
Journal of Intelligent Manufacturing (2022) 33:555–573
https://doi.org/10.1007/s10845-021-01890-0

Comparison of algorithms for error prediction in manufacturing
with automl and a cost-based metric

Alexander Gerling1,2,3 · Holger Ziekow1 · Andreas Hess1 · Ulf Schreier1 · Christian Seiffer1 ·
Djaffar Ould Abdeslam2,3

Received: 28 May 2021 / Accepted: 29 November 2021 / Published online: 3 January 2022
© The Author(s) 2022

Abstract
In order to manufacture products at low cost, machine learning (ML) is increasingly used in production, especially in high
wage countries. Therefore, we introduce our PREFERML AutoML system, which is adapted to the production environment.
The system is designed to predict production errors and to help identifying the root cause. It is particularly important to
produce results for further investigations that can also be used by quality engineers. Quality engineers are not data science
experts and are usually overwhelmed with the settings of an algorithm. Because of this, our system takes over this task and
delivers a fully optimized ML model as a result. In this paper, we give a brief overview of what results can be achieved with a
state-of-the-art classifier. Moreover, we present the results with optimized tree-based algorithms based on RandomSearchCV
and HyperOpt hyperparameter tuning. The algorithms are optimized based on multiple metrics, which we will introduce in
the following sections. Based on a cost-oriented metric we can show an improvement for companies to predict the outcome
of later product tests. Further, we compare the results from the mentioned optimization approaches and evaluate the needed
time for them.

Keywords Hyperparameter optimization · Manufacturing · Metrics · Machine Learning · Production Line

B Alexander Gerling
alexander.gerling@hs-furtwangen.de;
alexander.gerling@uha.fr

Holger Ziekow
holger.ziekow@hs-furtwangen.de

Andreas Hess
andreas.hess@hs-furtwangen.de

Ulf Schreier
ulf.schreier@hs-furtwangen.de

Christian Seiffer
christian.seiffer@hs-furtwangen.de

Djaffar Ould Abdeslam
djaffar.ould-abdeslam@uha.fr

1 Business Information Systems, Furtwangen University of
Applied Science, 78120 Furtwangen, Germany

2 IRIMAS Laboratory, Université de Haute-Alsace,
68100 Mulhouse, France

3 Université de Strasbourg, Strasbourg, France

Introduction

Machine Learning (ML) has been increasingly used in the
area of manufacturing in recent years to predict errors
(Caggiano et al., 2019; Hirsch et al., 2019; Li et al., 2019).
An approach to use ML to optimize makespan in job shop
scheduling problems can be found in (Dao et al., 2018).
Deep learning methods for example are used to predict
product quality with data from parallel (Zhenyu et al.,
2020) or dynamic non-linear processes (Wang & Jiao, 2017;
Yuan et al., 2020). Also, there are data-driven approach
for complex production systems (Ren et al., 2020). With
the further development of artificial intelligence, research
for data-driven quality prediction methods are expanding in
various fields (Kirchen et al., 2017; Liu et al., 2019; Tangjit-
sitcharoen et al., 2017). In manufacturing, especially quality
engineers and data scientists analyse production errors using
quality data. A review of problems and challenges of data sci-
ence approaches for quality control inmanufacturing is given
in (Wilhelm et al., 2020). The paper explains manufactur-
ing domain-specific challenges such as concept drift, diverse
error types and cost-sensitive modelling. However, as ML

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-021-01890-0&domain=pdf
http://orcid.org/0000-0002-9556-9843

556 Journal of Intelligent Manufacturing (2022) 33:555–573

techniques get more popular and tools mature, the applica-
tions become practicable even for non-experts. Specifically,
Automated Machine Learning (AutoML) promises to make
the application of ML more feasible and reduce the required
level of expertise from the users. Various AutoML solutions
emerged over the past few years (Candel et al., 2016; Feurer
et al., 2019; Golovin et al., 2017; Kotthoff et al., 2019). These
tools cover many steps of the data science pipeline, such as
feature engineering or hyperparameter tuning for an algo-
rithm. However, the heuristics of AutoML tools are generic
and independent of a given domain. Hence, they may not
be best tailored to find the solution in a particular use case,
such as manufacturing quality management. Especially, if it
comes to specific domain problems, like unbalanced class
distribution, the state-of-the-art metrics can mislead the user
to a wrongly chosen algorithm or parameter setting. There-
fore, it is useful to test different metrics for a specific use case
like in (Zhou et al., 2016). The performance of an algorithm is
directly related to expenses and savings in the production pro-
cess. PREFERML (Proactive Error Avoidance in Production
throughMachine Learning) (Ziekow et al., 2019) is a project
that investigates challenges for the production and provides
a holistic ML system solution in the context of error detec-
tion and error prevention in the production. Therefore, we
deal with different and specific problems in the production in
relation to data and adapt our system accordingly to this envi-
ronment. At one point our system selects an algorithm that is
optimized for the given production data. Since the data varies
from one product to another, we assume that there is not one
single optimal algorithm (Ho & Pepyne, 2002); however, we
aim to provide a flexible tool that always supplies optimised
results according to the provided data. The main objective is
to reduce costs and save money based on our solution. In our
case, we save costs by predicting a corrupted product part at
an early stage. In addition, the system can provide hints for
further investigations to the user. In this paper, we analyse the
application of AutoML techniques using real manufacturing
data from our project partner. We analyse the impact of using
different mechanisms with twelve different classifiers. Fur-
ther, we compare several metrics to improve the performance
of our AutoML tool based on decision tree algorithms. Here
the question arises, which metric shows a justification for
the use of ML and saves costs in production. Therefore, we
provide a metric which improves optimization results for the
use in a manufacturing domain and demonstrate the effects
in experiments with real world data. Moreover, we analyse
to which extend hyperparameter tuning yields improvements
to the results.

The following research questions (Q) emerge from the
above description for our use case:

• (Q1) How good are results of established ML algorithms
based on real production data?

• (Q2) How suitable are existing metrics for real production
data?

• (Q3) How effective is hyperparameter tuning for improv-
ing cost–benefit?

The present paper is organized as follows: Sect. 2 a
description of the domain and the specific challenges of our
use case are given. In Sect. 3 describes the literature review.
Fundamental knowledge about the used metrics is provided
in Sect. 4. In Sect. 5 we explain a simplified illustration of our
AutoML tool. Furthermore, we describe the used datasets as
well as the hyperparameter for the AutoML tool. An algo-
rithm comparison is given in Sect. 6. In Sect. 7 we visualize
and evaluate the optimized results. Section 8 summarizes the
content of this paper and shows the added value based on the
answered research questions.

Domain description

In this section, we explain the production line and the spe-
cific challenges in this domain. A detailed explanation about
the domain description and the production line structure are
given in (Gerling et al., 2020). The goal of a manufacturing
company is to produce as many flawless products as possi-
ble. These products are often built in a production line and
get tested at test stations T1 to Tn. There is a particular order
between tests stations, where Ta<Tb if Ta precedes Tb in
the production process. With the data from test stations Ta,
we aim to predict errors detected in test stations Tb with
Ta<Tb. The objective for the company is to minimize the
rate of errors in the production line—this becomes appar-
ent by low error rates in the data. Usually, we have highly
unbalanced datasets to train the ML model, because of the
few errors in the production line. The number of errors in
the data is a critical problem for the resulting performance
of a ML model. If we check a product, it is not advisable to
only check the final test station and to merge the data from all
previous test stations. Thismergeprocedure reduces the num-
ber of errors in the data. As described in (Hirsch et al., 2019)
the number of instances i1 to in, especially error instances,
could be very low in the final test station. The corrupted
tested devices are split into multiple error groups. Analysing
a specific error group further reduces the number of recorded
errors and makes the process of training a ML model even
more difficult. By checking the results of the test station Ta
towards test station Tb in the production process, we have
the advantage to prevent errors at an early stage during the
production. This will save costs across the entire production
process and not only at the final test station. Through this
type of classification, we can benefit from more usable data.

In Fig. 1 we illustrate an example of a production line with
four test stations. Along the production process some parts

123

Journal of Intelligent Manufacturing (2022) 33:555–573 557

Fig. 1 Product in production line

turn out to be corrupted (illustrated as a corrupted product in
Fig. 1). These corrupted product parts can be repaired in a
separate process and returned to the production process. Cor-
rupted product parts that cannot be repaired are not useable
for production anymore. Data combinations of separate test
stations prior to the final test station could be used, to iden-
tify productions errors. Every test station has multiple and
generally different test features f 1to f n, which vary between
different products and test stations.We use these test features
to train our MLmodel. Pre-processing the data is required to
remove unusable test features like text descriptions. By pref-
erence, only numerical features are left after pre-processing
to train the MLmodel, because not all algorithms can handle
for example text for the model training. For our experiments,
we applied pre-processing to the quality data to make usable
datasets for the ML training. To train a ML model with data,
we have to choose a ML algorithm. At this stage we face the
next challenge because a production quality engineer wants
to understand why an algorithm has made a specific deci-
sion. Therefore, our system should be capable to explain the
results. The rationale is to increase trust in the ML system as
well as interpretability. The second requirement concerns the
metrics to evaluate the results. A metric must be adjustable
to a specific use case to provide a cost benefit to the user.
Further, it should be possible to simply recognize a usable
model for the prediction. When an ML system is applied,
this does not automatically lead to a reduction of the costs.
A metric that fulfils this requirement is presented in the next
section.

With the mentioned preconditions, a result identified as a
production error can be analyzed. A crucial point to use ML
in the manufacture is the benefit of prediction explainability
and visualizations. Therefore, we create visualisations where
rules can be derived to correct or interpret the error message
based on a single feature or of combinations features e.g.,
histogram or heatmap. Without any advanced tools, a qual-
ity engineer has just simple analytic tools e.g., mathematical
tools with classical statistical functions. However, these are
not sufficient to understand complex causes of an error and
are limited in their ability to analyse them, especially regard-
ing the number of features in the data.

Literature review

In this section, we describe related work which we have
divided into the following groups: AutoML, Quality Predic-
tion, imbalanced classification, and cost-based metric.

Literature for AutoML (Olson & Moore, 2019) explains
an open-source genetic programming based AutoML system
named TPOT. This tool automatically optimizes a series of
ML models and feature pre-processors. The objective is to
optimize classification accuracy on a supervised classifica-
tion task. For a given problem domain (Olson et al., 2016)
TPOTdesigns andoptimizes the necessaryMLpipelinewith-
out any involvement of a human being. To do so, TPOT uses
a version of genetic programming—an evolutionary compu-
tation technique. With genetic programming, it is possible
to automatically create computer programs (Banzhaf et al.,
1998). TPOT uses similar algorithms for supervised classifi-
cation aswe do. The difference here is that we set our focus to
the tree-based algorithms and do not use for example logis-
tic regression. A major difference to TPOT is that we do not
generate a code for further use. However, our holistic system
has also a pre-processing and feature engineering pipeline.

In (Candel et al., 2016) an open-source ML tool named
H20 gets described. Their objective is it to optimize ML for
Big Data (Kochura et al., 2017). Because the H2O tool is
fast and scalable, it is well suited for deep learning with spe-
cific algorithms.Additionally, this tool provides boosting and
bagging ensembles and further supports algorithms to use.
The H2O tool uses in-memory compression to handle a huge
amount of data. A wide variety of program languages are
supported. The H2O tool can be used as a standalone solu-
tion or together in a cluster solution. The developers of this
tool collaborate with industrial partners and other research
institutions. This tool has already been deployed in different
domains and can be used by a wide variety of users with
the Flow web-based GUI. Our AutoML tool solution differs
here, because we provide a specific production domain solu-
tion with adjusted functionality. A key point to mention is
the adjusted metric for the production and the strong support
for the tasks of the quality engineer.

123

558 Journal of Intelligent Manufacturing (2022) 33:555–573

(Krauß et al., 2020) showspossibilities and limits of apply-
ing AutoML in production. Further, it includes an evaluation
of available systems. Moreover, a comparison of AutoML
and a manual implementation from data scientists in a pre-
dictive quality use case was held. At the moment, AutoML
still requires programming knowledge andwas outperformed
by the implementation of the data scientists. One specific
point was the preparation of the needed data. Without prede-
fined domain knowledge, an AutoML system cannot merge
the data correctly. Additionally, the integration of the data
or the extraction from a database is problematic. A solu-
tion to this could be in form of an expert system. A further
point was the deployment of the results or the models for
the end-user. In conclusion, it can be said that AutoML sys-
tems provide the chance to increase the efficiency in a ML
projects. This could be done by automating the necessary
procedure within Data Integration, Data Preparation, Mod-
elling and Deployment. The expertise of a data scientist and
domain knowledge should be included to obtain satisfying
results. Nevertheless, the latest developments provide indi-
cators for future improvements towards the automation of
specific steps within the ML pipeline.

Several approaches to automate machine learning
appeared in recent years. (Maher et al., 2019) describe
a meta learning-based framework for automated selection
and hyperparameter tuning for ML algorithms (SmartML).
SmartML has a meta learning feature that emulates the role
of a domain expert in the field of ML. They use a meta
learning mechanism to select an algorithm to reduce the
parameter-tuning search space. The SmartML provides a
model interpretability package to explain their results. The
SmartML tool differs significantly from our approach. With
our AutoML tool we pre-process the data with the provided
background information of a product. This could be done
with the aid of a quality engineer or a ML expert. Further-
more, we only use decision tree-based algorithms to provide
human recognizable and acceptable decisions. This allows
us to gain confidence in the given results. We only use fast
and simple algorithms for our experiments. A critical dif-
ference is that SmartML is not specialized on manufacturing
data. Crucial points, like highly unbalanced data or the selec-
tion of a specific metric are not supported. This is where our
AutoML tool differs from existing solutions and provides a
specialized solution for manufacturing data.

In (Golovin et al., 2017) the black-box optimization tool
Google Vizier is described. This tool has become the de
facto parameter tuning engine for Google and is used as an
internal service for performing black-box optimization. This
tool supports various algorithms and uses them for training.
The results are saved in a persistent database for the pur-
pose of transfer learning. Vizier uses also RandomSearchCV
(Bergstra & Bengio, 2012) and GridSearchCV (Worcester,
2019) to optimize the hyperparameter for algorithms. In

(Golovin et al., 2017) the authors do not present in detail
which algorithms could be used to train a ML model and
it seems to be a general solution to optimize algorithms. In
comparison to our approach, we already provide pre-selected
decision tree-based algorithms and offer a use case specific
metric. Thus, we provide a more specific solution for the
manufacturing domain.

AUTO WEKA (Thornton et al., 2013) is an open-source
automation framework for algorithm selection and hyperpa-
rameter optimization based on Bayesian optimization using
sequential model-based algorithm configuration (SMAC)
and Tree-structured Parzen Estimator (TPE) (Kotthoff et al.,
2019). The target user group of AUTO WEKA are not only
experts, but also novice users in the field of ML. Some parts
ofAUTOWEKAoverlapwith our approach.We also support
the use of novice users with our tool. One of our target groups
are quality engineers. This target group has often no experi-
ence with ML at all. For the optimization task, we also use
Distributed Hyperparameter Optimization (HyperOpt, 2020)
with TPE as an estimator. Additionally, we provide the possi-
bility to optimize the algorithm with the RandomSearchCV
approach. With AUTO WEKA it is possible to create indi-
vidual metrics and use them for the evaluation. Here AUTO
WEKA could take advantage of our metric and implement it,
to provide a manufacturing adjusted metric. A point where
we differ from AUTO WEKA is the number of classifiers,
we provide with our AutoML tool. For our tool, we only use
tree-based algorithms to support the information value of the
results.

Literature for quality prediction In (Sankhye &Hu, 2020)
the objective was to design machine learning based clas-
sification methods for quality compliance. Afterwards, a
validation of the models via case study of a multi-model
appliance production line was shown. In this case study, the
proposedmodel for the classification could achieve aCohen’s
Kappa (Cohen, 1960) of 0.91 and an accuracy of 0.99 for
the compliance quality of unit batches. The main objective
is the implementation of a predictive model for compliance
quality, which could be enabled with the proposed method.
Another aspect of this paper was to emphasize the impor-
tance of dataset knowledge and feature construction within
the training of the classification models. In this work two
algorithms, namely RandomForest and XGBoost, was used
but the second algorithm achieved better results. Further the
Cohen’s Kappa metric was used to tackle the imbalanced
dataset problem. In this work, a classical machine learning
approach without AutoML is used. The disadvantage here
is that only two algorithms are used for classification. What
is more important, however, is the selection of the metric. In
(Delgado&Tibau, 2019), the author compared theMatthews
correlation coefficient (MCC) (Matthews, 1975) andCohen’s
Kappa and concluded that Cohen’s Kappa should be avoided
as a performance measure for classification.

123

Journal of Intelligent Manufacturing (2022) 33:555–573 559

In (Zonnenshain & Kenett, 2020) they discuss the chal-
lenges for quality engineering in the future. Moreover, they
consider the future directions for quality and reliability engi-
neering. This is done in the context of howopportunities from
Industry 4.0 could be used. The paper shows how important
data has become for quality engineering and the evolution
of quality models. Moreover, they describe quality as a data
driven discipline.

Literature for imbalanced classification In (Kim et al.,
2018) investigates the case of imbalanced classification of
manufacturing quality conditions by using several cost-
sensitive decision tree ensembles. A real-life die-casting data
set was used to compare the various classifiers. In this work,
the authors had to deal with strong unbalanced data, which
demonstrates the need to allocate costs to different classes.
To do so, three cost-sensitive ensembles based on a deci-
sion tree algorithm were selected, namely AdaC1, AdaC2
and AdaC3. Those had to compete with 19 different algo-
rithms. As results, the AdaC2 algorithm could provide the
best results. To compare the algorithms the accuracy, bal-
anced accuracy, precision, recall, F-measure, G-Mean and
AUCwere chosen as performance metrics. This work is sim-
ilar to ours in terms of the highly unbalanced data and the
approach to assigning costs to the different prediction classes.
Our AutoML tool also uses decision tree-based algorithms
for the fast and understandable prediction. We distinguish
ourselves by the use of high-performance decision tree-based
algorithms. Further, we optimize the prediction by using a
cost-sensitive metric.

In (Moldovan et al., 2017) the authors investigated state-
of-the-art approaches for using ML techniques on the
SECOM dataset. This dataset contains data from a semi-
conductor manufacturing process and therefore represents
an unbalanced real-world dataset. Based on this dataset,
three different feature selection methods were used. Further,
the performance of three sample classification algorithms
was compared. To measure the performance of the classi-
fier, the F-measure, recall, False-Positive-Rate, precision and
accuracy metrics was used. This paper only focuses on the
SECOM dataset and therefore, provides only a process to
achieve the best results specifically for this dataset. In our
work, we focus on the ML part and the optimization of the
algorithm. Further,we use variousmanufacturing datasets for
our experiments. We also consider the unbalanced data prob-
lem and tackle this by adjusting the hyperparameter within
the optimization.

Literature for cost-based metric One of the first and best-
knownpaper regardingMetaCost and cost-sensitive classifier
is presented in (Domingos, 1999). With this approach, the
classifierwill be adjusted for the different costs of errors. This
procedure is well suited for imbalanced datasets to assign
a cost value to the different classes. With this approach a
large cost reduction compared to cost-blind classifiers can

be achieved. The cost matrix for a two-class classification is
set to C(0,0) � C(1,1) � 0; C(0,1) � 1000; C(1,0) � 1000r,
where r was set alternately to 2, 5, and 10. In this case C(0,1)
and C(1,0) are only relevant because of the ratio r. Number 0
represent the minority class and 1 shows the majority class.
In our approach, we set our focus on the True Positive (TP)
and False Positive (FP) respectively C(0,0) and C(0,1) and
use a factor alpha to adjust the real cost savings (see the
equation for Expected Benefit Rate Positives Only (EBRP)
in the subsequent section).

In (Loyola-González et al. 2019) a proposal of an algo-
rithm for discovering cost-sensitive patterns in class imbal-
ance problems was given. Further, this pattern is used for
classification with a pattern-based classifier. This proposal
can obtain cost-sensitive patterns, which leads to lower
misclassification costs in comparison to patterns mined by
well-known state-of-the-art pattern miners. In the approach
of (Loyola-González et al., 2019), the cost matrices are
adjusted to C(0,0)�C(1,1)� 0, which means that the result-
ing costs of True Negative (TN) and TP are 0. The costs of
FP are set consecutively to C(0,1) � 2, 5, 10, 20 and further
propose to use the imbalance ratio of training database as a
cost. The costs of False Negative (FN) is set to C(1,0) � 1.
To control the results from the classifier, they use a normal-
ized expected cost (NEC) (normalized misclassification cost
(Drummond & Holte, 2006)), here given in the original full
form:

NEC � TP ∗ C(0, 0) + FP ∗ C(0, 1) + FN ∗ C(1, 0) + TN ∗ C(1, 1)

Dp∗C(0, 0) + Dp∗C(0, 1) + Dn∗C(1, 0) + Dn∗C(1, 1)
(1)

Dp and Dn are the numbers of instances from the minority
(Dp) and majority class (Dn). All possible costs were taken
into account in this approach and got represented by a nor-
malized value. We can use the NEC formula as a basis for
our special use case. In our work, we care about the True
Positives and False Positives because this shows the differ-
ence to the as-is situation for companies without ML in their
production. Further, we use the place holder alpha for the real
costs, which can be adjusted by the cost value of a product.
Additionally, in our approach we consider the specific use
case of the production domain.

Metrics

In this section, we explain the metrics used for our exper-
iments in Sects. 6 and 7. We built an AutoML tool that
independently chooses one of five different algorithms.
These five algorithms are the DecisionTree, RandomForest,
XGBoost, CatBoost and LightGBM Classifiers. Addition-
ally, we use five metrics to further improve the results with
hyperparameter tuning.As firstmetric tomention is theMCC

123

560 Journal of Intelligent Manufacturing (2022) 33:555–573

(Boughorbel et al., 2020; Shmueli, 2019). The MCC value
gets calculated by:

MCC � TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(T N + FN)

(2)

Based on theMCCwemeasure the quality of a binary clas-
sification. The MCC metric is a balanced measure method
that takes TP, FP, TN and FN into account. In our case a TN
is a good part predicted as good part and a FN is a corrupted
part predicted as a good part. A TP is a corrupted part pre-
dicted as corrupted part and a FP is a good part predicted as
a corrupted part. The MCC is used for different class sizes
which is necessary in our case (Boughorbel et al., 2017).

For the second and thirdmetric, we use theAreaUnder the
Curve (AUC) calculation for the Receiver Operating Char-
acteristic (ROC) and Precision Recall Curve (PRC). The
ROC AUC metric is suitable for balanced classes. At first
sight, the ROC AUC metric is not helpful at all because the
classes are extremely unevenly distributed. Nevertheless, to
handle the unbalanced distribution we use a hyperparam-
eter named’class_weight’ respectively’scale_pos_weight’.
Depending on the setting of this hyperparameter it considers
the classes as equal and changes the training of the model.
The PRC AUC metric is also suitable for a binary classifi-
cation. Moreover, this metric looks at the positive class; in
our case this is the prediction of an error. Therefore, the PRC
AUCmetric provides us with a value of how good it predicts
the minority class. The AUC represents the performance of
a binary classification (Sarath, 2018). The fourth metric is a
calculation to predict the cost savings for each positive pre-
dicted forecast named EBRP:

EBRP � TP ∗ α − FP

TP + FP
(3)

Symbol α (alpha) represents the cost saving factor or ratio
of how much a correctly identified error in relation to an
incorrectly identified error will save us and is therefore a
placeholder for the real costs of a product or product part.
Moreover, the user of this metric can adjust the α parameter
with the ratio of the cost saving factor.

Thefifthmetric is similar to the fourthmetric, a calculation
to predict the cost savings for all predictions. EBR (Expected
Benefit Rate):

EBR � TP ∗ α − FP

TP + FP + TN + FN
(4)

The EBRP and ERB are our own cost-based metrics,
which are based on the cost formula of (Domingos, 1999).
Within both metrics, the counter represents the absolute sav-
ings or our expected benefit. We obtain the total costs by
TP*C(0,0) + FP*C(0,1) + FN* C(1,0) + TN*C(1,1). Here
the individual parts represent C(0,0)� α, C(0,1)� -1, C(1,0)

� 0, C(1,1) � 0, which leads us to the counter TP* α—FP.
The denominator is used to normalise the savings by divid-
ing the counter by all instances for the EBR metric and only
the positive predictions for the EBRP metric. A key point to
mention is that we want to quantify the benefit to use ML for
the production. For the as-is situation without a ML system,
we do not have the chance to use the potential to save costs in
the production. To express a positive result, we use the terms
of cost savings or benefit. Costs are negative cost savings or
a negative benefit. By using a ML system, a corrupt product
could be detected, which reduces the costs for the company.
This would change a FN to a TP. To explain it more simply,
we would correctly predict a corrupted part that would oth-
erwise proceed further in the production line. A FP produce
costs but usually less in comparison to aTP,whichwe express
with α. However, dependent on the production process, these
costs may be less than the savings of a TP, which we express
with α as well. An important aspect is that a TP still produces
costs, but we cannot influence these costs. A further point is
that the EBRP and EBR metric are intuitive with respect to
the usability of the model. Values above zero indicate that a
reduction of costs could be realized with those metrics. This
is a crucial benefit in comparison to other metrics. Moreover,
no extended tests must be executed to show a benefit from a
model in comparison to a baseline.

In this paper we analyse which of the above introduced
metrics is most suitable for a manufacturing use case. A cru-
cial factor for a manufacturing case is the cost saving for
correctly predicted fault devices. Even if the quality of a ML
model is not great, it could save money by these criteria.
We focus on hyperparameter that assign weights to classes
(’class_weight’ and’scale_pos_weight’ in the used libraries),
as they are very important for our experiments. Because we
used unbalanced data to train the MLmodel, it simplifies the
handling of the data. Therefore, we do not have to handle this
issue explicitly when preparing the data.

Automl tool and setup

In this section, we describe the workflow of our AutoML
tool. Followed by an explanation of the datasets and their
class distribution. Afterwards we describe the setup used for
our experiments and the associated hyperparameters.

Workflow

In Fig. 2 we illustrate the workflow in our tool. As first
step, we read and clean the data e.g., from missing values.
The next step is to prepare the data by removing unneces-
sary features e.g., features with the same value and check
the data format. Followed by creating new derived fea-
tures. This should be carried out with the help of domain

123

Journal of Intelligent Manufacturing (2022) 33:555–573 561

Fig. 2 Simplified Workflow

knowledge to derive product-specific features. For exam-
ple, product featureswhich represents electronic components
can be grouped. This should lead to a better performance.
However, an empirical evaluation of the benefits of domain
knowledge is out of scope of this paper and is deferred to
futurework. The domain knowledge can be stored in a PTMD
as described in (Gerling et al., 2020). In the following step,
we split the data in a predefined percentage split into a train
and test set. The following step is the training and optimiza-
tion of the ML model by using hyperparameter tuning. At
the last step, we evaluate the results and check created visu-
alizations.

Dataset and class distribution

Table 1 shows the used datasets and the class distribution.
Glass1 and Yeast-0–2–5–6 (Alcalá-Fdez et al., 2011) are
unbalanced open-source binary datasets and we use them to
check the quality of a classifier with an unbalanced dataset.
UCI SECOM (Dua&Graff, 2020) is a real-world dataset and
is more relevant for us than Glass1 or Yeast-0–2-5–6 because
it contains data from a semi-conductor manufacturing pro-
cess. The features from the UCI SECOM dataset are e.g.,
signals or variables collected from sensors and process mea-
surement points in the manufacturing process (Dua & Graff,
2020). For our purpose’s dataset Line A, Line B, Line C,
Line X, Line Y and Line Z are especially interesting. These
datasets represent a classification of station Ta to station Tb

in a production chain from our partner SICK AG (SICK AG,
2020). LineX is particularly interesting here because it shows
a data chain over several test stations with 1071 features.
Further, it shows how highly unbalanced the datasets in the
real production can be. Dataset Glass1 has here the lowest
imbalance ratio with 0.550725 and Line Z the highest with
0.002103. Due to the strong imbalance in Line Z, which rep-
resent just a few errors in comparison to good products, the
results are particularly interesting. All the used datasets con-
tain only numerical features. A failure instance is represented
as class 1 or 1 in the dataset and a flawless instance is be rep-
resented by class 0 or 0. A row corresponds to an instance and
columns represent the features in the dataset. The column’IR
(Class 1/Class 0)’ in Table 1, shows how strongly the classes
in the dataset are unbalanced. Moreover, these datasets were
chosen randomly from a dataset pool to have an overview of
possible results for this kind of data.

Test setup (machine hardware, software versions)

For our experiments we used a machine with Windows 10
64Bit. The test system has an i9-9999KS (16×4 GHz) pro-
cessor and 64 GB RAM.We used the Anaconda Distribution
with Numpy Version: 1.18.1, Pandas Version: 1.0.1, Scikit-
learn Version: 0.22.1, Catboost Version: 0.21, Lightbgm
Version:2.3.0, Py-xgboost Version 0.90, HyperOpt Version
0.2.2 and Python 3.7.6. All experiments shown were exe-
cuted on the CPU.

Data preparation for training

The data was cleaned of nan values and the format of the data
was adjusted. For the classification, we set the split for the
training set to 67% of the total amount of errors in the data.
Therefore, we have constantly 33% of the total amount of
errors to validate the quality of the ML model. Additionally,
we use a cross validator with shuffle mode and five splits for
the training set.

Table 1 Datasets
Dataset Class 0 Class 1 Instances Features IR (class 1/class 0)

Glass1 138 76 214 9 0.550725

Yeast-0–2–5–6 905 99 1004 8 0.109392

Line A 57,499 530 58,029 63 0.009218

Line B 7127 73 7200 16 0.010243

Line C 88,928 553 89,481 22 0.006219

Line X 19,692 102 19,794 1071 0.00518

Line Y 89,204 687 89,891 16 0.007701

Line Z 190,183 400 190,583 19 0.002103

UCI SECOM 1463 104 1567 592 0.071087

123

562 Journal of Intelligent Manufacturing (2022) 33:555–573

Fig. 3 Algorithm comparison
part 1

Hyperparameters

In the appendix (Table 8) we summarise up all hyperpa-
rameters with the explanation that we used for the different
decision tree-based algorithms. Not all classifiers use the
same parameters and hence we show an accumulated table
with the used hyperparameters in Table 8. In Table 9 we
show the used hyperparameters with the value range for the
associated algorithms. All test runs were performed with the
maximum amount of CPU threads via the adjustment of the
n_jobs, thread_count or thread parameter depending on the
algorithm. Only the Decision Tree algorithm could not be
adjusted, because there is no such parameter. We obtained
the explanations from the official websites (Decision Tree
Classifier, 2020; Random Forest Classifier, 2020; XGBoost,
2020; CatBoost, 2020; LightGBM, 2020).

Parameter optimization

We used RandomSearchCV and HyperOpt as search
approaches for the experiments. RandomSearchCV is a
state-of-the-art approach for hyperparameter optimization.
To optimize the parameter of a model, RandomSearchCV
uses a random set of parameters from the given parameter
range. HyperOpt use the Bayesian optimization method and
is created for large-scale optimization for models with sev-
eral parameters. The Bayesian optimization method should
find better model settings than the random search method
in less iterations, by rating the hyperparameter that appear
more promising from past results. For our experiments we
used the TPE estimator for HyperOpt, which is one of three
implemented algorithms.

123

Journal of Intelligent Manufacturing (2022) 33:555–573 563

Fig. 4 Algorithm comparison
part 2

Algorithm comparison

In this section we visualize the results based on the imple-
mentation of twelve algorithms in Figs. 3 and 4. The objective
of this comparison is to get an overview, how good the clas-
sifiers perform with hardly any adjustments. Those results
are used as a baseline for the metric comparison. To get
comparable results from the different algorithm, we had to
adjust the parameters for k-nearest neighbors (KNN) hyper-
parameter’n_neighbors’ 1, Support Vector Machine (SVM)
hyperparameter’kernel’ linear.

Table 2 shows the best and worst achievable classification
results regarding the used dataset. The best case is calculated
by P *α and the worst case is represented by -N. The value
P represents the number of corrupted parts (TP + FN) and
the value N the number of good parts (TN + FP) in the test
data. These values are corresponding to the used dataset. To
calculate the Metric Quality Index (MQI) we use:

Table 2 Best- and worst-case classification results

Dataset Best case classification
result

Worst case
classification result

Glass1 260 − 41

Yeast-0–2–5–6 340 − 218

Line A 1760 − 54,328

Line B 250 − 1977

Line C 1830 − 31,764

Line X 350 − 9792

Line Y 2880 − 52,086

Line Z 1330 − 90,533

UCI SECOM 350 − 706

MQI � TP ∗ α − FP

P ∗ α
(5)

The MQI represents a normalized value to compare the
results of optimizations. With the MQI, we can compare the

123

564 Journal of Intelligent Manufacturing (2022) 33:555–573

results of different metrics in a single visualization or table.
The best possible result for this column is 1.0 and a result
above 0.0 will save costs. We assume that a correctly pre-
dicted corrupted product part (TP) is worth 10 times more
than a good product that must be tested in a separate test
station again costs (FP) (i.e., the savings enable by a true pos-
itive are assumed to be 10 times higher than the cost resulting
from a false positive). We set α to 10 but this value must be
adjusted for every product. The value 10 is a common recom-
mendation for the cost matrices in other works (Domingos,
1999; Du et al., 2007; Krętowski &Grześ, 2006; Zhang et al.,
2007).

The comparison of Figs. 3 and 4 answer the question (Q1)
how good the results of establishedML algorithms are based
on real production data. Table 3 summarizes the results from
Figs. 3 and 4. In these two figures, we show which results
can be achieved with the different algorithms and get an
overview of their performance. As indicated in the introduc-
tion, the results have shown that there is no single optimal
algorithm. Therefore, it is necessary to compare different
algorithms with each other for every dataset. An abnormal-
ity in the results can be seen using the MCC and ROC AUC
metric. The result from the ROC AUC metric with the Cat-
boost classifier in Line X implies a good result with the value
of 0.814. This would lead us to the assumption that this spe-
cific model could be used to predict product errors. When
considering the outcome of the MCC metric, we see that
this result is misleading. The value of the MCC metric (−
0.001) seems like a random outcome. We would not use a
model that has an MCC value below 0. This effect results
from the strong unbalanced classes in the dataset. ROCAUC
and PRC AUC are particularly affected by this effect. There-
fore, it is necessary to find an adjusted metric for our use
case. The Naive Bayes and the Complement Naive Bayes
algorithms produce strong negative outliers within the MQI
Metric. Further, the SVM algorithm performs poorly over all
datasets with most of the metrics. Nevertheless, we show a
benefit to use ML in this use case with the results from the
MQI metric. Therefore, ML could already be used to predict
production errors. Another aspect that can be observed is that
the decision tree-based algorithms are often close in terms
of results and provide reasonable results. For new data we
suggest to use a simple decision tree algorithm to get a first
impression of the possible results and error cause(s).

Metric comparison for hyperparameter
tuning

In this section, we first show insights into results from a test
with RandomSearchCV. Further, we show the average opti-
mization time for RandomSearchCV and HyperOpt by all
executed runs. Moreover, we take a look at the used hyper-

parameters of a run execution to compare them. Afterwards,
we show a comparison of all optimized results.

We optimized with RandomSearchCV and HyperOpt for
maximal EBR, EBRP, MCC, ROC AUC and PRC AUC. For
each approachwe checked all metrics,MQI and computation
time. Table 4 represents the results of the AutoML tool with
RandomSearchCV approach and an initial seed. The same
seed was used for all results in Table 4. The name of the
algorithm for the best result is abbreviated as follows in the
Name column: RFC�RandomForest Classifier, CBC�Cat
Boost Classifier, DTC � Decision Tree Classifier, XGBC
� XGBoost Classifier, LGBMC � LGBM Classifier. The
computation time for a program execution is illustrated in
the column’ComTime with format h:mm:ss.

In all our experiments, the models that were obtained
through optimizing for EBR perform well compared to
results with other metrics. That is, the EBR metrics yields
scores that are either better or similar to the scores of the best
alternatives. Our provided metrics EBR and EBRP leads to
most of the best MQI results. The results also illustrate the
effect of negatives monetary effects that could results from
using the wrong metric for optimization. In Line X we show
aMCC value of 0.198 (MCCmetric). However, more impor-
tant are the increasing costs in this specific case, leading to a
MQI of− 0.354. To compare, our metric EBR shows aMCC
value of 0.118 but reduces the costs by aMQI of 0.025. Even
more crucial is the comparison in Line Z.With the EBRmet-
ric we get a neutral result. On the contrary the MCC metric
would increase costs dramatically by a MQI of -2.888. This
example shows the necessity of our EBR and EBRP metrics.
Moreover, we show how suitable existing metrics for real
production data are (Q2) and present a much better metric
for our specific use case.

The next point is the needed time to improve the algorithm
with hyperparameter tuning. Table 5 shows the average time
for a program execution with the associated dataset. Ran-
domSearchCV is the fastest competitor in this comparison,
but the needed time for an execution with HyperOpt is still
acceptable regarding the cost savings that result from the
optimization. The maximum amount of time for an execu-
tion took average 50 min in Table 5. This is due to the high
number of features in dataset X. Nevertheless, the measured
times are close to each other.

The visualized results in Table 6 also hold further informa-
tion with regards to the reusability of hyperparameters. We
take a closer look at the results of Line B, Line C, Line X and
UCI Secom from the EBRPMetric in Table 4. These datasets
created the best results using the Random Forest Classifier.
The question rises if the same classifier has used the same
hyperparameters to produce the result. Table 6 shows the
used hyperparameters for the mentioned datasets:

The used hyperparameters shown in Table 6 indicate that
it is necessary to optimize the hyperparameters individually

123

Journal of Intelligent Manufacturing (2022) 33:555–573 565

Ta
bl
e
3
A
lg
or
ith

m
co
m
pa
ri
so
n

D
at
as
et

C
at
bo

os
t

D
ec
is
io
n
T
re
e

G
ra
di
en
t

bo
os
tin

g
cl
as
si
fie

r

R
an
do
m

Fa
st

X
G
B
oo
st

C
om

pl
em

en
t

na
iv
e
ba
ye
s

N
ai
ve

ba
ye
s

K
N
N

Q
ua
dr
at
ic

di
sc
ri
m
in
an
t

an
al
ys
is

SV
M

L
ig
ht
gb
m

A
da
B
oo
st

M
C
C
m
et
ri
c
(M

C
C
va
lu
e
in

ta
bl
e)

G
la
ss

1
0.
58
4

0.
56
0

0.
61
7

0.
61
8

0.
49
7

0.
30
2

0.
38
2

0.
49
7

0.
40
4

0.
00
0

0.
44
3

0.
51
8

Y
ea
st
-0
–2
–5
–6

0.
61
5

0.
50
0

0.
54
7

0.
56
7

0.
59
1

0.
53
8

0.
43
3

0.
61
4

0.
39
2

0.
22
6

0.
48
6

0.
42
1

L
in
e
A

0.
03
5

0.
02
4

0.
00
4

−
0.
00
4

−
0.
00
1

0.
04
9

0.
04
2

0.
03
9

0.
07
0

−
0.
00
4

0.
06
2

0.
03
9

L
in
e
B

0.
49
2

0.
21
5

0.
44
1

0.
45
1

0.
50
2

0.
15
7

0.
10
9

0.
15
9

0.
01
5

0.
48
8

0.
43
9

0.
47
6

L
in
e
C

0.
13
1

0.
16
7

0.
06
8

0.
07
7

0.
04
3

0.
16
2

0.
31
0

0.
18
0

0.
19
1

0.
00
0

0.
11
1

0.
16
1

L
in
e
X

−
0.
00
1

0.
00
1

0.
00
5

0.
00
0

0.
00
0

−
0.
00
1

0.
25
1

0.
14
6

−
0.
01
4

0.
05
0

0.
00
0

0.
09
7

L
in
e
y

0.
19
0

0.
12
7

0.
21
4

0.
20
1

0.
16
5

0.
19
9

0.
00
0

0.
13
2

−
0.
00
8

0.
00
0

0.
14
6

0.
16
9

L
in
e
Z

0.
00
0

0.
03
3

−
0.
00
1

0.
00
0

0.
00
0

0.
08
4

0.
12
3

0.
01
5

0.
13
9

0.
00
0

0.
00
5

0.
00
0

U
C
I
SE

C
O
M

0.
00
0

0.
03
7

−
0.
03
0

−
0.
00
8

0.
00
0

−
0.
04
1

−
0.
01
9

−
0.
03
3

−
0.
00
8

−
0.
04
2

0.
00
0

0.
05
1

R
O
C
_A

U
C
m
et
ri
c
(R
O
C
_A

U
C
va
lu
e
in

ta
bl
e)

G
la
ss

1
0.
89
9

0.
78
0

0.
86
4

0.
88
0

0.
88
0

0.
68
1

0.
79
7

0.
74
9

0.
79
1

0.
22
1

0.
88
0

0.
82
3

Y
ea
st
-0
–2
–5
–6

0.
84
7

0.
73
7

0.
81
9

0.
83
7

0.
83
0

0.
86
2

0.
83
9

0.
77
8

0.
83
4

0.
83
0

0.
80
0

0.
76
4

L
in
e
A

0.
81
6

0.
55
1

0.
81
7

0.
76
5

0.
80
4

0.
76
7

0.
69
1

0.
55
9

0.
76
7

0.
71
4

0.
81
8

0.
80
7

L
in
e
B

0.
92
8

0.
59
6

0.
89
1

0.
91
7

0.
93
5

0.
83
2

0.
94
6

0.
55
7

0.
82
4

0.
96
2

0.
93
6

0.
90
2

L
in
e
C

0.
95
5

0.
58
8

0.
96
2

0.
91
9

0.
96
8

0.
91
8

0.
96
8

0.
57
8

0.
92
4

0.
47
4

0.
95
3

0.
95
9

L
in
e
X

0.
81
4

0.
50
1

0.
71
5

0.
58
2

0.
74
4

0.
55
8

0.
83
1

0.
57
0

0.
47
5

0.
75
4

0.
77
2

0.
81
5

L
in
e
y

0.
87
0

0.
57
0

0.
91
4

0.
84
2

0.
91
0

0.
90
5

0.
80
9

0.
55
4

0.
46
2

0.
84
9

0.
89
5

0.
86
7

L
in
e
Z

0.
86
0

0.
52
5

0.
89
2

0.
80
6

0.
91
0

0.
90
2

0.
91
0

0.
50
7

0.
87
4

0.
31
5

0.
83
5

0.
85
5

U
C
I
SE

C
O
M

0.
55
9

0.
52
5

0.
46
9

0.
48
1

0.
52
7

0.
44
6

0.
47
1

0.
48
9

0.
49
9

0.
56
0

0.
44
5

0.
43
4

PR
C
_A

U
C
m
et
ri
c
(P
R
C
C
_A

U
C
va
lu
e
in

ta
bl
e)

G
la
ss

1
0.
86
4

0.
78
3

0.
78
9

0.
85
3

0.
83
7

0.
53
6

0.
62
8

0.
75
2

0.
62
4

0.
25
8

0.
85
3

0.
76
2

Y
ea
st
-0
–2
–5
–6

0.
67
4

0.
59
6

0.
61
9

0.
64
7

0.
66
1

0.
66
5

0.
62
2

0.
69
2

0.
63
0

0.
60
2

0.
53
9

0.
54
4

123

566 Journal of Intelligent Manufacturing (2022) 33:555–573

Ta
bl
e
3
co
nt
in
ue
d

D
at
as
et

C
at
bo

os
t

D
ec
is
io
n
T
re
e

G
ra
di
en
t

bo
os
tin

g
cl
as
si
fie

r

R
an
do
m

Fa
st

X
G
B
oo
st

C
om

pl
em

en
t

na
iv
e
ba
ye
s

N
ai
ve

ba
ye
s

K
N
N

Q
ua
dr
at
ic

di
sc
ri
m
in
an
t

an
al
ys
is

SV
M

L
ig
ht
gb
m

A
da
B
oo
st

L
in
e
A

0.
04
3

0.
08
8

0.
03
1

0.
01
2

0.
04
1

0.
00
9

0.
42
4

0.
08
3

0.
39
2

0.
00
6

0.
04
7

0.
03
3

L
in
e
B

0.
49
1

0.
23
0

0.
27
3

0.
50
2

0.
49
2

0.
12
1

0.
49
9

0.
18
1

0.
42
5

0.
64
7

0.
52
0

0.
50
0

L
in
e
C

0.
18
7

0.
17
5

0.
19
1

0.
20
5

0.
21
1

0.
10
7

0.
22
2

0.
18
9

0.
13
2

0.
00
5

0.
13
4

0.
16
2

L
in
e
X

0.
01
4

0.
03
2

0.
00
7

0.
00
5

0.
01
8

0.
00
4

0.
39
1

0.
15
1

0.
00
2

0.
01
4

0.
01
4

0.
07
7

L
in
e
y

0.
17
5

0.
13
3

0.
20
6

0.
21
8

0.
20
9

0.
11
3

0.
20
5

0.
14
0

0.
35
1

0.
11
1

0.
14
6

0.
15
4

L
in
e
Z

0.
01
1

0.
03
9

0.
02
6

0.
02
6

0.
03
9

0.
04
6

0.
06
7

0.
01
7

0.
03
9

0.
00
1

0.
00
9

0.
02
3

U
C
I
SE

C
O
M

0.
05
3

0.
12
7

0.
04
3

0.
04
3

0.
07
2

0.
03
9

0.
06
5

0.
02
4

0.
02
4

0.
05
2

0.
07
3

0.
04
6

M
Q
I;
fo
rm

ul
a

�
((
T
P*

α
)
−

FP
)/
be
st
ca
se

re
su
lt
[α

�
10
];
(M

Q
I
in

ta
bl
e)

G
la
ss

1
0.
63
8

0.
70
4

0.
67
7

0.
64
2

0.
66
2

0.
81
9

0.
80
4

0.
66
2

0.
77
7

0.
00
0

0.
65
4

0.
56
2

Y
ea
st
-0
–2
–5
–6

0.
49
1

0.
49
4

0.
42
9

0.
43
2

0.
46
2

0.
35
0

0.
28
5

0.
56
8

0.
20
3

0.
05
9

0.
39
4

0.
30
9

L
in
e
A

−
0.
02
6

−
1.
75
1

−
0.
06
8

−
0.
13
2

−
0.
00
4

−
12
.3
46

−
13
.9
96

−
0.
77
0

−
6.
71
3

−
0.
12
7

−
0.
00
7

−
0.
13
6

L
in
e
B

0.
27
6

0.
14
0

0.
36
0

0.
23
6

0.
31
2

−
0.
66
0

−
2.
76
8

0.
08
0

−
6.
77
2

0.
24
0

0.
30
0

0.
34
0

L
in
e
C

0.
03
7

0.
89

0.
01
4

0.
01
4

0.
00
6

−
0.
94
6

0.
28
0

0.
10
1

−
0.
57
9

0.
00
0

0.
03
9

0.
07
6

L
in
e
X

0.
00
6

−
1.
48
6

−
1.
04
6

0.
00
0

0.
00
0

−
16
.3
11

0.
04
0

0.
06
6

−
1.
40
6

−
0.
45
4

0.
00
0

0.
02
3

L
in
e
y

0.
06
1

0.
03
7

0.
08
0

0.
05
8

0.
04
1

−
0.
12
9

−
21
.6
47

0.
05
5

−
19
.1
75

0.
00
0

0.
04
5

0.
05
7

L
in
e
Z

0.
00
0

−
0.
16
8

−
0.
02
0

0.
00
0

0.
00
0

−
6.
05
6

−
0.
72
7

−
0.
07
1

−
0.
19
7

0.
00
0

−
0.
13
0

−
0.
00
1

U
C
I
SE

C
O
M

0.
00
0

−
0.
04
3

−
0.
09
7

0.
00
3

0.
00
0

−
0.
06
9

−
0.
10
9

−
0.
04
6

−
0.
00
3

−
0.
13
7

0.
00
0

0.
01
4

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
re
su
lt
fo
r
a
da
ta
se
t

123

Journal of Intelligent Manufacturing (2022) 33:555–573 567

Ta
bl
e
4
R
an
do

m
se
ar
ch

C
V
w
ith

in
iti
al
se
ed

re
su
lts

D
at
as
et
/a
lg
or
ith

m
an
d
M
et
ri
c

R
an
do

m
se
ar
ch

C
V
(e
xp

ec
te
d
be
ne
fit

ra
te
)

R
an
do

m
se
ar
ch

C
V
(e
xp

ec
te
d
be
ne
fit

ra
te
Po

s.
)

M
C
C

R
O
C
_A

U
C

PR
C
_A

U
S

C
om

T
im

e
M
O
I

A
lg
or
ith

m
M
C
C

R
O
C
_A

U
C

PR
C
_A

U
S

C
om

T
im

e
M
O
I

A
lg
or
ith

m

G
la
ss

1
0.
39
0

0.
88
0

0.
82
3

0:
00
:2
1

0.
89
2

R
FC

0.
65
2

0.
89
0

0.
85
5

0:
00
:2
1

0.
75
0

X
G
B
C

Y
ea
st
-0
–2
–5
–6

0.
49
5

0.
85
1

0.
63
0

0:
00
:2
4

0.
56
1

R
FC

0.
53
9

0.
79
5

0.
59
2

0:
00
:2
2

0.
50
2

X
G
B
C

L
in
e
A

0.
18
5

0.
81
2

0.
04
6

0:
02
:2
3

0.
62

L
G
B
M
C

0.
12
9

0.
78
8

0.
04
0

0:
2:
09

0.
03
0

C
B
C

L
in
e
B

0.
42
5

0.
93
8

0.
47
2

0:
01
:4
2

0.
48
8

C
B
C

0.
49
9

0.
95
3

0.
50
8

0:
01
:3
9

0.
52
0

R
FC

L
in
e
C

0.
33
4

0.
96
6

0.
23
7

0:
10
:0
8

0.
33
8

R
FC

0.
33
4

0.
96
6

0.
23
7

0:
10
:3
0

0.
33
8

R
FC

L
in
e
X

0.
11
8

0.
76
3

0.
07
3

0:
21
:2
9

0.
02
5

C
B
C

0.
25
9

0.
90
5

0.
15
1

0:
20
:4
2

0.
20
2

R
FC

L
in
e
y

0.
28
9

0.
90
7

0.
19
9

0:
07
:1
1

0.
25
3

R
FC

0.
22
2

0.
84
1

0.
12
9

0:
07
:1
2

0.
11
5

C
B
C

L
in
e
Z

0.
00
0

0.
91
7

0.
04
4

0:
14
:0
4

0.
00
0

R
FC

0.
01
1

0.
96
2

0.
01
2

0:
12
:5
4

−
0.
02
7

C
B
C

U
C
I
SE

C
O
M

0.
00
0

0.
53
8

0.
08
7

0:
05
:0
7

0.
00
0

X
G
B
C

0.
07
2

0.
61
3

0.
08
0

0:
05
:1
8

0.
03
4

R
FC

R
an
do

n
se
ar
ch

C
V
(R
O
C
A
U
C
)

R
an
do

n
se
ar
ch

C
V
(P
R
C
A
U
C
)

G
la
ss

1
0.
65
2

0.
89
0

0.
85
5

0:
00
:2
2

0.
75
0

X
G
B
C

0.
57
6

0.
88
9

0.
86
3

0:
00
:2
0

0.
77
3

L
G
B
M
C

Y
ea
st
-0
–2
–5
–6

0.
49
5

0.
85
1

0.
63
0

0:
00
:2
2

0.
56
1

C
B
C

0.
62
3

0.
83
2

0.
66
3

0:
00
:2
3

0.
54
4

R
FC

L
in
e
A

0.
12
5

0.
81
4

0.
03
8

0:
02
:1
6

−
0.
02
4

X
G
B
C

0.
03
9

0.
75
1

0.
24
7

0:
02
:0
8

−
7.
99
5

D
T
C

L
in
e
B

0.
51
8

0.
94
5

0.
51
3

0:
01
:3
7

0.
44
4

X
G
B
C

0.
40
5

0.
96
0

0.
52
3

0:
01
:3
7

0.
19
6

R
FC

L
in
e
C

0.
20
8

0.
96
3

0.
15
5

0:
09
:3
4

−
0.
78
0

R
FC

0.
19
4

0.
94
8

0.
34
8

0:
09
:3
0

−
0.
75
5

D
T
C

L
in
e
X

−
0.
00
0

0.
82
6

0.
04
1

0:
18
:1
8

−
0.
00
5

L
G
B
M
C

0.
00
5

0.
52
3

0.
44
4

0:
21
:1
6

−
22
.9
14

D
T
C

L
in
e
y

0.
15
0

0.
89
4

0.
12
8

0:
07
:0
6

−
0.
75
5

R
FC

0.
15
0

0.
84
5

0.
21
0

0:
06
:4
8

−
1.
10
9

D
T
C

L
in
e
Z

0.
08
3

0.
90
6

0.
02
3

0:
13
:0
6

−
7.
08
5

R
FC

0.
06
7

0.
84
8

0.
19
9

0.
13
:5
4

−
10
.1
48

D
T
C

U
C
I
SE

C
O
M

0.
02
5

0.
58
1

0.
05
7

0:
05
:0
9

−
0.
32
0

R
FC

0.
0

0.
54
2

0.
08
8

0:
05
:2
9

0.
00
0

L
G
B
M
C

R
an
do

n
se
ar
ch

C
V
(M

C
C
)

G
la
ss

1
06
52

0.
89
0

0.
85
5

0:
00
:2
1

0.
75
0

X
G
B
C

Y
ea
st
-0
–2
–5
–6

0.
62
3

0.
83
2

0.
66
3

0:
00
:2
2

0.
54
4

R
FC

L
in
e
A

0.
18
5

0.
81
2

0.
04
6

0:
02
:1
5

0.
06
2

L
G
B
M
C

L
in
e
B

0.
51
8

0.
94
5

0.
51
3

0:
01
:4
2

0.
44
4

X
G
B
C

L
in
e
C

0.
33
4

0.
96
6

0.
23
7

0:
09
:5
3

0.
33
8

R
FC

L
in
e
X

0.
19
8

0.
88
8

0.
11
9

0:
20
:1
9

−
0.
35
4

R
FC

L
in
e
y

0.
28
9

0.
90
7

0.
19
9

0:
07
:1
7

0.
25
3

R
FC

L
in
e
Z

0.
09
9

0.
91
1

0.
05
2

0:
14
:2
1

−
2.
88
8

R
FC

U
C
I
SE

C
O
M

0.
02
5

0.
58
1

0.
05
7

0:
05
:0
5

−
0.
32
0

R
FC

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
re
su
lt
fo
r
a
da
ta
se
t

123

568 Journal of Intelligent Manufacturing (2022) 33:555–573

Table 5 Comparison of the average optimization time of all run execu-
tions

Dataset HyperOpt RandomSearchCV

Glass1 0:00:47 0:00:31

Yeast-0–2–5–6 0:00:50 0:00:32

Line A 0:04:40 0:04:29

Line B 0:02:42 0:02:37

Line C 0:12:44 0:11:20

Line X 0:48:32 0:49:56

Line Y 0:09:20 0:08:57

Line Z 0:20:27 0:16:36

UCI SECOM 0:16:28 0:21:15

for each ML model, as our experiments do not show a set of
parameters that is optimal across different cases. A compar-
ison of different winner parameter settings for other datasets
could be research in the future.

In Figs. 5 and 6 we illustrate all executions with all five
metrics compared by the MQI, which are distinguished by
different seeds for the run execution. The illustrations are
divided by the two optimization approaches.With these illus-
trations we show the variance of the results of all eight run

executions with the different optimization approaches. Fur-
ther, we show in each visualization as baseline the results of
the algorithm comparison from Fig. 4 (MQI metric) with an
orange boxplot as sixth result.

Based on the characteristic of the datasets Line Z and Line
X we can derive some further information. Line Z has the
most unbalanced dataset and this is reflected in the results.
Nevertheless, we achieved an EBR Result which is slightly
better than 0. Line X has the highest number of features and
for this dataset, we can also achieve an EBR result above 0.
This proves to us that real world data from manufacturing
with a high number of features can achieve usable results.

In 12 out of 18 experiments based on the cost-oriented
metrics (EBR & EBRP) RandomSearchCV shows a bet-
ter mean MQI value of all datasets compared to HyperOpt,
whereas it is the other way round for 6 out of 18 experiments.
In Fig. 7 we show that, RandomSearchCV indicate a slight
advantage, leading to a preferable use formanufacturing data.

In all three illustrations we use a vertical line to show
where a new dataset has begun and to highlight our EBR
Metric. For these visualizations we had to adjust the y-axes
to the maximal reachable result 1.0 and the threshold 0.0.
Some metrics performed below the threshold of 0.0. For the

Table 6 Used hyperparameters
for random forest classifier Parameter/line Line B Line C Line X UCI Secom

n_estimators 1000 1000 100 800

min_weight_fraction_leaf 0 0 0 0.1

min_samples_split 7 7 7 5

min_samples_leaf 7 7 2 5

max_depth 5 5 9 7

class_weight 0: 1, 1: 20 0: 1, 1: 20 0: 1, 1: 147 0: 1, 1: 20

Fig. 5 Comparison of used
metrics part 1

123

Journal of Intelligent Manufacturing (2022) 33:555–573 569

Fig. 6 Comparison of used
metrics part 2

Fig. 7 Cost-based Metric
Optimization Comparison

sake of simplicity, we do not illustrate results below -0.1 in
the visualization. The first point to mention is that our EBR
metric outperforms the other metrics in the majority of tested
cases. For example, the results of the MCC metric of the
dataset Line Z are even outside the chosen range of the figure.
An interesting point is that the PRC metric performed worse
than expected even though this metric should be favourable
for imbalanced datasets.

Finally, in Table 7 we compare the cost savings from the
optimized results in Figs. 5 and 6 with the worst, best and

mean results from Fig. 4 with the MQI metric. We took the
worst, best and mean results based on the MQI metric of
all run executions in Figs. 5 and 6. In Table 7 we find some
interesting information about the results. First, the best results
outperform the algorithm results from Fig. 4. Secondly, we
can get a worse result through the optimization, due to over-
fitting of the model. However, nearly all results are still in a
positive range or at least neutral EBR value, except Line A.
Further, all of these results are from algorithms, which are
not easy to interpret for a human being. Therefore, we pro-

123

570 Journal of Intelligent Manufacturing (2022) 33:555–573

Ta
bl
e
7
O
pt
im

iz
at
io
n
co
m
pa
ri
so
n

D
at
as
et
/m

et
ri
c

W
or
st
re
su
lts

fr
om

Fi
g.
4

(M
Q
I)

B
es
tr
es
ul
ts

fr
om

Fi
g.
4

(M
Q
I)

M
ed
ia
n
re
su
lt

fr
om

Fi
g.

4
(M

Q
I)

W
or
st
re
su
lt

fr
om

hy
pe
rp
ar
am

et
er

tu
ni
ng

ba
se
d
on

hy
pe
ro
pt

(F
ig
.5

)

B
es
tr
es
ul
tf
ro
m

hy
pe
rp
ar
am

et
er

tu
ni
ng

ba
se
d
on

hy
pe
ro
pt

(F
ig
.5

)

M
ed
ia
n
re
su
lt

fr
om

hy
pe
rp
ar
am

et
er

tu
ni
ng

ba
se
d
on

hy
pe
ro
pt

(F
ig
.5
)

W
or
st
re
su
lt

fr
om

hy
pe
rp
ar
am

et
er

tu
ni
ng

ba
se
d
on

ra
nd
om

-
se
ar
ch
C
V

(F
ig
.6

)

B
es
tr
es
ul
tf
ro
m

hy
pe
rp
ar
am

et
er

tu
ni
ng

ba
se
d
on

ra
nd
om

-
se
ar
ch
C
V

(F
ig
.6

)

M
ed
ia
n
re
su
lt

fr
om

hy
pe
rp
ar
am

et
er

tu
ni
ng

ba
se
d
on

ra
nd
om

-
se
ar
ch
C
V

(F
ig
.6
)

M
Q
I

M
Q
I

M
Q
I

M
Q
I

M
Q
I

M
Q
I

M
Q
I

M
Q
I

M
Q
I

G
la
ss
1

0.
00
0

0.
81
9

0.
66
2

0.
82
3

0.
91
1

0.
88
4

0.
84
2

0.
89
6

0.
89

Y
ea
st
-0
–2
–5
–6

0.
05
9

0.
56
8

0.
41
2

0.
55

0.
63
2

0.
59
7

0.
57
6

0.
64
4

0.
59
4

L
in
e
A

−
13
.9
96

−
0.
00
4

−
0.
13
4

−
0.
06
3

0.
06
2

−
0.
01
1

−
0.
1

0.
04
9

−
0.
02
6

L
in
e
B

−
6.
77
2

0.
36
0

0.
23
8

0.
42
8

0.
53
3

0.
49
4

0.
45
6

0.
55
2

0.
48
8

L
in
e
C

−
0.
94
6

0.
28
0

0.
02
6

0.
25
4

0.
34
6

0.
31
2

0.
26
5

0.
35
3

0.
32
35

L
in
e
X

−
16
.3
11

0.
06
6

−
0.
00
3

0
0.
14
8

0.
02
65

0
0.
10
5

0.
02
5

L
in
e
Y

−
21
.6
47

0.
08
0

0.
04
3

0.
21
6

0.
25
7

0.
24
55

0.
17
8

0.
26
6

0.
23
65

L
in
e
Z

−
6.
05
6

0.
00
0

−
0.
04
5

0
0.
00
6

0
0

0.
01
2

0

U
C
I
SE

C
O
M

−
0.
13
7

0.
01
4

−
0.
02
3

0
0.
04
8

0.
02
7

0
0.
10
5

0.
00
55

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
re
su
lt
fo
r
a
da
ta
se
t

pose utilizing our metric for production data with low error
rates as it creates a useful contribution to save costs in the
production process. In this comparison, both optimization
approaches perform similarly well.

Conclusion

In summary, this paper makes four core contributions. First,
we compare state-of-the-art algorithms for production data
and showed that decision trees are well suited, based on the
achieved results. Especially the advantage of the explainabil-
ity and interpretability of a Decision Tree algorithm could
be utilized to search for the root cause of an error. Second,
we provide an adjusted metric (EBR) that fits to the needs
of a production environment. The economic benefits of a
model can be quantified trough the value of the EBR metric.
With this point, we show a clear advantage over state-of-the-
art metrics. Therefore, we fulfil the mentioned requirements
for our metric from Sect. 3. Third, we compare the Ran-
domSearchCV and HyperOpt approach for hyperparameter
tuning in this context. As last contribution, we answer our
research questions for our manufacturing use case. (Q1) The
results from the established ML algorithms are acceptable
and can already provide a benefit. (Q2) The existing met-
rics can mislead a user and increase the costs dramatically
for a product. (Q3) By using hyperparameter tuning, we can
benefit from a substantial better result.

We are going to improve our data pre-processing and
extend the feature engineering pipeline for our AutoML tool.
Additionally, we want to exploit information from a knowl-
edge base about production in order to use it for the data
preparation and feature engineering.

Acknowledgements We want to thank the company SICK AG for the
cooperation in this project. Special thanks go to Nadine Gericke for the
helpful comments.

Funding Open Access funding enabled and organized by Projekt
DEAL. This project was funded by the German Federal Ministry of
Education and Research, funding line’Forschung an Fachhochschulen
mit Unternehmen (FHProfUnt)’, contract number 13FH249PX6. The
project is also co-financed by SICK AG. The responsibility for the con-
tent of this publication lies with the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Intelligent Manufacturing (2022) 33:555–573 571

Appendix

See Tables 8 and 9.

Table 8 Hyperparameter explanation

Hyperparameter Explanation

n_estimators The number of trees in the forest

max_depth The maximum depth of a tree

min_child_weight The minimum sum of instance weight (hessian) needed in a child

reg_alpha L1 regularization term on weights

reg_lambda L2 regularization term on weights

gamma The minimum loss reduction required to make a further partition on a leaf node of the tree

colsample_bytree The subsample ratio of columns when constructing each tree

learning_rate Step size shrinkage used in update to prevents overfitting

min_samples_split The minimum number of samples required to split an internal node

min_samples_leaf The minimum number of samples required to be at a leaf node

min_weight_fraction_leaf The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node

class_weight The weights associated with classes. The’balanced’ mode uses the values of y to automatically adjust weights
inversely proportional to class frequencies in the input data

scale_pos_weight Control the balance of positive and negative weights, useful for unbalanced classes

l2_leaf_reg The Coefficient at the L2 regularization term of the cost function

num_leaves The maximum number of leaves in one tree

max_features The number of features to consider when looking for the best split

iterations The maximum number of trees that can be built when solving machine learning problems

Table 9 Algorithms and hyperparameter

Algorithm Hyperparameter

Xgboost n_estimators: [100, 300, 500, 800, 1000]
max_depth: [3, 5, 7, 9]
min_child_weight: [1, 2, 3]
reg_alpha: [0, 0.005, 0.01, 0.05]
reg_lambda: [0, 0.2, 0.4, 0.6, 0.8, 1]
gamma: [0.0, 0.1, 0.2, 0.3]
colsample_bytree: [0.3, 0.4, 0.5, 0.7, 1.0]
learning_rate: [0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4]
scale_pos_weight: [B*0.5, B, B*2, M*0.5, M, M*2, 1]
(B � 10) (M � (sum(negative instances) / sum(positive instances)))

Random Forest n_estimators: [100, 300, 500, 800, 1000]
min_samples_split: [2, 5, 7, 9]
min_samples_leaf: [1, 2, 5, 7]
min_weight_fraction_leaf: [0, 0.05, 0.1, 0.15]
max_depth: [3, 5, 7, 9]
class_weight: [dict({0:1, 1:1}, dict({0:1, 1:5}), dict({0:1, 1:10}), dict({0:1, 1:20}),
dict({0:1, 1:int(M)}), dict({0:1, 1:int(M)*2}), dict({0:1, 1:int(M)*0.5})]
(M � (sum(negative instances) / sum(positive instances)))

Catboost iterations: [100, 300, 500, 800, 1000]
learning_rate: [0.15, 0.20, 0.25, 0.3, 0.35, 0.4]
l2_leaf_reg: [2, 3, 5, 7]
depth: [3, 5, 7, 9]
scale_pos_weight: [B*0.5, B, B*2, M*0.5, M, M*2, 1]
(B � 10) (M � (sum(negative instances) / sum(positive instances)))

123

572 Journal of Intelligent Manufacturing (2022) 33:555–573

Table 9 continued

Algorithm Hyperparameter

LightBGM learning_rate: [0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4]
num_leaves: [8, 12, 16, 31]
colsample_bytree: [0.3, 0.4, 0.5, 0.7, 1.0]
max_depth: [3, 5, 7, 9, − 1]
reg_alpha: [0, 0.005, 0.01, 0.05]
reg_lambda: [0, 0.005, 0.01, 0.05]
min_child_weight: [0.001, 1, 2, 3]
class_weight: [dict({0:1, 1:1}, dict({0:1, 1:5}), dict({0:1, 1:10}),dict({0:1, 1:20}),
dict({0:1, 1:int(M)}), dict({0:1, 1:int(M)*2}), dict({0:1, 1:int(M)*0.5})]
(M � (sum(negative instances) / sum(positive instances)))

Decision Tree max_depth: [None, 3, 5, 7, 9]
max_features: [’auto’]
min_samples_split: [2, 5, 7, 9]
min_samples_leaf: [1, 2, 5, 7]
class_weight: [dict({0:1, 1:1}, dict({0:1, 1:5}), dict({0:1, 1:10}), dict({0:1, 1:20}),
dict({0:1, 1:int(M)}), dict({0:1, 1:int(M)*2}), dict({0:1, 1:int(M)*0.5})]
(M � (sum(negative instances) / sum(positive instances)))

References

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S.,
Sánchez, L., & Herrera, F. (2011). Keel data-mining software tool:
data set repository, integration of algorithms and experimental
analysis framework. Journal of Multiple-Valued Logic and Soft
Computing 17.

Banzhaf,W., Nordin, P., Keller, R. E., & Francone, F. D. (1998) Genetic
programming: An introduction on the automatic evolution of com-
puter programs and its applications.

Bergstra, J. & Bengio, Y. (2012) Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 81–305.

Boughorbel, S., Fethi, J., Mohammed, E.-A. (2020). Optimal classi-
fier for imbalanced data using matthews correlation coefficient
metric. PLOS ONE. Public Library of Science. Retrieved Febru-
ary 12, 2020 from https://journals.plos.org/plosone/article?id=10.
1371/journal.pone.0177678

Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti,
R. (2019). Machine learning-based image processing for on-line
defect recognition in additive manufacturing. CIRP Annals, 68(1),
451–454. https://doi.org/10.1016/j.cirp.2019.03.021

Candel, A., Parmar, V., LeDell, E., & Arora, A. (2016). Deep learning
with H2O. H2O. AI Inc.

“CatBoost” CatBoost. Documentation. Retrieved February 10,
2020 from https://catboost.ai/docs/concepts/python-reference_
parameters-list.html

Cohen, J. (1960). A coefficient of agreement for nominal scales. Edu-
cational and Psychological Measurement, 20(1), 37–46.

Dao, T. K., Pan, T. S., & Pan, J. S. (2018). Parallel bat algorithm for
optimizing makespan in job shop scheduling problems. Journal of
Intelligent Manufacturing, 29(2), 451–462.

“DecisionTreeClassifier” scikit. Retrieved February 10, 2020.
https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

Domingos, P. (1999). “MetaCost.” In: Proceedings of the fifth ACM
SIGKDD international conference on knowledge discovery and
data mining—KDD 99, 155–64. https://doi.org/10.1145/312129.
312220

Drummond, C., & Holte, R. C. (2006). Cost curves: An improved
method for visualizing classifier performance.Machine Learning,
65(1), 95–130. https://doi.org/10.1007/s10994-006-8199-5

Du, J. X., Cai, Z. X., & Ling, C. X. (2007). Cost-sensitive decision
trees with prepruning. Advances in Artificial Intelligence (Lecture
Notes in Computer Science) 171–79

Dua, D. & Graff, C. (2020). UCI machine learning repository. Irvine,
CA,University of California, School of Information andComputer
Science. Retrieved January 25, 2020 from http://archive.ics.uci.
edu/ml

Delgado, R., & Xavier-Andoni, T. (2019). Why Cohen’s Kappa should
be avoided as performance measure in classification. PLoS ONE.
https://doi.org/10.1371/journal.pone.0222916

Feurer, M., Aaron, K., Katharina, E., Jost, T. S., Manuel, B., & Frank,
H. (2019). Auto-Sklearn: Efficient and robust automated machine
learning. Automated Machine Learning the Springer Series on
Challenges in Machine Learning. https://doi.org/10.1007/978-3-
030-05318-5_6

Gerling, A., Ulf, S., Andreas, H., Alaa, S., Holger, Z., & Djaffar, A.
(2020). A reference process model for machine learning aided
production quality management. In: Proceedings of the 22nd inter-
national conference on enterprise information systems 1, 515–23.
https://doi.org/10.5220/0009379705150523

Golovin, D., Benjamin S., Subhodeep, M., Greg, K., John, K., & Scul-
ley, D. (2017). Google Vizier. In: Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and
datamining—KDD17. https://doi.org/10.1145/3097983.3098043

Hirsch, V., Peter, R., & Bernhard, M. (2019) Data-driven fault diag-
nosis in end-of-line testing of complex products. In: 2019 IEEE
international conference on data science and advanced analytics
(DSAA), https://doi.org/10.1109/dsaa.2019.00064

Ho, Y., & Pepyne, D. (2002). Simple explanation of the no-free-
lunch theorem and its implications. Journal of Optimization
Theory and Applications, 115, 549–570. https://doi.org/10.1023/
A:1021251113462

“HyperOpt” Hyperopt Documentation. Retrieved February 10, 2020
from http://hyperopt.github.io/hyperopt/#hyperopt-distributed-
asynchronous-hyper-parameter-optimization

Kim, A., Oh, K., Jung, J. Y., & Kim, B. (2018). Imbalanced classi-
fication of manufacturing quality conditions using cost-sensitive
decision tree ensembles. International Journal of Computer Inte-
grated Manufacturing, 31(8), 701–717.

Kirchen, I., Vogel-Heuser, B., Hildenbrand, P., Schulte, R., Vogel,
M., Lechner, M., et al. (2017). Data-driven model development
for quality prediction in forming technology. In 2017 IEEE

123

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177678
https://doi.org/10.1016/j.cirp.2019.03.021
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://doi.org/10.1145/312129.312220
https://doi.org/10.1007/s10994-006-8199-5
http://archive.ics.uci.edu/ml
https://doi.org/10.1371/journal.pone.0222916
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.5220/0009379705150523
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1109/dsaa.2019.00064
https://doi.org/10.1023/A:1021251113462
http://hyperopt.github.io/hyperopt/#hyperopt-distributed-asynchronous-hyper-parameter-optimization

Journal of Intelligent Manufacturing (2022) 33:555–573 573

15th international conference on industrial informatics (INDIN)
(pp.775–780). IEEE. https://doi.org/10.1109/indin.2017.8104871

Krauß, J., Pacheco, B. M., Zang, H. M., & Schmitt, R. H. (2020).
Automated machine learning for predictive quality in produc-
tion.ProcediaCIRP, 93, 443–448. https://doi.org/10.1016/j.procir.
2020.04.039

Kochura, Y., Sergii, S., Oleg, A., Michail, N., &Yuri, G. (2017). Perfor-
mance analysis of open source machine learning frameworks for
various parameters in single-threaded and multi-threaded modes.
Advances in Intelligent Systems and Computing II Advances in
Intelligent Systems and Computing. https://doi.org/10.1007/978-
3-319-70581-1_17

Kotthoff, L., Chris, T., Hoos, H. H., Hutter, F., & Kevin, L.-B.
(2019). Auto-WEKA: Automatic model selection and hyperpa-
rameter optimization inWEKA. AutomatedMachine Learning the
Springer Series on Challenges in Machine Learning. https://doi.
org/10.1007/978-3-030-05318-5_4

Krętowski, M., & Marek, G. (2006). Evolutionary induction of cost-
sensitive decision trees. Lecture Notes in Computer Science Foun-
dations of Intelligent Systems. https://doi.org/10.1007/11875604_
15

Li, Z., Zhang, Z., Shi, J., & Dazhong, Wu. (2019). Prediction of sur-
face roughness in extrusion-based additive manufacturing with
machine learning. Robotics and Computer-Integrated Manufac-
turing, 57, 488–495. https://doi.org/10.1016/j.rcim.2019.01.004

Liu, G., Gao, X., You, D., & Zhang, N. (2019). Prediction of high
power laser welding status based on PCA and SVM classifcation
of multiple sensors. Journal of Intelligent Manufacturing, 30(2),
821–832. https://doi.org/10.1007/s10845-016-1286-y

“LightGBM” Parameters—LightGBM 2.3.2 documentation. Retrieved
February 10, 2020 from https://lightgbm.readthedocs.io/en/latest/
Parameters.html

Loyola-Gonzalez, O., Jose, F. C. O., Martinez-Trinidad, J.A.C.-O., &
Milton, G.-B. (2019). Cost-sensitive pattern-based classification
for class imbalance problems. IEEE Access, 7, 60411–60427.
https://doi.org/10.1109/access.2019.2913982

Maher, M. M., Maher, Z. A., & Sherif, S. (2019) SmartML: A meta
learning-based framework for automated selection and hyperpa-
rameter tuning for machine learning algorithms. EDBT: 22nd
international conference on extending database technology. https://
doi.org/10.5441/002/edbt.2019.54

Matthews, B.W. (1975). Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme. Biochimica et Biophysica
Acta (BBA)—Protein Structure 405(2), 442–51. https://doi.org/10.
1016/0005-2795(75)90109-9.

Moldovan, D., Cioara, T., Anghel, I., & Salomie, I. (2017). Machine
learning for sensor-based manufacturing processes. In: 13th IEEE
international conference on intelligent computer communication
and processing (ICCP), 147–54. https://doi.org/10.1109/ICCP.
2017.8116997

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., La,
C. K., &Moore, J. H. (2016). Automating biomedical data science
through tree-based pipeline optimization. Applications of Evolu-
tionary Computation Lecture Notes in Computer Science. https://
doi.org/10.1007/978-3-319-31204-0_9

Olson, R. S., & Moore, J. H. (2019). TPOT: A tree-based pipeline
optimization tool for automating machine learning. Automated
Machine Learning the Springer Series on Challenges in Machine
Learning. https://doi.org/10.1007/978-3-030-05318-5_8

“RandomForestClassifier” scikit. Retrieved February 10, 2020
from https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

Ren, L., Meng, Z., Wang, X., Zhang, L., & Yang, L. T. (2020). A
data-driven approach of product quality prediction for complex
production systems. IEEE Transactions on Industrial Informatics.
https://doi.org/10.1109/TII.2020.3001054

Sankhye, S., & Hu, G. (2020). Machine learning methods for quality
prediction in production. Logistics, 4(4), 35.

Sarath, S. (2018). Area under the ROC curve—explained. Medium.
Medium. https://medium.com/@sarath13/area-under-the-roc-
curve-explained-d056854d3815

Shmueli, B. (2019). Matthews correlation coefficient is the
best classification metric you’ve never heard of. Medium.
Towards Data Science. https://towardsdatascience.com/the-
best-classification-metric-youve-never-heard-of-the-matthews-
correlation-coefficient-3bf50a2f3e9a

SICK AG. Retrieved April 23, 2020 from https://www.sick.com/de/de/
Tangjitsitcharoen, S., Thesniyom, P., & Ratanakuakangwan, S. (2017).

Prediction of surface roughness in ball-end milling process by uti-
lizing dynamic cutting force ratio. Journal of Intelligent Manufac-
turing, 28(1), 13–21. https://doi.org/10.1007/s10845-014-0958-8

Thornton, C., FrankH., Hoos,H.H.,&Leyton-Brown,K. (2013). Auto-
WEKA. In: Proceedings of the 19th ACM SIGKDD international
conference on knowledge discovery and data mining—KDD.
https://doi.org/10.1145/2487575.2487629

Wang, G., & Jiao, J. (2017). A kernel least squares based approach for
nonlinear quality-related fault detection. IEEE Transactions on
Industrial Electronics, 64(4), 3195–3204. https://doi.org/10.1109/
TIE.2016.2637886

Wilhelm, Y., Schreier, U., Reimann, P., Mitschang, B., & Ziekow, H.
(2020). Data Science approaches to quality control in manufac-
turing: A review of problems, challenges and architecture. In:
Symposium and Summer School on Service-Oriented Computing
(pp. 45–65). Springer.

Worcester, P. (2019). A comparison of grid search and randomized
search using scikit learn. Medium. Noteworthy—The Journal
Blog. https://blog.usejournal.com/a-comparison-of-grid-search-
and-randomized-search-using-scikit-learn-29823179bc85?gi=
2eb9f2afe9a3

“XGBoost” XGBoost Parameters - xgboost 1.1.0-SNAPSHOT doc-
umentation. Accessed February 10, 2020. https://xgboost.
readthedocs.io/en/latest/parameter.html.

Yuan, X., Lin, L., Yalin, W., Chunhua, Y., & Weihua, G. (2020). Deep
learning for quality prediction of nonlinear dynamic processeswith
variable attention-based long short-term memory network. The
Canadian Journal of Chemical Engineering, 98(6), 1377–1389.
https://doi.org/10.1002/cjce.23665

Zhang, S., Zhu, X., Zhang, J., & Zhang, C. (2007). Cost-time sensitive
decision tree with missing values. Knowledge Science, Engi-
neering and Management (Lecture Notes in Computer Science)
447–59.

Zhenyu, L., Zhang, D., Jia, W., Lin, X., & Liu, H. (2020). An adversar-
ial bidirectional serial–parallel LSTM-based QTD framework for
product quality prediction. Journal of Intelligent Manufacturing
31, 1511–1529. https://link.springer.com/article/10.1007/s10845-
019-01530-8

Zhou, L., Wang, H., Lu, Z. M., Nie, T., & Zhao, K. (2016). Face recog-
nition based on LDA and improved pairwise-constrained multiple
metric learning method. Journal of Information Hiding and Mul-
timedia Signal Processing, 7(5), 1092.

Ziekow, H., Schreier, U., Saleh, A., Rudolph, C., Ketterer, K.,
Grotzinger, D., & Gerling, A. (2019) Proactive error prevention
in manufacturing based on an adaptable machine learning envi-
ronment. Research to Application 113.

Zonnenshain, A., & Kenett, R. S. (2020). Quality 4.0—the challenging
future of quality engineering.Quality Engineering. https://doi.org/
10.1080/08982112.2019.1706744

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/indin.2017.8104871
https://doi.org/10.1016/j.procir.2020.04.039
https://doi.org/10.1007/978-3-319-70581-1_17
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/11875604_15
https://doi.org/10.1016/j.rcim.2019.01.004
https://doi.org/10.1007/s10845-016-1286-y
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://doi.org/10.1109/access.2019.2913982
https://doi.org/10.5441/002/edbt.2019.54
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1109/ICCP.2017.8116997
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1007/978-3-030-05318-5_8
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://doi.org/10.1109/TII.2020.3001054
https://medium.com/@sarath13/area-under-the-roc-curve-explained-d056854d3815
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://www.sick.com/de/de/
https://doi.org/10.1007/s10845-014-0958-8
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1109/TIE.2016.2637886
https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85?gi=2eb9f2afe9a3
https://xgboost.readthedocs.io/en/latest/parameter.html
https://doi.org/10.1002/cjce.23665
https://link.springer.com/article/10.1007/s10845-019-01530-8
https://doi.org/10.1080/08982112.2019.1706744

	Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric
	Abstract
	Introduction
	Domain description
	Literature review
	Metrics
	Automl tool and setup
	Workflow
	Dataset and class distribution
	Test setup (machine hardware, software versions)
	Data preparation for training
	Hyperparameters
	Parameter optimization

	Algorithm comparison
	Metric comparison for hyperparameter tuning
	Conclusion
	Acknowledgements
	Appendix
	References

