Machine Learning Aided Design of Conformal Cooling

Channels for Injection Molding

Zhenyang Gao

Department of Mechanical Engineering

Faculty of Engineering

McGill University, Montreal

April 2020

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree

of Master of Science

©Zhenyang Gao 2020



TABLE OF CONTENTS

LIST OF FIGURES ..ottt ettt bbb iv
LIST OF TABLES ...ttt bbbttt bbb viii
ABSTRACT ...ttt bbbt bbb b E e bbbkt iX
RESUME ...ttt X
CONTRIBUTION OF AUTHORS.......coitiiititiieieeieeiee e Xi
CHAPTER 1 INTrOTUCTION. ...c.eitiiti ittt sttt bbbt 1
IR T Uod (0 [ {01 o T PSSR 1
1.2 Heat transfer theories in injJection MOIAING .......c.covoiiiiiiiii e 3
1.3 Feasible design space for conformal cooling and literature review ............ccccvcvevevievvereene 8
1.4 Temperature variance issue in conformal COOlING .........ccccovviiiiiiiiiiiie e, 12
1.5 MACKINE TEAIMING ...ttt bbbttt 14
1.6 RESEAICN ODJECHIVES ....eeuviciie ettt et e st e et este e teenaesreas 15
CHAPTER 2 DeSign FramMeWOIK .........coeiiiiiiriiiiiiisisie et 18
CHAPTER 3 Identification of design parameters and division of cooling surface....................... 23
3.1 Identification Of deSIgN PArAMETLENS ......cc.oiviiirieiieieieeet e 23
3.1.1 Spiral, zigzag, and porous CO0lING SYSTEIMS........ccoriiiiiiirieieiee e, 24
3L CPS e E e bt bRttt 26

3.2 C00liNg SUITACE IVISION......c.iiieiiecie et be e re e aneas 29
3.3 SUMMIAIY .ttt ettt ettt ettt e et e s bt e ettt e e a b et e e Rt e e e ss b e e e sab e e e nbbe e e bbeeennbeeanbeeeanneas 32
CHAPTER 4 Machine learning temperature prediction model............ccccoveveiieiieie e 33
4.1 Generation Of traiNiNgG GALA .........ccceiereiiiiieii e 34
4.1.1 Algorithm design for the generation of zigzag cooling channels.............c.cccoovinne. 35
4.1.2 Algorithm design for the generation of spiral cooling channels .............cc.ccooiiinnn. 38
4.1.3 Algorithm design for generation of porous and CPS cooling channels ........................ 42

4.2 Supervised machine [€arning PrOCESS ........coiiieieeieiie ittt sre e 48
4.2.1 ANN traiNiNG PIrOCESS ....civveereeiiieeiee ittt esteesteesteeste et e aaeesreeabeeateeaseesreeasbeesseeeneesreeanees 49
4.2.2 Evaluation of the surrogate temperature model............ccccoveiiieiiiiii e, 53

IS YU 1 010 - YRR 54
CHAPTER 5 Temperature variance minimization ProCESS ...........coourirereeieerierienesiesiesiesseeeenenns 56
5.1 Optimization of spiral cooling Channels.............cooiiiiiii e 56
5.2 Optimization of zigzag cooling Channels ............coiiiiii e 63



5.3 Optimization of porous cooling ChannelS.............cov i 67

5.4 Optimization of CPS c00ling Channels ............ccovoiiiiii e 67
0.5 SUMMIAIY .ttt e s st e sa e e sab e e e nb b e e e bb e e e be e e enbeeennnes 72
CHAPTER 6 Validation case studies and implementation of MLACCD software ...................... 73
6.1 Validation CASE STUAIES .......eeiiiieiieie ettt sttt st esreebe e nnees 73
6.1.1 Freeform part surface and Sh0e SOIe...........cooveiiiiiii e, 74
6.1.2 SWIMMING PEAAL.....c.eiieiiiiiieiee e 83

6.2 Implementation of MLACCD SOfIWAIE .........cccoviiiiicie e 85
5.3 SUIMMIAIY .vtteiiiiie ettt ettt e bt e s bt e e bt e e st e e e e st e e na b e e e e bt e e e nbb e e e bt e e e be e e nnbeeennnes 94
CHAPTER 7 CONCIUSIONS. ... .ottt sttt b et sbe st st re s e e e 95
REFERENGCES ......oo ittt ettt se bt e et st et e b bt e neare s 100
LIST OF PUBLICATIONS ...ttt ettt snae e et e e e s e e annaeeanneas 103



LIST OF FIGURES

Figure 1-1. The proportion of time spent on a typical injection molding cycle ...........ccccceeevnennee. 1
Figure 1-2. A typical injection molding maching [6] .........cccooviieiieii i 2
Figure 1-3. Injection molding schematic: (a) a plunger; (b) a reciprocating rotating screw [1]..... 2
Figure 1-4. Heat transfer in a conformal cooling Cell............ccco i 4
Figure 1-5. The porous structure heat transfer model.............cccocovvvieiiiicsi i 6
Figure 1-6. The feasible design area of conformal cooling channels [10].........ccccceveiiieviiieiienee. 8
Figure 1-7. Temperature variance caused by the part thickness variation.................ccccccooveinennens 13
Figure 2-1. Design procedure of a Voronoi conformal cooling circuit [15].........cccceveveiiieieennns 18
Figure 2-2. Design procedure 0f CPS [13] ...ccveiiiiiiicieeie et 19
Figure 2-3. Design flowchart Of MLACCD..........coiiiiiecc e 19
Figure 2-4. Generation of injection molding Mold.............ccceoiiiiiic i 20
FIQUIE 2-5. HOSE GESITN w.vviiieieee ettt te et e e e e be e be e esseesteeneeneenneentens 21
Figure 3-1 Design parameters for spiral, zigzag, and porous cooling channels ...............c.ccc....... 24
Figure 3-2. The coupling effect of changing the diameters of cooling channels........................ 25
Figure 3-3. Required design parameters for a three-layer CPS ..........ccccoc e 26

Figure 3-4. The simulation configuration and an example temperature collection for trial
simulations and training data CoOllECtioN PrOCESS .........c.civeiiieiiiicseee e 27

Figure 3-5. The cooling efficiency variation directions CEV for each cooling channel design ... 30

Figure 3-6. General procedure of the cooling surface diviSion ............ccccocvviviiie e, 31
Figure 4-1. The machine 1earning ProCeAUIE .........cueiiiieiie it 34
Figure 4-2. The zigzag simulation files generation algorithm...............ccccooe i 35

Figure 4-3. The coordinates of the cooling channel control points and the block object edges... 36



Figure 4-4. Example simulation configuration and temperature distribution result for zigzag

(ot To] [T Jod T T =] USSR 37
Figure 4-5. Simplified spiral BDM MEethod..........cccoioiiiiiiiecece e 38
Figure 4-6. The part design and the relative part to channels positions ............ccccccvvveveiieieennns 40
Figure 4-7. The spiral simulation files generation algorithm .............ccccccoveiiii i 41

Figure 4-8. Example simulation configuration and temperature distribution result for spiral

(ot o] [T ol = T =] PSSR 42
Figure 4-9. The CPS cooling channels generation method..............ccccceoiiieiicic i 43
Figure 4-10. The porous cooling channels generation method............c.cccooeiiiiiic e 44
Figure 4-11. The CPS and porous structure simulation files generation algorithm..................... 46

Figure 4-12. Example simulation configuration and temperature distribution result for porous

(ot o] [T g T Jod T T g =] OSSR 47
Figure 4-13. The ANN layout for different cooling channel topologies ...........ccccoevveviiicieennns 50
Figure 4-14. Loss function of the machine 1earning ProCessS.........ccccevvereieereeresiee s esiesee s 51
Figure 4-15. Training data for the supervised machine learning process..........cccoocevvvevesieeseennens 52
Figure 4-16. Part temperature prediction from the machine learning surrogate model................ 53
Figure 5-1. The design procedure of machine learning aided spiral cooling channels................. 57
Figure 5-2. Division of spiral design areas from multiple local thickness maxima...................... 57
Figure 5-3. An example of a spiral cooling surface with gradient function and control lines...... 58
Figure 5-4. Generation of WOCP on a spiral cooling surface...........ccccccevviiiiiic e 58
Figure 5-5. Spiralization 0f WOCP ........ccciiiiiiece et 61
Figure 5-6. Generation of Im — optimized control points of spiral cooling channels................... 61
Figure 5-7. Machine learning aided spiral cooling channel..............cccccooeviiii i 62



Figure 5-8. The optimization procedure of zigzag cooling channels.........c.ccccocovvveiievciieinennns 63

Figure 5-9. An example of a zigzag cooling surface with gradient function and control lines.... 64

Figure 5-10. Generation of WOCP on a zigzag co0ling SUrface............ccccevveveeieiieeieese e s 65
Figure 5-11. Generation of lm- optimized control points of zigzag cooling channels................. 66
Figure 5-12. Machine learning aided zigzag cooling channel ............ccccccoveviiiiic e 66
Figure 5-13. Machine learning aided porous cooling channel.............cccccovviieieiie i 67
Figure 5-14. The optimization procedure 0f CPS...........coi i 68
Figure 5-15. A deep search strategy during the optimization..............ccccceeveviieie i 69
Figure 5-16. Design data and the optimized design data.............cccceevvereiieeiieie s 71
Figure 5-17. Machine learning aided CPS.........c.ooi oot 71
Figure 6-1. The part designs Of CASe STUIES .........ccveiieiiiie e 73
Figure 6-2. Comparison of CCCD and MLACCD channels............cccooveveiieiieeie i 75

Figure 6-3. The temperature distribution and the temperature variance of the part surface
achieved by MLACCD channels and conventional conformal cooling channels ....................... 76
Figure 6-4. The coolant temperature distribution of the cooling channels for MLACCD channels
and conventional conformal cooling Channels..............ccceoiiiiiic i 77

Figure 6-5. The part surface temperature distribution along the center of the part geometry for

MLACCD channels and conventional conformal cooling channels.............ccccocoooviiiiiicicieenens 78
Figure 6-6. The coolant flow rate distribution of MLACCD channels............cccccocovveveiieieenns 79
Figure 6-7. Shoe sole and its MLACCD channels............cccovoiiiiiiiiie e 79

Figure 6-8. The temperature distribution and the temperature variance of the part surface

achieved by MLACCD channels and conventional conformal cooling channels ....................... 80

Vi



Figure 6-9. The part surface temperature distribution along the center of the part geometry for
MLACCD channels and conventional conformal cooling channels...........c.ccccocovvveiiviiiiieinens 81
Figure 6-10. State-of-the-art conformal cooling channel topologies..........cccccvevviieiieviiieiies 81
Figure 6-11. Coolant pressure drop for MLACCD channels and conventional conformal cooling
CRANNEIS. ... bbbt b et b bbb 82
Figure 6-12. Machine learning aided CPS and conventional CPS .............ccccceviiiiiiivc e 83
Figure 6-13. Resulting part temperature distribution for machine learning aided CPS and
CONVENTIONEAL CPS ...ttt b bbb 84

Figure 6-14. Resulting part temperature variance for machine learning aided CPS and

CONVENTIONEAL CPS ...ttt bbb 85
Figure 6-15. MLACCD software model relations ............c.ccceeveeieiieiicic e 86
Figure 6-16. MLACCD software fIOWChart.............ccooiii e 87
Figure 6-17. MLACCD sOftware mMain MENU ...........ccceiveieiiieieeie e sie e see e see e sre e seessaeneeas 88
Figure 6-18. Design topology SEIECtiON MENU ..........cceeiiiiiiiciece e 89
Figure 6-19. Temperature variance minimization (TVM) setting Menu ...........cccccevveveieeinenens 90
Figure 6-20. MLACCD program dialog WINAOW ............cceiieiiiiieiiciecc e 91
Figure 6-21. Example CO0liNG SUIMTACES ........ccvciiiiiiiecieec et 91
Figure 6-22. MLACCD CPS cooling channels for example cooling surfaces...........c.ccccocvevvennnns 92

Figure 6-23. Generation of cooling channels for the part with large geometrical angle variations

Figure 6-24. Generation of cooling channels for the part with small features .............c.ccccoeeveene. 93

vii



LIST OF TABLES

Table 3-1. Input parameters for cooling SIMUIALIONS .............cccovveiiieiiiie e 27
Table 3-2. Range of the deSign Parameters..........coecveieieeri e 27
Table 3-3. Effectiveness evaluation results for cps design parameters ............cccocveveiveveerieennnn, 28
Table 4-1. Cooling simulations input parameters for training data collection ................c.ccc....... 37

Table 4-2. Approximate computational cost of the simulation software and the machine learning
temperature PrediCtion MOEL ...........cov i e 49
Table 4-3. The accuracy of the surrogate temperature prediction model ...........ccccccceevvevievieennene. 54

Table 5-1. The temperature variance minimization (TVM) strategies for each cooling topology

....................................................................................................................................................... 60
Table 5-2. Time efficiency of deep search algorithm and nested loop approach ......................... 70
Table 6-1. Parameters of injection molding cooling simulation for the case studies.................... 74
Table 6-2. A summary of simulation results for the first design case including: temperature

variance at critical locations, ot, and the PreSSUre drop .......ccocevererenenenieseseeeee e 75

viii



ABSTRACT

The effectiveness of the cooling system in the injection molding processes significantly affects
production efficiency and part quality. The current cooling system design is strictly limited by
conventional manufacturing processes such as the casting and drilling process, which typically
create straight or simple cooling channels. However, the maturing additive manufacturing (AM)
technology allows the design and fabrication of complex conformal cooling channels. Typical
advantages of conformal cooling are reduced cooling cycle time, smaller temperature variance,
and better cooling quality. However, the existing conformal cooling designs do not support parts
with non-uniform thickness values, which leads to high temperature variance. To improve the
conformal cooling design in terms of the temperature variance, a machine learning aided design
method is proposed to create cooling system which conforms not only to the part surface but also
to the part thickness values. A surrogate part temperature prediction model is trained through a
supervised machine learning process. Based on this model, optimization strategies are applied to
different cooling topologies including zigzag, spiral, porous, and conformal porous structures

(CPS) so that the resulting temperature variance of the part is minimized.



RESUME

L'efficacitédu systéme de refroidissement dans les processus de moulage par injection affecte
considéablement l'efficacitéde production et la qualitédes pieses. La conception actuelle du
systame de refroidissement est strictement limitée par les processus de fabrication conventionnels
tels que le processus de coulé et de forage, qui crént géné&alement des canaux de refroidissement
droits ou simples. Cependant, la technologie de fabrication additive (AM) en cours de maturation
permet la conception et la fabrication de canaux de refroidissement conformes et complexes. Les
avantages typiques du refroidissement conforme consister aune ré&luction du temps de cycle de
refroidissement, une plus petite variance de tempé&ature et une meilleure qualitéde refroidissement.
Cependant, les conceptions de refroidissement conformes existantes ne prennent pas en charge les
pieges dont les valeurs d'éaisseur ne sont pas uniformes, ce qui entrame une variance de
tempé&ature deves. Pour am@iorer la conception de refroidissement conforme en termes de
variance de tempé&ature, une mé&hode de conception assistée par apprentissage automatique est
proposee pour créer un systéne de refroidissement qui se conforme non seulement ala surface de
la piése mais également aux valeurs d'&aisseur de la piée. Un modde de pré&liction de
tempé&ature de piese de substitution est formé&par un processus d'apprentissage automatique
supervisé Sur la base de ce modée, des stratégies d'optimization sont appliquées sur diffé&entes
topologies de refroidissement, y compris les structures poreuses en zigzag, en spirale, poreuses et

conformes (CPS) de sorte que la variance de tempé&ature résultante de la pi€e soit minimisée.
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CHAPTER 1
Introduction

1.1 Background

As a common industrial manufacturing process, the injection molding method fabricates parts by
injecting molten material into the mold [1]. With the pre-designed mold and cooling systems,
parts with complicated geometry can be produced within a short time [2]. The injection molding
technology is widely applied in aerospace [3], automotive [4], and plastics industries [5]. A typical
injection molding cycle includes six procedures: (1) mold close, (2) filling, (3) pack and hold, (4)

cooling and recovery, (5) mold open, (6) ejection as shown in Figure 1-1. At the beginning of an

4% 2%

8% _awl 2%
= Mold Close

/ 13%
Fill Time

Pack and Hold
Cooling and Recovery
Mold Open

Ejection

65% -/

Figure 1-1. The proportion of time spent on a typical injection molding cycle

injection molding cycle, the mold is closed to generate a sealed cavity for the liquid of molten
plastic. The liquid plastic is initially plastic powder and pellets, which are imported from the
hopper container, and melted in the cylindrical injection area. These materials are transferred
through the sprue into the mold by the rotating and reciprocating screw as shown in Figure 1-2 [6],
where some injection molding machines also use a plunger for the transfer of the molten plastic as

shown in Figure 1-3 [1]. Afterwards, the molten material is packed and held within the mold for

1
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Figure 1-2. A typical injection molding machine [6]
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Figure 1-3. Injection molding schematic: (a) a plunger; (b) a reciprocating rotating screw [1]

4 to 6 seconds. The liquid plastic is then solidified by the cooling system of the mold. Finally,
the mold is opened, and the complete product is ejected after the cooling process. During these
procedures, the cooling and recovery takes 60% to 70% of the overall cycle time. In addition, it
significantly affects the resulting quality and the dimensional accuracy of the product [7]. Thus,

the cooling system design has a critical effect on the production cycle time and part quality.



Nevertheless, the limitation of the conventional drilling and casting process imposes constraints in
designing complex and effective cooling channels. Traditionally, the cooling system of the
injection molding machine is either designed with straight cooling channels [8], or an array of
cooling baffles [9]. These conventional cooling channels are not necessarily conformal to the part
geometry, which results in a longer production cycle time and poor quality of the part [10].
However, the maturing Additive Manufacturing (AM) technology makes the fabrication of true
conformal cooling channels possible with reasonable time and cost [11]. In this chapter, a review
of theoretical works of conformal cooling heat transfer are first provided in Section 1.2. Feasibility
of conformal cooling design and the conformal cooling literature review are given in Section 1.3.
In Section 1.4, the problems and challenges for existing conformal cooling systems including the
part temperature variance and the coolant pressure drop are discussed. To solve the temperature
variance problem, a machine learning aided approach solution is proposed in Section 1.5. In

Section 1.6, the objective of this research is discussed, and the organization of the thesis is provided.
1.2 Heat transfer theories in injection molding

The conformal cooling channel is defined as the cooling passageway which is conformal to the
geometrical profile of the mold core, so that a rapid cooling efficiency and an uniform cooling
performance of the cooling system are achieved [12]. The heat transfer theory and design guideline
of conformal cooling channels are first proposed by Xu et al. [10]. Based on their model, the

energy conservation of the mold during the cooling process can be molded by equation (1-1):
E,=E,+ E. (1-1)

where E, is the heat transferred from half of the part to the mold, E. is the energy loss through the

coolant, and E,, is the energy accumulated in the mold. The schematic of this energy relation is
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Figure 1-4. Heat transfer in a conformal cooling cell

provided in Figure 1-4. According to the heat transfer theories, equation (1-2) to equation (1-5)

are derived:
Eyp = PoColpW (Tonete = Tejec)dt/teyere (1-2)
Em = pmCmlmW (T (t + dt) — Tp(0) (1-3)
E. = KpyW (T, (t) — To(0)dt/L,, (1-4)
Ec = ShaD(To(t) — To)dt (1-5)

where equation (1-2) is derived based on the average energy loss in a time dt over the total cycle
time t.,¢; during a cooling cycle for a part (density p,, specific heat capacity c,, half of the
thickness 1,,) cooled from its melt temperature T, to the ejection temperature T, ... Equation
(1-3) represents the heat accumulated within the mold of a cooling cell (density p,,,, specific heat
capacity c,,, pitch width W, pitch to mold surface distance L,,,) due to the mold temperature raises
from T,,, (t) to T, (t + dt). Equations (1-4) and (1-5) are constructed based on the heat flux at the
mold-coolant interface, where K,,, is the heat conductivity of the mold material, h is the heat

transfer coefficient at the mold-coolant interface, D is the diameter of the cooling channel, T, (t)



is the cycle averaged temperature at the mold-coolant interface. To solve T, (t), equation (1-4)

and equation (1-5) are combined in equation (1-6):

EmW (T (D— To(©)dt

b

%hnD(Ta(t) — T,)dt (1-6)

where the resulted T, (t) is given in equation (1-7):

KW Ty (6)+5ATD Ly T,

T (1) = -7

KW+ ShDlm

submitting equation (1-7) to equation (1-4), equation (1-8) is obtained using the relation from

equation (1-1) and the heat transfer calculations in equations (1-2) to (1-4).

PmCmlmW (T (t+dt)— Ty () htDKp, (T,.(t)— T.) = PpCplp(Tmelt = Teject) (1-8)
dt 2K W+hTDly © ™ ¢ teycle

By applying CRTO to equation (1-8), a first order differential equation is obtained:

dTy, (t) hnDKm _ _ PpCplp (Tmelt - Teject) _
PmCmlmW dt 2K W+hmtDlpy, (T () = Te) = teycle (1-9)

where the solution of equation (1-9) is expressed in equation (1-10):
Tn(t) = T + (Tyno — T)e ™" (1-10)

where T, is the cycle averaged mold temperature as shown in equation (1-11), 7 is the time

constant as shown in equation (1-12), and T,,,, represents the initial mold temperature.

PpCply CKmW+hDlm ) (Tmeit—Teject)

T,=T.+
m ¢ RTDKmtcycle

(1-11)

7 = PmCmlm(hDln— 2KinW) (1-12)

hnDKm




Based on equation (1-10), the mold temperature of typical conformal cooling channels

designed from offset cooling surface can be modeled.

Solid Mold En—> L

Porous Mold

I
A 4

Unit distance of cooling structure dx

Figure 1-5. The porous structure heat transfer model

To improve the cooling efficiency and reduce the pressure drop of the mold, the porous cooling
systems are another type of the cooling system that has recently been developed and studied. Thus,
adaptations of the heat transfer model from Xu et al. [10] also exist for the mold temperature
calculation of general porous conformal cooling topologies [13]. Instead of modeling the cooling
structures with a circular cross section as shown in Figure 1-4, a rectangular chunk of porous
cooling area beneath the mold material is considered as shown in Figure 1-5. Hence, the E, and
E,, in equation (1-1) are re-calculated in equation (1-13) and equation (1-14), where p,, is the
density of the solid mold material, c,, is the specific heat capacity of the solid mold, T;,,;4(t, y)
represents the mold temperature function at time t, position y, K,,, is the heat conductivity of the
mold material, h is the effective heat convection coefficient for the solid and porous mold interface,

and T is the coolant temperature.

lm
Em = pmcmdxdz fo (Tmold(t + dt: y) - Tmold(t: y))dy (1'13)

hdxdz(KmT msurf(£)—KmTc)
Km+lmh

6

E.= dt (1-14)



Tmsurf (t) = Tmsurf + (TO - Tmsurf)e_t/T (1'15)

The modified average mold surface temperature T,,s,,r and the time constant = for equation (1-

15) is then derived in equation (1-16) and equation (1-17):

- Km+lnhppcply (Tmett—Teject)
Ty = (T + S0y T T @19
thtcycle
7 = PmCmln(mh+2Km) (1-17)
2hKm

where Ty,q,r (t) is the mold surface temperature at time ¢, Ty, is the average mold surface
temperature for an injection molding cycle, 7 is a time constant, p,, is the density of the solid mold
material, c,, is the specific heat capacity of the solid mold, K, is the heat conductivity of the mold
material, h is the effective heat convection coefficient for the solid and porous mold interface, T,
is the coolant temperature, T is the initial temperature of the mold, p,, and c,, are the density and

specific heat capacity of the part.

To precisely predict the local part temperature however, the existing theoretical models are not
sufficient. First, the resulting part surface temperature cannot be derived from T, (t) in equation
(1-10) or Tyeurs (t) in equation (1-15), since they mainly reflect the thermal status of the mold
during an injection molding cycle. Thus, it is impossible to utilize these theoretical models for a
fast and accurate prediction of the local part temperature based on a given set of cooling channel
design parameters. In addition, the assumption is too general for the precise prediction of local
part temperature during the derivation process of porous conformal cooling theory. According to
the derivation process proposed by Tang et al. [13], this model approximates the porous cooling
channels to a cooling area with uniform heat flux Q, which is clearly insufficient in supporting the

design of CPS composed of cooling cells with different cell sizes that can have variety of heat flux

7



values across the mold surface. Another shortcoming of the porous model is that it does not link

the design parameters of the cooling channels to its resulting thermal effects on the mold.

1.3 Feasible design space for conformal cooling and literature review

For the feasible design area, Xu et al. [10] proposed a model relating the coolant pressure drop,
uniformity of the cooling performance, geometric constraint of the mold, and the manufacturing
limitations as shown in Figure 1-6 [10]. Note that this feasible design area will differ if the design
of the part, mold, or conformal cooling channel design varies. Typically, a smaller diameter of the
cooling channels results in an increase of the cooling efficiency but a reduction in terms of the
manufacturability and mechanical properties (i.e. strength, damage tolerance) of the mold. Among
different conformal cooling research and engineering analysis [14-16], the minimum diameter of
the cooling channels is 6 mm balancing the manufacturability and the cooling efficiency of the
cooling system. In this research, the minimum diameter of 6 mm is selected to achieve a high
cooling performance of the cooling channels without introducing significant industrial fabrication

difficulties.

6
Design for coolant pressure drop
Cooling - = = =Design for coolant temperature uniformity
channel 5 oy
length [m] anufacturing constraint
— = =Geometric constraint

4

)

2

1

0 - .

2 3 4 5 6

Cooling channel diameter [mm)]

Figure 1-6. The feasible design area of conformal cooling channels [10]
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Although the heat transfer theory and design guideline of the conformal cooling channels have
been established, the design of conformal cooling channel has only been investigated to very
limited extent. Khan et al. [17] provided a cycle time reduction method by combining zigzag and
parallel conformal cooling channel topologies to appropriate cooling surfaces. In their work,
analytical comparison is made among different cooling topologies in terms of the cooling time,
temperature variance, and the part warpage, where a suitable topological design of the conformal
cooling channels can be provided based on a given design of the part. An automatic design of
conformal cooling channels is studied by Wang et al. [15] by creating the centroidal VVoronoi
diagram (CVD) on the conformal surface. A geometric algorithm is developed in their work to
automatically generate a VVoronoi cooling surface which is conformal to the part in a short time.
With their design method, the resulting volumetric shrinkage and the cooling time of the part is
reduced. The CVD design is then compared with the spiral design method of conformal cooling
channels proposed by Wang et al. [14], where the spiral design of conformal cooling channels is
proven to have shorter cooling time and lower part temperature variance. The comparison results
also indicate that the spiral cooling channels have advantages over Voronoi cooling channels in

terms of fabrication cost and the uniformity of coolant temperature and Reynold number.

However, these conformal cooling channels are designed on cooling surfaces extracted and
offset from the part surface geometry. Since the design of these cooling systems is limited to these
2D cooling surfaces, a lot of mold design space is not utilized to improve the cooling performance
of the mold. Thus, the porous conformal cooling systems are developed to further reduce the
cooling time and part temperature variations. These type of the cooling systems also have the
advantages in terms of its small coolant pressure drop [ 18], mass reduction [19], and rapid cooling

[20]. Specifically, Au et al. [21] proposed a multi-connected porous coolant passageway design



with a finite number of cubical cooling cells. The fluid dynamics simulation results indicate that
a more uniform cooling performance and a smaller number of part defects are achieved. Brooks
et al. [22] designed a porous conformal cooling mold with self-supporting lattice structures. The
resulting convective heat transfer of the mold is improved by its innovative cooling system design.
Among different porous systems, the conformal porous structure (CPS) is an innovative porous
structure proposed by Tang et al. [13], which is defined as a unique type of porous set of cooling
channels that has the cooling cells conformal to the part surface. Since uniformity of the distance
between the cooling cells and the mold surface is improved, a more uniform cooling performance,
smaller temperature variance of the part, and reduced coolant pressure drop can be achieved.
However, if the part to be molded has a lot of thickness variations, the large temperature variance
along the part surface will be a severe issue for all the existing conformal cooling topologies.

A number of publications have reported on the optimization of design parameters of conformal
cooling channels. A feature deposition method is provided by Li et al. [23] to recognize and
separate the part geometry into different cooling areas. By designing the appropriate cooling
channels into each cooling region, the resulting part surface temperature variance is reduced. Park
et al. [24] provided the optimized design of baffles in their cooling system. The pitch-to-pitch
distances of the baffles are designed with an optimized value, and the resulting cooling time is
decreased. Jahan et al. [25] optimized the design of porous conformal cooling channel topology
based on the mechanical behavior and thermal properties of 3D printed stainless steel porous
conformal cooling molds with different mold porosities and structures. Two design cases of plastic
parts with discrete thickness values ranging from 1 mm to 6 mm are also studied by Jahan et al.
[26] using the design of experiment method (DOE). The optimized design of helix conformal

cooling channels is able to minimize cooling time for plastic parts with a cylindrical and conical
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shape. To optimize the cellular cooling structures, Wu et al. [19] provided a multiscale lattice
topology optimization method. In their research, an AM manufacturable mechanical stable mold
is developed with rapid cooling capability. Although a 30% mass reduction of the mold is achieved
with the same cooling performance, the optimized mold is not able to improve the part
manufacturability and the quality due to temperature variance during the cooling process. In
addition, Park et al. [16] has proposed an optimization method of conformal cooling channels
based on the simulation results of the temperature distribution after the filling stage. It is found
that the resulting cooling time is reduced by applying proper types of conformal cooling channels
into different cooling regions of the part surface. The effect of mold porosity on its density,
specific heat, and thermal conductivity is studied by Jahan et al. [27]. In their work, the porosity
of the mold is optimized with respect to the cooling time for discrete thickness values of the part.
Nevertheless, the optimization research related to part warpage minimization mainly focused on
optimizing the parameters of the injection molding process or the design of part geometries. For
instance, the optimization method of the injection molding gate location is proposed by Pandelidis
etal. [28]. Moreover, Lee atal. [29] provided the optimization of part thickness design for warpage
minimization. Nevertheless, there is only very limited research on the minimization of part surface
temperature variance by optimizing the design parameters of cooling channels. There is also lack
of research on the design and optimization of conformal cooling channels for the part with
continuous thickness variations. In addition, the current cooling system design method for

different part thickness cannot be easily adopted for large part thickness variation.

To properly handle the part surface temperature variance problem, the relation between the
design parameters of the cooling channels, the part thickness values, and the resulting part surface

temperature needs to be derived. Dimla et al. [30] proposed an optimization method of an injection
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molded part. To reduce the cycle time, the optimal part design, gate locations, and the cooling
channels design are determined based on the FEA and thermal analysis result. However, there is
still lack of detailed discussion and solution on the temperature variance caused by the part
thickness variations in their research. To obtain an optimized design of cooling channels in
injection molds, a design of experiments (DOEs) technique is applied by Jahan et al. [31] to
investigate the design parameter effects of cooling channels on its cooling performance.
Nevertheless, the proposed model in their work does not exhibit self-learning and improvement
abilities if the design parameters change their limits. In addition, the proposed model and DOEs
method is not suitable to be applied for more complicated conformal cooling channel design such
as CPS. A part warpage optimization based on DOEs and Glowworm Swarm Optimization (GSO)
method is proposed by Hazwan et al. [32]. In their study, the process parameters of the injection
molding are optimized, and the resulting part warpage is reduced by 39.1%. A multi-objective
optimization of injection molding process parameters is also proposed by Kitayama et al. [33] to
improve the cooling performance and reduce the part warpage. Still, due to the fact that the
majority of the optimization research is focused on optimizing the injection molding process
parameters, limited discussion is found regarding to the optimization for the conformal cooling
channel design instead. These challenges call for the investigation of applying innovative
temperature prediction techniques to aid the design and optimization of conformal cooling

channels for the minimization of the temperature variance.

1.4 Temperature variance issue in conformal cooling

The temperature variance is one of the existing problems for the conformal cooling design research.
It is typically caused by the non-uniformity of the part thickness distribution as shown in Figure

1-7. Specifically, part regions with different heat inertia are cooled by the channels distributed

12



[c]

41.62 AUTODESK
l MOLDFLOW ADVISER

38.61

35.61

32.61

I29.61

Figure 1-7. Temperature variance caused by the part thickness variation

above the part surface for a fixed distance with the same flow rate. The resulting non-uniform
temperature along the part surface leads to thermal residual stress, which typically exists in the
part regions that have large thickness variations. As indicated by Jacques et al. [34], the
temperature variance of an injection molded part will cause the warpage problem and hence a poor
part quality. In addition, it is stated by Shayfull et al. [35] that the warpage issue is even more
likely to be caused by the temperature variance for the injection molded part with smaller thickness
values. The existing literatures mainly focus on solving this issue by alternating the original design
of the part [36] and optimizing the injection molding process parameters [37, 38]. Nevertheless,
limited optimization efforts have been found on handling this issue with a properly designed
cooling system. Since the pressure drop of the injection molding cooling systems is already
significantly reduced by different novel designs such as multi-connected porous structures and
CPS [13, 21], the temperature variance is the major remaining problems for current conformal
cooling research. To solve the temperature variance problem of a part with non-uniform
thicknesses, a prediction of the local part surface temperature is required based on a given set of
cooling system design parameters. However, precisely predicting the local part surface

temperature remains unsolved. This is due to the complexity of the heat transfer process in the
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injection molding, where running a large amount of cooling simulations to predict the part surface
temperature during the optimization process of the conformal cooling channels is unrealistic.
Therefore, an accurate yet fast prediction tool of the local part surface temperature is required to

further study and solve the temperature variance issue.

1.5 Machine learning

The main challenge of handling the temperature variance problem is the fast and accurate
prediction of the local part temperature based on the given cooling channel design parameters.
Due to the complexity of heat transfer during an injection molding cycle, it is difficult to link the
design parameters of different conformal cooling topologies to the resulting part surface
temperature precisely. However, this type of problem is a well-suited candidate for machine
learning. Machine learning, as a subset of artificial intelligence, has attracted a lot of research
interests in the recent years. It is defined as a set of methods which are able to automatically detect
data patterns to predict future data or make decisions based on uncovered patterns of data [39].
With a sufficient volume of data, the machine learning will be an ideal temperature prediction tool
to detect underlying trends and patterns of the relations between the resulting part temperature and

design parameters [40].

Recently, different machine learning strategies have been applied to improve the
manufacturing industry. An agent-based (holonic) Al systems is proposed by Monostori [41] to
handle the complexity, changes and disturbances in production systems. Instead of using
dispatching rules, Priore et al [42] applied inductive learning, backpropagation neural networks,
and case-based reasoning (CBR) to schedule the flexible manufacturing systems. A significant
improvement over the conventional dispatching rules is obtained by their machine learning

approach. Chi et al [43] developed an adaptive Automated Intelligent Manufacturing System

14



(AIMS) to aid the pharmaceutical development and manufacturing process. In their study, the
AIMS is proofed to be both explanatory and predictive. More machine learning aided approach
in manufacturing processes is reviewed by Priore et al [44]. For the injection molding industry,
Park et al. [45] proposed a real-time intelligent control of the injection molding process parameters.
Based on their method, a smart and automatic injection molding process is achieved by training
the algorithm with the machine learning method. Nevertheless, the machine learning approach in
their work is focused more on the process parameters aspects, and there is not much discussion on
the improvement of the cooling channel designs. Shi et al. [46] shows that the injection molding
process can be optimized with an artificial neural network (ANN) algorithm to reduce the part
warpage. In their research, an ANN surrogate model is built to approximate the relations between
the design variables of the injection molding process and part quality index. However, there is
limited research effort found so far on the machine learning aided approach to design the conformal
cooling channels. Thus, it is worthwhile to investigate the machine learning assisted design and
optimization of the cooling system by training a surrogate model to predict the resulting part

surface temperature.

1.6 Research objectives

The goal of this research is to study and solve temperature variance issue caused by the non-
uniform thickness distribution of the part in conformal cooling research, where several challenges
exist. As stated in Section 1.5, machine learning is selected as the temperature prediction tool in
this research to achieve an efficient and precise part temperature prediction. To train the machine
learning model, however, the training data need to be properly selected for different cooling
channel topologies (i.e. effective design parameters need to be identified, sufficient amount of

training data need to be gathered, etc.). Once the temperature prediction is achieved by the
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machine learning method, optimization algorithms need to be designed for different cooling
channel topologies to finally generate the cooling channels with machine learning aided conformal
cooling design (MLACCD). To address these challenges, there are in total four research objectives

in this thesis:

1) To identify the design parameters of different conformal cooling topologies including
zigzag, spiral, porous, and CPS. These topologies are chosen due to their validated effective
cooling performance in the reported literatures [13, 14, 16, 21]. The selected design parameters
should be both essential in geometrical construction of the cooling channels, and effective in
influencing the resulting local cooling performance.

2) To build sufficient amount of training data for the supervised machine learning process.
The Moldflow Advisor® simulation software is selected in this work to generate the training
data, where the accuracy of this simulation software is validated via previous research on
different cooling systems [14-16, 24]. Since large amount of training data is required to train
the machine learning algorithm, specific programs need to be developed to automatically
generate simulation files to gather the required training data.

3) To train the surrogate temperature prediction through the supervised machine learning
process. The resulting temperature prediction model should be able to efficiently and precisely
predict a local part surface temperature based on the given part thickness values and the
conformal cooling design parameters.

4) To develop optimization strategies that minimize the temperature variance of different
cooling channel topologies. With the surrogate temperature prediction tool, the optimizations
need to be performed so that the MLACCD can be finally achieved. Due to the large design

variations among different cooling channels topologies in terms of their geometrical
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distribution of the cooling channels, different optimization method is developed for each
topological design of the conformal cooling system. Each optimization strategy should be time
efficient, and able to effectively minimize temperature variance along the part surface by

updating the wireframe design of conformal cooling channels.

With these objectives, the rest of the thesis is organized as follows. The design framework of
the MLACCD is given in Chapter 2. In Chapter 3, the design parameter identifications of zigzag,
spiral, porous, and CPS cooling topologies are provided, and a cooling surface division method is
proposed. To discuss the machine learning strategy of this work, the training data generation and
collection, supervised machine learning process, and the performance of the surrogate temperature
prediction model is discussed in Chapter 4. In Chapter 5, the optimization strategies for zigzag,
spiral, porous, and CPS cooling channels are delivered. This is followed by Chapter 6, where the
proposed method is compared with conventional conformal cooling designs on different case
studies including a freeform part surface, shoe sole, and a swimming pedal. In Chapter 7, a
comprehensive summary of this research is made, and the potential future research directions are

concluded.
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CHAPTER 2
Design framework

In this chapter, the overall design procedure of the machine learning aided conformal cooling
design (MLACCD) is provided. Traditionally, the conformal cooling channels are created on a
cooling surface that is offset from the part surface geometry as shown in Figure 2-1 [15], or within
a design volume with uniform distributions of cooling structures as shown in Figure 2-2 [13].
Typically, the existing conformal cooling designs are constrained by the conventional conformal
cooling concept, which requires the cooling channels to have a uniform cooling efficiency on the
part surface (i.e. uniform pitch to mold surface distance L,,, pitch width W, etc.). Thus, the
traditional conformal cooling design procedure is not suitable for the proposed MLACCD method
due to two limitations: (1) the design parameters of MLACCD channels are not necessarily
uniform (i.e. non-uniform pitch to mold surface distance [,,,) since they are alternated and
optimized from their original values based on the thickness distribution of the part; (2) the design
concept of MLACCD involves new design procedures such as the training of the supervised
machine learning surrogate part temperature model and the optimization of the conformal cooling
channel design parameters using the machine learning part temperature prediction, which is totally

different from the traditional conformal cooling design.

CAD of the injection Offset cooling  Separated offset ~ Voronoi design Final Voronoi
molding part surface cooling surface  cooling wireframe cooling channels

(b) ()

Figure 2-1. Design procedure of a VVoronoi conformal cooling circuit [15]
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Figure 2-3. Design flowchart of MLACCD

The design flowchart of the MLACCD is provided in Figure 2-3, which consists of four steps:

(1) identification of design parameters; (2) supervised machine learning process; (3) optimization;
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(4) mold generation. A more detailed explanation of step (1) to step (3) is given in Chapter 3 to
Chapter 5, so only a brief overview of those steps is given here. For a given conformal cooling
topology, the design parameters are first identified. Based on these design parameters, cooling
simulations are performed on Moldflow Advisor® to gather the resulting part temperatures for the
supervised machine learning process. During the supervised machine learning process, the
training data are fed into a two-layer ANN to train the surrogate part temperature prediction model.
Note that the quality of the training process is tested by the loss function, and the accuracy of the
model is evaluated by the test data randomly selected from the training data. Based on the
surrogate temperature prediction model and the CAD design of the injection molding part, the
optimization of the design parameters is performed and the wireframe of conformal cooling
channels is generated. This optimized wireframe is used to construct the solid MLACCD channels
so that a MLACCD injection molding mold can be built by the procedure shown in Figure 2-4.

Typically,

’Q"@ ‘ooling
J pipelines

‘2

ode

Solidification of cooling
channel wireframe p

Cooling channel wireframe
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4L

Solid cooling channel

Cooling channel
wireframe

generation .
Boolean operation of hose.

- mold, and solid cooling channel
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Boolean union

Injection molding
mold
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Figure 2-4. Generation of injection molding mold
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the generation of the solid conformal cooling channels is composed of the designs of nodes and
cooling pipelines. According to Tang et al. [13], the relation between the diameters of nodes and

the connected cooling channels is modeled in equation (2-1):

DC anne
Dnode = Ch—el (2'1)

in-
sing

where D,,, 4. IS the diameter of the node, D_j,anne 1S the diameter of the channel, 6 represents the
minimum angle between the cooling channels connected at the node, C is a constant greater than
one, which avoids intersections between two connected cooling channels. In addition, the hoses
are usually required to form a proper connection between the coolant pipes and the mold. The
hose design of the mold is provided in Figure 2-5. The inner diameter of the hose usually exhibits

Potential surface
assembly features

Start of the
D channet,  cooling channel

Inlet channel

1
Dinter Opening of
the hose

Figure 2-5. Hose design

a steady decrease from the opening of the hose D;,;.; to the start point of the cooling channels

D nanner 10 provide a smaller pressure drop of the coolant at inlet locations. The outer surface

21



design of the hose is typically determined by the dimensions and the assembly features of the
coolant inlet pipes (i.e. in Figure 2-5, the D;,,. depends on the inner diameter of the pipe to be
connected, and the surface assembly feature is determined based on the connection designs of the
pipe). The inlet design will not be discussed in detail in this thesis, since this work mainly focus
on the design of conformal cooling channels. To obtain the final MLACCD injection molding
mold, Boolean operations are applied to combine the hose to the mold outline, and subtract the

solid cooling channels as shown in Figure 2-4.

To summarize, a new conformal cooling design procedure is discussed in this chapter, since
the conventional approach is no longer suitable for the MLACCD proposed in this work. There
are four design steps to generate a MLACCD cooling system. First, the design parameters of a
given conformal cooling topology are identified. Then, a supervised machine learning process is
performed to obtain a surrogate model relating the identified design parameters and the resulting
part surface temperature. Based on the surrogate temperature model, a temperature variance
minimization (TVM) tool is developed to minimize the temperature variance of the part. Finally,
the MLACCD mold can be generated based on the wireframe of the TVM cooling channels, and
the mold outline. The detailed discussion of each step of the design process will be provided in

Chapter 3 to Chapter 5, and validated by the case studies given in Chapter 6.
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CHAPTER 3
Identification of design parameters and division of cooling surface

In this chapter, the design parameters of the most suitable cooling channel topologies including
zigzag, spiral, porous, and CPS are identified in Section 3.1 for the purpose of training data
construction. Additionally, an effectiveness evaluation of the CPS design parameters in terms of
their influences on the resulting part surface temperature is performed through the Moldflow
Advisor® simulations due to its novel design and unexplored influence of the design parameters
on the cooling efficiency. In Section 3.2, a cooling surface division method is introduced for
zigzag, spiral, and porous cooling channels, where each cooling topology is mapped to the part
geometry to allow its largest optimization potentials. Since CPS is a unique type of porous
structures that does not exhibit significant variations on its cooling performance for different

geometrical designs of the part, it will not be considered in the division algorithm.

3.1 Identification of design parameters

In this section, the design parameters of zigzag, spiral, porous, and CPS cooling channels are
selected to construct the training data sets in the machine learning process, to estimate the part

surface temperature during the optimization process, and to define the cooling efficiency variation

direction CEV for the cooling surface division. Three rules need to be considered during the
identification of the design parameters: (1) the design parameters should have the ability to
effectively affect the cooling efficiency of the cooling system; (2) it should be practical to adjust
the design parameters in the optimization process; (3) the design parameters should be essential in
fully defining the geometrical design of the cooling channels. In Section 3.1.1, the identification
of the design parameters for theoretically well-established conformal cooling topologies including
zigzag, spiral, and porous designs is discussed. For CPS, the theoretical links between the design

parameters and their resulting influence on the cooling efficiency is unclear. Thus, the
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effectiveness of the CPS design parameters needs to be evaluated, and the design parameter

identification for CPS will be individually discussed in Section 3.1.2.

3.1.1 Spiral, zigzag, and porous cooling systems

As indicated in the heat transfer theory proposed by Xu et al. [10], the cooling efficiency of a spiral
or zigzag conformal cooling channel is mainly affected by the half-part thickness [, coolant
Reynold number Re, channel diameter d, cooling channel pitch width W, and cooling channel
pitch to mold surface distance [,,, as shown in Figure 3-1. For porous conformal cooling channels,

the most influential parameters besides [,, are the porosity of the mold ¢, and the Reynold number

Re. Among these parameters, d, L,,, and ¢ are the design parameters that are critical to fully
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Figure 3-1 Design parameters for spiral, zigzag, and porous cooling channels
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define the geometrical designs of the cooling channels. However, there are two reasons that Re
and d are impractical to be varied during the optimization. First, the variation of Re requires
designing multiple coolant inlets for different flow rates, which significantly increases the

complexity of the cooling system. Second, the channel diameter d is coupled with [,,,, W, and Re.

—| d; |«

Coolant Inlet
Low R,

W, Medium R,

int!

High R,

P

Figure 3-2. The coupling effect of changing the diameters of cooling channels

An example is shown in Figure 3-2 to explain the coupling effect of Re, [,,, W, and d. As the
channel diameter varied from d; to d,, the original pitch-to-pitch distance W, and pitch to mold

surface distance [,,,, are forced to be adjusted to W, and ,,, as given in equation (3-1) and

equation (3-2):

W,

bny = lmy = (d2 —dy) (3-2)

Wy — (d — dy) 3-1)

In addition, the mathematical relation between Re and d for a circular channel is provided in

equation (3-3):
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Re = -~ (3-3)

where Q is the volumetric flow rate, and v represents the kinematic viscosity of the coolant.
Therefore, increasing d results in a reduction of Re as shown in Figure 3-2. These coupled effects
make it very challenging to adjust d during the optimization process. With these considerations
and design parameters selection procedure, W and [,,, are selected as the design parameters for
spiral and zigzag cooling channels, and ¢ is selected as the design parameters for porous channels

as shown in Figure 3-1.

3.1.2 CPS
To fully-define a three-layer CPS, the CPS design parameters have to be identified first. There are

several reasons of selecting a three-layer CPS. First, additional cooling layers will have a much
larger pitch to mold surface distance, which is not cost effective in terms of its cooling efficiency
versus additional mass and manufacturing complexity. Second, recent publications have proven

that two to three cooling layers will already produce a rapid cooling for the porous cooling channels

Conventional CPS for a Swimming Pedal

Figure 3-3. Required design parameters for a three-layer CPS
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[13, 21]. As shown in Figure 3-3, four design parameters are needed to fully define a three-layer
CPS: (1) CPS to mold surface distance I,,,; (2) CPS cell size S; (3) distance between the first and

the second cooling layers hq; (4) distance between the second and the third cooling layers h,.

(a) The simulation configuration for CPS trail (b) Part temperature collection location
simulations and training data collection

AUTODESK
MOLDFLOW ADVISER

[C] '
l3 1.79
CPS cooling

channels 31.24

AUTODESK
MOLDFLOW ADVISER

Part 130.68

30.13

inlets \ ) ) I .
, ' 29.57 DI,
20 mm JZ

Figure 3-4. The simulation configuration and an example temperature collection for trial
simulations and training data collection process

Table 3-1. Input parameters for cooling simulations

Mold material H13 Tool Steel
Initial mold temperature | 323.15 K

Part material Generic PP
Melt temperature 493.15 K
Coolant type Water

Coolant inlet temperature | 298.15 K
Coolant flow rate 20 lit/min
Injection cycle time 35 seconds
CPS design parameters [l., S, hy, hy]

Table 3-2. Range of the design parameters

Design parameters Range

CPS to mold surface distance [,, 6 mm ~ 30 mm
CPS cell size S 12 mm ~ 30 mm
Distance between the first and the second cooling layers h, 12 mm ~ 30 mm
Distance between the second and the third cooling layers h, 12 mm ~ 30 mm
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Table 3-3. Effectiveness evaluation results for cps design parameters

Potential CPS Parameter set

design parameters | LmS:fashal | T (°C) AT (°C) Effectiveness evaluation
gnp (mm)

[6,12,12,12] | 286 '

m [28,12,12,12] | 32.1 3.5 Effective
[6,12,12,12] 28.6 '

S [6,28,12,12] 305 1.9 Effective

hy Egg;gig ;gg 0.2 Not effective

hy R 288 0 Not effective

[6,12,12,28] | 28.6

Traditionally, the overall cooling performance of a CPS can be roughly modeled by the
theoretical model derived previously in our lab [13]. However, whether the design parameters
including S, 1,,,, hq, and h, are effective in terms of affecting the resulting part surface temperature
cannot be concluded from this model. Thus, the effectiveness if CPS design parameters in terms
of cooling efficiency was not theoretically or numerically evaluated in previous publications,
which is different from zigzag, spiral, and porous cooling systems as discussed before. Therefore,
trail simulations are performed on Moldflow Advisor® with the input parameters provided in Table
3-1 to determine the effectiveness of these parameters in Figure 3-3 in terms of controlling the
cooling efficiency, and the simulation configuration shown in Figure 3-4a. The resulting part
surface temperature is observed as the CPS design parameters are set as their upper and lower
limits, while the others remain unchanged. An example temperature collection is provided in
Figure 3-4b. Note that only the temperature at the center of the part surface is collected, since the
coolant flow rate of CPS is the most stable at that point. The range of these parameters are provided
in Table 3-2 based on the feasible design area proposed by Xu et al. [10]. The input [L,,, S, hy, h,]
values together with the results of these trial simulations are provided in Table 3-3, where AT is

the temperature difference between the simulation results of two parameter sets for each CPS

28



design parameter. According to the effectiveness evaluation, the h; and h, are not effective in
terms of influencing the cooling performance. Thus, the [,,,, and S are selected as the design

parameters for CPS in this work, while the others are automatically set to their lower limits.

3.2 Cooling surface division

To achieve better cooling controllability and channel distribution flexibility during the design
process of zigzag, spiral, and porous cooling channels and map the best cooling topology into
different part regions, the cooling surface of the part is divided into three sub-regions. The CPS is
not discussed in this section since it does not have large variations on its cooling performance for
different part geometries. The separation of cooling surfaces is based on the comparison result
between the cooling efficiency variation directions CEV of different cooling topologies as shown
in Figure 3-5, and the thickness distribution of the cooling surface. The CEV is defined as the
direction that the local cooling efficiency of the channels which can be varied through locally
adjusting the conformal cooling design parameters including W, L,,,, and ¢, where the local
cooling efficiency is the cooling rate on the part surface below a specific region of the cooling
channels. For spiral cooling channels as shown in Figure 3-5a, variation of the spiral pitch-to-
pitch distance Wy;; and pitch to mold surface distance 1,,,5;; provides the cooling controllability on

the direction perpendicular to the channel distribution direction ¢;. Thus, the cooling efficiency

variation directions of the spiral channels CEV, is defined in equation (3-9):

CEVy, € {CEV |CEV 1 &3} (3-9)

Obviously, the pattern ofCE—VS[as shown in Figure 3-5a matches to a centripetal thickness
variation, which results in a closed and circular thickness contour line on the part geometry. For
zigzag cooling channels as shown in Figure 3-5b, the cooling channels are mainly distributed along

+y. In addition, the variation of both W,; and [,,,,; contributes to the cooling controllability on
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Figure 3-5. The cooling efficiency variation directions CEV for each cooling channel design

the direction vertical to ¢, similar to the spiral cooling channels. Hence, the cooling efficiency

variation directions of the zigzag channels CEV, is defined in equation (3-10):
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CEV, € {CEV|CEV L y} (3-10)

Different from spiral cooling channels, the pattern of CEV, matches with a unidirectional

thickness variation, which has an open contour line of part thickness. For porous cooling channels,

the porosity ¢; varies regionally as shown in Figure 3-5¢c. Therefore, the pattern of CEV, contains

B —

the vectors CEV,,, pointing from region i — 1 to region i, where each region i exhibits a uniform
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Figure 3-6. General procedure of the cooling surface division
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thickness value. Thus, CEV, matches to a discrete thickness variation of part geometry, which

refers to uniform thickness regions.

There are three steps to achieve the cooling surface division as shown in Figure 3-6. First, the
closed circular thickness contour line is derived containing the largest possible cooling area. This
contour line represents the boundary of the largest sub-regions with centripetal thickness variation,
and hence it is the dividing line for the spiral cooling surface. Second, the spiral cooling surface
is separated from the total cooling surface based on the closed circular contour line derived. Then,
the porous cooling region is divided from the rest of the total cooling surface by separating the
sub-regions with uniform thickness values, and the remaining cooling surface after the separation

represents the zigzag cooling region.

3.3 Summary

In this chapter, the identification of design parameters for conformal cooling topologies including
zigzag, spiral, porous, and CPS are discussed. In addition, a cooling surface division method is
proposed to provide a better cooling controllability and channel distribution flexibility for the
situation where multiple cooling channel topologies are applied for a same part. Based on the
design parameter selection principles proposed at the beginning of this chapter, [W, L., [,)], [¢,
], [ S, L, L,] are identified as the design parameters for zigzag and spiral, porous, and CPS
cooling channels, respectively. Using the cooling surface division method, a given part geometry

can also be divided into sub-regions for zigzag, spiral, and porous cooling channels based on the

comparison result between the CEV patterns of the part and the cooling topologies. The identified
design parameters are then applied to generate the training data during the machine learning

process, which will be discussed in the next chapter.
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CHAPTER 4
Machine learning prediction of part surface temperature

In this chapter, the machine learning process is carefully discussed, where in total four conformal
cooling topologies including CPS, zigzag, spiral, and porous structures are analyzed using the
supervised machine learning method. A general description of the machine learning procedure is
provided in Figure 4-1. To generate the training data, algorithms are first designed to create the
Moldflow Advisor® simulation files for these cooling channel topologies. Specifically, these
programs generate the simulation files that can be executed by Moldflow Advisor® with all the
possible combination of the cooling channel design parameters for every possible [,,value. The
part surface temperatures are then collected from the cooling simulation results with respect to
different sets of the design parameters, where these temperature data are combined with their
corresponding design parameters as the training data. The training data are then fed into the
supervised machine learning algorithm which is a two-layer ANN, where the detailed architecture
of the ANN will be discussed in Section 4.2.1. Within the ANN, the input layer contains all the
design parameters, and the output layer is the resulting temperature value. As a result, a trained
surrogate temperature model is generated. To evaluate the model, the loss function and the
maximum temperature difference between the test data and the predicted data are calculated. If
the loss function has a steady decrease, and the maximum model error is acceptable, the surrogate
model is considered to be ready for being applied during the optimization process. Otherwise,
revisions are required for the program parameters of ANN to decrease the loss during the training,
and more training data have to be generated and fed into the ANN to improve the model accuracy.
In this chapter, the detailed explanation of the training data construction for these topologies is
given in Section 4.1. In Section 4.2, the ANN training process, and the evaluation results of the

trained machine learning surrogate temperature model are provided.
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Figure 4-1. The machine learning procedure

4.1 Generation of training data

In this section, the algorithms that generates the training data simulation files of CPS, zigzag, spiral,

and porous conformal cooling topologies are given in Section 4.1.1 to 4.1.3. The simulation
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configuration for the temperature data collection of each cooling topology is also provided in these
sections and discussed carefully.

4.1.1 Algorithm design for the generation of zigzag cooling channels

The flowchart for the zigzag cooling channels generation program is shown in Figure 4-2. The
inputs of this program are lists of W, [,,,, and 1, values containing all the possible design parameter

values that the defined by the user for the training process. With given lists of W, [,,,, and [,, values

W: list of cooling channels pitch width value with length len(W)
In: list of cooling channel to mold sarface distance with length len(lm)
Ip: list of half of part thickness values with length len(lp)

Imitial i1=0; j=0; k=0

Update/initializ e:
W (i), Indj), Ip(k)

Gener ate: Gener ate:
Lo ~ las; Iuo ~ Ius Block object with edges Po~ Py

Zigzag channels

designed with Square part with

thickness 2l(k)
False False False k 2= len(ly)

Save as Moldflow Advisor IGES Save as Moldflow Advisor stl
cooling channels file nam ed part file nam ed
)_Dnlj)_Io(k).iges Ai)_b(k).stl

i = len(FV)

Figure 4-2. The zigzag simulation files generation algorithm
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and the list positions i, j, and k, the program generates two files: (1) a rectangular part with the

thickness of 21,,(k) designed for the cooling channels with the width of W(i); (2) the control lines

of the cooling channels with a pitch-to-pitch width of W(i), and a distance of [,,(j) to surface of

(a) Perspective view
Piu

Side view

(b) Top view

P2u = (W(i).2W(i).20)  psy = 2W(i), 2W(i), 2) ) .
Py = (—0.5W(i).2.5W(i).1,(k)) Pza = (W().2W(i).~20) Psa = 2W(D),2W(i).—2,) Ps= (3-5Wf~'_)‘2-5w({J'1p(k))‘
P3 = (—0.5W(i), 2.5W(i), —1,(k)) A A Ps = (3.5W (i), 2.5W(i). 1, (k))

(3W(i). 2W(i). zo)

Piu = (O,ZW(i),Zo) ‘ . . . . . Peu =
p1a = (0.2W(i). —2o) (BW().2W (i), —z0)

Peda =

Py = (—0.5W(i). —0.5W (i), I, (k)) Pg = (3.5W(i). —0.5W(i).1,(k))
Py = (—0.5W(i). —0.5W(i). —1,(k)) [ N P; = (3.5W (). —0.5W (). ~1,(k))

Pru = BW(), —W(i), zq)

Pou = (0.—W(i). 2p) v v B % Spieasian
Poa = O WD) OV w005 = @W@0.z) OO
Y per= (W(@.0.-20) Psa= @W(D).0.~20)

[,

Figure 4-3. The coordinates of the cooling channel control points and the block object edges
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the part with the thickness of [,,(k). Specifically, the control point coordinates of the cooling
channel control lines, and the edge coordinates of the part is provided in Figure 4-3. The generated

cooling channel file and the part file are saved with the names of W(i)_ [,,,(j)_ L, (k).iges and
W(i)_ L, (k).stl, respectively. This process is iterated by updating the values of i, j, k so that every

possible combinations of W(i), L,,,(j), [, (k) are accessed as shown in Figure 4-2.

Table 4-1. Cooling simulations input parameters for training data collection

Topology Zigzag and spiral | Porous and CPS
Mold material H13 Tool Steel H13 Tool Steel
Initial mold temperature 323.15 K 323.15 K

Part material Generic PP Generic PP
Melt temperature 493.15 K 493.15 K
Cooling channel diameter | 6 mm 6 mm

Coolant type Water Water

Coolant inlet temperature | 298.15 K 298.15 K
Coolant flow rate 5 lit/min 5 lit/min
Injection cycle time 35 seconds 35 seconds

AUTODESK’
MOLDFLOW ADVISER

Coolant inlet

z AUTODESK

[c1

l37.27

35.59

MOLDFLOW ADVISER

& Cooling channel
- Hsa90
&
d 32.22
Hose I
30.54 10 mm
| MR—— |

(a) The simulation configuration

fhailorae waniy dats sollsetion (b) Part temperature collection location

Figure 4-4. Example simulation configuration and temperature distribution result for zigzag
cooling channels
Once the simulation files are generated, the Moldflow Advisor® cooling simulation is
performed with the input parameters as shown in Table 4-1. Figure 4-4a shows an example of a
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simulation set up with the imported zigzag cooling channels and block-shaped part, where Figure
4-4b shows the part temperature distribution of the cooling simulation. From the result of each
simulation, a corresponding temeprature of the part is collected for each set of the design

parameters, and will be finally used in the ANN training process.

4.1.2 Algorithm design for the generation of spiral cooling channels

To understand the overall spiral cooling channels generation algorithm, a simplified version of the
spiral boundary distance mapping (BDM) strategy proposed by Wang et al. [14] needs to be first

explained. Figure 4-5 shows the procedure of creating spiral cooling channels based on a given

Given Po, W

Generate the circles O1 to Om
concentric at Po

Concentric circles 01 to Om

Divide the circles by fo, find

points of intersections

Initial control points:

P to Pm

Adjust the cooling channel
control points PL0 to Pumn

Adjusted control
points: PLoto Pm

Comnect PL0 to Pmn

Spiral cooling channel
control line

Figure 4-5. Simplified spiral BDM method
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start point P,, and W value. To create a cooling channel control line with m helixes separated by

the pitch width W, circles 0, to 0,,, concentric at P, are designed with the radius W to mW. These
circles are then divided into n + 1 arcs by angle 6, = 27” where n is the resolution for the division.

As aresult, points of intersections P; o to B, ,, are extracted, where P; ; represents the intersection
between the i circle and j™ division line. Afterwards, the spiralization technique is applied to

generate the spiralized control points. To illustrate, every points of intersections P; ; to Py, ; are
adjusted by a distance % on the division line as shown in Figure 4-5. For each 0, to O,,4, a

smooth connection is formed through connecting the adjusted P,  to P, ,,. Finally, all the adjusted
points are connected with the sequence provided in equation (4-1), and the resulting spiral cooling
channels are formed. For the training data collection purposes, the simulation file should be as
simple and straightforward as possible to improve the data collection efficiency. Thus, the part
files as shown in Figure 4-6a are generated based on the design of spiral cooling channels. The
disk-shaped parts are chosen because it not only reduces the modelling and design efforts, but also

decreases the simulation time.
Plo=> Piy—= > Py P2 Py oo 2 Ppgo o> PByy (4-1)

The overall flowchart explaining the generation of the spiral simulation files is provided in

Figure 4-7. Basically, the program is designed to iterate over all combinations of W, [,,,, and [,

values in a similar way as zigzag simulation file generation program, and generates the spiral
simulation files. Note that the z-coordinates of P, for the upper and lower spiral cooling channels

are set as +(l,,, + I,,) as shown in Figure 4-6b. This distance makes sure that the spiral cooling

channels for a part of 21, thickness exhibit a pitch to mold surface distance of 1,,. The number of
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(a) Perspective view of the disk-shaped
part design

Loy I,I

N —— e — ™
(b) The relative positions of the part and
the channel control lines

Qm+1)W

s
v

0,,with radius mW

(c) Diameter of the disk-shaped part

Figure 4-6. The part design and the relative part to channels positions

the initial concentric circles are set to m = 3 during the iteration, where the radius of the disk-
shaped part is automatically designed as 1.5W following the calculation provided in Figure 4-6c.
There are three reasons of setting m to 3: (1) for any m > 3, the simulation time significantly

increase, which increase the overall training data collection time; (2) for any m > 3, the coolant
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W: list of cooling channels pitch width value with length len(W)
Im: list of cooling channel to mold surface distance with length len(lm)
Ip: list of half of part thickness values with length len(lp)

Imitial i=0; j=0; k=10

Updatefinitializ e:
W), bdj), Io(k)

Gener ate:
Spiral cooling channels centered at

Po(0,0, X (n(j) + I(k)))

Gener ate:

Disk object centered at (0,0,0)

Spiral channels Disk part with

designed with: thickness 2[y
W), bnlj), B(k) radins 1.5

Fa - k = len(lp)

Save as Moldflow Advisor IGES Save as Moldflow Advisor stl
cooling channels file nam ed part file nam ed
W)_Indj)_L{k).iges Pi)_k(k).stl

i == len(¥)

Figure 4-7. The spiral simulation files generation algorithm

will have a non-negletable temperature raise, which results in a reduction of the training data
accuracy; (3) for any m < 3, the temperature collection point will be too close to either the inlets
or the outlets of the coolant, which negatively affect the training data accuracy. Figure 4-8a
provides the simulation configuration for the training data collection of spiral conformal cooling

channels with the input parameters provided in Table 4-1, where Figure 4-8b shows the simulation
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result. Based on the simulation result, the resulting part surface temperature is finally collected

for the ANN training process.

AUTODESK iy . AUTODESK
MOLDFLOW' ADVISER Coolant inlet MOLDFLOW' ADVISER

Cooling channel > Hose [c]

v4
)(‘\ 41.54
. N

39.61

| 37.69

Part 35.76

I33.84

s 20 mm

(a) The simulation configuration

for spirdl trifning data.collection (b) Part temperature collection location

Figure 4-8. Example simulation configuration and temperature distribution result for spiral
cooling channels

4.1.3 Algorithm design for generation of porous and CPS cooling channels

The algorithms that generate the porous and CPS simulation files for training data collection
purposes are discussed together in this section due to similarities of porous and CPS in terms of
their channel topologies. Based on a given set of design parameters, Figure 4-9 and Figure 4-10
provide the flowcharts for the generation of CPS cooling channels, porous cooling channels, and
their correpsonding parts. For CPS cooling channels, the upper and lower initial cooling planes

are first generated based on given L, L,, and S values, where the coordinate of the node on i row

and j™ column of the initial cooling plane is derived in equation (4-2):
Pogijy = (i5,)S, £l + 1)) (4-2)

where Py ; ;) represents the node intersected by i row and j* column of the initial cooling planes,

the + sign indicates that in total two initial cooling planes are generated, which are positioned

above and below the part object as shown in Figure 4-9. To construct three layers of the cooling
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Figure 4-9. The CPS cooling channels generation method

surfaces, these cooling planes are then copied and lifted from the part surface with the distance h,

and hy + h, as shown in Figure 4-9. Connection lines are then formed between each Py ; jy, Py j)

and P jy, P j) pairs so that the final CPS cooling channels are formed for the training data

collection purposes. A block-shaped object with the thickness of 21, is designed as the part for

the training data simulation due to its simple geometry, which reduces the simulation time. The
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width of the part is set to be mS and nS for the cooling planes of m x n size, since these width
values can provide a porper 0.5S edge distance (this distance ensures the edge of the part be
porperly but not over cooled, which affects simulation accuracy) between the edge of cooling

channels and the part.

Pitch wndth and porosity relations
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Figure 4-10. The porous cooling channels generation method
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For the porous cooling channels, the design parameters are [, and ¢. To generate the cooling

channel control lines, relation between the pitch width of the porous cooling channels W and the

porosity ¢ is derived in Figure 4-10, where the fitting function is provided in equation (4-3):
¢ = 85.4e7 W (4-3)

As shown in Figure 4-10, a convertion from ¢ to W is performed at the beginning of the porous
structure generation process. Different from the CPS generation algorithm, the spacing between
the cooling plane is directly set to the cooling channel cell size of W so that a uniform ¢ can be
found at different mold positions. Hence, the wireframe of the porous structures is directly

generated with the node coordinate calculation derived in equation (4-4):
Pijiy = (AW, jW, £ (kW + L, + 1,)) (4-4)

where P; ; iy represents the node at the intersection among i row, j column, and k" cooling plane,

and the =+ sign indicates wether a given node of porous cooling structures is above (+) or below (-)

the part.

Based on the CPS and porous generation method provided in Figure 4-9 and Figure 4-10, the
simulation files for all combinations of the design parameters can be generated as shown in Figure

4-11. For CPS cooling channels, the program updates [, (i), S(j), and [,,(k) values to generate
the IGES CPS cooling channel files named L, (i)_S(j)_L,(k).igs, and the STL part file named
S()_Lp(k).stl. For the simulation files generation of the porous structure, the program iterates
over all combinations of ¢ (i) and [,,(j) values, and provides the IGES porous cooling channel
files named ¢ (i)_L,(j).igs, and the STL part files named ¢ (i)_L,,(j).stl. As discussed in Section

3.1.2, the h, and h, are not effective in terms of influencing the resulting part temepratures,
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(a) CPS simulation files generation algorithm

S: list of CPS cell size value with length len(S)
Im: list of cooling channel to mold surface distance with length len(ln)
Ip: list of half of part thickness values with length len(lp)
Initial i=0; j=0; k=0

Update/initialize:
S(), In§), k(k)

Generate: Generate:
CPSwith n=m=4 Block object

Square-shaped part
with thickness 2/{(k),
and width 45()

CPS designed with:
S(i), In(3), 1K)

False False False

Save as Moldflow Advisor IGES Save as Moldflow Advisor stl
cooling channels file nam ed part file named
S(i)_Inj)_lp(K).iges SG)_AKk).stl

(b) Porous structure simulation files generation algorithm

@: list of porosity value with length len( @)
Ip: list of half of part thickness values with length len(lp)
Initial i=0;j =0

Updatefinitialize:
@), ki)

Generate:
Porous structure with: Generate:
Porosity @(i) Block object
n=m=1[=4

Square-shaped part with:
Thickness 25:(j)
Side length 471 @(1))

igned with:

Save as Moldflow Advisor IGES Save as Moldflow Advisor stl
cooling channels file nam ed part file nam ed

B(i)_Ilj).iges SG)_BG).stl

Figure 4-11. The CPS and porous structure simulation files generation algorithm
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therefore constant value to set to h; and h, as 12 mm, which is the minimum value of the pitch
width. Thus, the parameter h; and h, are set as 12 mm during the cooling channels and part
generation process of the CPS and porous structure. In addition, the number of cooling cells of
the CPS and porous structure is fixed as n =m =4, and n = m = | = 4, respectively, to achieve a
stable flow rate at the center of the cooling planes that is closest to the part surface without causing
a significant increase of the simulation time. Note that the cooling channel to mold surface
distance of the porous structure is not considered as a design parameter for porous structure. This
distance is set as half of the pitch width values W (¢ (i)), since a invariant porosity over the mold
is desired to ensure the accuracy of the training data. The generated simulation files are then
imported into the Moldflow Advisor® simulation as shown in Figure 3-4a and Figure 4-12a. The
input parameters for the simulations are provided in Table 4-1. Note that the the inlet flow rate of
the CPS and porous cooling simulations is different from which of the zigzag and spiral cooling

simulations. The flow rate for CPS and porous structures is set to 20 lit/min, since it is the inlet

AUTODESK .
MOLDFLOW ADVISER
Hose yi==i=g=y3,

[c] A ) . 3 L
g s 2 20
41.30 - ‘ ' ‘

= oo

AUTODESK
MOLDFLOW ADVISER

Coolant inlet

36.20
j 33.64 e B e B s B
20 mm
]

(a) The simulation configuration

.. . (b) Part temperature collection location
for porous training data collection

Figure 4-12. Example simulation configuration and temperature distribution result for porous
cooling channels
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flow rate that makes the major portions of the cooling channels exhibit a flow rate that is close to
5 lit/min, which is the same as coolant flow rate for zigzag and spiral cooling channels. This inlet
flow rate allows the comparison between different topological designs of the cooling channels
together on different regions of the same part. Example simulation results are provided in Figure
3-4b and Figure 4-12b. The temperature data is collected at the center of the part surface, since
the flow rate of CPS and porous cooling channels are not stable at the positions closer to the inlets

and outlets.

4.2 Supervised machine learning process

In this study, a supervised machine learning process is applied to train the surrogate temperature
prediction model for different cooling channel topologies including zigzag, spiral, porous, and
CPS. There are mainly two reasons of deriving a machine learning surrogate model for
temperature prediction. First, the theoretical models such as the temperature model proposed by
Xu et al. [10] cannot be generally adapted and applied to different novel designs of conformal
cooling channel geometries due to their various types of design parameters. Even if the basic heat
transfer theory in Section 1.2 can be modified for novel conformal cooling designs such as CPS
[13], the accuracy of the adapted model cannot be guaranteed. However, the surrogate model
proposed in this thesis can be effectively tested by the testing data, and the loss functions during
the training process. In addition, the computational cost of the temperature prediction is
significantly decreased, where the approximate computing time between the Moldflow Advisor®
and the surrogate temperature model for different cooling channel topologies is compared on a
computer with NVIDIA® GEFORCE® GTX graphics card, intel® i7-8750H CPU, and 16 GB RAM.
The comparison results as shown in Table 4-2 validates that the surrogate temperature model

provided in this work is more efficient in predicting local part temperature during the optimization
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process. The detailed explanation of the ANN training process is given in Section 4.2.1, where

the evaluation result of the finally trained model is provided in Section 4.2.2.

Table 4-2. Approximate computational cost of the simulation software and the machine learning

temperature prediction model

Types of the cooling channel
topology

Moldflow Advisor cooling
simulation

Machine learning temperature
prediction model

Spiral 30 ~ 60 minutes
Zigzag 1 ~ 5 minutes
Porous 5 ~ 10 minutes
CPS 5 ~ 10 minutes

< 0.5 seconds

4.2.1 ANN training process

The ANN is selected in this work to predict the heat transfer performance of the conformal
cooling channels and build the surrogate model. ANN is a massively parallel distributed processor
that consists of simple processing units. There are two reasons that ANN is chosen in this study.
First, ANN has the computing power to solve complex problems that are currently intractable due
to its large scale of parallel distributed structure as well as the ability to learn and generalize [47].
Second, the accuracy of ANN can be continuously improved by importing additional training data
without changing its original architecture. Among different types of supervised machine learning
method, it should also be noted that the ANN is a type of these strategies selected in this work to
validate the proposed MLACCD method, while the proposed method is not limited to be achieved
through ANN. The layout of the ANN is provided in Figure 4-13, where it has two hidden layers,
and the input layer is not the same for different topologies of the cooling channels. For instance,

the input layer for CPS is in the form of [S, 1,5, [,,], which is different from [¢, [,,] for porous
structures, and [W, L, L,] for zigzag and spiral cooling channels due to their different identified

design parameters. There are two hidden layers in the ANN, where each hidden layer contains 20
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Qutput

(a) ANN layout for CPS (b) ANN layout for porous structures

Hidden 1 Hidden 2

(¢) ANN layout for zigzag and spiral cooling channels

Figure 4-13. The ANN layout for different cooling channel topologies

nodes. To pass the information between layers, the propagation function is used to calculate the

weighted sum of the node outputs as shown in equation (4-5):

zf = Ypo Wihai '+ b (4-5)

where z/ is the input value for j** neuron of the i*" layer, aj " is the output from k" neuron of
the i — 1¢" layer, Wj‘}( represents the weight of the al~* on zji, n represents the number of neurons

ini— 1" layer, and b}' is the bias function between i — 1** and i layer. To non-linearize the

input value of each neuron, an activation function is used as shown in equation (4-6):
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aj = () (4-6)

where ¢ is the Sigmoid activation function, aj‘f is the node output value. During the training
process, the weight of each neuron is adjusted to obtain the trained machine learning surrogate
model with a learning rate of 0.005 and a 30000 number of training epochs. The performance of
this ANN configuration is evaluated by the loss function as shown in Figure 4-14, where the ANN
structure (i.e. two hidden layers, 20 neurons in each layer, etc.) and the training parameters (i.e.
learning rate of 0.005, 30000 training epochs, etc.) are selected to achieve a steady decrease of the

loss function during the training process.

x10

—— Loss function

Loss function
(3]

T

0 0.5 1 1.5 2 25 3
Number of training cycles x10*

Figure 4-14. Loss function of the machine learning process

As discussed in Section 4.1, the training data is generated and collected from the Moldflow
Advisor® simulation. In total, more than 1000 sets of the training data are built for the zigzag,
spiral, porous, and CPS cooling systems as shown in Figure 4-15a to Figure 4-15c, while 20% of
them are randomly chosen as the test data. The amount of the training data is determined based
on the accuracy of the model. Initially, a small number of the training data sets is created and fed

into the ANN, and a large error between the predicted temperature and the test data exists. To
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improve the accuracy of the model, an increasing amount of the training data is fed into ANN until
the accuracy of the model is precise enough for the optimization process. The number of the
training data sets reported in this work is the final amount of the training data that is able to
successfully train the surrogate temperature model with a reasonable model accuracy. In some
ranges of the parameters, the rate of temperature variation is higher, so more underlying patterns
of data need to be studied by ANN in these ranges. Therefore, specifically importing these training

data will improve the accuracy of the temperature prediction model faster. For zigzag and spiral
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Figure 4-15. Training data for the supervised machine learning process
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cooling channels, more test data is selected from the range of [, <4 mm. For CPS, more test data
is generated for the ranges of [, <4 mm, [, <12mmand S < 20 mm. The final trained surrogate

temperature prediction model is provided in Figure 4-16, where the evaluation results (i.e.

computation time, temperature prediction error) of this model is provided in Section 4.2.2.
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(c) Part surface temperature prediction for CPS cooling system

Figure 4-16. Part temperature prediction from the machine learning surrogate model

4.2.2 Evaluation of the surrogate temperature model

In this section, the evaluation results of the trained surrogate temeprature model is provided. There

are two types of evaluations performed for every training attempt. First, the loss function is
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calculated during each training process, which reflects the quality of the training algorithm. The

loss function is calculated based on the mean squared error formula as shown in equation (4-7):
1 ~
MSE = ~ 3L, — 51)? (4-7)

where MSE is the mean squared error, N is the size of the sample, ¥, represents the predicted values,
and y; is the true value. After each training process, the parameters of the ANN are adjusted if the
loss function does not exhibit a steady decrease during that training. The loss function for the
finalized ANN with 30000 training cycles and a learning rate of 0.005 is shown in Figure 4-14,
where a steady decrease is observed. Second, the accuracy of the trained temperature prediction
model is evaluated based on the maximum temperature difference between the test data and the
prediction from the surrogate model. The test results are provided in Table 4-3, the maximum
temperature difference for porous, spiral, zigzag, and CPS are all below 0.5 °C, which indicates that
the surrogate temperature prediction model is accurate since it has reached the default temperature
resolution of the MLACCD software (within the TVM process of the software, the design parameter update

process stops once the predicted temperature converges, or the difference between predicted temperature

and target temperature has reached +0.5 °C).

Table 4-3. The accuracy of the surrogate temperature prediction model

Topology Porous Spiral and zigzag | CPS
Maximum temperature difference between the

prediction and test data (°C) 0.23 0.28 0.47
Test data percentage (%) 20

4.3 Summary

To achieve a fast and accurate prediction of the part temperature based on the given conformal
cooling design parameters, the supervised machine learning is performed with two steps: (1)

construction of the training data; (2) training the machine learning surrogate model through ANN.
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Due to a large amount of the required training data, algorithms are designed to automatically
construct the IGES cooling channel files and their corresponding part files. These simulation files
are imported into the Moldflow Advisor® simulation software to gather the temperature data. The
training data is then constructed by combining the design parameter sets with their corresponding
resulting temperature of the part surface. During the training process, over 1000 sets of the training
data are imported into an ANN with two hidden layers, where the design parameters of the cooling
channels are set as the input layer, and the resulting temperature are set as the output layer. The
loss function during the training presents a steady decrease, and the maximum model error is less
than 0.5 °C. As a result, a surrogate model that is able to achieve a fast and accurate prediction of
the part surface temperature is trained. The derived machine learning surrogate temperature
prediction model is then applied in Chapter 5 to aid the rapid temperature prediction during the

TVM process.

55



CHAPTER 5
Temperature variance minimization process

In this chapter, different optimization strategies are discussed for spiral, zigzag, porous, and CPS
cooling topologies in Sections 5.1 to 5.4 based on the surrogate temperature prediction model. The
differences between the optmization strategies of these cooling topologies are caused by the large
variation among the geometrical designs of their cooling systems. For each cooling topology, the
design parameters of the cooling channels are optimized to minimize the part temperature variance
based on the given part thickness distributions. Specifically for the cooling topologies where the
pressure drop is high such as zigzag and spiral, sequential optimizations are used to obtain a
cooling channel which can reduce the temperature variance with the shortest length. The optimal
cooling channel control points are generated based on these optimized design parameters, and the
final machine learning aided conformal cooling channels are generated by connecting these control

points.

5.1 Optimization of spiral cooling channels

The general optimization procedure for spiral cooling channels includes four steps: generation of
control lines, generation of spiral W-optimized control points (WOCP), spiralization of WOCP,
and L,,, adjustment of spiral WOCP as shown in Figure 5-1. For a general example of spiral design
area with multiple thickness maxima as shown in Figure 5-2, the area division based on the
thickness contour is first applied to divide it into multiple spiral design areas with single thickness
maxima. Specifically, the division line is selected as boundary thickness contours of those design
areas with distinct local maxima points. For a derived spiral cooling surface with single local
maxima as shown in Figure 5-3, the control lines are first found to restrict the optimization space
for the control points of the cooling channels. To derive the control lines, the point p, with

maximum divergence is defined in equation (5-1):
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v Ly (Xpy, Yoo Zp,) = MAX (V2 b (Xp 42 Ypar Zp4)) (5-1)

where (x,,, Vp, Zp,) 1S the coordinate of p,, and (x,,, ¥,,,2p,) is the coordinate of an arbitrary

point p, on the example spiral cooling surface.

Spiral cooling region
geometrical data

Generation of control
lines

Optimization step 1:
Generation of WOCP

Spiralization of WOCP

Optimization step 2:
I, adjustment of WOCP

Machine learning aided
spiral cooling channels

Figure 5-1. The design procedure of machine learning aided spiral cooling channels

== == Division line

=== Thickness contour

\
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Figure 5-2. Division of spiral design areas from multiple local thickness maxima
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As shown in Figure 5-4, each control line [; is created so that it starts from p, with the direction
of lei separated by an resolution angle A8. The value of the resolution angle is related to the
variation of lei on its tangent direction. For instance, suppose the value of lei is distributed
along the part surface in an approximately isometric manner, the resolution angle A8 can be set to

a larger value. However, if the value of lel- IS varying along its tangent direction as shown in the

——— Control lines

Spiral cooling surface example — Gradient function le

Thickness contour =
Gradient function VI, —»
Direction tangent to Vl,, -

Anisometric spiral cooling L.x

surface example

Figure 5-3. An example of a spiral cooling surface with gradient function and control lines

Edge of cooling surface Edge of cooling surface

WocP (i)

wi
+
Ty
o »
1L oo e o e 'wocp (1)
Po Po
(a) 2-point system on control line (b) 2-point system of WOCP

Figure 5-4. Generation of WOCP on a spiral cooling surface
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caption of Figure 5-3, a smaller value of A@ is required since different designs of cooling channel

control points need to be derived, which will be discussed in detail in the following paragraphs.

Second, the WOCP for the spiral cooling channels for the example cooling surface is generated
as shown in Figure 5-4. To create WOCP, the control lines are first lofted from the part surface
by the minimum pitch to mold distance l,, .= 6 mm. For each control line, the 2-point system

0 k) ; ; 6)) x) ; U.x)
(p;”’,p;) for arbitrary points p;”” and p;”, and the corresponding temperature T;-"" between

pi(j ) and pl.(k) are defined in equations (5-2) and (5-3):

j k j k .
(@20 p?, 0 € L) (5-2)
ok ' K N (K
Ti(] . = SMLTMspiral (AVG (lz(,Ji), lz(,?) ) ]/Vi(J ), AVG(lglg, lgm))) (5-3)

where L(i) represents the set of the points on control line I;, SMLT M4, is the surrogate model

relating the design parameters and resulting part surface temperature for spiral cooling channels,

D W)

' 'mi

lz(,? indicates the half of part thickness measured from the cooling surface geometry below pi(

represents the distance from pi(j) to the cooling surface, I/Vi(j""‘) is the distance between pi(j) and

() (k)

) Ti(j'k) pi »Lpi’) cooled by spiral

p; is the resulting surface temperature of a part with [, = AVG(l

cooling channels with W = Wi(j'k), L, = AVG(ZU)

mi’

lgfl) ) From the set of points on each control

line [;, a sub-point set WOCP (i) is found through the spiral optimization step 1 as expressed in

Table 5-1. During the optimization iteration, the quantity m and the coordinates of the control

)]

points p;”° are updated so that the resulting part surface temperature Ti(j'j“) predicted by

0))

SMLT Mg,;rq; is the closest to the target temperature T, for each (p; ,pi(j +1)).
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Table 5-1. The temperature variance minimization (TVM) strategies for each cooling topology

Topology | TVM strategy

Step 1:
To Find: m, pl.(j), i=12,..m
Minimize: [T, = T97*P]j=12,..,m -1
sT..p? €L()
12 mm < Wi(j'jﬂ) < 30 mm Step 2:

= ToFind: AP, j=12,..,m
m =2 Minimize: [T, - T/ j = 1,2,..,m -1
sT.12mm< WY < 30mm

0mm < Ahgj) < 24 mm

Spiral

Step 1:
ToFind:m, p? ,j=12,..,m
Minimize: [T, — TUJ*D|j=12,..,m—1
Zigzag sT..p? € L)
12 mm < Wi(j'jﬂ) < 30 mm
v.=1
m =2
To Find: ¢;

Porous Minimize: AT;
ST 10% < ¢; <30%

Mmin

For each 1.

To Find: S;, L, i,j = 1,2,..,n — 1

CPS Minimize: |T; — Tg 5|,

ST:12mm < §; < 30 mm
6mm < [,,; < 30mm

Third, the spiralized WOCP is generated as shown in Figure 5-5 by applying the similar

boundary distance mapping (BDM) method proposed by Wang et al. [14]. As shown in Figure
5-5, there is an associated distance di(j_l’j) between pl.(j) and pl.(j_l) in the original WOCP (i). To
derive spiralized WOCP, each p-(j)

l

is moved towards p, by Ad; defined in equation (5-4):
Ad; =22 qU=10; (5-4)

Tom i

where Ad; is the distance for point pi(j ) to be moved.
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o

WOCP(i)

Figure 5-5. Spiralization of WOCP

Temperature variance
minimized WOCRAi)

@ Spiralized WOCR))

-
J-lmm in

Figure 5-6. Generation of [,,, — optimized control points of spiral cooling channels

Finally, the L,,, values of each point in spiralized WOCP are adjusted as shown in Figure 5-6.

To illustrate, the adjustment of the pitch to mold surface distance l,(,’lz as shown in is defined in

equation (5-5):
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Vo=

mi Mmin

+ AR (5-5)

where Ah{ is the additional height added to the distance from pl.(j) to the cooling surface. During
the spiral optimization step 2 as shown in Table 5-1, Ahi(j) is updated so that for each (pi(j), pi(j“)),

the objective function |T, is minimized for j = 1,2,..,m. The value of Ahl@ is

g

selected as 0.5 mm in this study, where a smaller Ahgj ) value won’t cause noticeable difference on
the resulting temperature distribution based on our experience. During the optimization, the
predicted part surface temperature converges to the target temperature with small variations, which
indicates the completion of the optimization process. For the case that the predicted temperature
is unable to reach the target temperature, adjustments can be made for the target temperature, and
the range of the optimization parameters. At the end of the spiral optimization process, the adjusted
control points are connected to form the machine learning aided spiral cooling channels as shown

in Figure 5-7.

>

Figure 5-7. Machine learning aided spiral cooling channel
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5.2 Optimization of zigzag cooling channels

As shown in Figure 5-8, the optimization process of a zigzag conformal cooling channels includes
three steps: generation of control lines, generation of zigzag WOCP, and [,,, adjustment of zigzag
WOCP. To design the cooling channels with the highest cooling controllability, the control lines

are created along the main direction of le on an example zigzag cooling surface as shown in

Figure 5-9. In this example, all le is aligned in X direction for illustration purpose. In a general
case, small thickness variation is allowed in y direction as well in the zigzag optimization method
proposed in this work. Thus, the control lines are separated by a resolution distance Aw along y,
where the value of Aw is negatively proportional to the magnitude of le in y direction. The edge
distance d,, is set as 12 mm to obtain a high cooling efficiency on the edge of the zigzag cooling

surface without overcooling.

Zigzag cooling region
geometrical data
Generation of control
lines

Optimization step 1:
Generation of WOCP

Optimization step 2:
I, adjustment of WOCP

Machine learning aided

zigzag cooling channels

Figure 5-8. The optimization procedure of zigzag cooling channels
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Zigzag cooling surface
example

z \‘ ——— Control lines

y = _
q/'x lei li — Gradient function le

Figure 5-9. An example of a zigzag cooling surface with gradient function and control lines

To generate the zigzag WOCP as shown in Figure 5-10, the control lines are first lofted by a

minimum [ = 6 mm. On the lofted control lines, any 2n-point system (pﬁ)n pg?n) is defined

Mmin

in equation (5-6):
(@2, P Ip™ € L) (5-6)

where L (i) represents the set of all the points on the it"control line, n is the total number of control
lines, and m is the number of points in L(i). Based on the temperature surrogate model for zigzag

cooling channels SMLTM, the average temperature TU®) for each 2n-point system is

ig—zag:

defined in equation (5-7):

n (kK
TUK) = DR (5-7)

n

where Tl.(j’k) defined in equation (5-8) is the temperature between p-(j)

l

(k)

and p; "~ as shown in Figure

5-10.
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pi’ "pi mi’ ‘mi

Based on these calculations, the zigzag optimization step 1 as shown in Table 5-1 is performed
to generate zigzag WOCP. During the optimization process, the quantity m and the coordinates of

p? s updated to minimize |T, — TU/*+D)|,

/-\—_l-t,nmm

Edge of cooling surface

(k)
| -
) (i) (k)
P1 T P
L » + o
. )
v | w
l; ] 4+ ®
) . (k)
Pn o | pa
Iy L -+ .

! . | —_
Edge of cooling surface wl_’j.j—lj /¥[ min

¥} Gi+1y] | Ui+1)
Pi T1 1 )
e @ e @ )] * -+ ® sss WOCP (1)
. p'l__; Tl_[;.j—u pFH: i
*. & e * @ [ + [ ] ses WOCP (i)
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Figure 5-10. Generation of WOCP on a zigzag cooling surface
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Figure 5-11. Generation of L,,,- optimized control points of zigzag cooling channels

Finally, the L,,- optimized WOCP for a zag-zag conformal cooling channels is generated shown

in Figure 5-11. For every control point pi(j) in WOCP, the value of lg). is added by an additional

l
height Ahl@ similar to the optimization process of spiral cooling channels. During the second step
of zigzag optimization, the Ah;; is optimized to a value so that on each control line [;, the

UJj+1

temperature difference between T; and T, is minimized. At the end of the zigzag cooling

channels optimization, the 1,,- optimized WOCP are connected in a proper zigzag sequence to

obtain the final machine learning aided zigzag cooling channels as shown in Figure 5-12.

/UL ML\

Figure 5-12. Machine learning aided zigzag cooling channel
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5.3 Optimization of porous cooling channels

An example of optimized porous channels is shown in Figure 5-13. To design the machine
learning aided porous channels, the porosity of the cooling channels ¢; should be optimized with
respect to the the half-part thickness L,; for each region R;. The objective function during the
porous optimization process is the temperature difference AT; between the machine learning

predicted temperature SMLT My, ,,ous(Lpi, ¢;) and Ty as provided in equation (5-9):
AT; = ITg - SMLTMporous(lpir o)l (5-9)

During the optimization iteration, the objective function AT; is minimized by updating ¢; as
shown in Table 5-1. Based on the optimized ¢;, the machine learning aided porous channels can

be generated for each porous cooling region as shown in Figure 5-13.

Figure 5-13. Machine learning aided porous cooling channel

5.4 Optimization of CPS cooling channels

In this section, the proposed CPS optimization strategy is explained with a swimming pedal case
study, where the mathematical representation of the optimization (i.e. objective function, etc.) is
provided in Table 5-1, and the optimization procedure of the design parameters is provided in

Figure 5-14.
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Ip Data from Part Design

CPS Machine Learning
Deep Search Algorithm Temperature Prediction
Model

CPS Design Database

Design Parameter Mapping and
Optimized CPS Generation

Machine Learning Aided CPS

Figure 5-14. The optimization procedure of CPS

First, the range of [,, for the given part design evaluated. For the swimming pedal case study,
the L, is varying from 0.7 mm to 5 mm. Then, these [,, values are imported into a deep search
algorithm to find the optimized corresponding channel design parameters. The flowchart of this
algorithm is provided in Figure 5-15. For each [,, value from the case study, the ranges of S and
l,, are first divided into small intervals by a given number of steps n, where the initial limits of S
and L,,, are set as [12 mm, 30 mm] and [6 mm, 30 mm]. Then, the program calculates the
corresponding part temperature T; ;y for each combination of the S and [, intervals from the
machine learning model as shown in equation (5-10):

Tajy = M(Si, Lnji 1) (5-10)
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Listof [, from the case study:

Total length =N
Initial i = 0

ith [, value in the list

Initial [S;, S,,] = [12 mm, 30 mm]; [L,,15 Liny] = [6 mm, 30 mm]

Update Su Su: Imh lmu

False - ~ . . ~.

S ;?"—-------hi S I,,,;T;G;T.-T_--.T-“T L

0 e i e n mj i

| Ty =MS;, Ly L) |

T(; j) converge
ord< d

mir

Find [S;, L,,,;] that possess

smallest | T(I,j) = Tﬂl

True
S! Su IJHI I'm,'u

- a

S1+ Sy Ll + lmu
Append [Ip, — ]to

the output list

| 0 True
i=i+1

False

Figure 5-15. A deep search strategy during the optimization

where S; is the S value at the middle of the i" S interval, Lmj is the [, value at the middle ofj" i,

interval, M represents the surrogate temperature prediction model, and T(; ;, is the predicted

resulting part surface temperature for the combination of i" S interval and j" [,,, interval. An

optimal [S, ,,] combination is found among these intervals, which provides the T; j, which is the

closest to the target temperature T,. Afterwards, the program updates the upper and lower limits

of S and L,,, to the limits of the found S and [,,, intervals as shown in equations (5-11) and (5-12):
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S = S Siw = Su (11)
bt = bty bnju = b (12)
where S;, S, and l,,;;, L, are the lower and upper limits of S and [,,, at the beginning of each
iteration,S;;, Siy, and Ly, jy, Ly jp, are the lower and upper limits of the i"" Sinterval and j*" ,,, interval
which provides T; ;) that is closest to T, respectively. Consequently, the range of the S and [, is
updated to a smaller value d shown in Figure 5-15. The program will then iterate and decompose
these new ranges by n again and search for a more precise [S, L,,,] combination. The iteration stops
once the predicted temperature converges to the value that is closest to Ty, or the new ranges have
already reached highest resolution (d < d,;;n). The time efficiency of this search strategy is
summarized and compared with nested loop searching approach method in Table 5-2, where n is
the number of steps to divide the given interval, | is the initial range of the design parameters, d,,in
represents the minimum interval allowed during the optimization, N is the number of different [,,
values. Theoretically, the deep search algorithm is more time efficient as m scales up. Based on
this new search algorithm, a database is generated, which can efficiently provide the optimized [S,
[,,] for every thickness values of the given part design. These optimized design parameters are
then mapped onto the cooling surface as shown in Figure 5-16, and the final machine learning
aided CPS design is constructed as shown in Figure 5-17. As a result, the machine learning aided
design of CPS has a larger S and [,,, values at the thinner regions of the part (i.e. regions with x €
[0 mm, 100 mm] in Figure 5-16b), which prevents the temperature variance caused by the
overcooling on those regions.

Table 5-2. Time efficiency of deep search algorithm and nested loop approach

Algorithm Worst-case running time
2
Deep search algorithm O(N =), where m = —
Nested loops approach O(Nm?)
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(a) Reference geometrical line on the swimming pedal

Reference line

| X 200 mm

(b) Design data on the reference geometrical line
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Figure 5-16. Design data and the optimized design data

(a) Perspective view (b) Top view

(c) Side view

Figure 5-17. Machine learning aided CPS
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5.5 Summary

In this chapter, different TVM methods are proposed and discussed for zigzag, spiral, porous, and
CPS cooling topologies to generate the final MLACCD channels. Variety types of optimization
strategies are applied for these topologies due to their distinct geometrical designs. For the zigzag
and spiral cooling channels, the pitch width W is first optimized to generate WOCP. Then, the
distances from each point of WOCP to the mold surface are then adjusted to obtain an optimal ,,,
value for those control points. Due to this sequential optimization strategy, the MLACCD provides
a larger width and shorter length of the zigzag and spiral cooling channels, which not only results
in a decreased temperature variance, but also effectively reduces the coolant pressure drop. For
the porous and CPS cooling channels where the pressure drop is already very low, the most
optimized combinations of the design parameters are found to reduce the temperature variance
without any optimization priorities. For each thickness value of the part, the porosity ¢ is
optimized for porous cooling channels, and a deep search strategy is applied for CPS to efficiently
found optimized [S, [,,] sets. Based on the TVM tool developed in this work, the final MLACCD
channels can be generated. In the next chapter, different case studies are discussed to validate the

effectiveness of MLACCD.
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CHAPTER 6
Validation case studies and implementation of MLACCD software

In this chapter, case studies are provided in Section 6.1 to validate the effectiveness of the proposed
MLACCD method. In addition, the implementation of the MLACCD software is provided in
Section 6.2, where the main functions, graphical user interface (GUI), and the expected program

inputs and outputs are discussed in detail.

6.1 Validation case studies

In this section different design cases including a freeform surface, a shoe sole, and a swimming
pedal as shown in Figure 6-1 are studied to validate the proposed method. The cooling simulations
are using conventional conformal cooling channels (CCCD) and machine learning aided conformal
cooling channels (MLACCD) on Moldflow Advisor® simulation software. The input parameters
for those case studies are provided in Table 6-1, where they are kept the same for all case studies

with CCCD and MLACCD cooling systems for comparison purposes.

(a) Freeform part surface

150 mm
| I |

(b) Shoe sole

. 70 mm
| M|

(c) Swimming pedal

150 mm
| I

Figure 6-1. The part designs of case studies
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Table 6-1. Parameters of injection molding cooling simulation for the case studies

Mold material H13 Tool Steel
Initial mold temperature 323.15 K
Part material Generic PP
Melt temperature 493.15 K
Coolant type Water
Coolant inlet temperature 298.15 K
Average coolant flow rate 5 lit/min

To compare the resulting temeperature variance and the enery efficiency of the MLACCD and
CCCD cooling systems, the temperature distribution and pressure drop simulation results are first
analyzed on a freeform surface and a shoe sole case study with zigzag, spiral, and porous cooling
channels. The results indicate that a significant reduction of temperature variance, and a smaller
pressure drop is achieved by the MLACCD compared to CCCD. Based on the validated design
method, an innovative machine learning aided CPS is developed for a swimming pedal case study
to further validate the generality and effectiveness of the proposed method on a more novel
conformal cooling system design. As a result, the machine learning aided CPS also exhibits great

cooling performances in terms of minimizing temeprature variance compared to convenitonal CPS.

6.1.1 Freeform part surface and shoe sole

To validate the effectiveness of MLACCD channels, two design cases containing conventional
conformal cooling channels and MLACCD channels are provided. In the first case study, a plastic
part with a freeform surface is used. Figure 6-2a shows the cooling channels generated by the
conventional conformal cooling design method, while Figure 6-2b represents the cooling channels
designed based on the MLACCD method proposed in this paper. The cooling channels generated
by different methods are imported to Autodesk Moldflow Advisor®, and the parameters used in
the simulation are summarized in Table 6-1. The results of the simulations for the first design case

are summarized in Table 6-2, and it will be carefully discussed in the following paragraphs.
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(a) Conventional conformal cooling channels

(b) MLACCD channels

500 mm

Figure 6-2. Comparison of CCCD and MLACCD channels

Table 6-2. A summary of simulation results for the first design case including: temperature
variance at critical locations, a1, and the pressure drop

Temperature variance at

critical locations (°C) or(*C) Pressure drop (kPa)

Design Conventional Conventional Conventional

Area MLACCD conf_ormal MLACCD conf_ormal MLACCD conf_ormal
cooling cooling cooling
design design design

Spiral 0.54 8.12 0.36 2.85 125 244.81

Zigzag |2 7.43 0.73 2.57 226.62 269.67

Porous | 4.2 5.04 1.93 2.22 909 1388.1

Total Not applicable 1.18 2.83 Not applicable

The part surface temperature and the temperature variation simulation results are shown in

Figure 6-3. Comparing to conventional conformal cooling channels, a significant reduction of

temperature variance along the overall cooling surface within the same injection cycle time is

achieved by MLACCD as shown in Figure 6-3c and Figure 6-3d. For MLACCD channels, the

temperature differences among the regions with different thickness values as shown in Figure 6-3a

are 0.54°C, 2°C, and 4.2°C for spiral, zigzag, and porous cooling surface, respectively. While for

conventional cooling channels, the corresponding temperature variances are 8.12°C, 7.43°C, and

5.04 °C as shown in Figure 6-3b. Thus, the temperature variations are reduced by 93%, 73%, and
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17% for spiral, zigzag, and porous design areas, respectively. There are two reasons that the
cooling result achieved by MLACCD has a smaller temperature variation. First, the conventional

conformal cooling channels are not conformal to part thickness comparing to MLACCD channels.

(a) Part Surface Temperature Distribution for (b) Part Surface Temperature Distribution for
MLACCD channels conventional conformal cooling channels
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Figure 6-3. The temperature distribution and the temperature variance of the part surface
achieved by MLACCD channels and conventional conformal cooling channels

For the cooling regions with different thickness values, unequal amount of heat needs to be
carried away through the cooling passageway to reach a uniform part surface temperature after the
cooling process. For conventional conformal cooling design, the cooling efficiency is uniform
along the part surface. This results in a higher temperature variance on the thicker regions of the
part comparing to MLACCD, since the MLACCD channels are conformal to not only the part
surface but also the thickness distribution of the part geometry. Second, the coolant temperature
differences between the inlets and outlets of the cooling system are reduced in MLACCD. As

shown in Figure 6-4, the maximum temperature rise between coolant inlet and outlet is 3.65°C,
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while the value for conventional designed conformal cooling channels is 4.02°C. This smaller

coolant temperature rise is due to the reduced total length of channels in MLACCD.

(a) Coolant temperature of MLACCD cooling channels

[C]
'30'00 25.03°C | 27.78°C | 25.00 °C 25.00 °C
- | 25.07°C mi
{
l27'50 @.72 °C !:l
1t
26.25 IR L
25.00 ——— | 2506°c | | 25.06°C |

250 mm T L

(b) Coolant temperature of conventional conformal cooling channels
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Figure 6-4. The coolant temperature distribution of the cooling channels for MLACCD channels
and conventional conformal cooling channels

To further compare the part surface temperature variation of two design cases, the surface
temperature together with the part thickness along the center line is provided in Figure 6-5. It is
found that the part surface temperature for the conventional conformal cooling system exhibits a
higher sensitivity to the thickness variation, while this effect is minimized with MLACCD

channels. To quantify this result, the standard deviations of part surface temperature o, for
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different cooling regions along the center line are calculated and summarized in Table 6-2 for each
design of cooling channels. For the total cooling surface of MLACCD channels, the o values are
reduced by 58%. Specifically, the o values for MLACCD channels are 87%, 72%, and 13%
compared with conventional conformal cooling channels. However, there are still variations
between the machine learning prediction of part surface temperature and the simulation result as
shown in Figure 6-5. Most of the variations are within 1°C temperature variation as programmed
in the optimization algorithm, while some of the part surface temperatures observed at the porous
cooling area have exceeded this limit. These variations are caused by the temperature rise of the
coolant and the unevenly distributed coolant flow rates. As shown in Figure 6-4, the temperatures
of the coolant are higher at the positions which are closer to the coolant outlets. In addition, the
flow rate is quite un-uniform for the porous conformal cooling channels as shown in Figure 6-6,
which contributes to the variations of simulation and machine learning prediction results of part

surface temperature.
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Figure 6-5. The part surface temperature distribution along the center of the part geometry for
MLACCD channels and conventional conformal cooling channels
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Figure 6-6. The coolant flow rate distribution of MLACCD channels

To compare the energy efficiency of the cooling systems from these two design cases,
simulations are performed to obtain the cooling passageway pressure drop. The result of this
simulation is again summarized in Table 6-2. The result shows that the mold with MLACCD
channels has less energy consumption during the injection molding process since it requires less
power to pump the coolant with sufficient inlet pressure. Specifically, the pressure drops of
MLACCD spiral, zigzag, and porous channels are 49%, 16%, and 35% lower compared with
conventionally designed conformal cooling systems. The cause of the smaller pressure drops of
MLACCD channels is their significantly reduced cooling channel lengths. For instance, a larger
pitch width is found for the MLACCD spiral cooling channels at the thinner part region, which

results in less dense cooling channels, and hence a reduced coolant pressure drops.

(a) Shoe sole (b) MLACCD channels for the shoe sole

100 mm

Figure 6-7. Shoe sole and its MLACCD channels
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Figure 6-8. The temperature distribution and the temperature variance of the part surface
achieved by MLACCD channels and conventional conformal cooling channels

In the second case study, a shoe sole with a curved surface as shown in Figure 6-7 is selected
to validate the generality of MLACCD proposed in this study. The cooling performance is
analyzed through Autodesk Moldflow Advisor® simulations. The input parameters of the
simulations are kept the same as the rest of the case studies and they are listed in Table 6-1. Based
on the thickness distribution of the shoe sole, the zigzag cooling channel topology is selected in
this design case. The simulation result of the part surface temperature together with the
temperature variation is provided in Figure 6-8. Similar to the first design case, the MLACCD
channels provide a significantly part surface temperature variance reduction comparing to the
conventional conformal cooling channels. Specifically, the temperature variance among the
regions with different thicknesses is decreased by 92% from 7.71°C to 0.6°C. For the part surface
temperature along the center line of the shoe sole as shown in Figure 6-9, the effect of the part

thickness variations on the resulting temperature is minimized by MLACCD channels. The o,
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Figure 6-9. The part surface temperature distribution along the center of the part geometry for
MLACCD channels and conventional conformal cooling channels
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Figure 6-10. State-of-the-art conformal cooling channel topologies

value calculated for MLACCD is 0.39°C, which is 88% lower than 3.25°C for conventional

conformal cooling design. To compare the MLACCD channels with more state-of-the-art
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conformal cooling designs, additional simulations are performed for spiral, parallel, and VVoronoi
conformal cooling channel topologies given in Figure 6-10a to Figure 6-10c with the same input
parameters as shown in Table 6-1. The resulting temperature distributions of those channel
topologies are shown in Figure 6-10d to Figure 6-10f. Comparing to 0.6 °C temperature variance
for MLACCD channels, the temperature variances of the part surface for spiral, parallel, and
Voronoi conformal cooling channels are 7.83 °C, 6.15 °C, and 15.15 °C, respectively. In addition,
a reduced coolant pressure drop is achieved by MLACCD. As shown in Figure 6-11, the pressure

drop of the coolant is decreased from 246.16 kPa to 178.82 kPa when MLACCD is applied.

[kPa] (a) Coolant pressure drop for MLACCD Channels

(b) Coolant pressure drop for conventional conformal

[1'112’251]0 o cooling channels

Figure 6-11. Coolant pressure drop for MLACCD channels and conventional conformal cooling
channels
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6.1.2 Swimming pedal

In this section, cooling simulations are performed on a swimming pedal case study to further
validate the effectiveness of the proposed method in novel CPS design using Moldflow Advisor®.
Figure 6-12 shows the machine learning aided and conventional CPS for a swimming pedal case
study. Unlike conventional CPS, the machine learning aided designed CPS exhibits a larger
cooling cell size S and cooling surface to mold surface distance at the part regions with smaller
thickness values. This design allows a properly adjusted cooling efficiency to be applied along the
part surface. The simulation input parameters are provided in Table 6-1, where these parameters
are kept the same for both designs for comparison purpose. The results of the simulations are
shown in Figure 6-13. Comparing to conventional CPS, the resulting part temperature distribution
for the machine learning aided CPS is more uniform. As shown in Figure 6-13a, the part
temperature variance at critical locations for the machine learning aided CPS is 2.07 °C, which is

76% lower than 8.48 °C for the conventional CPS.

(a) Machine learning aided CPS

AUTODESK
MOLDFLOW ADVISER

(b) Conventional CPS

AUTODESK
MOLDFLOW ADVISER

Figure 6-12. Machine learning aided CPS and conventional CPS

83



(a) Temperature distribution: machine learning aided CPS
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Figure 6-13. Resulting part temperature distribution for machine learning aided CPS and
conventional CPS

To further compare evaluate the temperature variance of the part produced by machine learning
aided and conventional CPS, the temperature variance distribution is calculated along the part
surface in Figure 6-14. Comparing to an approximately -4 °C variance at the thinner regions and
a 4 °C variance at the thicker regions for conventional CPS, a close to zero temperature variance
is found for most of the part regions for machine learning aided CPS. These results indicate that

the machine learning aided CPS is able to achieve a significantly reduced part temperature variance
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compared to conventional CPS due to the fact that it not only conforms to the part geometry but

also the part thickness distributions.

(a) Temperature variance: machine learning aided CPS
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Figure 6-14. Resulting part temperature variance for machine learning aided CPS and
conventional CPS

6.2 Implementation of MLACCD software

To implement the algorithms of MLACCD method proposed in this work, a MLACCD software
is designed with a user-friendly GUI. With this software, the user will be able to obtain meshes of
MLACCD channels based on their desired part design, conformal cooling topology, and target

temperature. The MLACCD method will generate suitable cooling channels that are able to cool
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the part and achieve a highly uniform part surface temperature that is closest to a predefined target
temperature. In this section, the main functions of the MLACCD software are introduced, whereas
example cooling surfaces are given to further illustrate the expected outputs from the software.
6.2.1 Software implementation

The MLACCD software is designed based on the python tkinter GUI library, the pre-designed

models that has the MLACCD implementation, and a data base composed of machine learning

Model 8:

MLACCD software GUI

Meshed MLACCD cocling channels

User inputs Model 7:
(Le. conformal cooling topology, cooling surface designs, etc-) Cooling channel mesh generation

Model 1:
Point cloud generation

Input cooling surfaces Point cloud of Input cooling surfaces Point cloud of Input cooling surfaces Point cloud of
Pomt cloud density setting  the cooling surfaces  Point cloud density setting  the cooling surfaces Point cloud density setting  the cooling surfaces

Model 2:
MLACCD zigzag cooling
channel generation

Model 3:
MLACCD spiral cooling
channel generation

Model 4:
MLACCD CPS cooling
channel generation

Point clend coordinates Point cloud coordinates Point cloud coordinates
Point clowd coordinates attached with Point cloud coordinates attached with Point cloud coordinates attached with
zigzag design parameters 1 i CPS design parameters

Model 5: Model 6:
Zigzag and spiral TVM CPSTVM

hist of zigzap and spiral

listof [ip. 7] TVIM design parameters

Machine learning predicted temperature database

- - __

Figure 6-15. MLACCD software model relations
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predicted temperature. The relations between the models are shown in Figure 6-15. Basically,
functions within the Model 1 to Model 7 are called by the Model 8 (GUI model) so that the
interactions between the user and the MLACCD programs can be achieved. Specifically, these
MLACCD algorithms are integrated by the GUI model with a proper calling sequence, so that the
corresponding graphical interfaces will be displayed once the user interacts with the software. To
improve the maintainability of the software, the software models are designed with high cohesion
(the functions within the same model are built to achieve a common goal), and low coupling
(unnecessary relations between models are removed).

User input:

(1) Upper part cooling surface file

(2) Lower part cooling surface file

(3) Estimation of part size in x and y directions

User input:
Choice of conformal
cooling topology

Design topology selection

Calculation process

Software output :
Mesh of MLACCD
cooling channels

User input:

(1) TVM accuracy

(2) Target temperature

(3) Save path

(4) Cooling channel starting point coordinates (spiral only)
(5) Spiral angle resolution (spiral only)

Figure 6-16. MLACCD software flowchart
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The flowchart of the software is shown in Figure 6-16, where are four steps for the software to
generate the meshed MLACCD channels for the user. The main menu GUI is shown in Figure
6-17, where the user is asked to type in the file directories for the upper and lower cooling surface
of the part, and the estimations of the part size in x and y directions. To explain, the file directories
are used to upload the cooling surfaces from specified locations for analysis, and the sizes of the

part are used in the calculation of the point cloud density, which will be discussed later.

@ Machine Learning Aided Conformal Cooling Design (MLACCD) Software — [m] X

Please upload the cooling surfaces and specify the rough dimensions:

size of the part in x axis

a properly aligned part

Upper cooling surface file directory @ |

size of the part in v axis

Lower cooling surface file directory :
Size of the part in x axis (mm) :
Size of the part in y axis (mm) :

Upload and next Quit

Figure 6-17. MLACCD software main menu

By clicking the “Upload and next” button, the software navigates to the design topology
selection menu as shown in Figure 6-18. In this menu, three conformal cooling topologies are
provided, where the topology that user prefers can be selected for TVM analysis. The porous
cooling channels are not implemented in this interface, since CPS is able to provide a better cooling
performance and a smaller pressure drop as a special type among different porous cooling systems

[13].
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§ Design Topology Selection - o X

Please select the desired conformal cooling topology:

M@\

——

Zigzag Spiral

Conformal Porous Structure (CPS) ‘

Back

Figure 6-18. Design topology selection menu

After the cooling topology is selected, the TVM setting menu is shown is acquire the inputs
including the TVM accuracy, save path, and the target temperature from the user as shown in
Figure 6-19. For spiral cooling channels TVM setting as shown in Figure 6-19a, additional user
inputs such as the spiral angle resolution N, and the cooling channel start point coordinates are
required to fully constrain the control lines of the cooling channels. The TVM accuracy together
with the size of the part reflects the density of the point cloud during the analysis as shown in
equation (6-1):

TVM accuracy x global accuracy

Ppoint cloud = SxSy (6-1)

where sy, s, are the estimate size of the part in x and y directions, pPpoint clouda 1 the point cloud

density. The global accuracy is implemented as 500 inside the current version of the software to
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achieve a simulation time ranging from roughly 5 minutes to 10 hours according to different TVM

accuracy defined by the user.

¢ Temperature Varance Mirimization (TVM) Setting - a X

© TVM contrel points
@ Spiralized TVM

..............

start point

v

&

| TVM accuracy: 13
Save path:

Target Temperature:

Cooling channel start point coordinate x (mm):

|Cooling channel start point coordinate y (mm):

Spiral angle resolution, please enter an integer between 4 to 20:

Run |

(a) Spiral TVM setting menu

§ Temperature Variance Minimization (TVM) Setting - o X

/TN

o
X

§ Temperature Variance Minimization (TVM) Setting -

|TVM accuracy: ._|_l TVM accuracy: [

Save path: Save path:
Target Temperature: Target Temperature:

Run I Run

(b) CPS TVl\Eetting menu (c) Zigzag TVM setting menu

Figure 6-19. Temperature variance minimization (TVM) setting menu
Figure 6-20 shows the window that appears once the TVM setting is completed and the
calculation process starts. The software displays a program dialog box and a process bar to provide
the information about the current objective and progress of the calculation and potential warning
messages for the user. Once the calculation is finished, the meshed MLACCD channels will be
saved to the save path, where the supported input and output format of the current version software

is STL.
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Save path: MLACCDzigzagTest.stl

TVM accuracy:

Target Temperature: 375

Machine learing optimization of design parameters ]
Program status
Start the generation of point cloud:

2619 points of cloud are added for analysis.

Start the generation of point cloud:

1883 points of cloud are added for analysis.

Start of the design parameter optimization process:

(note: information attached to the coordinate: [Wopt Imopt Ip,predited T])

Warning: the length of the two point list: length1 = 2619, length2 = 1883, does not match.

Run

Figure 6-20. MLACCD program dialog window

— Upper cooling surface

— Lower cooling surface

Figure 6-21. Example cooling surfaces

To illustrate the expected output of the software, example cooling surfaces as shown in Figure
6-21 are provided, where this test part has a highly non-uniform thickness values distributed long
its surface. Following the instructions of the software as shown in Figure 6-17 to Figure 6-20, the
mesh of example MLACCD channels can be generated, where the CPS is selected for these cooling
surfaces for illustration purposes. The MLACCD CPS cooling channels generated by the software
are shown in Figure 6-22, which has optimized cell size and pitch to part surface distance
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distributed along the cooling surface of the part. Based on the mesh of the MLACCD channels,
the user can either make the MLACCD wireframe re-built for simulation purposes or generate the

final mold design using the mesh Boolean subtraction between the mold object and the mesh of

the MLACCD channels.

I, . ,
l_, 1':'“ _ r u u l l ‘ l l l —[ ;iﬁ;;ﬁ:fg? cPs
r— EMNU ll‘(lll

p——— —— Upper cooling surface

— Lower cooling surface

( ( ,( Lower MLACCD CPS
l ’ cooling channels

Figure 6-22. MLACCD CPS cooling channels for example cooling surfaces

Exceptional operations are required to generate the MLACCD cooling channels for the parts
with special properties such as the one with large geometrical angle variations as shown in Figure
6-23, or the one containing very small geometrical features as shown in Figure 6-24. For the parts
with large geometrical angle variations as shown in Figure 6-23a, the total cooling surface can be
divided into different cooling regions. Specifically, these cooling regions are separated by the
cooling surface division lines, which are the edges of two neighboring surfaces with the angles
that are close to 90 degrees. After the total cooling surface is divided into different cooling regions
as shown in Figure 6-23b, the MLACCD cooling channels can be formed based on the cooling

channels that are separately constructed for each cooling region as shown in Figure 6-23c.
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(a) Example part with large
geometrical angle variations

(¢) MLACCD cooling channels for the part

(5 Sepamied coolingiegions with large geometrical angle variations

Figure 6-23. Generation of cooling channels for the part with large geometrical angle variations

For the parts with very small geometrical features which have the feature size d, smaller than
the minimum pitch width of the cooling channels as shown in Figure 6-24, the thickness-averaged
cooling surfaces are required to generate the MLACCD cooling channels. The reason of
calculating the thickness-averaged cooling surfaces is that the dimensions of those detailed
features are too small for the cooling channels being conformal to them. For an example part with
gear features as shown in Figure 6-24a, the distance between the two cooling surfaces would be
the average thickness of the gear features calculated in Figure 6-24b. Based on the thickness-
averaged cooling surface, the MLACCD cooling channels for the part with small features can be

generated as shown in Figure 6-24c.

Upper cooling surface

/.

Lower cooling surface

(a) Example part with
small features

(c) MLACCD cooling channels for
the part with small features

(b) Thickness-averaged cooling
surfaces for small features

Figure 6-24. Generation of cooling channels for the part with small features
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6.3 Summary

In this chapter, three case studies including a freeform part surface, a shoe sole, and a swimming
pedal are proposed to validate the effectiveness of the proposed MLACCD. The software
implementation of the validated MLACCD method is also discussed. For comparison purpose,
both the conventional conformal cooling design and the MLACCD are applied in each case study.
The results indicate that the parts cooled by MLACCD have a significantly reduced temperature
variance, which is due to the fact that the MLACCD channels are conformal not only to the part
surface but also to the part thickness distributions. In addition, for the cooling topologies such as
zigzag and spiral where the pressure drop is high for its original design, the MLACCD can provide
a cooling system with a much lower coolant pressure drop. From the results of these case studies,
it can be concluded that the MLACCD is a very successful conformal cooling design approach to
solve the temperature variance problem in the plastic injection molding industry by making the
cooling system smarter and more energy efficient. The MLACCD software are composed of six
models containing the MLACCD algorithms, a meshing model, and a GUI model that achieves
the interactions between the program and the user. Based on this software, the user can generate
the MLACCD channels with their desired part cooling surfaces, target temperature, and cooling

channel topologies.
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CHAPTER 7
Conclusions and future works

Injection molding is a common plastic manufacturing process which fabricates parts by injecting
molten materials into the mold. Although the cooling process represents the largest portion of the
injection cycle time, the cooling performance of the traditional cooling channels is limited by the
conventional drilling and casting process. However, advanced AM technology liberates the
possibilities for designing and manufacturing conformal cooling channels that could achieve a
uniform pitch to mold surface distance. Nevertheless, this traditional conformal cooling design
concept could result in a large temperature variance and a poor part quality, since it delivers a
uniformly distributed cooling efficiency even for the part regions with different thickness values
and thermal inertia. Thus, the temperature variance of the conformal cooling channels caused by
varied part thickness remains unsolved. Due to the theoretical complexity and potential inaccuracy
for predicting the part surface temperature from conformal cooling design parameters and the part
thickness values, the part surface temperature cannot be efficiently derived using the existing
conformal cooling heat transfer theories. To effectively predict the part surface temperature and
eliminate the resulting part temperature variance, this thesis presents a novel machine learning
aided design of conformal cooling channels, where in total four conformal cooling topologies are

chosen to validate the proposal design method.

The proposed a novel conformal cooling design method generates cooling channels that are
conformal not only to the part surface, but also to the part thickness distributions. The

contributions of this research are listed as following:

1. Development of a machine learning surrogate temperature prediction model.

With more than 1000 sets of the training data being imported into a two-layer ANN, a
machine learning surrogate temperature prediction model is derived. To explain, the
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design parameters are first identified from given cooling topologies following three
principles: (1) the design parameters should have the ability to effectively affect the cooling
efficiency of the cooling system; (2) it should be practical to adjust the design parameters
in the optimization process; (3) the design parameters should be essential in fully defining
the geometrical design of the cooling channels. Based on the identified design parameters,
the training data is generated and collected through the Moldflow Advisor® cooling
simulation and fed into a two-layer ANN. As a result, a surrogate temperature prediction
model is obtained. The loss function during the training process represents a steady
decrease, and the maximum model error is less than 0.5°C. The local part surface
temperature prediction time of the surrogate temperature model based on a given set of
design parameters is less than 0.5 seconds. These evaluation results indicate that a fast and
accurate prediction of part surface temperature is achieved through the supervised machine

learning.

Development of TVM algorithms for major conformal cooling topologies.

In the TVM tool, different optimization strategies are designed for zigzag, spiral, porous,
and CPS cooling channels to minimize the part surface temperature variance based on a
given CAD design of the part. The surrogate machine learning temperature prediction
model is continuously applied to predict the part temperature during the optimization
process. In addition, the design parameters of zigzag, spiral porous, and CPS cooling
channels are updated to minimize the temperature variance of the part based on the machine
learning surrogate temperature prediction model. Due to the large design variance of
different cooling topologies, different optimization strategy is proposed for each

topological design of conformal cooling channels, which is carefully discussed in Chapter
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5. As aresult, innovative MLACCD channels can be created to provide a smarter cooling
without a large temperature variance resulted on the part surface. The effectiveness of the
MLACCD is validated through three cases studies including a freeform part surface, a shoe
sole, and a swimming pedal. Overall, a 17% to 93% reduction of the temperature variance
is achieved. For the conformal cooling topologies that have high pressure drop such as the
zigzag and spiral cooling channels, a significant reduction of the pressure drop is also
achieved due to a decreased length of the cooling channels.

Implementation of MLACCD software.

Based on the TVM algorithms and the machine learning surrogate temperature prediction
model, the MLACCD software is implemented to generate the MLACCD channels from
the user defined part cooling surfaces and target temperature. This software provides a
user-friendly interface that guide the researchers and industrial users to create their own
MLACCD channels with desired conformal cooling topologies, which is discussed in

Chapter 6.

The outcome of this research is an innovative conformal cooling design method which can

effectively reduce the part temperature variance and improve the energy efficiency of the mold.

Some future works to continue improve the proposed MLACCD method is listed here. First,

the length of the cooling channels could be considered as another design parameter, and be

imported into the supervised machine learning algorithm to improve the performance of the

surrogate model. The coolant typically exhibits a temperature rise from the inlets to the outlets for

the cooling channels with a large length. This temperature rise will introduce a reduction in

temperature prediction accuracy since the current model treats the temperature of the coolant as a

constant value.
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Second, it is interesting to experimentally validate the effectiveness of the MLACCD in the
future. Although the accuracy of the Moldflow Advisor® simulation software is proofed by
previous publications [14-16, 24], it is still worthwhile to investigate the performance of the
MLACCD mold on a real injection molding machine. The following steps could be the potential
procedures for future experiments: (1) fabricate a MLACCD mold and a CCCD mold via AM with
H13 tool steel with embedded sensor based on a selected case study and channel topology (i.e.
shoe sole case study, zigzag cooling topology); (2) manufacture the parts with the printed molds
on an industrialized injection molding machine until the temperature cycle of the mold become
stable; (3) capture the thermal images of the parts fabricated by the MLACCD mold and CCCD
mold right after it is ejected, record the part temperature distributions; (4) compare the

experimental data and the numerical simulation results.

In addition, the manufacturability of this machine learning aided design of conformal cooling
is not analyzed due to the challenges of printing the potential sharp corners of cooling channels.
Thus, comparisons could be made between different machine learning aided optimization
strategies (i.e. update priority of the design parameters) in terms of their resulting
manufacturability. This manufacturability analysis can be incorporated into the cooling channel
optimization method to achieve a user-preferred balance of the manufacturability and the cooling

performance of conformal cooling channels.

Furthermore, the proposed MLACCD method can be applied to aid other types of injection
molding process such as the resin transfer molding (RTM) for composite materials, where the
shrinkage of the part may occur due to the temperature variance issue [48]. Specifically, additional
training data could be constructed based on the method proposed in Chapter 4 for the composite

parts fabricated via RTM process. These training data can be fed into the ANN so that the
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MLACCD will be able to support the temperature variance minimization of the composites parts
manufactured by RTM, which can further benefit the aerospace and automotive industries where

the composite materials have great application potentials [49, 50].

Finally, new topological designs of the conformal cooling channels may appear in the future.
Utilizing the advantages of machine learning, the proposed method can be rapidly applied to these
new topologies so that the uniformity of resulting part temperature distribution can be greatly

improved.
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