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ABSTRACT 

 

The effectiveness of the cooling system in the injection molding processes significantly affects 

production efficiency and part quality.  The current cooling system design is strictly limited by 

conventional manufacturing processes such as the casting and drilling process, which typically 

create straight or simple cooling channels.  However, the maturing additive manufacturing (AM) 

technology allows the design and fabrication of complex conformal cooling channels.  Typical 

advantages of conformal cooling are reduced cooling cycle time, smaller temperature variance, 

and better cooling quality.  However, the existing conformal cooling designs do not support parts 

with non-uniform thickness values, which leads to high temperature variance.  To improve the 

conformal cooling design in terms of the temperature variance, a machine learning aided design 

method is proposed to create cooling system which conforms not only to the part surface but also 

to the part thickness values.  A surrogate part temperature prediction model is trained through a 

supervised machine learning process.  Based on this model, optimization strategies are applied to 

different cooling topologies including zigzag, spiral, porous, and conformal porous structures 

(CPS) so that the resulting temperature variance of the part is minimized.  
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RÉSUMÉ 

 

L'efficacité du système de refroidissement dans les processus de moulage par injection affecte 

considérablement l'efficacité de production et la qualité des pièces. La conception actuelle du 

système de refroidissement est strictement limitée par les processus de fabrication conventionnels 

tels que le processus de coulée et de forage, qui créent généralement des canaux de refroidissement 

droits ou simples. Cependant, la technologie de fabrication additive (AM) en cours de maturation 

permet la conception et la fabrication de canaux de refroidissement conformes et complexes. Les 

avantages typiques du refroidissement conforme consister à une réduction du temps de cycle de 

refroidissement, une plus petite variance de température et une meilleure qualité de refroidissement. 

Cependant, les conceptions de refroidissement conformes existantes ne prennent pas en charge les 

pièces dont les valeurs d'épaisseur ne sont pas uniformes, ce qui entraîne une variance de 

température élevée. Pour améliorer la conception de refroidissement conforme en termes de 

variance de température, une méthode de conception assistée par apprentissage automatique est 

proposée pour créer un système de refroidissement qui se conforme non seulement à la surface de 

la pièce mais également aux valeurs d'épaisseur de la pièce. Un modèle de prédiction de 

température de pièce de substitution est formé par un processus d'apprentissage automatique 

supervisé. Sur la base de ce modèle, des stratégies d'optimization sont appliquées sur différentes 

topologies de refroidissement, y compris les structures poreuses en zigzag, en spirale, poreuses et 

conformes (CPS) de sorte que la variance de température résultante de la pièce soit minimisée.  
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CHAPTER 1  

Introduction 

1.1 Background 

As a common industrial manufacturing process, the injection molding method fabricates parts by 

injecting molten material into the mold [1].  With the pre-designed mold and cooling systems, 

parts with complicated geometry can be produced within a short time [2].  The injection molding 

technology is widely applied in aerospace [3], automotive [4], and plastics industries [5].  A typical 

injection molding cycle includes six procedures: (1) mold close, (2) filling, (3) pack and hold, (4) 

cooling and recovery, (5) mold open, (6) ejection as shown in Figure 1-1.  At the beginning of an  

 

Figure 1-1. The proportion of time spent on a typical injection molding cycle 

injection molding cycle, the mold is closed to generate a sealed cavity for the liquid of molten 

plastic.  The liquid plastic is initially plastic powder and pellets, which are imported from the 

hopper container, and melted in the cylindrical injection area.  These materials are transferred 

through the sprue into the mold by the rotating and reciprocating screw as shown in Figure 1-2 [6], 

where some injection molding machines also use a plunger for the transfer of the molten plastic as 

shown in Figure 1-3 [1].  Afterwards, the molten material is packed and held within the mold for  
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Figure 1-2. A typical injection molding machine [6] 

 

Figure 1-3. Injection molding schematic: (a) a plunger; (b) a reciprocating rotating screw [1] 

4 to 6 seconds.  The liquid plastic is then solidified by the cooling system of the mold.  Finally, 

the mold is opened, and the complete product is ejected after the cooling process.  During these 

procedures, the cooling and recovery takes 60% to 70% of the overall cycle time.  In addition, it 

significantly affects the resulting quality and the dimensional accuracy of the product [7].  Thus, 

the cooling system design has a critical effect on the production cycle time and part quality.  
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Nevertheless, the limitation of the conventional drilling and casting process imposes constraints in 

designing complex and effective cooling channels.  Traditionally, the cooling system of the 

injection molding machine is either designed with straight cooling channels [8], or an array of 

cooling baffles [9].  These conventional cooling channels are not necessarily conformal to the part 

geometry, which results in a longer production cycle time and poor quality of the part [10].  

However, the maturing Additive Manufacturing (AM) technology makes the fabrication of true 

conformal cooling channels possible with reasonable time and cost [11].  In this chapter, a review 

of theoretical works of conformal cooling heat transfer are first provided in Section 1.2.  Feasibility 

of conformal cooling design and the conformal cooling literature review are given in Section 1.3.  

In Section 1.4, the problems and challenges for existing conformal cooling systems including the 

part temperature variance and the coolant pressure drop are discussed.  To solve the temperature 

variance problem, a machine learning aided approach solution is proposed in Section 1.5.  In 

Section 1.6, the objective of this research is discussed, and the organization of the thesis is provided. 

1.2 Heat transfer theories in injection molding 

The conformal cooling channel is defined as the cooling passageway which is conformal to the 

geometrical profile of the mold core, so that a rapid cooling efficiency and an uniform cooling 

performance of the cooling system are achieved [12].  The heat transfer theory and design guideline 

of conformal cooling channels are first proposed by Xu et al. [10].  Based on their model, the 

energy conservation of the mold during the cooling process can be molded by equation (1-1): 

 𝐸𝑝 = 𝐸𝑚 + 𝐸𝑐  (1-1) 

where 𝐸𝑝 is the heat transferred from half of the part to the mold, 𝐸𝑐 is the energy loss through the 

coolant, and 𝐸𝑚 is the energy accumulated in the mold.  The schematic of this energy relation is  
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Figure 1-4. Heat transfer in a conformal cooling cell 

provided in Figure 1-4.  According to the heat transfer theories, equation (1-2) to equation (1-5) 

are derived: 

 𝐸𝑝 = 𝜌𝑝𝑐𝑝𝑙𝑝𝑊(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑒𝑗𝑒𝑐𝑡)dt/𝑡𝑐𝑦𝑐𝑙𝑒  (1-2) 

 𝐸𝑚 = 𝜌𝑚𝑐𝑚𝑙𝑚𝑊(𝑇𝑚(t + dt) − 𝑇𝑚(t))  (1-3) 

 𝐸𝑐 = 𝐾𝑚𝑊(𝑇𝑚(t) − 𝑇𝑎(t))dt/𝑙𝑚  (1-4) 

 𝐸𝑐 = 
1

2
ℎ𝜋𝐷(𝑇𝑎(t) − 𝑇𝑐)dt  (1-5) 

where equation (1-2) is derived based on the average energy loss in a time dt over the total cycle 

time 𝑡𝑐𝑦𝑐𝑙𝑒  during a cooling cycle for a part (density 𝜌𝑝 , specific heat capacity 𝑐𝑝, half of the 

thickness 𝑙𝑝) cooled from its melt temperature 𝑇𝑚𝑒𝑙𝑡 to the ejection temperature 𝑇𝑒𝑗𝑒𝑐𝑡.  Equation 

(1-3) represents the heat accumulated within the mold of a cooling cell (density 𝜌𝑚, specific heat 

capacity 𝑐𝑚, pitch width W, pitch to mold surface distance 𝑙𝑚) due to the mold temperature raises 

from 𝑇𝑚(t) to 𝑇𝑚(t + dt).  Equations (1-4) and (1-5) are constructed based on the heat flux at the 

mold-coolant interface, where 𝐾𝑚  is the heat conductivity of the mold material, ℎ  is the heat 

transfer coefficient at the mold-coolant interface, 𝐷 is the diameter of the cooling channel, 𝑇𝑎(t) 
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is the cycle averaged temperature at the mold-coolant interface.  To solve 𝑇𝑎(t), equation (1-4) 

and equation (1-5) are combined in equation (1-6): 

 
𝐾𝑚𝑊(𝑇𝑚(t)− 𝑇𝑎(t))dt

𝑙𝑚
= 

1

2
ℎ𝜋𝐷(𝑇𝑎(t) − 𝑇𝑐)dt   (1-6) 

where the resulted 𝑇𝑎(t) is given in equation (1-7): 

 𝑇𝑎(t) =  
𝐾𝑚𝑊𝑇𝑚(t)+

1

2
ℎ𝜋𝐷𝑙𝑚𝑇𝑐 

𝐾𝑚𝑊+ 
1

2
ℎ𝜋𝐷𝑙𝑚

   (1-7) 

submitting equation (1-7) to equation (1-4), equation (1-8) is obtained using the relation from 

equation (1-1) and the heat transfer calculations in equations (1-2) to (1-4). 

 
𝜌𝑚𝑐𝑚𝑙𝑚𝑊(𝑇𝑚(t+dt)− 𝑇𝑚(t))

dt
+

ℎ𝜋𝐷𝐾𝑚

2𝐾𝑚𝑊+ℎ𝜋𝐷𝑙𝑚
(𝑇𝑚(𝑡) − 𝑇𝑐) =  

𝜌𝑝𝑐𝑝𝑙𝑝(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑒𝑗𝑒𝑐𝑡)

𝑡𝑐𝑦𝑐𝑙𝑒
    (1-8) 

By applying lim
dt→0

 to equation (1-8), a first order differential equation is obtained: 

 𝜌𝑚𝑐𝑚𝑙𝑚𝑊
d𝑇𝑚(𝑡)

dt
+

ℎ𝜋𝐷𝐾𝑚

2𝐾𝑚𝑊+ℎ𝜋𝐷𝑙𝑚
(𝑇𝑚(𝑡) − 𝑇𝑐) =  

𝜌𝑝𝑐𝑝𝑙𝑝(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑒𝑗𝑒𝑐𝑡)

𝑡𝑐𝑦𝑐𝑙𝑒
    (1-9) 

where the solution of equation (1-9) is expressed in equation (1-10): 

 𝑇𝑚(𝑡) =  𝑇𝑚
̅̅ ̅̅ + (𝑇𝑚0 − 𝑇𝑚

̅̅ ̅̅ )𝑒−𝑡/𝜏    (1-10) 

where 𝑇𝑚
̅̅ ̅̅  is the cycle averaged mold temperature as shown in equation (1-11), 𝜏  is the time 

constant as shown in equation (1-12), and 𝑇𝑚0 represents the initial mold temperature. 

 𝑇𝑚
̅̅ ̅̅ =  𝑇𝑐 +

𝜌𝑝𝑐𝑝𝑙𝑝(2𝐾𝑚𝑊+ℎ𝜋𝐷𝑙𝑚)(𝑇𝑚𝑒𝑙𝑡−𝑇𝑒𝑗𝑒𝑐𝑡)

ℎ𝜋𝐷𝐾𝑚𝑡𝑐𝑦𝑐𝑙𝑒
    (1-11) 

 𝜏 =  
𝜌𝑚𝑐𝑚𝑙𝑚(ℎ𝜋𝐷𝑙𝑚− 2𝐾𝑚𝑊)

ℎ𝜋𝐷𝐾𝑚
    (1-12) 
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Based on equation (1-10), the mold temperature of typical conformal cooling channels 

designed from offset cooling surface can be modeled. 

 

Figure 1-5. The porous structure heat transfer model 

To improve the cooling efficiency and reduce the pressure drop of the mold, the porous cooling 

systems are another type of the cooling system that has recently been developed and studied.  Thus, 

adaptations of the heat transfer model from Xu et al. [10] also exist for the mold temperature 

calculation of general porous conformal cooling topologies [13].  Instead of modeling the cooling 

structures with a circular cross section as shown in Figure 1-4, a rectangular chunk of porous 

cooling area beneath the mold material is considered as shown in Figure 1-5.  Hence, the 𝐸𝑐 and 

𝐸𝑚 in equation (1-1) are re-calculated in equation (1-13) and equation (1-14), where 𝜌𝑚 is the 

density of the solid mold material, 𝑐𝑚 is the specific heat capacity of the solid mold, 𝑇𝑚𝑜𝑙𝑑(𝑡, 𝑦) 

represents the mold temperature function at time t, position y, 𝐾𝑚 is the heat conductivity of the 

mold material, ℎ is the effective heat convection coefficient for the solid and porous mold interface, 

and 𝑇𝑐 is the coolant temperature. 

 𝐸𝑚 = 𝜌𝑚𝑐𝑚𝑑𝑥𝑑𝑧 ∫ (𝑇𝑚𝑜𝑙𝑑(𝑡 + 𝑑𝑡, 𝑦) − 𝑇𝑚𝑜𝑙𝑑(𝑡, 𝑦))𝑑𝑦
𝑙𝑚
0

  (1-13) 

 𝐸𝑐 = 
ℎ𝑑𝑥𝑑𝑧(𝐾𝑚𝑇𝑚𝑠𝑢𝑟𝑓(𝑡)−𝐾𝑚𝑇𝑐)

𝐾𝑚+𝑙𝑚ℎ
𝑑𝑡  (1-14) 
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 𝑇𝑚𝑠𝑢𝑟𝑓(𝑡) =  𝑇𝑚𝑠𝑢𝑟𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ + (𝑇0 − 𝑇𝑚𝑠𝑢𝑟𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑒−𝑡/𝜏  (1-15) 

The modified average mold surface temperature 𝑇𝑚𝑠𝑢𝑟𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ and the time constant 𝜏 for equation (1-

15) is then derived in equation (1-16) and equation (1-17): 

 𝑇𝑚𝑠𝑢𝑟𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑇𝑐 +

𝐾𝑚+𝑙𝑚ℎ𝜌𝑝𝑐𝑝𝑙𝑝(𝑇𝑚𝑒𝑙𝑡−𝑇𝑒𝑗𝑒𝑐𝑡)

ℎ𝐾𝑚𝑡𝑐𝑦𝑐𝑙𝑒
)  (1-16) 

 𝜏 =
𝜌𝑚𝑐𝑚𝑙𝑚(𝑙𝑚ℎ+2𝐾𝑚)

2ℎ𝐾𝑚
  (1-17) 

where 𝑇𝑚𝑠𝑢𝑟𝑓(𝑡) is the mold surface temperature at time 𝑡, 𝑇𝑚𝑠𝑢𝑟𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average mold surface 

temperature for an injection molding cycle, 𝜏 is a time constant, 𝜌𝑚 is the density of the solid mold 

material, 𝑐𝑚 is the specific heat capacity of the solid mold, 𝐾𝑚 is the heat conductivity of the mold 

material, ℎ is the effective heat convection coefficient for the solid and porous mold interface, 𝑇𝑐 

is the coolant temperature, 𝑇0 is the initial temperature of the mold, 𝜌𝑝 and 𝑐𝑝 are the density and 

specific heat capacity of the part. 

To precisely predict the local part temperature however, the existing theoretical models are not 

sufficient.  First, the resulting part surface temperature cannot be derived from 𝑇𝑚(𝑡) in equation 

(1-10) or 𝑇𝑚𝑠𝑢𝑟𝑓(𝑡) in equation (1-15), since they mainly reflect the thermal status of the mold 

during an injection molding cycle.  Thus, it is impossible to utilize these theoretical models for a 

fast and accurate prediction of the local part temperature based on a given set of cooling channel 

design parameters.  In addition, the assumption is too general for the precise prediction of local 

part temperature during the derivation process of porous conformal cooling theory.  According to 

the derivation process proposed by Tang et al. [13], this model approximates the porous cooling 

channels to a cooling area with uniform heat flux �̇�, which is clearly insufficient in supporting the 

design of CPS composed of cooling cells with different cell sizes that can have variety of heat flux 
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values across the mold surface.  Another shortcoming of the porous model is that it does not link 

the design parameters of the cooling channels to its resulting thermal effects on the mold. 

1.3 Feasible design space for conformal cooling and literature review 

For the feasible design area, Xu et al. [10] proposed a model relating the coolant pressure drop, 

uniformity of the cooling performance, geometric constraint of the mold, and the manufacturing 

limitations as shown in Figure 1-6 [10].  Note that this feasible design area will differ if the design 

of the part, mold, or conformal cooling channel design varies.  Typically, a smaller diameter of the 

cooling channels results in an increase of the cooling efficiency but a reduction in terms of the 

manufacturability and mechanical properties (i.e. strength, damage tolerance) of the mold.  Among 

different conformal cooling research and engineering analysis [14-16], the minimum diameter of 

the cooling channels is 6 mm balancing the manufacturability and the cooling efficiency of the 

cooling system.  In this research, the minimum diameter of 6 mm is selected to achieve a high 

cooling performance of the cooling channels without introducing significant industrial fabrication 

difficulties. 

 

Figure 1-6. The feasible design area of conformal cooling channels [10] 
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Although the heat transfer theory and design guideline of the conformal cooling channels have 

been established, the design of conformal cooling channel has only been investigated to very 

limited extent.  Khan et al. [17] provided a cycle time reduction method by combining zigzag and 

parallel conformal cooling channel topologies to appropriate cooling surfaces.  In their work, 

analytical comparison is made among different cooling topologies in terms of the cooling time, 

temperature variance, and the part warpage, where a suitable topological design of the conformal 

cooling channels can be provided based on a given design of the part.  An automatic design of 

conformal cooling channels is studied by Wang et al. [15] by creating the centroidal Voronoi 

diagram (CVD) on the conformal surface.  A geometric algorithm is developed in their work to 

automatically generate a Voronoi cooling surface which is conformal to the part in a short time.  

With their design method, the resulting volumetric shrinkage and the cooling time of the part is 

reduced.  The CVD design is then compared with the spiral design method of conformal cooling 

channels proposed by Wang et al. [14], where the spiral design of conformal cooling channels is 

proven to have shorter cooling time and lower part temperature variance.  The comparison results 

also indicate that the spiral cooling channels have advantages over Voronoi cooling channels in 

terms of fabrication cost and the uniformity of coolant temperature and Reynold number. 

However, these conformal cooling channels are designed on cooling surfaces extracted and 

offset from the part surface geometry.  Since the design of these cooling systems is limited to these 

2D cooling surfaces, a lot of mold design space is not utilized to improve the cooling performance 

of the mold.  Thus, the porous conformal cooling systems are developed to further reduce the 

cooling time and part temperature variations.  These type of the cooling systems also have the 

advantages in terms of its small coolant pressure drop [18], mass reduction [19], and rapid cooling 

[20].  Specifically, Au et al. [21] proposed a multi-connected porous coolant passageway design 
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with a finite number of cubical cooling cells.  The fluid dynamics simulation results indicate that 

a more uniform cooling performance and a smaller number of part defects are achieved.  Brooks 

et al. [22] designed a porous conformal cooling mold with self-supporting lattice structures.  The 

resulting convective heat transfer of the mold is improved by its innovative cooling system design.  

Among different porous systems, the conformal porous structure (CPS) is an innovative porous 

structure proposed by Tang et al. [13], which is defined as a unique type of porous set of cooling 

channels that has the cooling cells conformal to the part surface.  Since uniformity of the distance 

between the cooling cells and the mold surface is improved, a more uniform cooling performance, 

smaller temperature variance of the part, and reduced coolant pressure drop can be achieved.  

However, if the part to be molded has a lot of thickness variations, the large temperature variance 

along the part surface will be a severe issue for all the existing conformal cooling topologies. 

A number of publications have reported on the optimization of design parameters of conformal 

cooling channels.  A feature deposition method is provided by  Li et al. [23] to recognize and 

separate the part geometry into different cooling areas.  By designing the appropriate cooling 

channels into each cooling region, the resulting part surface temperature variance is reduced.  Park 

et al. [24] provided the optimized design of baffles in their cooling system.  The pitch-to-pitch 

distances of the baffles are designed with an optimized value, and the resulting cooling time is 

decreased.  Jahan et al. [25] optimized the design of porous conformal cooling channel topology 

based on the mechanical behavior and thermal properties of 3D printed stainless steel porous 

conformal cooling molds with different mold porosities and structures.  Two design cases of plastic 

parts with discrete thickness values ranging from 1 mm to 6 mm are also studied by Jahan et al. 

[26] using the design of experiment method (DOE).  The optimized design of helix conformal 

cooling channels is able to minimize cooling time for plastic parts with a cylindrical and conical 
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shape.  To optimize the cellular cooling structures, Wu et al. [19] provided a multiscale lattice 

topology optimization method.  In their research, an AM manufacturable mechanical stable mold 

is developed with rapid cooling capability.  Although a 30% mass reduction of the mold is achieved 

with the same cooling performance, the optimized mold is not able to improve the part 

manufacturability and the quality due to temperature variance during the cooling process.  In 

addition, Park et al. [16] has proposed an optimization method of conformal cooling channels 

based on the simulation results of the temperature distribution after the filling stage.  It is found 

that the resulting cooling time is reduced by applying proper types of conformal cooling channels 

into different cooling regions of the part surface.  The effect of mold porosity on its density, 

specific heat, and thermal conductivity is studied by Jahan et al. [27].  In their work, the porosity 

of the mold is optimized with respect to the cooling time for discrete thickness values of the part.  

Nevertheless, the optimization research related to part warpage minimization mainly focused on 

optimizing the parameters of the injection molding process or the design of part geometries.  For 

instance, the optimization method of the injection molding gate location is proposed by Pandelidis 

et al. [28].  Moreover, Lee at al. [29] provided the optimization of part thickness design for warpage 

minimization.  Nevertheless, there is only very limited research on the minimization of part surface 

temperature variance by optimizing the design parameters of cooling channels.  There is also lack 

of research on the design and optimization of conformal cooling channels for the part with 

continuous thickness variations.  In addition, the current cooling system design method for 

different part thickness cannot be easily adopted for large part thickness variation. 

To properly handle the part surface temperature variance problem, the relation between the 

design parameters of the cooling channels, the part thickness values, and the resulting part surface 

temperature needs to be derived.  Dimla et al. [30] proposed an optimization method of an injection 
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molded part.  To reduce the cycle time, the optimal part design, gate locations, and the cooling 

channels design are determined based on the FEA and thermal analysis result.  However, there is 

still lack of detailed discussion and solution on the temperature variance caused by the part 

thickness variations in their research.  To obtain an optimized design of cooling channels in 

injection molds, a design of experiments (DOEs) technique is applied by Jahan et al. [31] to 

investigate the design parameter effects of cooling channels on its cooling performance.  

Nevertheless, the proposed model in their work does not exhibit self-learning and improvement 

abilities if the design parameters change their limits.  In addition, the proposed model and DOEs 

method is not suitable to be applied for more complicated conformal cooling channel design such 

as CPS.  A part warpage optimization based on DOEs and Glowworm Swarm Optimization (GSO) 

method is proposed by Hazwan et al. [32]. In their study, the process parameters of the injection 

molding are optimized, and the resulting part warpage is reduced by 39.1%.  A multi-objective 

optimization of injection molding process parameters is also proposed by Kitayama et al. [33] to 

improve the cooling performance and reduce the part warpage.  Still, due to the fact that the 

majority of the optimization research is focused on optimizing the injection molding process 

parameters, limited discussion is found regarding to the optimization for the conformal cooling 

channel design instead.  These challenges call for the investigation of applying innovative 

temperature prediction techniques to aid the design and optimization of conformal cooling 

channels for the minimization of the temperature variance. 

1.4 Temperature variance issue in conformal cooling 

The temperature variance is one of the existing problems for the conformal cooling design research.  

It is typically caused by the non-uniformity of the part thickness distribution as shown in Figure 

1-7.  Specifically, part regions with different heat inertia are cooled by the channels distributed  
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Figure 1-7. Temperature variance caused by the part thickness variation 

above the part surface for a fixed distance with the same flow rate.  The resulting non-uniform 

temperature along the part surface leads to thermal residual stress, which typically exists in the 

part regions that have large thickness variations.  As indicated by Jacques et al. [34], the 

temperature variance of an injection molded part will cause the warpage problem and hence a poor 

part quality.  In addition, it is stated by Shayfull et al. [35] that the warpage issue is even more 

likely to be caused by the temperature variance for the injection molded part with smaller thickness 

values.  The existing literatures mainly focus on solving this issue by alternating the original design 

of the part [36] and optimizing the injection molding process parameters [37, 38].   Nevertheless, 

limited optimization efforts have been found on handling this issue with a properly designed 

cooling system.  Since the pressure drop of the injection molding cooling systems is already 

significantly reduced by different novel designs such as multi-connected porous structures and 

CPS [13, 21], the temperature variance is the major remaining problems for current conformal 

cooling research.  To solve the temperature variance problem of a part with non-uniform 

thicknesses, a prediction of the local part surface temperature is required based on a given set of 

cooling system design parameters.  However, precisely predicting the local part surface 

temperature remains unsolved.  This is due to the complexity of the heat transfer process in the 
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injection molding, where running a large amount of cooling simulations to predict the part surface 

temperature during the optimization process of the conformal cooling channels is unrealistic.  

Therefore, an accurate yet fast prediction tool of the local part surface temperature is required to 

further study and solve the temperature variance issue. 

1.5 Machine learning 

The main challenge of handling the temperature variance problem is the fast and accurate 

prediction of the local part temperature based on the given cooling channel design parameters.  

Due to the complexity of heat transfer during an injection molding cycle, it is difficult to link the 

design parameters of different conformal cooling topologies to the resulting part surface 

temperature precisely.  However, this type of problem is a well-suited candidate for machine 

learning.  Machine learning, as a subset of artificial intelligence, has attracted a lot of research 

interests in the recent years.  It is defined as a set of methods which are able to automatically detect 

data patterns to predict future data or make decisions based on uncovered patterns of data [39].    

With a sufficient volume of data, the machine learning will be an ideal temperature prediction tool 

to detect underlying trends and patterns of the relations between the resulting part temperature and 

design parameters [40]. 

Recently, different machine learning strategies have been applied to improve the 

manufacturing industry.  An agent-based (holonic) AI systems is proposed by Monostori [41] to 

handle the complexity, changes and disturbances in production systems.  Instead of using 

dispatching rules, Priore et al [42] applied inductive learning, backpropagation neural networks, 

and case-based reasoning (CBR) to schedule the flexible manufacturing systems.  A significant 

improvement over the conventional dispatching rules is obtained by their machine learning 

approach.  Chi et al [43] developed an adaptive Automated Intelligent Manufacturing System 
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(AIMS) to aid the pharmaceutical development and manufacturing process.  In their study, the 

AIMS is proofed to be both explanatory and predictive.  More machine learning aided approach 

in manufacturing processes is reviewed by Priore et al [44].  For the injection molding industry, 

Park et al. [45] proposed a real-time intelligent control of the injection molding process parameters.  

Based on their method, a smart and automatic injection molding process is achieved by training 

the algorithm with the machine learning method.  Nevertheless, the machine learning approach in 

their work is focused more on the process parameters aspects, and there is not much discussion on 

the improvement of the cooling channel designs.  Shi et al. [46] shows that the injection molding 

process can be optimized with an artificial neural network (ANN) algorithm to reduce the part 

warpage.  In their research, an ANN surrogate model is built to approximate the relations between 

the design variables of the injection molding process and part quality index.  However, there is 

limited research effort found so far on the machine learning aided approach to design the conformal 

cooling channels. Thus, it is worthwhile to investigate the machine learning assisted design and 

optimization of the cooling system by training a surrogate model to predict the resulting part 

surface temperature. 

1.6 Research objectives 

The goal of this research is to study and solve temperature variance issue caused by the non-

uniform thickness distribution of the part in conformal cooling research, where several challenges 

exist.  As stated in Section 1.5, machine learning is selected as the temperature prediction tool in 

this research to achieve an efficient and precise part temperature prediction.  To train the machine 

learning model, however, the training data need to be properly selected for different cooling 

channel topologies (i.e. effective design parameters need to be identified, sufficient amount of 

training data need to be gathered, etc.).  Once the temperature prediction is achieved by the 
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machine learning method, optimization algorithms need to be designed for different cooling 

channel topologies to finally generate the cooling channels with machine learning aided conformal 

cooling design (MLACCD).  To address these challenges, there are in total four research objectives 

in this thesis: 

1) To identify the design parameters of different conformal cooling topologies including 

zigzag, spiral, porous, and CPS.  These topologies are chosen due to their validated effective 

cooling performance in the reported literatures [13, 14, 16, 21].  The selected design parameters 

should be both essential in geometrical construction of the cooling channels, and effective in 

influencing the resulting local cooling performance. 

2) To build sufficient amount of training data for the supervised machine learning process.  

The Moldflow Advisor® simulation software is selected in this work to generate the training 

data, where the accuracy of this simulation software is validated via previous research on 

different cooling systems [14-16, 24].  Since large amount of training data is required to train 

the machine learning algorithm, specific programs need to be developed to automatically 

generate simulation files to gather the required training data. 

3) To train the surrogate temperature prediction through the supervised machine learning 

process.  The resulting temperature prediction model should be able to efficiently and precisely 

predict a local part surface temperature based on the given part thickness values and the 

conformal cooling design parameters. 

4) To develop optimization strategies that minimize the temperature variance of different 

cooling channel topologies.  With the surrogate temperature prediction tool, the optimizations 

need to be performed so that the MLACCD can be finally achieved.  Due to the large design 

variations among different cooling channels topologies in terms of their geometrical 
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distribution of the cooling channels, different optimization method is developed for each 

topological design of the conformal cooling system.  Each optimization strategy should be time 

efficient, and able to effectively minimize temperature variance along the part surface by 

updating the wireframe design of conformal cooling channels. 

With these objectives, the rest of the thesis is organized as follows.  The design framework of 

the MLACCD is given in Chapter 2.  In Chapter 3, the design parameter identifications of zigzag, 

spiral, porous, and CPS cooling topologies are provided, and a cooling surface division method is 

proposed.  To discuss the machine learning strategy of this work, the training data generation and 

collection, supervised machine learning process, and the performance of the surrogate temperature 

prediction model is discussed in Chapter 4.  In Chapter 5, the optimization strategies for zigzag, 

spiral, porous, and CPS cooling channels are delivered.  This is followed by Chapter 6, where the 

proposed method is compared with conventional conformal cooling designs on different case 

studies including a freeform part surface, shoe sole, and a swimming pedal.  In Chapter 7, a 

comprehensive summary of this research is made, and the potential future research directions are 

concluded.  
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CHAPTER 2  

Design framework 

In this chapter, the overall design procedure of the machine learning aided conformal cooling 

design (MLACCD) is provided.  Traditionally, the conformal cooling channels are created on a 

cooling surface that is offset from the part surface geometry as shown in Figure 2-1 [15], or within 

a design volume with uniform distributions of cooling structures as shown in Figure 2-2 [13].  

Typically, the existing conformal cooling designs are constrained by the conventional conformal 

cooling concept, which requires the cooling channels to have a uniform cooling efficiency on the 

part surface (i.e. uniform pitch to mold surface distance 𝑙𝑚 , pitch width W, etc.).  Thus, the 

traditional conformal cooling design procedure is not suitable for the proposed MLACCD method 

due to two limitations: (1) the design parameters of MLACCD channels are not necessarily 

uniform (i.e. non-uniform pitch to mold surface distance 𝑙𝑚 ) since they are alternated and 

optimized from their original values based on the thickness distribution of the part; (2) the design 

concept of MLACCD involves new design procedures such as the training of the supervised 

machine learning surrogate part temperature model and the optimization of the conformal cooling 

channel design parameters using the machine learning part temperature prediction, which is totally 

different from the traditional conformal cooling design. 

 

Figure 2-1. Design procedure of a Voronoi conformal cooling circuit [15] 
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Figure 2-2. Design procedure of CPS [13] 

 

Figure 2-3. Design flowchart of MLACCD 

The design flowchart of the MLACCD is provided in Figure 2-3, which consists of four steps: 

(1) identification of design parameters; (2) supervised machine learning process; (3) optimization; 
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(4) mold generation.  A more detailed explanation of step (1) to step (3) is given in Chapter 3 to 

Chapter 5, so only a brief overview of those steps is given here.  For a given conformal cooling 

topology, the design parameters are first identified.  Based on these design parameters, cooling 

simulations are performed on Moldflow Advisor® to gather the resulting part temperatures for the 

supervised machine learning process.  During the supervised machine learning process, the 

training data are fed into a two-layer ANN to train the surrogate part temperature prediction model.  

Note that the quality of the training process is tested by the loss function, and the accuracy of the 

model is evaluated by the test data randomly selected from the training data.  Based on the 

surrogate temperature prediction model and the CAD design of the injection molding part, the 

optimization of the design parameters is performed and the wireframe of conformal cooling 

channels is generated.  This optimized wireframe is used to construct the solid MLACCD channels 

so that a MLACCD injection molding mold can be built by the procedure shown in Figure 2-4.  

Typically,  

 

Figure 2-4. Generation of injection molding mold 
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the generation of the solid conformal cooling channels is composed of the designs of nodes and 

cooling pipelines.  According to Tang et al. [13], the relation between the diameters of nodes and 

the connected cooling channels is modeled in equation (2-1): 

 𝐷𝑛𝑜𝑑𝑒 = 𝐶
𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙

sin
𝜃

2

  (2-1) 

where 𝐷𝑛𝑜𝑑𝑒 is the diameter of the node, 𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is the diameter of the channel, 𝜃 represents the 

minimum angle between the cooling channels connected at the node, C is a constant greater than 

one, which avoids intersections between two connected cooling channels.  In addition, the hoses 

are usually required to form a proper connection between the coolant pipes and the mold.  The 

hose design of the mold is provided in Figure 2-5.  The inner diameter of the hose usually exhibits  

 

Figure 2-5. Hose design 

a steady decrease from the opening of the hose 𝐷𝑖𝑛𝑙𝑒𝑡 to the start point of the cooling channels 

𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙 to provide a smaller pressure drop of the coolant at inlet locations.  The outer surface 
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design of the hose is typically determined by the dimensions and the assembly features of the 

coolant inlet pipes (i.e. in Figure 2-5, the 𝐷ℎ𝑜𝑠𝑒 depends on the inner diameter of the pipe to be 

connected, and the surface assembly feature is determined based on the connection designs of the 

pipe).  The inlet design will not be discussed in detail in this thesis, since this work mainly focus 

on the design of conformal cooling channels.  To obtain the final MLACCD injection molding 

mold, Boolean operations are applied to combine the hose to the mold outline, and subtract the 

solid cooling channels as shown in Figure 2-4. 

To summarize, a new conformal cooling design procedure is discussed in this chapter, since 

the conventional approach is no longer suitable for the MLACCD proposed in this work.  There 

are four design steps to generate a MLACCD cooling system.  First, the design parameters of a 

given conformal cooling topology are identified.  Then, a supervised machine learning process is 

performed to obtain a surrogate model relating the identified design parameters and the resulting 

part surface temperature.  Based on the surrogate temperature model, a temperature variance 

minimization (TVM) tool is developed to minimize the temperature variance of the part.  Finally, 

the MLACCD mold can be generated based on the wireframe of the TVM cooling channels, and 

the mold outline.  The detailed discussion of each step of the design process will be provided in 

Chapter 3 to Chapter 5, and validated by the case studies given in Chapter 6.  
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CHAPTER 3  

Identification of design parameters and division of cooling surface 

In this chapter, the design parameters of the most suitable cooling channel topologies including 

zigzag, spiral, porous, and CPS are identified in Section 3.1 for the purpose of training data 

construction.  Additionally, an effectiveness evaluation of the CPS design parameters in terms of 

their influences on the resulting part surface temperature is performed through the Moldflow 

Advisor® simulations due to its novel design and unexplored influence of the design parameters 

on the cooling efficiency.  In Section 3.2, a cooling surface division method is introduced for 

zigzag, spiral, and porous cooling channels, where each cooling topology is mapped to the part 

geometry to allow its largest optimization potentials.  Since CPS is a unique type of porous 

structures that does not exhibit significant variations on its cooling performance for different 

geometrical designs of the part, it will not be considered in the division algorithm. 

3.1 Identification of design parameters 

In this section, the design parameters of zigzag, spiral, porous, and CPS cooling channels are 

selected to construct the training data sets in the machine learning process, to estimate the part 

surface temperature during the optimization process, and to define the cooling efficiency variation 

direction 𝑪𝑬𝑽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   for the cooling surface division.  Three rules need to be considered during the 

identification of the design parameters: (1) the design parameters should have the ability to 

effectively affect the cooling efficiency of the cooling system; (2) it should be practical to adjust 

the design parameters in the optimization process; (3) the design parameters should be essential in 

fully defining the geometrical design of the cooling channels.  In Section 3.1.1, the identification 

of the design parameters for theoretically well-established conformal cooling topologies including 

zigzag, spiral, and porous designs is discussed.  For CPS, the theoretical links between the design 

parameters and their resulting influence on the cooling efficiency is unclear.  Thus, the 
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effectiveness of the CPS design parameters needs to be evaluated, and the design parameter 

identification for CPS will be individually discussed in Section 3.1.2. 

3.1.1 Spiral, zigzag, and porous cooling systems 

As indicated in the heat transfer theory proposed by Xu et al. [10], the cooling efficiency of a spiral 

or zigzag conformal cooling channel is mainly affected by the half-part thickness 𝑙𝑝 , coolant 

Reynold number Re, channel diameter 𝑑, cooling channel pitch width 𝑊, and cooling channel 

pitch to mold surface distance 𝑙𝑚 as shown in Figure 3-1.  For porous conformal cooling channels, 

the most influential parameters besides 𝑙𝑝 are the porosity of the mold 𝜙, and the Reynold number 

Re.  Among these parameters, 𝑑, 𝑙𝑚, and 𝜙 are the design parameters that are critical to fully  

 

Figure 3-1 Design parameters for spiral, zigzag, and porous cooling channels 
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define the geometrical designs of the cooling channels.  However, there are two reasons that Re 

and 𝑑 are impractical to be varied during the optimization.  First, the variation of Re requires 

designing multiple coolant inlets for different flow rates, which significantly increases the 

complexity of the cooling system.  Second, the channel diameter 𝑑 is coupled with 𝑙𝑚, 𝑊, and Re. 

 

Figure 3-2. The coupling effect of changing the diameters of cooling channels 

An example is shown in Figure 3-2 to explain the coupling effect of Re, 𝑙𝑚, 𝑊, and 𝑑.  As the 

channel diameter varied from 𝑑1 to 𝑑2, the original pitch-to-pitch distance 𝑊1 and pitch to mold 

surface distance 𝑙𝑚1
 are forced to be adjusted to 𝑊2  and 𝑙𝑚2

 as given in equation (3-1) and 

equation (3-2): 

 𝑊2 = 𝑊1 − (𝑑2 − 𝑑1) (3-1) 

 𝑙𝑚2
= 𝑙𝑚1

− (𝑑2 − 𝑑1) (3-2) 

In addition, the mathematical relation between  Re and 𝑑  for a circular channel is provided in 

equation (3-3): 
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 Re =  
𝑄

𝜋𝜈𝑑
 (3-3) 

where 𝑄  is the volumetric flow rate, and 𝜈  represents the kinematic viscosity of the coolant.  

Therefore, increasing 𝑑 results in a reduction of Re as shown in Figure 3-2.  These coupled effects 

make it very challenging to adjust 𝑑 during the optimization process.  With these considerations 

and design parameters selection procedure, 𝑊 and 𝑙𝑚 are selected as the design parameters for 

spiral and zigzag cooling channels, and 𝜙 is selected as the design parameters for porous channels 

as shown in Figure 3-1. 

3.1.2 CPS 

To fully-define a three-layer CPS, the CPS design parameters have to be identified first.  There are 

several reasons of selecting a three-layer CPS.  First, additional cooling layers will have a much 

larger pitch to mold surface distance, which is not cost effective in terms of its cooling efficiency 

versus additional mass and manufacturing complexity.  Second, recent publications have proven 

that two to three cooling layers will already produce a rapid cooling for the porous cooling channels  

 
Figure 3-3. Required design parameters for a three-layer CPS 
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[13, 21].  As shown in Figure 3-3, four design parameters are needed to fully define a three-layer 

CPS: (1) CPS to mold surface distance 𝒍𝒎; (2) CPS cell size S; (3) distance between the first and 

the second cooling layers 𝒉𝟏; (4) distance between the second and the third cooling layers 𝒉𝟐. 

 

Figure 3-4. The simulation configuration and an example temperature collection for trial 

simulations and training data collection process 

Table 3-1. Input parameters for cooling simulations 

Mold material  H13 Tool Steel 

Initial mold temperature  323.15 K 

Part material  Generic PP 

Melt temperature  493.15 K 

Coolant type Water 

Coolant inlet temperature 298.15 K 

Coolant flow rate 20 lit/min 

Injection cycle time 35 seconds 

CPS design parameters [𝑙𝑚, S, ℎ1, ℎ2] 

 

Table 3-2. Range of the design parameters 

Design parameters Range 

CPS to mold surface distance 𝑙𝑚 6 mm ~ 30 mm 

CPS cell size S 12 mm ~ 30 mm 

Distance between the first and the second cooling layers ℎ1 12 mm ~ 30 mm 

Distance between the second and the third cooling layers ℎ2 12 mm ~ 30 mm 
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Table 3-3. Effectiveness evaluation results for cps design parameters 

Potential CPS 

design parameters 

Parameter set 

[𝑙𝑚, 𝑆, ℎ1, ℎ2] 
(mm) 

𝑇 (℃) ∆𝑇 (℃) Effectiveness evaluation 

𝑙𝑚 
[6,12,12,12] 28.6 

3.5 Effective 
[28,12,12,12] 32.1 

S 
[6,12,12,12] 28.6 

1.9 Effective 
[6,28,12,12] 30.5 

ℎ1 
[6,12,12,12] 28.6 

0.2 Not effective 
[6,12,28,12] 28.8 

ℎ2 
[6,12,12,12] 28.6 

0 Not effective 
[6,12,12,28] 28.6 

 

Traditionally, the overall cooling performance of a CPS can be roughly modeled by the 

theoretical model derived previously in our lab [13].  However, whether the design parameters 

including S, 𝑙𝑚, ℎ1, and ℎ2 are effective in terms of affecting the resulting part surface temperature 

cannot be concluded from this model.  Thus, the effectiveness if CPS design parameters in terms 

of cooling efficiency was not theoretically or numerically evaluated in previous publications, 

which is different from zigzag, spiral, and porous cooling systems as discussed before.  Therefore, 

trail simulations are performed on Moldflow Advisor® with the input parameters provided in Table 

3-1 to determine the effectiveness of these parameters in Figure 3-3 in terms of controlling the 

cooling efficiency, and the simulation configuration shown in Figure 3-4a.  The resulting part 

surface temperature is observed as the CPS design parameters are set as their upper and lower 

limits, while the others remain unchanged.  An example temperature collection is provided in 

Figure 3-4b.  Note that only the temperature at the center of the part surface is collected, since the 

coolant flow rate of CPS is the most stable at that point.  The range of these parameters are provided 

in Table 3-2 based on the feasible design area proposed by Xu et al. [10].  The input [𝑙𝑚, 𝑆, ℎ1, ℎ2] 

values together with the results of these trial simulations are provided in Table 3-3, where ∆𝑇 is 

the temperature difference between the simulation results of two parameter sets for each CPS 
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design parameter.  According to the effectiveness evaluation, the ℎ1 and ℎ2 are not effective in 

terms of influencing the cooling performance.  Thus, the 𝑙𝑚, and S are selected as the design 

parameters for CPS in this work, while the others are automatically set to their lower limits. 

3.2 Cooling surface division 

To achieve better cooling controllability and channel distribution flexibility during the design 

process of zigzag, spiral, and porous cooling channels and map the best cooling topology into 

different part regions, the cooling surface of the part is divided into three sub-regions.  The CPS is 

not discussed in this section since it does not have large variations on its cooling performance for 

different part geometries.  The separation of cooling surfaces is based on the comparison result 

between the cooling efficiency variation directions 𝐶𝐸𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗   of different cooling topologies as shown 

in Figure 3-5, and the thickness distribution of the cooling surface.  The 𝐶𝐸𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗   is defined as the 

direction that the local cooling efficiency of the channels which can be varied through locally 

adjusting the conformal cooling design parameters including 𝑊 , 𝑙𝑚 , and 𝜙 , where the local 

cooling efficiency is the cooling rate on the part surface below a specific region of the cooling 

channels.  For spiral cooling channels as shown in Figure 3-5a, variation of the spiral pitch-to-

pitch distance 𝑊𝑠𝑖𝑗 and pitch to mold surface distance 𝑙𝑚𝑠𝑖𝑗 provides the cooling controllability on 

the direction perpendicular to the channel distribution direction c 𝑠.  Thus, the cooling efficiency 

variation directions of the spiral channels 𝐶𝐸𝑉𝑠𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is defined in equation (3-9): 

 𝐶𝐸𝑉𝑠𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∈ {𝐶𝐸𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗   | 𝐶𝐸𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⊥  c 𝑠} (3-9) 

Obviously, the pattern of 𝐶𝐸𝑉𝑠𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   as shown in Figure 3-5a matches to a centripetal thickness 

variation, which results in a closed and circular thickness contour line on the part geometry.  For 

zigzag cooling channels as shown in Figure 3-5b, the cooling channels are mainly distributed along 

±𝑦 .  In addition, the variation of both 𝑊𝑧𝑖 and 𝑙𝑚𝑧𝑖 contributes to the cooling controllability on  
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Figure 3-5. The cooling efficiency variation directions 𝐶𝐸𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗   for each cooling channel design 

the direction vertical to c 𝑧 similar to the spiral cooling channels.  Hence, the cooling efficiency 

variation directions of the zigzag channels 𝐶𝐸𝑉𝑧⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is defined in equation (3-10): 
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 𝐶𝐸𝑉𝑧⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∈ {𝐶𝐸𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗   | 𝐶𝐸𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⊥  𝑦 } (3-10) 

Different from spiral cooling channels, the pattern of 𝐶𝐸𝑉𝑧⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ matches with a unidirectional 

thickness variation, which has an open contour line of part thickness.  For porous cooling channels, 

the porosity 𝜙𝑖 varies regionally as shown in Figure 3-5c.  Therefore, the pattern of 𝐶𝐸𝑉𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  contains 

the vectors 𝐶𝐸𝑉𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ pointing from region 𝑖 − 1 to region 𝑖, where each region 𝑖 exhibits a uniform 

 

Figure 3-6. General procedure of the cooling surface division 
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thickness value.  Thus, 𝐶𝐸𝑉𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  matches to a discrete thickness variation of part geometry, which 

refers to uniform thickness regions.  

There are three steps to achieve the cooling surface division as shown in Figure 3-6.  First, the 

closed circular thickness contour line is derived containing the largest possible cooling area.  This 

contour line represents the boundary of the largest sub-regions with centripetal thickness variation, 

and hence it is the dividing line for the spiral cooling surface.  Second, the spiral cooling surface 

is separated from the total cooling surface based on the closed circular contour line derived.  Then, 

the porous cooling region is divided from the rest of the total cooling surface by separating the 

sub-regions with uniform thickness values, and the remaining cooling surface after the separation 

represents the zigzag cooling region. 

3.3 Summary 

In this chapter, the identification of design parameters for conformal cooling topologies including 

zigzag, spiral, porous, and CPS are discussed.  In addition, a cooling surface division method is 

proposed to provide a better cooling controllability and channel distribution flexibility for the 

situation where multiple cooling channel topologies are applied for a same part.  Based on the 

design parameter selection principles proposed at the beginning of this chapter, [𝑊, 𝑙𝑚, 𝑙𝑝], [𝜙, 

𝑙𝑝], [ 𝑆, 𝑙𝑚, 𝑙𝑝] are identified as the design parameters for zigzag and spiral, porous, and CPS 

cooling channels, respectively.  Using the cooling surface division method, a given part geometry 

can also be divided into sub-regions for zigzag, spiral, and porous cooling channels based on the 

comparison result between the 𝐶𝐸𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗   patterns of the part and the cooling topologies.  The identified 

design parameters are then applied to generate the training data during the machine learning 

process, which will be discussed in the next chapter. 
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CHAPTER 4  

Machine learning prediction of part surface temperature 

In this chapter, the machine learning process is carefully discussed, where in total four conformal 

cooling topologies including CPS, zigzag, spiral, and porous structures are analyzed using the 

supervised machine learning method.  A general description of the machine learning procedure is 

provided in Figure 4-1.  To generate the training data, algorithms are first designed to create the 

Moldflow Advisor® simulation files for these cooling channel topologies.  Specifically, these 

programs generate the simulation files that can be executed by Moldflow Advisor® with all the 

possible combination of the cooling channel design parameters for every possible 𝑙𝑝value.  The 

part surface temperatures are then collected from the cooling simulation results with respect to 

different sets of the design parameters, where these temperature data are combined with their 

corresponding design parameters as the training data.  The training data are then fed into the 

supervised machine learning algorithm which is a two-layer ANN, where the detailed architecture 

of the ANN will be discussed in Section 4.2.1.  Within the ANN, the input layer contains all the 

design parameters, and the output layer is the resulting temperature value.  As a result, a trained 

surrogate temperature model is generated.  To evaluate the model, the loss function and the 

maximum temperature difference between the test data and the predicted data are calculated.  If 

the loss function has a steady decrease, and the maximum model error is acceptable, the surrogate 

model is considered to be ready for being applied during the optimization process.  Otherwise, 

revisions are required for the program parameters of ANN to decrease the loss during the training, 

and more training data have to be generated and fed into the ANN to improve the model accuracy.  

In this chapter, the detailed explanation of the training data construction for these topologies is 

given in Section 4.1.  In Section 4.2, the ANN training process, and the evaluation results of the 

trained machine learning surrogate temperature model are provided.   
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Figure 4-1. The machine learning procedure 

4.1 Generation of training data 

In this section, the algorithms that generates the training data simulation files of CPS, zigzag, spiral, 

and porous conformal cooling topologies are given in Section 4.1.1 to 4.1.3.  The simulation 
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configuration for the temperature data collection of each cooling topology is also provided in these 

sections and discussed carefully. 

4.1.1 Algorithm design for the generation of zigzag cooling channels 

The flowchart for the zigzag cooling channels generation program is shown in Figure 4-2.  The 

inputs of this program are lists of W, 𝑙𝑚, and 𝑙𝑝 values containing all the possible design parameter 

values that the defined by the user for the training process.  With given lists of W, 𝑙𝑚, and 𝑙𝑝 values  

 

Figure 4-2. The zigzag simulation files generation algorithm 
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and the list positions i, j, and k, the program generates two files: (1) a rectangular part with the 

thickness of 2𝑙𝑝(k) designed for the cooling channels with the width of W(i); (2) the control lines 

of the cooling channels with a pitch-to-pitch width of W(i), and a distance of 𝑙𝑚(j) to surface of  

 

Figure 4-3. The coordinates of the cooling channel control points and the block object edges 
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the part with the thickness of 𝑙𝑝(k).  Specifically, the control point coordinates of the cooling 

channel control lines, and the edge coordinates of the part is provided in Figure 4-3.  The generated 

cooling channel file and the part file are saved with the names of W(i)_ 𝑙𝑚(j)_ 𝑙𝑝(k).iges and 

W(i)_ 𝑙𝑝(k).stl, respectively.  This process is iterated by updating the values of i, j, k so that every 

possible combinations of W(i), 𝑙𝑚(j), 𝑙𝑝(k) are accessed as shown in Figure 4-2. 

Table 4-1. Cooling simulations input parameters for training data collection 

Topology Zigzag and spiral Porous and CPS 

Mold material H13 Tool Steel H13 Tool Steel 

Initial mold temperature 323.15 K 323.15 K 

Part material Generic PP Generic PP 

Melt temperature 493.15 K 493.15 K 

Cooling channel diameter 6 mm 6 mm 

Coolant type Water Water 

Coolant inlet temperature 298.15 K 298.15 K 

Coolant flow rate 5 lit/min 5 lit/min 

Injection cycle time 35 seconds 35 seconds 

 

 

Figure 4-4. Example simulation configuration and temperature distribution result for zigzag 

cooling channels 

 

Once the simulation files are generated, the Moldflow Advisor® cooling simulation is 

performed with the input parameters as shown in Table 4-1.  Figure 4-4a shows an example of a 
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simulation set up with the imported zigzag cooling channels and block-shaped part, where Figure 

4-4b shows the part temperature distribution of the cooling simulation.  From the result of each 

simulation, a corresponding temeprature of the part is collected for each set of the design 

parameters, and will be finally used in the ANN training process. 

4.1.2 Algorithm design for the generation of spiral cooling channels 

To understand the overall spiral cooling channels generation algorithm, a simplified version of the 

spiral boundary distance mapping (BDM) strategy proposed by Wang et al. [14] needs to be first 

explained.  Figure 4-5 shows the procedure of creating spiral cooling channels based on a given  

 

Figure 4-5. Simplified spiral BDM method 
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start point 𝑃0, and W value.  To create a cooling channel control line with m helixes separated by 

the pitch width W, circles 𝑂1 to 𝑂𝑚 concentric at 𝑃0 are designed with the radius W to mW.  These 

circles are then divided into n + 1 arcs by angle 𝜃0 =
2𝜋

𝑛
, where n is the resolution for the division.  

As a result,  points of intersections 𝑃1,0 to 𝑃𝑚,𝑛 are extracted, where 𝑃𝑖,𝑗 represents the intersection 

between the ith circle and jth division line.  Afterwards, the spiralization technique is applied to 

generate the spiralized control points.  To illustrate, every points of intersections 𝑃1,𝑖 to 𝑃𝑚,𝑖 are 

adjusted by a distance 
𝑊𝑖

𝑛
 on the division line as shown in Figure 4-5.  For each 𝑂𝑎 to 𝑂𝑎+1, a 

smooth connection is formed through connecting the adjusted 𝑃𝑎,0 to 𝑃𝑎,𝑛.  Finally, all the adjusted 

points are connected with the sequence provided in equation (4-1), and the resulting spiral cooling 

channels are formed.  For the training data collection purposes, the simulation file should be as 

simple and straightforward as possible to improve the data collection efficiency.  Thus, the part 

files as shown in Figure 4-6a are generated based on the design of spiral cooling channels.  The 

disk-shaped parts are chosen because it not only reduces the modelling and design efforts, but also 

decreases the simulation time. 

 𝑃1,0 → 𝑃1,1 → ⋯ → 𝑃1,𝑛 → 𝑃2,0 → ⋯ → 𝑃2,𝑛 → ⋯ → 𝑃𝑚,0 → ⋯ → 𝑃𝑚,𝑛  (4-1) 

The overall flowchart explaining the generation of the spiral simulation files is provided in 

Figure 4-7.  Basically, the program is designed to iterate over all combinations of 𝑊, 𝑙𝑚, and 𝑙𝑝 

values in a similar way as zigzag simulation file generation program, and generates the spiral 

simulation files.  Note that the z-coordinates of 𝑃0 for the upper and lower spiral cooling channels 

are set as ±(𝑙𝑚 + 𝑙𝑝) as shown in Figure 4-6b.  This distance makes sure that the spiral cooling 

channels for a part of 2𝑙𝑝 thickness exhibit a pitch to mold surface distance of 𝑙𝑚.  The number of  
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Figure 4-6. The part design and the relative part to channels positions 

the initial concentric circles are set to m = 3 during the iteration, where the radius of the disk-

shaped part is automatically designed as 1.5W following the calculation provided in Figure 4-6c.  

There are three reasons of setting m to 3: (1) for any m > 3, the simulation time significantly 

increase, which increase the overall training data collection time; (2) for any m > 3, the coolant  
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Figure 4-7. The spiral simulation files generation algorithm 

will have a non-negletable temperature raise, which results in a reduction of the training data 

accuracy; (3) for any m < 3, the temperature collection point will be too close to either the inlets 

or the outlets of the coolant, which negatively affect the training data accuracy.  Figure 4-8a 

provides the simulation configuration for the training data collection of spiral conformal cooling 

channels with the input parameters provided in Table 4-1, where Figure 4-8b shows the simulation 
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result.  Based on the simulation result, the resulting part surface temperature is finally collected 

for the ANN training process. 

 

Figure 4-8. Example simulation configuration and temperature distribution result for spiral 

cooling channels 

4.1.3 Algorithm design for generation of porous and CPS cooling channels 

The algorithms that generate the porous and CPS simulation files for training data collection 

purposes are discussed together in this section due to similarities of porous and CPS in terms of 

their channel topologies.  Based on a given set of design parameters, Figure 4-9 and Figure 4-10 

provide the flowcharts for the generation of CPS cooling channels, porous cooling channels, and 

their correpsonding parts.  For CPS cooling channels, the upper and lower initial cooling planes 

are first generated based on given 𝑙𝑚, 𝑙𝑝, and S values, where the coordinate of the node on ith row 

and jth column of the initial cooling plane is derived in equation (4-2): 

 𝑃0(𝑖,𝑗) = (𝑖𝑆, 𝑗𝑆, ±(𝑙𝑚 + 𝑙𝑝))  (4-2) 

where 𝑃0(𝑖,𝑗) represents the node intersected by ith row and jth column of the initial cooling planes, 

the ± sign indicates that in total two initial cooling planes are generated, which are positioned 

above and below the part object as shown in Figure 4-9.  To construct three layers of the cooling  
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Figure 4-9. The CPS cooling channels generation method 

surfaces, these cooling planes are then copied and lifted from the part surface with the distance ℎ1 

and ℎ1 + ℎ2 as shown in Figure 4-9.  Connection lines are then formed between each 𝑃0(𝑖,𝑗), 𝑃1(𝑖,𝑗) 

and 𝑃1(𝑖,𝑗), 𝑃2(𝑖,𝑗) pairs so that the final CPS cooling channels are formed for the training data 

collection purposes.  A block-shaped object with the thickness of 2𝑙𝑝 is designed as the part for 

the training data simulation due to its simple geometry, which reduces the simulation time.  The 
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width of the part is set to be mS and nS for the cooling planes of m × n size, since these width 

values can provide a porper 0.5S edge distance (this distance ensures the edge of the part be 

porperly but not over cooled, which affects simulation accuracy) between the edge of cooling 

channels and the part. 

 

Figure 4-10. The porous cooling channels generation method 
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For the porous cooling channels, the design parameters are 𝑙𝑝 and 𝜙.  To generate the cooling 

channel control lines, relation between the pitch width of the porous cooling channels W and the 

porosity 𝜙 is derived in Figure 4-10, where the fitting function is provided in equation (4-3): 

 𝜙 = 85.4𝑒−0.1𝑊  (4-3) 

As shown in Figure 4-10, a convertion from 𝜙 to W is performed at the beginning of the porous 

structure generation process.  Different from the CPS generation algorithm, the spacing between 

the cooling plane is directly set to the cooling channel cell size of W so that a uniform 𝜙 can be 

found at different mold positions.  Hence, the wireframe of the porous structures is directly 

generated with the node coordinate calculation derived in equation (4-4): 

 𝑃(𝑖,𝑗,𝑘) = (𝑖𝑊, 𝑗𝑊,±(𝑘𝑊 + 𝑙𝑚 + 𝑙𝑝))  (4-4) 

where 𝑃(𝑖,𝑗,𝑘) represents the node at the intersection among ith row, jth column, and kth cooling plane, 

and the ± sign indicates wether a given node of porous cooling structures is above (+) or below (-) 

the part. 

Based on the CPS and porous generation method provided in Figure 4-9 and Figure 4-10, the 

simulation files for all combinations of the design parameters can be generated as shown in Figure 

4-11.  For CPS cooling channels, the program updates 𝑙𝑚(𝑖), 𝑆(𝑗), and 𝑙𝑝(𝑘) values to generate 

the IGES CPS cooling channel files named 𝑙𝑚(𝑖)_𝑆(𝑗)_𝑙𝑝(𝑘).igs, and the STL part file named 

𝑆(𝑗)_𝑙𝑝(𝑘).stl.  For the simulation files generation of the porous structure, the program iterates 

over all combinations of 𝜙(𝑖) and 𝑙𝑝(𝑗) values, and provides the IGES porous cooling channel 

files named 𝜙(𝑖)_𝑙𝑝(𝑗).igs, and the STL part files named 𝜙(𝑖)_𝑙𝑝(𝑗).stl.  As discussed in Section 

3.1.2, the ℎ1 and ℎ2 are not effective in terms of influencing the resulting part temepratures, 
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Figure 4-11. The CPS and porous structure simulation files generation algorithm 
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therefore constant value to set to ℎ1 and ℎ2 as 12 mm, which is the minimum value of the pitch 

width.  Thus, the parameter ℎ1 and ℎ2 are set as 12 mm during the cooling channels and part 

generation process of the CPS and porous structure.  In addition, the number of cooling cells of 

the CPS and porous structure is fixed as n = m = 4, and n = m = l = 4, respectively, to achieve a 

stable flow rate at the center of the cooling planes that is closest to the part surface without causing 

a significant increase of the simulation time.  Note that the cooling channel to mold surface 

distance of the porous structure is not considered as a design parameter for porous structure.  This 

distance is set as half of the pitch width values 𝑊(𝜙(𝑖)), since a invariant porosity over the mold 

is desired to ensure the accuracy of the training data.  The generated simulation files are then 

imported into the Moldflow Advisor® simulation as shown in Figure 3-4a and Figure 4-12a.  The 

input parameters for the simulations are provided in Table 4-1.  Note that the the inlet flow rate of 

the CPS and porous cooling simulations is different from which of the zigzag and spiral cooling 

simulations.  The flow rate for CPS and porous structures is set to 20 lit/min, since it is the inlet  

 

Figure 4-12. Example simulation configuration and temperature distribution result for porous 

cooling channels 
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flow rate that makes the major portions of the cooling channels exhibit a flow rate that is close to 

5 lit/min, which is the same as coolant flow rate for zigzag and spiral cooling channels.  This inlet 

flow rate allows the comparison between different topological designs of the cooling channels 

together on different regions of the same part.  Example simulation results are provided in Figure 

3-4b and Figure 4-12b.  The temperature data is collected at the center of the part surface, since 

the flow rate of CPS and porous cooling channels are not stable at the positions closer to the inlets 

and outlets. 

4.2 Supervised machine learning process 

In this study, a supervised machine learning process is applied to train the surrogate temperature 

prediction model for different cooling channel topologies including zigzag, spiral, porous, and 

CPS.  There are mainly two reasons of deriving a machine learning surrogate model for 

temperature prediction.  First,  the theoretical models such as the temperature model proposed by 

Xu et al. [10] cannot be generally adapted and applied to different novel designs of conformal 

cooling channel geometries due to their various types of design parameters.  Even if the basic heat 

transfer theory in Section 1.2 can be modified for novel conformal cooling designs such as CPS 

[13], the accuracy of the adapted model cannot be guaranteed.  However, the surrogate model 

proposed in this thesis can be effectively tested by the testing data, and the loss functions during 

the training process.  In addition, the computational cost of the temperature prediction is 

significantly decreased, where the approximate computing time between the Moldflow Advisor® 

and the surrogate temperature model for different cooling channel topologies is compared on a 

computer with NVIDIA® GEFORCE® GTX graphics card, intel® i7-8750H CPU, and 16 GB RAM.  

The comparison results as shown in Table 4-2 validates that the surrogate temperature model 

provided in this work is more efficient in predicting local part temperature during the optimization 
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process.  The detailed explanation of the ANN training process is given in Section 4.2.1, where 

the evaluation result of the finally trained model is provided in Section 4.2.2. 

Table 4-2. Approximate computational cost of the simulation software and the machine learning 

temperature prediction model 

Types of the cooling channel 

topology 

Moldflow Advisor cooling 

simulation 

Machine learning temperature 

prediction model 

Spiral 30 ~ 60 minutes 

< 0.5 seconds 
Zigzag 1 ~ 5 minutes 

Porous 5 ~ 10 minutes 

CPS 5 ~ 10 minutes 

 

4.2.1 ANN training process 

The ANN is selected in this work to predict the heat transfer performance of the conformal 

cooling channels and build the surrogate model.  ANN is a massively parallel distributed processor 

that consists of simple processing units.  There are two reasons that ANN is chosen in this study.  

First, ANN has the computing power to solve complex problems that are currently intractable due 

to its large scale of parallel distributed structure as well as the ability to learn and generalize [47].  

Second, the accuracy of ANN can be continuously improved by importing additional training data 

without changing its original architecture.  Among different types of supervised machine learning 

method, it should also be noted that the ANN is a type of these strategies selected in this work to 

validate the proposed MLACCD method, while the proposed method is not limited to be achieved 

through ANN.  The layout of the ANN is provided in Figure 4-13, where it has two hidden layers, 

and the input layer is not the same for different topologies of the cooling channels.  For instance, 

the input layer for CPS is in the form of [S, 𝑙𝑚, 𝑙𝑝], which is different from [𝜙, 𝑙𝑝] for porous 

structures, and [W, 𝑙𝑚, 𝑙𝑝] for zigzag and spiral cooling channels due to their different identified 

design parameters.  There are two hidden layers in the ANN, where each hidden layer contains 20  

 



50 
 

 

Figure 4-13. The ANN layout for different cooling channel topologies 

nodes.  To pass the information between layers, the propagation function is used to calculate the 

weighted sum of the node outputs as shown in equation (4-5): 

 𝑧𝑗
𝑖 = ∑ 𝑊𝑗𝑘

𝑖 𝑎𝑘
𝑖−1𝑛

𝑘=1 + 𝑏𝑗
𝑖  (4-5) 

where 𝑧𝑗
𝑖 is the input value for 𝑗𝑡ℎ neuron of the 𝑖𝑡ℎ layer, 𝑎𝑘

𝑖−1 is the output from 𝑘𝑡ℎ neuron of 

the 𝑖 − 1𝑡ℎ layer, 𝑊𝑗𝑘
𝑖  represents the weight of the 𝑎𝑘

𝑖−1 on 𝑧𝑗
𝑖, 𝑛 represents the number of neurons 

in 𝑖 − 1𝑡ℎ layer, and 𝑏𝑗
𝑖 is the bias function between 𝑖 − 1𝑡ℎ and 𝑖𝑡ℎ layer.  To non-linearize the 

input value of each neuron, an activation function is used as shown in equation (4-6): 
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 𝑎𝑗
𝑖 =  𝜎(𝑧𝑗

𝑖)  (4-6) 

where 𝜎  is the Sigmoid activation function, 𝑎𝑗
𝑖  is the node output value.  During the training 

process, the weight of each neuron is adjusted to obtain the trained machine learning surrogate 

model with a learning rate of 0.005 and a 30000 number of training epochs.  The performance of 

this ANN configuration is evaluated by the loss function as shown in Figure 4-14, where the ANN 

structure (i.e. two hidden layers, 20 neurons in each layer, etc.) and the training parameters (i.e. 

learning rate of 0.005, 30000 training epochs, etc.) are selected to achieve a steady decrease of the 

loss function during the training process. 

 

Figure 4-14. Loss function of the machine learning process 

As discussed in Section 4.1, the training data is generated and collected from the Moldflow 

Advisor® simulation.  In total, more than 1000 sets of the training data are built for the zigzag, 

spiral, porous, and CPS cooling systems as shown in Figure 4-15a to Figure 4-15c, while 20% of 

them are randomly chosen as the test data.  The amount of the training data is determined based 

on the accuracy of the model.  Initially, a small number of the training data sets is created and fed 

into the ANN, and a large error between the predicted temperature and the test data exists.  To 
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improve the accuracy of the model, an increasing amount of the training data is fed into ANN until 

the accuracy of the model is precise enough for the optimization process.  The number of the 

training data sets reported in this work is the final amount of the training data that is able to 

successfully train the surrogate temperature model with a reasonable model accuracy.  In some 

ranges of the parameters, the rate of temperature variation is higher, so more underlying patterns 

of data need to be studied by ANN in these ranges.  Therefore, specifically importing these training 

data will improve the accuracy of the temperature prediction model faster.  For zigzag and spiral  

 

Figure 4-15. Training data for the supervised machine learning process 
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cooling channels, more test data is selected from the range of 𝑙𝑝 ≤ 4 mm.  For CPS, more test data 

is generated for the ranges of 𝑙𝑝 ≤ 4 mm, 𝑙𝑚 ≤ 12 mm and 𝑆 ≤ 20 mm.  The final trained surrogate 

temperature prediction model is provided in Figure 4-16, where the evaluation results (i.e. 

computation time, temperature prediction error) of this model is provided in Section 4.2.2. 

 

Figure 4-16. Part temperature prediction from the machine learning surrogate model 

4.2.2 Evaluation of the surrogate temperature model 

In this section, the evaluation results of the trained surrogate temeprature model is provided.  There 

are two types of evaluations performed for every training attempt.  First, the loss function is 
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calculated during each training process, which reflects the quality of the training algorithm.  The 

loss function is calculated based on the mean squared error formula as shown in equation (4-7): 

 MSE =  
1

𝑁
∑ (𝑦𝑖  − 𝑦�̂�)

2𝑁
𝑖=1   (4-7) 

where MSE is the mean squared error, N is the size of the sample, 𝑦�̂� represents the predicted values, 

and 𝑦𝑖 is the true value.  After each training process, the parameters of the ANN are adjusted if the 

loss function does not exhibit a steady decrease during that training.  The loss function for the 

finalized ANN with 30000 training cycles and a learning rate of 0.005 is shown in Figure 4-14, 

where a steady decrease is observed.  Second, the accuracy of the trained temperature prediction 

model is evaluated based on the maximum temperature difference between the test data and the 

prediction from the surrogate model.  The test results are provided in Table 4-3, the maximum 

temperature difference for porous, spiral, zigzag, and CPS are all below 0.5 ℃, which indicates that 

the surrogate temperature prediction model is accurate since it has reached the default temperature 

resolution of the MLACCD software (within the TVM process of the software, the design parameter update 

process stops once the predicted temperature converges, or the difference between predicted temperature 

and target temperature has reached ±0.5 ℃). 

Table 4-3. The accuracy of the surrogate temperature prediction model 

Topology Porous Spiral and zigzag CPS 

Maximum temperature difference between the 

prediction and test data (℃) 
0.23 0.28 0.47 

Test data percentage (%) 20 

 

4.3 Summary 

To achieve a fast and accurate prediction of the part temperature based on the given conformal 

cooling design parameters, the supervised machine learning is performed with two steps: (1) 

construction of the training data; (2) training the machine learning surrogate model through ANN.  



55 
 

Due to a large amount of the required training data, algorithms are designed to automatically 

construct the IGES cooling channel files and their corresponding part files.  These simulation files 

are imported into the Moldflow Advisor® simulation software to gather the temperature data.  The 

training data is then constructed by combining the design parameter sets with their corresponding 

resulting temperature of the part surface.  During the training process, over 1000 sets of the training 

data are imported into an ANN with two hidden layers, where the design parameters of the cooling 

channels are set as the input layer, and the resulting temperature are set as the output layer.  The 

loss function during the training presents a steady decrease, and the maximum model error is less 

than 0.5 ℃.  As a result, a surrogate model that is able to achieve a fast and accurate prediction of 

the part surface temperature is trained.  The derived machine learning surrogate temperature 

prediction model is then applied in Chapter 5 to aid the rapid temperature prediction during the 

TVM process. 
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CHAPTER 5  

Temperature variance minimization process 

In this chapter, different optimization strategies are discussed for spiral, zigzag, porous, and CPS 

cooling topologies in Sections 5.1 to 5.4 based on the surrogate temperature prediction model.  The 

differences between the optmization strategies of these cooling topologies are caused by the large 

variation among the geometrical designs of their cooling systems.  For each cooling topology, the 

design parameters of the cooling channels are optimized to minimize the part temperature variance 

based on the given part thickness distributions.  Specifically for the cooling topologies where the 

pressure drop is high such as zigzag and spiral, sequential optimizations are used to obtain a 

cooling channel which can reduce the temperature variance with the shortest length.    The optimal 

cooling channel control points are generated based on these optimized design parameters, and the 

final machine learning aided conformal cooling channels are generated by connecting these control 

points. 

5.1 Optimization of spiral cooling channels 

The general optimization procedure for spiral cooling channels includes four steps: generation of 

control lines, generation of spiral W-optimized control points (WOCP), spiralization of WOCP, 

and 𝑙𝑚 adjustment of spiral WOCP as shown in Figure 5-1.  For a general example of spiral design 

area with multiple thickness maxima as shown in Figure 5-2, the area division based on the 

thickness contour is first applied to divide it into multiple spiral design areas with single thickness 

maxima.  Specifically, the division line is selected as boundary thickness contours of those design 

areas with distinct local maxima points.  For a derived spiral cooling surface with single local 

maxima as shown in Figure 5-3, the control lines are first found to restrict the optimization space 

for the control points of the cooling channels.  To derive the control lines, the point 𝑝0  with 

maximum divergence is defined in equation (5-1): 



57 
 

 ∇⃗⃗ 2𝑙𝑝(𝑥𝑝0
, 𝑦𝑝0

, 𝑧𝑝0
) = MAX (∇⃗⃗ 2𝑙𝑝(𝑥𝑝𝐴

, 𝑦𝑝𝐴
, 𝑧𝑝𝐴

))  (5-1) 

where (𝑥𝑝0
, 𝑦𝑝0

, 𝑧𝑝0
)  is the coordinate of 𝑝0, and (𝑥𝑝𝐴

, 𝑦𝑝𝐴
, 𝑧𝑝𝐴

) is the coordinate of an arbitrary 

point 𝑝𝐴 on the example spiral cooling surface. 

 

Figure 5-1. The design procedure of machine learning aided spiral cooling channels 

 

Figure 5-2. Division of spiral design areas from multiple local thickness maxima 
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As shown in Figure 5-4, each control line 𝑙𝑖 is created so that it starts from 𝑝0 with the direction 

of ∇⃗⃗ 𝑙𝑝𝑖 separated by an resolution angle ∆𝜃.  The value of the resolution angle is related to the 

variation of ∇⃗⃗ 𝑙𝑝𝑖 on its tangent direction.  For instance, suppose the value of ∇⃗⃗ 𝑙𝑝𝑖 is distributed 

along the part surface in an approximately isometric manner, the resolution angle ∆𝜃 can be set to 

a larger value.  However, if the value of ∇⃗⃗ 𝑙𝑝𝑖 is varying along its tangent direction as shown in the  

 

Figure 5-3. An example of a spiral cooling surface with gradient function and control lines 

 

Figure 5-4. Generation of WOCP on a spiral cooling surface 
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caption of Figure 5-3, a smaller value of ∆𝜃 is required since different designs of cooling channel 

control points need to be derived, which will be discussed in detail in the following paragraphs. 

Second, the WOCP for the spiral cooling channels for the example cooling surface is generated 

as shown in Figure 5-4.  To create WOCP, the control lines are first lofted from the part surface 

by the minimum pitch to mold distance 𝑙𝑚𝑚𝑖𝑛
=  6 mm.  For each control line, the 2-point system 

(𝑝𝑖
(𝑗)

, 𝑝𝑖
(𝑘)

) for arbitrary points 𝑝𝑖
(𝑗)

 and 𝑝𝑖
(𝑘)

, and the corresponding temperature 𝑇𝑖
(𝑗,𝑘)

 between 

𝑝𝑖
(𝑗)

 and 𝑝𝑖
(𝑘)

 are defined in equations (5-2) and (5-3): 

 { (𝑝𝑖
(𝑗)

, 𝑝𝑖
(𝑘)

)|  𝑝𝑖
(𝑗)

, 𝑝𝑖
(𝑘)

∈ 𝐿(𝑖)}  (5-2) 

 𝑇𝑖
(𝑗,𝑘)

= 𝑆𝑀𝐿𝑇𝑀𝑠𝑝𝑖𝑟𝑎𝑙 (AVG (𝑙𝑝𝑖
(𝑗)

, 𝑙𝑝𝑖
(𝑘)

) ,𝑊𝑖
(𝑗,𝑘)

, AVG(𝑙𝑚𝑖
(𝑗)

, 𝑙𝑚𝑖
(𝑘)

))  (5-3) 

where 𝐿(𝑖) represents the set of the points on control line 𝑙𝑖, 𝑆𝑀𝐿𝑇𝑀𝑠𝑝𝑖𝑟𝑎𝑙 is the surrogate model 

relating the design parameters and resulting part surface temperature for spiral cooling channels, 

𝑙𝑝𝑖
(𝑗)

 indicates the half of part thickness measured from the cooling surface geometry below 𝑝𝑖
(𝑗)

, 𝑙𝑚𝑖
(𝑗)

 

represents the distance from 𝑝𝑖
(𝑗)

 to the cooling surface, 𝑊𝑖
(𝑗,𝑘)

 is the distance between 𝑝𝑖
(𝑗)

 and 

𝑝𝑖
(𝑘)

, 𝑇𝑖
(𝑗,𝑘)

 is the resulting surface temperature of a part with 𝑙𝑝 = 𝐴𝑉𝐺(𝑙𝑝𝑖
(𝑗)

, 𝑙𝑝𝑖
(𝑘)

)  cooled by spiral 

cooling channels with 𝑊 =  𝑊𝑖
(𝑗,𝑘)

, 𝑙𝑚 =  𝐴𝑉𝐺(𝑙𝑚𝑖
(𝑗)

, 𝑙𝑚𝑖
(𝑘)

).  From the set of points on each control 

line 𝑙𝑖, a sub-point set WOCP (i) is found through the spiral optimization step 1 as expressed in 

Table 5-1.  During the optimization iteration, the quantity m and the coordinates of the control 

points 𝑝𝑖
(𝑗)

  are updated so that the resulting part surface temperature 𝑇𝑖
(𝑗,𝑗+1)

 predicted by 

𝑆𝑀𝐿𝑇𝑀𝑠𝑝𝑖𝑟𝑎𝑙 is the closest to the target temperature 𝑇𝑔 for each (𝑝𝑖
(𝑗)

, 𝑝𝑖
(𝑗+1)

). 
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Table 5-1.  The temperature variance minimization (TVM) strategies for each cooling topology 

Topology TVM strategy 

Spiral 

Step 1: 

To Find: 𝑚, 𝑝𝑖
(𝑗)

, j = 1,2,… ,𝑚 

Minimize: |𝑇𝑔 − 𝑇𝑖
(𝑗,𝑗+1)

| , j = 1,2,… ,𝑚 − 1 

S.T.: 𝑝𝑖
(𝑗)

 ∈ 𝐿(𝑖) 

12 mm ≤ 𝑊𝑖
(𝑗,𝑗+1)

 ≤  30 mm 

𝑙𝑚𝑖
𝑗

= 𝑙𝑚𝑚𝑖𝑛
 

𝑚 ≥ 2 

Step 2: 

To Find:  ∆ℎ𝑖
(𝑗)

, j = 1,2,… ,𝑚 

Minimize: |𝑇𝑔 − 𝑇𝑖
(𝑗,𝑗+1)

| , j = 1,2,… ,𝑚 − 1 

S.T.: 12 mm ≤ 𝑊𝑖
(𝑗,𝑗+1)

 ≤  30 mm 

0 mm ≤ ∆ℎ𝑖
(𝑗)

 ≤  24 mm 

 

Zigzag 

Step 1: 

To Find: 𝑚, 𝑝1~𝑛
(𝑗)

, j = 1,2, … ,𝑚 

Minimize: |𝑇𝑔 − 𝑇(𝑗,𝑗+1)|, j = 1,2, … ,𝑚 − 1 

S.T.: 𝑝𝑖
(𝑗)

 ∈ 𝐿(𝑖) 

12 mm ≤ 𝑊𝑖
(𝑗,𝑗+1)

 ≤  30 mm 

𝑙𝑚𝑖
𝑗

= 𝑙𝑚𝑚𝑖𝑛 

 𝑚 ≥ 2 

Porous 
To Find: 𝜙𝑖 

Minimize: Δ𝑇𝑖 

S.T.: 10 % ≤ 𝜙𝑖  ≤ 30 % 

CPS 

For each 𝑙𝑝: 

To Find: 𝑆𝑖, 𝑙𝑚𝑗 , 𝑖, 𝑗 = 1,2,… , 𝑛 − 1 

Minimize: |𝑇𝑔 − T(𝑖,𝑗)|, 

S.T.: 12 mm ≤ 𝑆𝑖  ≤  30 mm 

 6 mm ≤ 𝑙𝑚𝑗  ≤  30 mm 

 

Third, the spiralized WOCP is generated as shown in Figure 5-5 by applying the similar 

boundary distance mapping (BDM) method proposed by Wang et al. [14].  As shown in Figure 

5-5, there is an associated distance 𝑑𝑖
(𝑗−1,𝑗)

 between 𝑝𝑖
(𝑗)

 and 𝑝𝑖
(𝑗−1)

 in the original WOCP (i).  To 

derive spiralized WOCP, each 𝑝𝑖
(𝑗)

 is moved towards 𝑝0 by ∆𝑑𝑖 defined in equation (5-4): 

 ∆𝑑𝑖 =
∆𝜃

2π
𝑑𝑖

(𝑗−1,𝑗)
𝑖   (5-4) 

where ∆𝑑𝑖 is the distance for point 𝑝𝑖
(𝑗)

 to be moved. 
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Figure 5-5. Spiralization of WOCP 

 

Figure 5-6. Generation of 𝑙𝑚 – optimized control points of spiral cooling channels 

Finally, the 𝑙𝑚 values of each point in spiralized WOCP are adjusted as shown in Figure 5-6.  

To illustrate, the adjustment of the pitch to mold surface distance 𝑙𝑚𝑖
(𝑗)

 as shown in is defined in 

equation (5-5): 
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 𝑙𝑚𝑖
𝑗

= 𝑙𝑚𝑚𝑖𝑛
+ ∆ℎ𝑖

𝑗
   (5-5) 

where ∆ℎ𝑖
𝑗
 is the additional height added to the distance from 𝑝𝑖

(𝑗)
 to the cooling surface.  During 

the spiral optimization step 2 as shown in Table 5-1, ∆ℎ𝑖
(𝑗)

 is updated so that for each (𝑝𝑖
(𝑗)

, 𝑝𝑖
(𝑗+1)

), 

the objective function |𝑇𝑔 − 𝑇𝑖
(𝑗,𝑗+1)

|  is minimized for 𝑗 = 1,2, … ,𝑚 .  The value of ∆ℎ𝑖
(𝑗)

 is 

selected as 0.5 mm in this study, where a smaller ∆ℎ𝑖
(𝑗)

 value won’t cause noticeable difference on 

the resulting temperature distribution based on our experience.  During the optimization, the 

predicted part surface temperature converges to the target temperature with small variations, which 

indicates the completion of the optimization process.  For the case that the predicted temperature 

is unable to reach the target temperature, adjustments can be made for the target temperature, and 

the range of the optimization parameters.  At the end of the spiral optimization process, the adjusted 

control points are connected to form the machine learning aided spiral cooling channels as shown 

in Figure 5-7. 

 

Figure 5-7. Machine learning aided spiral cooling channel 
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5.2 Optimization of zigzag cooling channels 

As shown in Figure 5-8, the optimization process of a zigzag conformal cooling channels includes 

three steps: generation of control lines, generation of zigzag WOCP, and 𝑙𝑚 adjustment of zigzag 

WOCP.  To design the cooling channels with the highest cooling controllability, the control lines 

are created along the main direction of ∇⃗⃗ 𝑙𝑝 on an example zigzag cooling surface as shown in 

Figure 5-9.  In this example, all ∇⃗⃗ 𝑙𝑝 is aligned in 𝑥  direction for illustration purpose.  In a general 

case, small thickness variation is allowed in 𝑦  direction as well in the zigzag optimization method 

proposed in this work.  Thus, the control lines are separated by a resolution distance ∆𝑤 along 𝑦 , 

where the value of ∆𝑤 is negatively proportional to the magnitude of ∇⃗⃗ 𝑙𝑝 in 𝑦  direction.  The edge 

distance 𝑑𝑒 is set as 12 mm to obtain a high cooling efficiency on the edge of the zigzag cooling 

surface without overcooling. 

 

Figure 5-8. The optimization procedure of zigzag cooling channels 
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Figure 5-9. An example of a zigzag cooling surface with gradient function and control lines 

To generate the zigzag WOCP as shown in Figure 5-10, the control lines are first lofted by a 

minimum 𝑙𝑚𝑚𝑖𝑛
= 6 mm.  On the lofted control lines, any 2n-point system (𝑝1~𝑛

(𝑗)

,
𝑝1~𝑛

(𝑘)
) is defined 

in equation (5-6): 

 {(𝑝1~𝑛
(𝑗)

,
𝑝1~𝑛

(𝑘)
)|𝑝𝑖

(1~𝑚)
∈ 𝐿(𝑖)}   (5-6) 

where 𝐿(𝑖) represents the set of all the points on the 𝑖𝑡ℎcontrol line, 𝑛 is the total number of control 

lines, and 𝑚 is the number of points in 𝐿(𝑖).  Based on the temperature surrogate model for zigzag 

cooling channels 𝑆𝑀𝐿𝑇𝑀𝑧𝑖𝑔−𝑧𝑎𝑔 , the average temperature 𝑇(𝑗,𝑘)  for each 2n-point system is 

defined in equation (5-7): 

 𝑇(𝑗,𝑘) =
∑ 𝑇𝑖

(𝑗,𝑘)𝑛
𝑖=1

𝑛
   (5-7) 

where 𝑇𝑖
(𝑗,𝑘)

  defined in equation (5-8) is the temperature between 𝑝𝑖
(𝑗)

 and 𝑝𝑖
(𝑘)

 as shown in Figure 

5-10. 
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 𝑇𝑖
(𝑗,𝑘)

=  𝑆𝑀𝐿𝑇𝑀𝑧𝑖𝑔−𝑧𝑎𝑔  (AVG (𝑙𝑝𝑖
(𝑗)

, 𝑙𝑝𝑖
(𝑘)

) ,𝑊𝑖
(𝑗,𝑘)

, AVG (𝑙𝑚𝑖
(𝑗)

, 𝑙𝑚𝑖
(𝑘)

))  (5-8) 

Based on these calculations, the zigzag optimization step 1 as shown in Table 5-1 is performed 

to generate zigzag WOCP.  During the optimization process, the quantity m and the coordinates of 

𝑝1~𝑛
(𝑗)

 is updated to minimize |𝑇𝑔 − 𝑇(𝑗,𝑗+1)|. 

 

Figure 5-10. Generation of WOCP on a zigzag cooling surface 
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Figure 5-11. Generation of 𝑙𝑚- optimized control points of zigzag cooling channels 

Finally, the 𝑙𝑚- optimized WOCP for a zag-zag conformal cooling channels is generated shown 

in Figure 5-11.  For every control point 𝑝𝑖
(𝑗)

 in WOCP, the value of 𝑙𝑚𝑖
(𝑗)

 is added by an additional 

height Δℎ𝑖
(𝑗)

 similar to the optimization process of spiral cooling channels.  During the second step 

of zigzag optimization, the ∆ℎ𝑖𝑗  is optimized to a value so that on each control line 𝑙𝑖 , the 

temperature difference between 𝑇𝑖
(𝑗,𝑗+1)

 and 𝑇𝑔 is minimized.  At the end of the zigzag cooling 

channels optimization, the 𝑙𝑚- optimized WOCP are connected in a proper zigzag sequence to 

obtain the final machine learning aided zigzag cooling channels as shown in Figure 5-12. 

 

Figure 5-12. Machine learning aided zigzag cooling channel 
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5.3 Optimization of porous cooling channels 

An example of optimized porous channels is shown in Figure 5-13.  To design the machine 

learning aided porous channels, the porosity of the cooling channels 𝜙𝑖 should be optimized with 

respect to the the half-part thickness 𝑙𝑝𝑖 for each region 𝑅𝑖.  The objective function during the 

porous optimization process is the temperature difference ∆𝑇𝑖  between the machine learning 

predicted temperature 𝑆𝑀𝐿𝑇𝑀𝑝𝑜𝑟𝑜𝑢𝑠(𝑙𝑝𝑖, 𝜙𝑖) and 𝑇𝑔 as provided in equation (5-9): 

 ∆𝑇𝑖 = |𝑇𝑔 −  𝑆𝑀𝐿𝑇𝑀𝑝𝑜𝑟𝑜𝑢𝑠(𝑙𝑝𝑖, 𝜙𝑖)|  (5-9) 

During the optimization iteration, the objective function ∆𝑇𝑖 is minimized by updating 𝜙𝑖 as 

shown in Table 5-1.  Based on the optimized 𝜙𝑖, the machine learning aided porous channels can 

be generated for each porous cooling region as shown in Figure 5-13. 

 

Figure 5-13. Machine learning aided porous cooling channel 

5.4 Optimization of CPS cooling channels 

In this section, the proposed CPS optimization strategy is explained with a swimming pedal case 

study, where the mathematical representation of the optimization (i.e. objective function, etc.) is 

provided in Table 5-1, and the optimization procedure of the design parameters is provided in 

Figure 5-14. 
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Figure 5-14. The optimization procedure of CPS 

First, the range of 𝑙𝑝 for the given part design evaluated.  For the swimming pedal case study, 

the 𝑙𝑝 is varying from 0.7 mm to 5 mm.  Then, these 𝑙𝑝 values are imported into a deep search 

algorithm to find the optimized corresponding channel design parameters.  The flowchart of this 

algorithm is provided in Figure 5-15.  For each 𝑙𝑝 value from the case study, the ranges of S and 

𝑙𝑚 are first divided into small intervals by a given number of steps n, where the initial limits of S 

and 𝑙𝑚  are set as [12 mm, 30 mm] and [6 mm, 30 mm].  Then, the program calculates the 

corresponding part temperature 𝑇(𝑖,𝑗)  for each combination of the S and 𝑙𝑚  intervals from the 

machine learning model as shown in equation (5-10): 

 𝑇(𝑖,𝑗) = 𝑀(𝑆𝑖, 𝑙𝑚𝑗, 𝑙𝑝) (5-10) 
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Figure 5-15. A deep search strategy during the optimization 

where 𝑆𝑖 is the S value at the middle of the ith S interval, 𝑙𝑚𝑗 is the 𝑙𝑚 value at the middle of jth 𝑙𝑚 

interval, 𝑀  represents the surrogate temperature prediction model, and 𝑇(𝑖,𝑗)  is the predicted 

resulting part surface temperature for the combination of ith S interval and jth 𝑙𝑚 interval.  An 

optimal [S, 𝑙𝑚] combination is found among these intervals, which provides the 𝑇(𝑖,𝑗) which is the 

closest to the target temperature 𝑇𝑔.  Afterwards, the program updates the upper and lower limits 

of S and 𝑙𝑚 to the limits of the found S and 𝑙𝑚 intervals as shown in equations (5-11) and (5-12): 
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 𝑆𝑖𝑙 → 𝑆𝑙,  𝑆𝑖𝑢 → 𝑆𝑢  (11) 

 𝑙𝑚𝑗𝑙 → 𝑙𝑚𝑙,  𝑙𝑚𝑗𝑢 → 𝑙𝑚𝑢  (12) 

where 𝑆𝑙,  𝑆𝑢 and 𝑙𝑚𝑙, 𝑙𝑚𝑢  are the lower and upper limits of S and 𝑙𝑚  at the beginning of each 

iteration,𝑆𝑖𝑙,  𝑆𝑖𝑢 and 𝑙𝑚𝑗𝑙 , 𝑙𝑚𝑗𝑢 are the lower and upper limits of the ith S interval and jth 𝑙𝑚 interval 

which provides 𝑇(𝑖,𝑗) that is closest to 𝑇𝑔, respectively.  Consequently, the range of the S and 𝑙𝑚 is 

updated to a smaller value d shown in Figure 5-15.  The program will then iterate and decompose 

these new ranges by n again and search for a more precise [S, 𝑙𝑚] combination.  The iteration stops 

once the predicted temperature converges to the value that is closest to 𝑇𝑔, or the new ranges have 

already reached highest resolution (𝑑 <  𝑑𝑚𝑖𝑛).  The time efficiency of this search strategy is 

summarized and compared with nested loop searching approach method in Table 5-2, where n is 

the number of steps to divide the given interval, l is the initial range of the design parameters, 𝑑𝑚𝑖𝑛 

represents the minimum interval allowed during the optimization, N is the number of different 𝑙𝑝 

values.  Theoretically, the deep search algorithm is more time efficient as m scales up.  Based on 

this new search algorithm, a database is generated, which can efficiently provide the optimized [S, 

𝑙𝑚] for every thickness values of the given part design.  These optimized design parameters are 

then mapped onto the cooling surface as shown in Figure 5-16,  and the final machine learning 

aided CPS design is constructed as shown in Figure 5-17.  As a result, the machine learning aided 

design of CPS has a larger S and 𝑙𝑚 values at the thinner regions of the part (i.e. regions with x ∈ 

[0 mm, 100 mm] in Figure 5-16b), which prevents the temperature variance caused by the 

overcooling on those regions. 

Table 5-2. Time efficiency of deep search algorithm and nested loop approach 

Algorithm Worst-case running time 

Deep search algorithm O(𝑁
𝑛2

𝑚
), where 𝑚 = 

𝑙

𝑑𝑚𝑖𝑛
 

Nested loops approach O(𝑁𝑚2) 
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Figure 5-16. Design data and the optimized design data 

 

Figure 5-17. Machine learning aided CPS 
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5.5 Summary 

In this chapter, different TVM methods are proposed and discussed for zigzag, spiral, porous, and 

CPS cooling topologies to generate the final MLACCD channels.  Variety types of optimization 

strategies are applied for these topologies due to their distinct geometrical designs.  For the zigzag 

and spiral cooling channels, the pitch width W is first optimized to generate WOCP.  Then, the 

distances from each point of WOCP to the mold surface are then adjusted to obtain an optimal 𝑙𝑚 

value for those control points.  Due to this sequential optimization strategy, the MLACCD provides 

a larger width and shorter length of the zigzag and spiral cooling channels, which not only results 

in a decreased temperature variance, but also effectively reduces the coolant pressure drop.  For 

the porous and CPS cooling channels where the pressure drop is already very low, the most 

optimized combinations of the design parameters are found to reduce the temperature variance 

without any optimization priorities.  For each thickness value of the part, the porosity 𝜙  is 

optimized for porous cooling channels, and a deep search strategy is applied for CPS to efficiently 

found optimized [S, 𝑙𝑚] sets.  Based on the TVM tool developed in this work, the final MLACCD 

channels can be generated.  In the next chapter, different case studies are discussed to validate the 

effectiveness of MLACCD. 
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CHAPTER 6  

Validation case studies and implementation of MLACCD software 

In this chapter, case studies are provided in Section 6.1 to validate the effectiveness of the proposed 

MLACCD method.  In addition, the implementation of the MLACCD software is provided in 

Section 6.2, where the main functions, graphical user interface (GUI), and the expected program 

inputs and outputs are discussed in detail. 

6.1 Validation case studies 

In this section different design cases including a freeform surface, a shoe sole, and a swimming 

pedal as shown in Figure 6-1 are studied to validate the proposed method.  The cooling simulations 

are using conventional conformal cooling channels (CCCD) and machine learning aided conformal 

cooling channels (MLACCD) on Moldflow Advisor® simulation software.  The input parameters 

for those case studies are provided in Table 6-1, where they are kept the same for all case studies 

with CCCD and MLACCD cooling systems for comparison purposes. 

 

Figure 6-1. The part designs of case studies 
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Table 6-1. Parameters of injection molding cooling simulation for the case studies 

Mold material H13 Tool Steel 

Initial mold temperature 323.15 K 

Part material Generic PP 

Melt temperature 493.15 K 

Coolant type Water 

Coolant inlet temperature 298.15 K 

Average coolant flow rate 5 lit/min 

 

To compare the resulting temeperature variance and the enery efficiency of the MLACCD and 

CCCD cooling systems, the temperature distribution and pressure drop simulation results are first 

analyzed on a freeform surface and a shoe sole case study with zigzag, spiral, and porous cooling 

channels.  The results indicate that a significant reduction of temperature variance, and a smaller 

pressure drop is achieved by the MLACCD compared to CCCD.  Based on the validated design 

method, an innovative machine learning aided CPS is developed for a swimming pedal case study 

to further validate the generality and effectiveness of the proposed method on a more novel 

conformal cooling system design.  As a result, the machine learning aided CPS also exhibits great 

cooling performances in terms of minimizing temeprature variance compared to convenitonal CPS. 

6.1.1 Freeform part surface and shoe sole 

To validate the effectiveness of MLACCD channels, two design cases containing conventional 

conformal cooling channels and MLACCD channels are provided.  In the first case study, a plastic 

part with a freeform surface is used.  Figure 6-2a shows the cooling channels generated by the 

conventional conformal cooling design method, while Figure 6-2b represents the cooling channels 

designed based on the MLACCD method proposed in this paper.  The cooling channels generated 

by different methods are imported to Autodesk Moldflow Advisor®, and the parameters used in 

the simulation are summarized in Table 6-1.  The results of the simulations for the first design case 

are summarized in Table 6-2, and it will be carefully discussed in the following paragraphs. 
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Figure 6-2. Comparison of CCCD and MLACCD channels 

Table 6-2. A summary of simulation results for the first design case including: temperature 

variance at critical locations, 𝜎T, and the pressure drop 

Design 

Area 

Temperature variance at 

critical locations (℃) 
𝜎𝑇(℃) Pressure drop (kPa) 

MLACCD 

Conventional 

conformal 

cooling 

design 

MLACCD 

Conventional 

conformal 

cooling 

design 

MLACCD 

Conventional 

conformal 

cooling 

design 

Spiral 0.54 8.12 0.36 2.85 125 244.81 

Zigzag 2 7.43 0.73 2.57 226.62 269.67 

Porous 4.2 5.04 1.93 2.22 909 1388.1 

Total Not applicable 1.18 2.83 Not applicable 

 

The part surface temperature and the temperature variation simulation results are shown in 

Figure 6-3.  Comparing to conventional conformal cooling channels, a significant reduction of 

temperature variance along the overall cooling surface within the same injection cycle time is 

achieved by MLACCD as shown in Figure 6-3c and Figure 6-3d.  For MLACCD channels, the 

temperature differences among the regions with different thickness values as shown in Figure 6-3a 

are 0.54℃, 2℃, and 4.2℃ for spiral, zigzag, and porous cooling surface, respectively.  While for 

conventional cooling channels, the corresponding temperature variances are 8.12℃, 7.43℃, and 

5.04 ℃ as shown in Figure 6-3b.  Thus, the temperature variations are reduced by 93%, 73%, and 
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17% for spiral, zigzag, and porous design areas, respectively.  There are two reasons that the 

cooling result achieved by MLACCD has a smaller temperature variation.  First, the conventional 

conformal cooling channels are not conformal to part thickness comparing to MLACCD channels. 

 

Figure 6-3. The temperature distribution and the temperature variance of the part surface 

achieved by MLACCD channels and conventional conformal cooling channels 

 

For the cooling regions with different thickness values, unequal amount of heat needs to be 

carried away through the cooling passageway to reach a uniform part surface temperature after the 

cooling process.  For conventional conformal cooling design, the cooling efficiency is uniform 

along the part surface.  This results in a higher temperature variance on the thicker regions of the 

part comparing to MLACCD, since the MLACCD channels are conformal to not only the part 

surface but also the thickness distribution of the part geometry.  Second, the coolant temperature 

differences between the inlets and outlets of the cooling system are reduced in MLACCD.  As 

shown in Figure 6-4, the maximum temperature rise between coolant inlet and outlet is 3.65℃, 
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while the value for conventional designed conformal cooling channels is 4.02℃.  This smaller 

coolant temperature rise is due to the reduced total length of channels in MLACCD. 

 

Figure 6-4. The coolant temperature distribution of the cooling channels for MLACCD channels 

and conventional conformal cooling channels 

 

To further compare the part surface temperature variation of two design cases, the surface 

temperature together with the part thickness along the center line is provided in Figure 6-5.  It is 

found that the part surface temperature for the conventional conformal cooling system exhibits a 

higher sensitivity to the thickness variation, while this effect is minimized with MLACCD 

channels.  To quantify this result, the standard deviations of part surface temperature 𝜎𝑇  for 
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different cooling regions along the center line are calculated and summarized in Table 6-2 for each 

design of cooling channels.  For the total cooling surface of MLACCD channels, the 𝜎𝑇 values are 

reduced by 58%.  Specifically, the 𝜎𝑇 values for MLACCD channels are 87%, 72%, and 13% 

compared with conventional conformal cooling channels.  However, there are still variations 

between the machine learning prediction of part surface temperature and the simulation result as 

shown in Figure 6-5.  Most of the variations are within 1℃ temperature variation as programmed 

in the optimization algorithm, while some of the part surface temperatures observed at the porous 

cooling area have exceeded this limit.  These variations are caused by the temperature rise of the 

coolant and the unevenly distributed coolant flow rates.  As shown in Figure 6-4, the temperatures 

of the coolant are higher at the positions which are closer to the coolant outlets.  In addition, the 

flow rate is quite un-uniform for the porous conformal cooling channels as shown in Figure 6-6, 

which contributes to the variations of simulation and machine learning prediction results of part 

surface temperature. 

 

Figure 6-5. The part surface temperature distribution along the center of the part geometry for 

MLACCD channels and conventional conformal cooling channels 
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Figure 6-6.  The coolant flow rate distribution of MLACCD channels 

To compare the energy efficiency of the cooling systems from these two design cases, 

simulations are performed to obtain the cooling passageway pressure drop.  The result of this 

simulation is again summarized in Table 6-2.  The result shows that the mold with MLACCD 

channels has less energy consumption during the injection molding process since it requires less 

power to pump the coolant with sufficient inlet pressure.  Specifically, the pressure drops of 

MLACCD spiral, zigzag, and porous channels are 49%, 16%, and 35% lower compared with 

conventionally designed conformal cooling systems.  The cause of the smaller pressure drops of 

MLACCD channels is their significantly reduced cooling channel lengths.  For instance, a larger 

pitch width is found for the MLACCD spiral cooling channels at the thinner part region, which 

results in less dense cooling channels, and hence a reduced coolant pressure drops. 

 

Figure 6-7. Shoe sole and its MLACCD channels 
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Figure 6-8. The temperature distribution and the temperature variance of the part surface 

achieved by MLACCD channels and conventional conformal cooling channels 

 

In the second case study, a shoe sole with a curved surface as shown in Figure 6-7 is selected 

to validate the generality of MLACCD proposed in this study.  The cooling performance is 

analyzed through Autodesk Moldflow Advisor® simulations.  The input parameters of the 

simulations are kept the same as the rest of the case studies and they are listed in Table 6-1.  Based 

on the thickness distribution of the shoe sole, the zigzag cooling channel topology is selected in 

this design case.  The simulation result of the part surface temperature together with the 

temperature variation is provided in Figure 6-8.  Similar to the first design case, the MLACCD 

channels provide a significantly part surface temperature variance reduction comparing to the 

conventional conformal cooling channels.  Specifically, the temperature variance among the 

regions with different thicknesses is decreased by 92% from 7.71℃ to 0.6℃.  For the part surface 

temperature along the center line of the shoe sole as shown in Figure 6-9, the effect of the part 

thickness variations on the resulting temperature is minimized by MLACCD channels.  The 𝜎𝑇  
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Figure 6-9. The part surface temperature distribution along the center of the part geometry for 

MLACCD channels and conventional conformal cooling channels 

 

Figure 6-10. State-of-the-art conformal cooling channel topologies 

value calculated for MLACCD is 0.39℃ , which is 88% lower than 3.25℃  for conventional 

conformal cooling design.  To compare the MLACCD channels with more state-of-the-art 
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conformal cooling designs, additional simulations are performed for spiral, parallel, and Voronoi 

conformal cooling channel topologies given in Figure 6-10a to Figure 6-10c with the same input 

parameters as shown in Table 6-1.  The resulting temperature distributions of those channel 

topologies are shown in Figure 6-10d to Figure 6-10f.  Comparing to 0.6 ℃ temperature variance 

for MLACCD channels, the temperature variances of the part surface for spiral, parallel, and 

Voronoi conformal cooling channels are 7.83 ℃, 6.15 ℃, and 15.15 ℃, respectively.   In addition, 

a reduced coolant pressure drop is achieved by MLACCD.  As shown in Figure 6-11, the pressure 

drop of the coolant is decreased from 246.16 kPa to 178.82 kPa when MLACCD is applied. 

 

Figure 6-11. Coolant pressure drop for MLACCD channels and conventional conformal cooling 

channels 
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6.1.2 Swimming pedal 

In this section, cooling simulations are performed on a swimming pedal case study to further 

validate the effectiveness of the proposed method in novel CPS design using Moldflow Advisor®.  

Figure 6-12 shows the machine learning aided and conventional CPS for a swimming pedal case 

study.  Unlike conventional CPS, the machine learning aided designed CPS exhibits a larger 

cooling cell size S and cooling surface to mold surface distance at the part regions with smaller 

thickness values.  This design allows a properly adjusted cooling efficiency to be applied along the 

part surface.  The simulation input parameters are provided in Table 6-1, where these parameters 

are kept the same for both designs for comparison purpose.  The results of the simulations are 

shown in Figure 6-13.  Comparing to conventional CPS, the resulting part temperature distribution 

for the machine learning aided CPS is more uniform.  As shown in Figure 6-13a, the part 

temperature variance at critical locations for the machine learning aided CPS is 2.07 ℃, which is 

76% lower than 8.48 ℃ for the conventional CPS. 

 

Figure 6-12. Machine learning aided CPS and conventional CPS 
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Figure 6-13. Resulting part temperature distribution for machine learning aided CPS and 

conventional CPS 

 

To further compare evaluate the temperature variance of the part produced by machine learning 

aided and conventional CPS, the temperature variance distribution is calculated along the part 

surface in Figure 6-14.  Comparing to an approximately -4 ℃ variance at the thinner regions and 

a 4 ℃ variance at the thicker regions for conventional CPS, a close to zero temperature variance 

is found for most of the part regions for machine learning aided CPS.  These results indicate that 

the machine learning aided CPS is able to achieve a significantly reduced part temperature variance 
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compared to conventional CPS due to the fact that it not only conforms to the part geometry but 

also the part thickness distributions. 

 

Figure 6-14. Resulting part temperature variance for machine learning aided CPS and 

conventional CPS 

 

6.2 Implementation of MLACCD software 

To implement the algorithms of MLACCD method proposed in this work, a MLACCD software 

is designed with a user-friendly GUI.  With this software, the user will be able to obtain meshes of 

MLACCD channels based on their desired part design, conformal cooling topology, and target 

temperature.  The MLACCD method will generate suitable cooling channels that are able to cool 
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the part and achieve a highly uniform part surface temperature that is closest to a predefined target 

temperature.  In this section, the main functions of the MLACCD software are introduced, whereas 

example cooling surfaces are given to further illustrate the expected outputs from the software. 

6.2.1 Software implementation 

The MLACCD software is designed based on the python tkinter GUI library, the pre-designed 

models that has the MLACCD implementation, and a data base composed of machine learning  

 
Figure 6-15. MLACCD software model relations 
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predicted temperature.  The relations between the models are shown in Figure 6-15.  Basically, 

functions within the Model 1 to Model 7 are called by the Model 8 (GUI model) so that the 

interactions between the user and the MLACCD programs can be achieved.  Specifically, these 

MLACCD algorithms are integrated by the GUI model with a proper calling sequence, so that the 

corresponding graphical interfaces will be displayed once the user interacts with the software.  To 

improve the maintainability of the software, the software models are designed with high cohesion 

(the functions within the same model are built to achieve a common goal), and low coupling 

(unnecessary relations between models are removed). 

 
Figure 6-16. MLACCD software flowchart 
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The flowchart of the software is shown in Figure 6-16, where are four steps for the software to 

generate the meshed MLACCD channels for the user.  The main menu GUI is shown in Figure 

6-17, where the user is asked to type in the file directories for the upper and lower cooling surface 

of the part, and the estimations of the part size in x and y directions.  To explain, the file directories 

are used to upload the cooling surfaces from specified locations for analysis, and the sizes of the 

part are used in the calculation of the point cloud density, which will be discussed later. 

 
Figure 6-17. MLACCD software main menu 

By clicking the “Upload and next” button, the software navigates to the design topology 

selection menu as shown in Figure 6-18.  In this menu, three conformal cooling topologies are 

provided, where the topology that user prefers can be selected for TVM analysis.  The porous 

cooling channels are not implemented in this interface, since CPS is able to provide a better cooling 

performance and a smaller pressure drop as a special type among different porous cooling systems 

[13]. 
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Figure 6-18. Design topology selection menu 

After the cooling topology is selected, the TVM setting menu is shown is acquire the inputs 

including the TVM accuracy, save path, and the target temperature from the user as shown in 

Figure 6-19.  For spiral cooling channels TVM setting as shown in Figure 6-19a, additional user 

inputs such as the spiral angle resolution N, and the cooling channel start point coordinates are 

required to fully constrain the control lines of the cooling channels.  The TVM accuracy together 

with the size of the part reflects the density of the point cloud during the analysis as shown in 

equation (6-1): 

 𝜌𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 = 
TVM accuracy × global accuracy

𝑠𝑥𝑠𝑦
 (6-1) 

where 𝑠𝑥, 𝑠𝑦 are the estimate size of the part in x and y directions, 𝜌𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 is the point cloud 

density.  The global accuracy is implemented as 500 inside the current version of the software to 
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achieve a simulation time ranging from roughly 5 minutes to 10 hours according to different TVM 

accuracy defined by the user. 

 

Figure 6-19. Temperature variance minimization (TVM) setting menu 

Figure 6-20 shows the window that appears once the TVM setting is completed and the 

calculation process starts.  The software displays a program dialog box and a process bar to provide 

the information about the current objective and progress of the calculation and potential warning 

messages for the user.  Once the calculation is finished, the meshed MLACCD channels will be 

saved to the save path, where the supported input and output format of the current version software 

is STL. 
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Figure 6-20. MLACCD program dialog window 

 

Figure 6-21. Example cooling surfaces 

To illustrate the expected output of the software, example cooling surfaces as shown in Figure 

6-21 are provided, where this test part has a highly non-uniform thickness values distributed long 

its surface.  Following the instructions of the software as shown in Figure 6-17 to Figure 6-20, the 

mesh of example MLACCD channels can be generated, where the CPS is selected for these cooling 

surfaces for illustration purposes.  The MLACCD CPS cooling channels generated by the software 

are shown in Figure 6-22, which has optimized cell size and pitch to part surface distance 
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distributed along the cooling surface of the part.  Based on the mesh of the MLACCD channels, 

the user can either make the MLACCD wireframe re-built for simulation purposes or generate the 

final mold design using the mesh Boolean subtraction between the mold object and the mesh of 

the MLACCD channels. 

 

Figure 6-22. MLACCD CPS cooling channels for example cooling surfaces 

Exceptional operations are required to generate the MLACCD cooling channels for the parts 

with special properties such as the one with large geometrical angle variations as shown in Figure 

6-23, or the one containing very small geometrical features as shown in Figure 6-24.  For the parts 

with large geometrical angle variations as shown in Figure 6-23a, the total cooling surface can be 

divided into different cooling regions.  Specifically, these cooling regions are separated by the 

cooling surface division lines, which are the edges of two neighboring surfaces with the angles 

that are close to 90 degrees.  After the total cooling surface is divided into different cooling regions 

as shown in Figure 6-23b, the MLACCD cooling channels can be formed based on the cooling 

channels that are separately constructed for each cooling region as shown in Figure 6-23c. 
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Figure 6-23. Generation of cooling channels for the part with large geometrical angle variations 

For the parts with very small geometrical features which have the feature size 𝑑0 smaller than 

the minimum pitch width of the cooling channels as shown in Figure 6-24, the thickness-averaged 

cooling surfaces are required to generate the MLACCD cooling channels.  The reason of 

calculating the thickness-averaged cooling surfaces is that the dimensions of those detailed 

features are too small for the cooling channels being conformal to them.  For an example part with 

gear features as shown in Figure 6-24a, the distance between the two cooling surfaces would be 

the average thickness of the gear features calculated in Figure 6-24b.  Based on the thickness-

averaged cooling surface, the MLACCD cooling channels for the part with small features can be 

generated as shown in Figure 6-24c. 

 

Figure 6-24. Generation of cooling channels for the part with small features 
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6.3 Summary 

In this chapter, three case studies including a freeform part surface, a shoe sole, and a swimming 

pedal are proposed to validate the effectiveness of the proposed MLACCD.  The software 

implementation of the validated MLACCD method is also discussed.  For comparison purpose, 

both the conventional conformal cooling design and the MLACCD are applied in each case study.  

The results indicate that the parts cooled by MLACCD have a significantly reduced temperature 

variance, which is due to the fact that the MLACCD channels are conformal not only to the part 

surface but also to the part thickness distributions.  In addition, for the cooling topologies such as 

zigzag and spiral where the pressure drop is high for its original design, the MLACCD can provide 

a cooling system with a much lower coolant pressure drop.  From the results of these case studies, 

it can be concluded that the MLACCD is a very successful conformal cooling design approach to 

solve the temperature variance problem in the plastic injection molding industry by making the 

cooling system smarter and more energy efficient.  The MLACCD software are composed of six 

models containing the MLACCD algorithms, a meshing model, and a GUI model that achieves 

the interactions between the program and the user.  Based on this software, the user can generate 

the MLACCD channels with their desired part cooling surfaces, target temperature, and cooling 

channel topologies.  
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CHAPTER 7  

Conclusions and future works 

Injection molding is a common plastic manufacturing process which fabricates parts by injecting 

molten materials into the mold.  Although the cooling process represents the largest portion of the 

injection cycle time, the cooling performance of the traditional cooling channels is limited by the 

conventional drilling and casting process.  However, advanced AM technology liberates the 

possibilities for designing and manufacturing conformal cooling channels that could achieve a 

uniform pitch to mold surface distance.  Nevertheless, this traditional conformal cooling design 

concept could result in a large temperature variance and a poor part quality, since it delivers a 

uniformly distributed cooling efficiency even for the part regions with different thickness values 

and thermal inertia.  Thus, the temperature variance of the conformal cooling channels caused by 

varied part thickness remains unsolved.  Due to the theoretical complexity and potential inaccuracy 

for predicting the part surface temperature from conformal cooling design parameters and the part 

thickness values, the part surface temperature cannot be efficiently derived using the existing 

conformal cooling heat transfer theories.  To effectively predict the part surface temperature and 

eliminate the resulting part temperature variance, this thesis presents a novel machine learning 

aided design of conformal cooling channels, where in total four conformal cooling topologies are 

chosen to validate the proposal design method.  

The proposed a novel conformal cooling design method generates cooling channels that are 

conformal not only to the part surface, but also to the part thickness distributions.  The 

contributions of this research are listed as following: 

1. Development of a machine learning surrogate temperature prediction model. 

With more than 1000 sets of the training data being imported into a two-layer ANN, a 

machine learning surrogate temperature prediction model is derived.  To explain, the 
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design parameters are first identified from given cooling topologies following three 

principles: (1) the design parameters should have the ability to effectively affect the cooling 

efficiency of the cooling system; (2) it should be practical to adjust the design parameters 

in the optimization process; (3) the design parameters should be essential in fully defining 

the geometrical design of the cooling channels.  Based on the identified design parameters, 

the training data is generated and collected through the Moldflow Advisor® cooling 

simulation and fed into a two-layer ANN.  As a result, a surrogate temperature prediction 

model is obtained.  The loss function during the training process represents a steady 

decrease, and the maximum model error is less than 0.5℃. The local part surface 

temperature prediction time of the surrogate temperature model based on a given set of 

design parameters is less than 0.5 seconds.  These evaluation results indicate that a fast and 

accurate prediction of part surface temperature is achieved through the supervised machine 

learning. 

2. Development of TVM algorithms for major conformal cooling topologies. 

In the TVM tool, different optimization strategies are designed for zigzag, spiral, porous, 

and CPS cooling channels to minimize the part surface temperature variance based on a 

given CAD design of the part.  The surrogate machine learning temperature prediction 

model is continuously applied to predict the part temperature during the optimization 

process.  In addition, the design parameters of zigzag, spiral porous, and CPS cooling 

channels are updated to minimize the temperature variance of the part based on the machine 

learning surrogate temperature prediction model.  Due to the large design variance of 

different cooling topologies, different optimization strategy is proposed for each 

topological design of conformal cooling channels, which is carefully discussed in Chapter 
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5.  As a result, innovative MLACCD channels can be created to provide a smarter cooling 

without a large temperature variance resulted on the part surface.  The effectiveness of the 

MLACCD is validated through three cases studies including a freeform part surface, a shoe 

sole, and a swimming pedal.  Overall, a 17% to 93% reduction of the temperature variance 

is achieved.  For the conformal cooling topologies that have high pressure drop such as the 

zigzag and spiral cooling channels, a significant reduction of the pressure drop is also 

achieved due to a decreased length of the cooling channels. 

3. Implementation of MLACCD software. 

Based on the TVM algorithms and the machine learning surrogate temperature prediction 

model, the MLACCD software is implemented to generate the MLACCD channels from 

the user defined part cooling surfaces and target temperature.  This software provides a 

user-friendly interface that guide the researchers and industrial users to create their own 

MLACCD channels with desired conformal cooling topologies, which is discussed in 

Chapter 6. 

The outcome of this research is an innovative conformal cooling design method which can 

effectively reduce the part temperature variance and improve the energy efficiency of the mold. 

Some future works to continue improve the proposed MLACCD method is listed here.  First, 

the length of the cooling channels could be considered as another design parameter, and be 

imported into the supervised machine learning algorithm to improve the performance of the 

surrogate model.  The coolant typically exhibits a temperature rise from the inlets to the outlets for 

the cooling channels with a large length.  This temperature rise will introduce a reduction in 

temperature prediction accuracy since the current model treats the temperature of the coolant as a 

constant value. 
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Second, it is interesting to experimentally validate the effectiveness of the MLACCD in the 

future.  Although the accuracy of the Moldflow Advisor® simulation software is proofed by 

previous publications [14-16, 24], it is still worthwhile to investigate the performance of the 

MLACCD mold on a real injection molding machine.  The following steps could be the potential 

procedures for future experiments: (1) fabricate a MLACCD mold and a CCCD mold via AM with 

H13 tool steel with embedded sensor based on a selected case study and channel topology (i.e. 

shoe sole case study, zigzag cooling topology); (2) manufacture the parts with the printed molds 

on an industrialized injection molding machine until the temperature cycle of the mold become 

stable; (3) capture the thermal images of the parts fabricated by the MLACCD mold and CCCD 

mold right after it is ejected, record the part temperature distributions; (4) compare the 

experimental data and the numerical simulation results. 

In addition, the manufacturability of this machine learning aided design of conformal cooling 

is not analyzed due to the challenges of printing the potential sharp corners of cooling channels.  

Thus, comparisons could be made between different machine learning aided optimization 

strategies (i.e. update priority of the design parameters) in terms of their resulting 

manufacturability.  This manufacturability analysis can be incorporated into the cooling channel 

optimization method to achieve a user-preferred balance of the manufacturability and the cooling 

performance of conformal cooling channels. 

Furthermore, the proposed MLACCD method can be applied to aid other types of injection 

molding process such as the resin transfer molding (RTM) for composite materials, where the 

shrinkage of the part may occur due to the temperature variance issue [48].  Specifically, additional 

training data could be constructed based on the method proposed in Chapter 4 for the composite 

parts fabricated via RTM process.  These training data can be fed into the ANN so that the 
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MLACCD will be able to support the temperature variance minimization of the composites parts 

manufactured by RTM, which can further benefit the aerospace and automotive industries where 

the composite materials have great application potentials [49, 50]. 

Finally, new topological designs of the conformal cooling channels may appear in the future.  

Utilizing the advantages of machine learning, the proposed method can be rapidly applied to these 

new topologies so that the uniformity of resulting part temperature distribution can be greatly 

improved. 
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