chua et al. 2017; Garanger et al. 2018; Mazumder 2015) 
have introduced closed-loop feedback control so that when 
a defect is detected (from sensor signatures and process 
parameters) physical properties such as the laser power or 
scan speed can be changed to rectify the defect. In the pro-
posed framework, we integrate the approaches of different 
research groups into one unified system (shown in Fig. 2), 
thus leveraging the promising results achieved by each indi-
vidual group. Consider, for example, as proposed in the 
research study of Garanger et al. (2018), the integration of a 
feedback control mechanism during the printing of a plastic 
object made of several parts, each of different infill density 
(the infill densities are the control variables), using additive 
manufacturing. The infill density of each part is adjusted in 
a closed-loop control process to achieve the desired stiffness. 
However, this is a simplistic example; in practice, when 
additive manufacturing involves a large number of control 
variables, it can be difficult to understand the relationships 
between these variables and the final properties of the part 
(Mani et al. 2017). In complicated cases such as these, the 
framework proposed in the present study would search for 
other variables to monitor. Such a search should yield addi-
tional control variables (in addition to the proposed infill 
density). For example, new variables that the search may 
yield are laser power, and scan speed, that would enable 
retaining all the target properties of the plastic objects.

Conclusions

This paper presents a new holistic framework for a smart 
machine controller which aims to increase quality and reduce 
downtime. The paper describes in detail the proposed smart 
machine controller logic and its four software modules. The 
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four main software modules of the controller are described 
and discussed in detail, along with the interactions between 
them: (1) Control and awareness module—performs con-
tinuous APC and ML for compensation/correction, as well 
as SPC for monitoring and invoking the process-diagnosis 
module; (2) Controller process-diagnosis module—performs 
continual (recurrent) analysis of the process state and trends, 
detecting new factors and tracking changes in old ones; (3) 
Prognosis and healing module—performs prognosis and 
accordingly decides on one of three alternatives: (i) do noth-
ing, (ii) inform a human operator, (iii) intervene. In the third 
case, automated intervention is performed via parameter 
changes, re-configurations, and automated maintenance; (4) 
The External Interaction Platform is an interactive module 
for interfacing with operators and experts, presenting them 
with the process analysis information and obtaining feed-
back from them as part of a learning process.

Sections 4 and 5 validate the assumptions of the introduc-
tion that such a framework is feasible. Section 5 discusses 
the compatibility of the proposed framework with Industry 
4.0 and CPS concepts such as self-awareness, self-diagno-
sis, self-prognosis, and self-healing. We also show that the 
framework includes Industry 4.0 practices, such as use of 
machine learning (ML) and case-based reasoning (CBR), the 
use of the internet of things (IoT) communications, and use 
of predictive maintenance. The six components assumed to 
be main building blocks of the framework are incorporated 
into the four modules as follows:

	 (I)	 The Control & Awareness Module integrates com-
ponents: (1) automatic process control (APC), and 
(2) statistical process control (SPC).

	 (II)	 The Process-Diagnosis Module utilizes (3) recur-
rent machine learning (RML) and (4) smart process 
diagnosis.

	 (III)	 The Prognosis & Healing module is composed of 
component (5) smart process prognosis for predic-
tive maintenance and intervention.

	 (IV)	 The External Interaction Platform manages the 
interaction with component (6) humans, the manu-
facturing system, and external IoT.

With the exceptions of the interaction with local sensors 
and actuators, and the human supervisor, the framework 
deploys a smart gateway that enables it to communicate 
with other information systems and cooperate with other 
legacy systems.

The proposed framework will allow the operators of man-
ufacturing equipment to detect operational problems before 
a serious situation has time to develop. They can then take 
corrective action, to restore the process to its proper state and 
thereby adhere to the recommended guidelines for preven-
tive maintenance. The framework can serve as an invaluable 

reference for those wishing to implement Industry 4.0 smart 
control in shop floors. Future research could include pursu-
ing improvements to the current methodological framework, 
comparing it with future suggested frameworks, and validat-
ing it by implementing case studies that adopt either the full 
framework or parts of it.
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