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Abstract
In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling
technologies for intelligent and cybermanufacturing. Using a network science and datamining-basedKeywordCo-occurrence
Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the
past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It
studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber
manufacturing. The KCN methodology is applied to systematically analyze the keywords collected from 84,041 papers
published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body
of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results
of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber
manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper
maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community
identify research and education directions for emerging technologies in intelligent manufacturing.

Keywords Keyword co-occurrence network · Industry 4.0 · Intelligent manufacturing · Data science · Machine learning ·
Artificial intelligence

Introduction

The manufacturing industry has always been significantly
influenced by technological revolutions—from the invention
of steam engines and electricity to the rise of robotics and
automation, the Internet of things (IoT), and cyber-physical
systems. Themajor drivers for integrating these technologies
into manufacturing range from traditional performance cri-
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teria such as efficiency, throughput, and cost to emerging
criteria like adaptability, resilience, autonomy, interoper-
ability, and cyber-security. With the growing application of
intelligent and digital technologies, factories of the future
are shaping into networks of cyber-physical machines with
embedded sensing, computing, and communication capabil-
ities, enabling adaptive and intelligent automation (Kusiak,
2019; Moghaddam & Nof, 2017). The scientific and tech-
nological advancements (Moghaddam et al., 2018) have
enabled emerging paradigms, such as smart manufacturing
(Kusiak, 2018; Lu et al., 2016), cyber-physical production
systems (Monostori et al., 2016), Industry 4.0 (Oztemel
& Gursev, 2020), and cloud-enabled manufacturing (Chen,
2017). The main objective of this paper is to identified the
knowledge components, knowledge structure, and research
trends using KCN approach (Duvvuru & Kamarthi, 2012;
Radhakrishnan et al., 2017), which would allow us to explore
and analyze a vast amount of literature covering 84,041
papers published in top-tier manufacturing journals between
2000 and 2020. It is not practically feasible to review this
many papers through a traditional systematic review process.
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Motivation: technology trends in manufacturing

The fourth industrial revolution (or Industry 4.0) is driven by
the emergence of new technologies such as cyber-physical
systems and Internet of Things (IoT) that focus heavily on
interconnectivity, automation, machine learning, and real-
time analytics. As a result, several paradigms have emerged
in recent years to characterize the architectures and require-
ments for next-generation manufacturing systems:

• Cyber-physical manufacturing lies at the intersection of
IoT, cyber-physical systems, and manufacturing science
and technologies (Fig. 1), and is generally characterized
as “physical and engineered systems whose operations are
monitored, controlled, coordinated, and integrated by a
computing and communicating core” (Rajkumar et al.,
2010). This paradigm advocates capabilities for collecting
data accurately and efficiently, analyzing large amounts of
data in real-time,making decisions based on real-time data
in an instant and distributed manner, and supporting self-
configuration and self-adaption (Majstorović et al., 2018).

• Industry 4.0 characterizes a new era of industrial revo-
lutions with emphasis on interconnectivity, automation,
machine learning, and real-time data analytics (Rec-
ommendations for implementing the strategic initiative
INDUSTRIE 4.0 April, Securing the future of German
manufacturing industry Final report of the Industrie 4.0
Working Group 2013), with the vision of enabling the
notion of lot-size of one by addressing current challenges
of shortened product lifecycles, growing demand for per-
sonalized products, and heightened global competition
(Xu, 2012). It is characterized by horizontal integration
through supply and value chains, vertical integration of the
automation hierarchy and industrial control systems, and
end-to-end integration of product andmanufacturing engi-
neering throughout their entire value stream (Hofmann &
Rüsch, 2017; Järvenpää et al., 2019).

• Smart manufacturing. This paradigm advocates use
of information and communication technologies and
advanced data analytics to deal with the uncertain and
dynamic behaviors of demand, factory conditions, and
supply networks (Thoben et al., 2017). NIST defines
smart manufacturing as “fully-integrated, collaborative
manufacturing systems that respond in real-time to meet
changing demands and conditions in the factory, in the
supply network, and in customer needs” (Lu et al., 2016).

• Cloud manufacturing is built upon the technological
advances in hardware, virtualization technology, dis-
tributed computing, and service delivery over the Internet
(Ooi et al., 2018). it is “a new networked manufactur-
ing paradigm that organizes manufacturing resources over
networks (manufacturing clouds) according to consumers’
needs and demand to provide a variety of on-demandman-

Fig. 1 The convergence of cyber and physical technologies in future
manufacturing (adapted from (Monostori et al., 2016))

ufacturing services via networks (e.g., the Internet) and
cloud manufacturing service platforms” (Xu., 2012).

Despite the differences between the objectives of the intel-
ligent manufacturing facets mentioned above, their common
vernacular is to enable (Moghaddam et al., 2018): (1) inte-
grated and collaborative manufacturing systems and value
networks connected via IoT, (2) digitalization and integra-
tion of manufacturing resources on the cloud as secure
and on-demand services, and (3) connected, intelligent, and
autonomous cyber-physical machines enabled by cloud/edge
computing and machine learning technologies (Tian et al.,
2002). While different segments or domains of the man-
ufacturing industry may have different needs, they are all
expected to leverage connectedness and access to real-time
insights across systems, processes, partners, products, and
people. The goal is to enable mass-customization of prod-
ucts and services; adopt automatic and flexible production
lines (Escobar et al., 2021); track parts and products in real-
time; facilitate communication among parts, products, and
machines; enhance human-machine collaboration(Nguyen
Ngoc et al., 2021); achieve IoT-enabled production opti-
mization in smart factories (Yao et al., 2019); create new
types of services and business models of interaction in value
chains (Alcácer & Cruz-Machado, 2019); achieve a higher
level of intelligent automation; and ultimately increase qual-
ity, productivity, flexibility, lower costs, and higher efficiency
(Barari et al., 2021).

Figure 1 illustrates the convergence of various cyber-
physical manufacturing technologies that collectively aim at
materializing the vision of future manufacturing described
above. This convergence, in turn, is leading to the develop-
ment of new knowledge and methods at the intersection of
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the physical world technologies (e.g., robotics, automation,
product-service systems, cloudmanufacturing) and the cyber
world technologies (e.g., AI, machine learning, multi-agent
systems, cloud computing). As the emerging cyber-physical
manufacturing technologies grow more complex and more
knowledge-intensive, the workforce is expected to be adept
at handling these technologies. For example, big data analyt-
ics and management (e.g., data mining, data classification,
data storage) are becoming a critical challenge for manu-
facturers (Choudhary et al., 2009) (Yao et al., 2019). New
cloud architectures and services are needed for analyzingdata
under certain security and privacy protocols(Alam&Saddik,
2017). New machine learning algorithms and cloud services
are required for optimizingmanufacturing processes and sys-
tems (Usuga Cadavid et al., 2020). The rise of deep learning
poses new opportunities and challenges for manufacturers to
decode the increasingly complex manufacturing processes
and large-scale production systems to be competitive in
their rapidly changing industry (Miškuf & Zolotová, 2016;
Oztemel & Gursev, 2020). In this context, both researchers
and practitioners need to identify emerging research trends,
technologies, and workforce knowledge requirements. This
is the focal issue investigated in this paper.

Objectives

This paper is motivated by an urgent need for observing the
research trends in rapidly changing interelligent manufac-
turing landscape(Radhakrishnan et al., 2017). We conducted
a systematic review of 84,041 recent articles published in
leading journals ranked Q1 by the Scimago Journal & Coun-
try Rank (SJR). A Keyword Co-occurrence Network (KCN)
methodology (Duvvuru & Kamarthi, 2012; Radhakrishnan
et al., 2017) to identify knowledge components, knowl-
edge structure, and research trends associated with emerging
cyber-physicalmanufacturing technology areas including the
items listed in Fig. 1 and beyond. A KCN is created by treat-
ing the keywords of the articles as individual nodes and each
co-occurrence of a pair of keywords is modeled as a link
between their respective nodes. The co-occurrence frequency
of each pair of keywords is represented as the weight of the
link connecting the pair. The proposed KCNmethodology is
implemented on the keywords listed in the 84,041 articles to
obtain key topological parameters and perform a statistical
and visual analysis of the network to reveal potential pat-
terns and evolution of keywords, providing insight into the
emerging knowledge trends in the manufacturing sector.

The remainder of this article is organized as follows.
Background Section discusses the background and related
work on the identification of emerging knowledge trends and
skills requirements in the manufacturing industry. The KCN
Methodology Section introduces the KCNmethodology and
elaborates on the designof experiments.Results andAnalyses

Section presents the results and analyses of the experiments.
Discussion Section discusses the implications of the results
for identifying key knowledge trends and workforce skills
requirements in future manufacturing systems. Conclusions
Section concludes the article and summarizes the findings
and directions for future research.

Background

This section presents a review of existing studies that inves-
tigate various aspects of technologies in cyber-physical
manufacturing in a systematic fashion. The current literature
reviews are grouped into two categories: (1) concepts and
technology trends, and (2) applications and future trends.

Concepts and Technology Trends The articles in this cat-
egory investigate the key technologies for cyber-physical
manufacturing from diverse perspectives. DeFelice and
Petrillo (2018) conduct a literature review on smart manu-
facturing using a multicriteria decision model. They identify
cyber-physical systems, IoT, and big data as the most fre-
quently used terms in smart manufacturing based on a large
number of publications in years 2014–2016. Alcacer and
Cruz-Machado (2019) present a literature review of new
technologies for manufacturing systems and conclude that
Industry 4.0 has accelerated the progress of manufactur-
ing digitalization. Henzel and Herzwurm (2018) identify
cloud manufacturing as an emerging technology by deliv-
ering a state-of-the-art survey of current issues on cloud
manufacturing. Franco and Ganga (2020) explore additive
manufacturing as an emerging technology for manufactur-
ing, describe the framework for additive manufacturing, and
explore the effects of adopting additive manufacturing. Big
data analytics is essential for generating the digital twins
of manufacturing equipment, and subsequently, enabling
advanced predictive capacity to identify events that can affect
production before they occur (Schuh et al., 2017). Shrouf and
Ordiers (Shrouf et al., 2014) define the main characteristics
of smart factorieswith the focus on sustainability. They antic-
ipate IoT to play a major role in manufacturing.

Cyber-physical manufacturing requires advanced analyt-
ical capabilities for manufacturers to turn data into insights
and decisions in real-time to achieve the required level of
adaptability for efficient and personalized production, where
big data is targeted as an essential technology (Mourtzis et al.,
2016).

Applications and Future Trends Several researchers have
explored applications of key technologies and potentials
of characterizing next-generation cyber-physical manufac-
turing systems. Cui and Cara (2020) present a systematic
literature review on big data analytics in manufacturing and
identify six key drivers: system integration, data, predic-
tion, sustainability, resource sharing, and hardware. They
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identify five potential directions for big data research in
manufacturing: modeling and simulation, connectivity and
interoperability, standardized big data platform design, real-
time big data analytics, and cybersecurity. Baroroh and
Wang (2020) conduct a systematic review of recent appli-
cations of augmented reality in smart manufacturing from
the human-machine interaction perspective and discuss how
augmented reality works as an interface between human and
artificial intelligence to assist manual operations in manu-
facturing. Xu and He (2014) conduct a survey of current
research of the Internet of things, which refers to a system
of integrated devices (e.g., machines, equipment, sensors,
terminals) equipped with sensing, identification, processing,
communication, and networking capabilities. IoT is believed
to be developed in inventory and production management
and transportation. Vaidya and Ambad (2018) present an
overview of Industry 4.0 and the state of current manu-
facturing systems. They impose the issues and challenges
of cyber-physical manufacturing including cybersecurity,
modularized and flexible physical artifacts, manufacturing
systems ensuring high quality and data integrity. Com-
prehensive systematic reviews have also been conducted
to identify opportunities for research in artificial intelli-
gence applications in manufacturing (Aggour et al., 2019;
Kutschenreiter-Praszkiewicz, 2008; Nti et al., 2021).

This study addresses the pressing need for an exhaustive
review of emerging manufacturing technologies and their
impact on the manufacturing workforce in terms of the new
domain knowledge and skills required. We speculate that the
scientific research publications are representative of tech-
nology and skills requirements trends in the broader area of
manufacturing science and engineering. Thus, this paper con-
ducts a comprehensive analysis of keywords of Q1 articles in
JSR’s category of Manufacturing and Industrial Engineering
to reach this end.

The KCNmethodology

This section provides a detailed description of the Keywork
Co-occurrence Network (KCN) methodology, including the
underlying rationale for conducting this type of analysis, data
collection andprocessing procedure, and network parameters
for extracting insights on emerging technologies and skills
requirements.

Rationale

Two main network-based methods have been widely used
for the review of scientific and technical publications (Li
et al., 2016). The first is the citation network, which identifies
important academic articles according to citation frequency,
and focuses on studying the structure of scientific communi-

cation by analyzing links between citations in the literature
during a short period (Onel et al., 2011) (Shibata et al., 2011).
This method is not suitable for the purpose of current work,
because it focuses on the relative impact of published sci-
entific work rather than on the emerging technology trends.
The other frequently used method is keyword network anal-
ysis (KCN) (Su & Lee, 2010), which explores the links
between keywords in the literature to reveal the knowledge
components and structure of a scientific field. Keywords can
provide a concise overview of the important content and
key points of a body of articles as an essential textual ele-
ment (Li et al., 2016). The KCN methodology captures the
connections between different concepts at a micro-level and
provides insights about respective roles and importance. Fur-
ther, the KCN methodology can deliver network attributes
on articles published over a long period and hence reveal
the evolution of the topics over time (Zhong et al., 2014).
Therefore, this paper applies the concept of KCN to analyze
the linkage of concepts and investigate the research topics,
their relationships, and development trends in manufactur-
ing science and engineering. The rationale behind the KCN
methodology is that the keywords of top-tier, peer-reviewed
journal articles represent themost important areas of research
and development in their respective area of study and that
their co-occurrence represents their relationships and relative
importance. This technique can analyze the content of a large
number of papers by quantifying the associations between
keywords, reflecting on the respective role and evolution of
keywords, and identify the overall structure of the research
field (Lozano et al., 2019).

Data collection and processing procedure

To build the KCN for manufacturing science and engineer-
ing, we collected the keywords of top-tier journals published
in the period betwen2000 and 2019 in 43 journals that are
ranked as SJR Q1 (Table 1). All papers published in each
journal were accessed through the Web of Science database
and the author-specified keywords from all these articles
were collected for further processing. A total of 84,041 arti-
cles were identified, which collectively comprise a total of
258,882 standard keywords defined by their authors (Table
2). The number of publications increased from1638 papers in
2,000 to 7,887 papers in 2019. These keywords were recon-
ciled to eliminate redundancy, by unifying singular and plural
variants (e.g., “algorithms” and “algorithm”), hyphened and
non-hyphenated phrases (e.g., “multi agent system” and
“multi-agent system”), synonyms (e.g., “statistical methods”
and “statistical modeling”), and acronym variants (e.g., “arti-
ficial neural networks (ANN)”, “artificial neural networks”,
and “ANN”). Next, keywords relevant to the cyber-world
and physical-world manufacturing science, engineering, and
technology were selected by three authors knowledgeable
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Fig. 2 The procedure of data
collection, processing and
cleaning

about these areas. The selection of keywords by three authors
was compiled into the final keyword list with 178,111 key-
words in total. Through this process, the keywords that
had occurred with high frequency but were irrelevant to
cyber-physical manufacturing technologies were eliminated.
Co-occurrence of all pairs of keywords was then calculated
by counting the co-appearance ofword-pairs in all the papers.
The procedure of data collection, processing and cleaning are
described in Fig. 2.

The papers published between 2000 and 2019 were par-
titioned into four 5-year windows: 2000–2004, 2005–2009,
2010–2014, and 2015–2019. A separate KCN is constructed
for each window to explore the temporal evolution of the
trends in manufacturing science and engineering research.
The attributes of the KCNs are then imported into the Net-
work Workbench software (NWB Team, 2006) to retrieve
various network parameters to explore co-occurrence pat-
terns among keywords, and then generate insights on the
potential knowledge structure of the emerging trends inman-
ufacturing.

Network analysis parameters

This section describes the network analysis parameters (Rad-
hakrishnan et al., 2017) used in the KCN methodology for
analyzing the network connection weights and the relation-
ship between different nodes. The first parameter is degree,
which is the total number of links that connect a given node

to other nodes in a network. The degree of node i represents
its relative importance in the network, as follows:

ki �
∑

j∈N

ei j , (1)

where N denotes the set of all keywords in the keyword
network, and ei j ∈ {0, 1} denotes the existence of an edge
between nodes i and j (i, j ∈ N ). In the KCNmethodology,
the higher the degree of a node, the greater the centrality of
the node in the keyword network. Centrality of a keyword is
an indicator of its importance.

The keyword network is a weighted network. The weight
wi j of an edge ei j represents the count of nodes i and j co-
occurring. The strength of node i is the sum of the weights of
all edges connected to node i . It is, like centrality, an indicator
of the relative importance and connectivity of a keyword in
the network. The strength of node i is calculated as follow:

si �
∑

j∈N

ei jwi j . (2)

Another key parameter for KCN analysis is the aver-
age weight of end point degrees, which measures the co-
occurrence of the edges between pairs of nodes as the degrees
of the nodes change. It is defined as follows:

wi j ∼ (
ki k j

)
, (3)

where ki and k j are degrees of nodes i and j , respectively, and
〈·〉 denotes average value. In the context of this research, the
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Table 1 List of the selected43 journals positioned top in theSJR ranking

Journal of operations
management

CAD Computer Aided Design

International Journal of
Machine Tools &
Manufacture

Food and Bioprocess
Technology

Production and Operations
Management

Journal of Manufacturing
Processes

Additive Manufacturing Industrial Management and
Data Systems

International Journal of
Production Economics

CIRP Journal of Manufacturing
Science & Technology

CIRP Annals—Manufacturing
Technology

Materials and Manufacturing
Processes

Virtual and Physical
Prototyping

IEEE Transactions on Industry
Applications

Journal of Quality Technology Rapid Prototyping Journal

Reliability Engineering and
System Safety

International Journal of
Bioprinting

Manufacturing Letters International Journal of
Advanced Mfg. Technology

Journal of Materials Processing
Technology

Journal of Process Control

Advanced Materials
Technologies

Journal of Manufacturing
Technology Management

Journal of Manufacturing
Systems

Sustainable Production and
Consumption

International Journal of
Production Research

Machining Science and
Technology

Journal of Industrial
Information Integration

3D Printing and Additive
Manufacturing

Sustainable Materials and
Technologies

Advances in Production
Engineering and Management

Production Planning and
Control

Journal of Computing and
Information Science in Eng

Robotics and
Computer-Integrated
Manufacturing

International Journal of
Precision Engineering and
Mfg

Journal of Intelligent
Manufacturing

International Journal of
Industrial Eng. Computations

IISE Transactions Advances in Natural Sciences

Flexible Services and
Manufacturing Journal

Journal of Intelligent and
Robotic Systems

Operations Management
Research

Advances in Manufacturing

average weight of end point degrees answers the following
question: Are the connections between high-degree keywords
stronger than of the connections between low-degree key-
words? This parameter can be approximated by a power-law:

wi j ∼ (
ki k j

)θ
, (4)

Table 2 The total number of papers and keywords each year from 2000
to 2019

Year # of paper # of
keywords

Year # of paper # of
keywords

2019 7887 23,704 2009 4028 12,592

2018 7552 22,781 2008 3781 11,549

2017 7082 21,687 2007 3436 10,734

2016 5859 18,288 2006 3124 9349

2015 5793 18,048 2005 2537 7877

2014 5219 16,512 2004 2228 6753

2013 5203 16,116 2003 2469 7377

2012 4346 13,672 2002 2379 7138

2011 3742 11,936 2001 2274 6952

2010 3464 10,803 2000 1638 5014

where the exponent θ is a positive constant. Positive correla-
tion confirms that highly connected keywords aremore likely
to have stronger connections.

The next network parameter examined in this study is the
average weighted nearest neighbor’s degree of node i , for
all i ∈ N . It measures the tendency of a node to link with
its neighbors with similar degree characteristics: high degree
nodes connecting with high degree neighbors and low degree
nodes connecting with low degree neighbors. This parameter
can be calculated as follows:

kn
i � 1

si

∑

j∈N

ei jwi j k j . (5)

If this value increases with the keyword degrees, it
represents the following assortative behavior: high-degree
keywords are associated with other high-degree keywords
in the papers. Inversely, the disassortative behavior indicates
that high-degree keywords co-occur with low-degree key-
words.

The final parameter is the weighted clustering coefficient,
which measures the local cohesiveness of node i among its
neighbors. It represents the importance of the structure clus-
tered around a certain keyword on the basis of the interaction
intensity found on the local triplets (Barrat et al., 2004). This
parameter is formulated as follows:

ci � 1

si (ki − 1)

∑

j,h∈N

(
wi j + wih

)

2
ei j eihe jh . (6)

A greater ci indicates that keyword i has better connectiv-
ity and cohesiveness to other keywords.
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Table 3 Topological
characteristics of KCN for the
manufacturing science and
engineering literature

Characteristics 2000–2004 2005–2009 2010–2014 2015–2019

Number of nodes 112 134 157 189

Number of edges 129 221 274 573

Average degree 2.3 3.3 3.49 6.06

Maximum degree 20 32 34 48

Average weight 1.55 1.95 1.91 1.91

Maximum weight 24 51 44 29

Results and analyses

The main topological characteristics of the keyword net-
works for the four-time windows are presented in Table 3.
Over the two decades, the number of keywords increased
approximately by 68%, which shows that the knowledge
structure in the manufacturing science and engineering
literature has experienced a significant expansion by the
introduction of new concepts and topics. Over the same
period, the number of edges connecting the nodes has dramat-
ically grown by 340%, which implies the significant increase
in the co-occurrence of keywords in recent papers relative
to the older ones. The growth in the number of edges also
reflects increasing synergy between different topics, meth-
ods, and concepts. The number of edges in the 2015–2019
time window is two times the number of edges in 2005–2009
or 2010–2014, and almost five times the number of edges in
2000–2004. These observations again indicate rapid growth
in both the number of technical concepts and topics as well
as their convergence, as they co-occur more frequently in the
publications. These observations are also evident from the
average degree results (in Table 3), which show the emer-
gence of diverse research topics described by new keywords
or old ones that were not extensively discussed in the earlier
literature. The average and maximum weight indicate that
low-degree nodes in the first decade may have been candi-
dates for further investigation in the second decade and that
researchers are working on a combination of emerging and
relatively more established concepts and topics.

Table 4 presents the top twenty keywords with the highest
strength (si ) in each timewindow. It informswhich keywords
remained dominant or became obsolete over the years. It also
points out which keywords have been gaining importance in
recent years. The strength of most keywords took a big jump
from 2000 to 2004 to 2005–2009 but remained relatively sta-
ble until 2010–2015. In 2015–2019, the keyword strengths
became three times greater than the strengths in 2000–2004.
The close examination of emerging keywords indicates that
cyber-physical manufacturing has gained a lot of traction
with researchers in 2015–2019. As can be seen, genetic algo-
rithm, optimization, heuristics, fault diagnosis, data mining
are the five most frequently used keywords across all time
windows in two decades. These keywords describe methods

in cyber-physicalmanufacturing. However, except for the top
five keywords, the others shift a lot in their rankings. To better
observe the evolution of keywords for the past twenty years,
two slope charts are presented in Fig. 3.

Figure 3. shows shifts in the strenght-based rankingof key-
words from 2000–2004 to 2015–2019, where a node strength
reflects the frequency of its occurrence in the literature. The
left side slope-chart with orange line captures the emerging
topics, which were ranked low in 2000–2004 but rose to top
ranks in 2015–2019, as shown on the right side of the figure
with blue line. Threemain categories can be defined based on
the trends of all keywords in recent two decades, as follows:

• Fundamental topics: It is evident that genetic algorithm,
optimization, heuristics, fault diagnosis, and data mining
remain in the top five positions throughout the 2000–2019
period, as shown in Fig. 3. These rankings indicate the
fundamental role these topics have played in developing
intelligent manufacturing research. Thus, these keywords
are referred to as fundamental topics in intelligent manu-
facturing, which still remain active and important areas of
research in manufacture.

• Emerging topics: It can be observed from the left side
slope-chart that the emerging topics are mostly related to
two classes: cyber technologies and data science-oriented
topics. The cyber technologies include Industry 4.0, smart
manufacturing, cloud manufacturing, Internet of things,
augmented reality and digital manufacturing. The data
science-oriented topics include machine learning, multi-
objective optimization, Bayesian networks, big data, and
cloud computing. The emerging keywords project the
prospects of intelligent manufacturing research and possi-
bly the future needs of the industry fromboth technological
and workforce perspectives. New technologies and meth-
ods, especially those that are data science-oriented, have
become the focus of recent research inmanufacturing. The
emerging topics also underscore important technologies
(e.g., prognostics and health management), which are not
necessarily”hot topics” like deep learning and augmented
reality.

• Maturing topics: The last category of research topics
includes keywords that used to be hot topics last decad
but their rankings have significantly declined since then.
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Table 4 Top 20 keywords with the highest strength (si)

2000–2004 2005–2009 2010–2014 2015–2019

Keyword si Keyword si Keyword si Keyword si

Genetic algorithm 227 Genetic algorithm 494 Genetic algorithm 499 Optimization 592

Optimization 184 Optimization 351 Optimization 451 Genetic algorithm 388

Heuristics 79 Heuristics 152 Heuristics 178 Fault diagnosis 240

Fault diagnosis 76 Neural networks 133 Neural networks 129 Data mining 168

Data mining 59 Statistical method 105 Statistical methods 120 Heuristics 157

Neural networks 54 ANOVA 103 Fault diagnosis 119 Multi-objective
optimization

142

Statistical methods 45 Fault diagnosis 101 Model predictive control 98 Neural networks 138

Computer-aided
manufacture

44 Data mining 100 Data mining 96 ANOVA 119

Expert system 40 Image processing 54 ANOVA 95 Industry 4.0 118

Multi-agent systems 35 Ant colony optimization 53 Multi-objective
optimization

92 Statistical methods 114

ANOVA 30 Multi-agent system 53 Dynamic programming 75 Big data 113

Model predictive control 30 Model predictive control 51 Multi-agent systems 67 Model predictive control 112

Mobile robot 28 Multi-objective
optimization

47 Ant colony optimization 62 Cloud manufacturing 102

Image processing 28 Prediction 42 Principal component
analysis

58 Machine learning 99

Condition monitoring 22 Computer-aided
manufacturing

42 Image processing 54 Image processing 97

Linear programming 21 Mobile robot 41 Prediction 50 Smart manufacturing 85

Case-based reasoning 21 Dynamic programming 38 Mobile robot 46 Condition monitoring 84

Prediction 20 Principal component
analysis

31 Support vector machine 43 Prediction 83

Algorithm 19 Condition monitoring 28 Condition-based
maintenance

40 Internet of things 81

Keywords like expert systems, case-based reasoning, and
automated manufacturing systems are examples of topics
that have significantly matured over the past two decades
and are currently at the backbone of some of the emerging
topics in manufacturing. It is observed that most keywords
in this category are relatively established manufacturing
areas such as computer-aided manufacturing, multi-agent
systems, tool wear monitoring, distributed manufacturing,
and multisensor fusion. It is worth noting that the descend-
ing rankings of these topics only represent their maturity
and not lower their importance in practice compared to the
new top-ranked technologies in recent years.

Figure 4 shows the probability distribution functions of
weights of KCNs for four time periods, where both x and y
axes are on a logarithmic scale. It is observed all four peri-
ods have the decaying pattern for weight distribution, which
indicates that edges with large weights occur with low fre-
quency, and in contrast edges with small weights occur with
high frequency. In other words, the number of edges with

small weights is significantly larger than the number of edges
with large weights. This pattern implies that manufacturing
literatures has only a few keywords that co-occur with many
other keywords and, in contrast, a large number of keywords
that co-occur with only a small set of other keywords.

Figure 5 depicts the average weight of end point degrees.
This parameter reflects the correlations between the degrees
of end nodes of links. The average edge weights show an
exponential increase with the end point degrees. This behav-
ior highlights the increase in the weights of connected hubs.
In other words, the keyword hubs (i.e., popular keywords)
occur in multiple articles dealing with different topics. The
average weight of end point degrees in the keyword network
for each period increases sharply for values of ki k j > 102,
which indicates that the tendency of co-occurrence increases
sharply for high degree keywords. Except for the 2015–2019
period (red plot in Fig. 5), most of the weights of 2000–2004,
2005–2009, and 2010–2014 were found to be close to one,
which indicates the presence of a diverse set of keywords that
are decentralized, whereas only a few being the hubs.
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Fig. 3 Emerging keywords (left-side panel) and declining keywords (right-side panel) during 2000–2004 and 2015–2019. The number next to the
keyword indicate the ranking based on the keyword strength

Figure 6 indicates the behavior of the average weighted
nearest-neighbor degrees. As observed, 〈wi j 〉 almost
remained constant for two decades. The slight variation in

the trends of the four-time windows shows an uncorrelated
structure, which implies that there are correlations among
different-degree keywords and that high-degree keywords
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Fig. 4 Weight distribution of KCNs for the manufacturing science and
engineering literature

Fig. 5 Weighted end point degree of KCN keywords for the manufac-
turing science and engineering literature

tend to link up with not only other high-degree keywords
but also with low-degree keywords.

Figure 7 shows the plot of weighted clustering coeffi-
cient versus degree. The continuously decaying coefficients
indicate that keywords with high degree present a much
lower clustered neighborhood than low-degree keywords.
Keywordswith low degree co-occurwithinwell-defined key-
word groups (i.e., high clustering). In contrast, keywords
with high degrees co-occur with different groups and com-
munities, implying that keywords with larger degrees are
connected to several keywords that do not form cohesive
groups within themselves. Moreover, it is observed that the
trend line in 2015–2019 is in general above the trend lines for
other time windows. It implies that high-degree keywords in
recent papers tend to connect with relatively a large number
of keywords within interconnected groups.

In summary, the KCN perameters combining the topo-
logical information with the weight distribution of networks

Fig. 6 Averageweighted nearest-neighbor degree ofKCNkeywords for
the manufacturing science and engineering literature

Fig. 7 Weighted clustering coefficient of KCN keywords for the man-
ufacturing science and engineering literature

show an overall behavior similar to that of a structural organi-
zation of networks. Exponential growth in average weighted
end point degree indicates that keyword pairs with higher
degrees co-occur more frequently. Flat patterns in the aver-
age weighted nearest neighbor degree show that there is no
clear tendency of low degree nodes attaching to low degree
nodes. That is, there is a pattern of less frequently used
keywords co-occurring with other less frequently used key-
words. Lastly, the average weighted clustering coefficients
explain the existence of edges between high degree anfd low
degree keywords.

Discussion

From 2000 to 2019, the number of articles published in the
field of manufacturing has increased fivefold, but the num-
ber of keywords has increased by only 68%. Though the
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manufacturing literature has grown considerably in volume,
it has not seen proportional growth in the variety of key-
words, indicating that new topics have been introduced at a
much slower pace than the growth of the body of manufac-
turing knowledge. In other words, some keywords remained
active over the two-decade period. The new keywords in the
literature emerged from research articles on intelligent and
cyber manufacturing, which experienced a rapid expansion,
and the research in this field experience a period of innova-
tion.While the keywords grewby two-thirds, the connections
between the keywords have tripled, implying that manufac-
turing research ismoving toward the convergence of different
topics.

Although the size of KCNs increased steadily over four
periods, the average weight changed only slightly. This
pattern indicates that the topology of the manufacturing-
keyword co-occurrencenetwork is a smallworld.The skewed
weight distribution and clustering coefficients illustrate that
most keywords have a low degree, and most links have a
low weight. In other words, the networks have a small num-
ber of keywords with a high degree and only a few links
with large weights. This node degree and link weight pattern
might be due to the tendency of researchers to pick often-
used keywords in their papers relative to less frequently used
keywords. This could also be due to the possibility that only
a small select set of keywords tend to be widely discussed in
literature.

In the manufacturing literature, we observe only a few
keywords (e.g., genetic algorithm, optimization, neural net-
works, industry 4.0) co-occur with many other keywords, but
a large number of keywords co-occur with only a small set of
other keywords. High-degree keywords (e.g., genetic algo-
rithm, optimization, fault diagnosis, heuristics) tend to link
up with not only other high-degree keywords but also with
low-degree keywords. The less frequently (e.g., mobile robot,
predictive maintenance, k-means clustering) occurring key-
words tend to appear as part of only a few keyword groups,
but most frequently occurring words (e.g., genetic algorithm,
optimization, heuristics, fault diagnosis, data mining) co-
occur with keywords positioned in a wide variety of keyword
groups. This observation implies that the most frequently
used manufacturing keywords are associated with a diverse
set of research tracks in manufacturing. That is to say, the
keyword hubs (popular keywords such as genetic algorithm,
optimization) occur in articles covering diverse topics. Five
keywords—genetic algorithm, optimization, heuristics, fault
diagnosis, data mining—are the most frequently used key-
words across all four time windows in two decades. Machine
learning, Industry 4.0, big data, cloud manufacturing, and
deep learning are the emerging keywords indicating the dawn
of cyber manufacturing. These observations inform future
manufacturing research, technology trends. This could also

inform knowledge and skills needs of intelligent manufactur-
ing workforce, which has been experiencing high demand.

Influenced by Industry 4.0, cyber-physical manufacturing
technologies grew more complex and more knowledge-
intensive. Cyber technologies, over the last five years, have
expanded and enriched the body of the literature, which
was principally composed by the physical technologies in
the early twentieth century. Methods with growing popu-
larity can be grouped into three categories: data science
(machine learning, deep learning, and big data), cloud-based
technologies (cloud computing and internet of things), and
cyber-physical technologies (augmented reality and digital
twins). As the research in physical manufacturing dwindled,
the research focus shifted to the emerging cyber technologies
that enhance the performance and efficiency of manufac-
turing machines, equipment, and systems; and this trend is
expected to continue in the future.

From the topological characteristics of KCNs, it is
observed that the connectivity amongkeywords has enhanced
with time, from 2000 to 2019. The network hubs represent
versatile and perennial technologies such as genetic algo-
rithm, optimization, fault diagnosis, and neural networks.
While some keywords have more cohesiveness in the first
decade, that is not the case in the second decade duringwhich
keywords tend to connect with a variety of emerging topics.
This indicates that researchers, in the last decade, were try-
ing to explore the synergies among various topics instead of
focusing on only a run-of-the-mill topic. The convergence
of different areas has become a trend with time. Overall,
the community of cyber-physical manufacturing has prolif-
erated, and research is moving toward greater convergence.

One of the important goals of this paper is to identify the
specific domain knowledge associated with emerging intelli-
gent and cyber manufacturing technologies. The nine pillars
of Industry 4.0 (Vaidya et al., 2018) are utilized as a reference
to categorize and organize the keywords, as shown in Fig. 8.
The top 50 most frequently used keywords (ranked based
on their strength) in 2015–2019 on the left side are subjec-
tivelymapped to one or multiple pillars of Industry 4.0 on the
right side. Based on the authors’ subjective evaluations, “Au-
tonomous Robots”, “Internet of Things”, and “Big data” are
the top three pillars with the highest number of connections
with research keywords, which indicates their popularity in
the research area and their role in informing the technology
trends in intelligent manufacturing. The mapping identifies
the specific domain knowledge associated with emerging
intelligent and cyber manufacturing technologies and can
inform the design and development of new curricula for the
future manufacturing workforce. The number of links to the
nine Industry 4.0 pillars indicate the relevance of the top-
ics (high-requency keywords) in their respective areas. The
keywords linked to the pillars suggest possible topics to be
covered in those courses.
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Fig. 8 Subjective mapping between the top 50 keywords ranked based on their strength (left) and the nine pillars of Industry 4.0 (right). The number
next to the keyword indicate the number of keywords from the other side are connected to it
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One of our recent studies analyzes the data science and
analytics skills gap in today’s manufacturing workforce (Li
et al., 2021). The gap analysis was conducted on a com-
prehensive labor market analytics data, (i.e., Emsi) which
contains job posting and profile data providing insights into
the trends and potential of high in-demand skills for future
manufacturing jobs. By connecting it with this work, it is
noticed that major domain knowledge gaps existing in data
science-related jobs are machine learning, big data analyt-
ics, data mining and optimization, which are aligned with
the emerging topics in manufacturing research. The trend of
research focus shifted to the emerging cyber technologies
which enhance the performance and efficiency of manufac-
turing machines, equipment, and systems. It is also reflected
in the U.S. labor market which has experienced 8% growth in
the total number of job postings related to cyber technologies
in 2020..

Conclusions

This paper conducted a keyword co-occurrence network
analysis of intelligent and cyber manufacturing-related key-
words in the scientific 84,041 papers published in top-tier
manufacturing journals during the period between 2000 and
2019. The analysis reveals insight into knowledge struc-
tures of the manufacturing field and the evolution of research
themes for the past two decades. To analyze keywords in all
publications, we built a network of keywords that are relevant
to the broader areas of intelligence and cyber manufacturing.
The statistical analysis of network characteristics effectively
analyzes the trends and patterns in research topics (e.g., cloud
manufacturing, datamining, andmachine learning as applied
to manufacturing) over time. Traditional literature review
methods discuss key features of technical methods, general
methodologies, and experimental findings. In contrast, the
KCN-based approach gives a macro-level understanding of
research trends and the evolution of emerging technologies. It
enables macro-level quantitative analysis and in-depth, com-
prehensive reviews with less manual effort. This approach
can be readily applied to understand other scientific fields
macroscopically.

The analysis of only keywords to observe the knowledge
structure and trends can lead to some biases. For exam-
ple, some authors may not include an important term in
the keyword section, but it otherwise plays a significant
role in the subject of the paper. Future work will extract
words from the title and abstract to enrich the keywords
database to better reveal the keywords correlation in the body
of knowledge. The keyword co-occurrence network-based
methodology can also potentially benefit from extensive text
mining and natural language processing of published arti-

cles to capture more in-depth insights into the scientific and
technological trends in intelligent and cyber manufacturing.

This work identified the high-frequency keyworkds asso-
ciated with the nine pillars of Industry 4.0, namely sim-
ulation, autonomous robots, system integration, additive
manufacturing, big data, augmented reality, IoT, cloud com-
puting, and cybersecurity. These keywords suggeste the
possible topics for future research and education in intel-
ligent manufacturing.
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