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Abstract
This paper introduces a new concept to solve car sequencing problem called the Car Sequencing Problem 4.0, focuses the
paint shop. The problem of effective car sequencing in the paint shop is caused by the specifics of the production process itself
and the structure of the production line. Sequencing of cars as required by the painting process is justified economically. The
main goal is to minimize the number of costly changeovers of the painting guns because of color changes and to synchronize
those with periodic cleanings, forced by technological requirements. For this purpose, a buffer located in the paint shop is
applied. In this paper a game theoretic framework is presented to analyze the problem. Three games are introduced: Buffer
Slot Assignment Game–Buffer-OutShuttle Game called the BSAG-BOSG, In–Out Shuttle Game and its modification called
modified In–Out Shuttle Game. Based on the simulations performed the efficiency of the algorithms is verified using several
datasets.

Keywords Car production · Sequencing · Car sequencing problem · Game theory · Nash equilibrium

Introduction

The production model Make to Order is widely used in mod-
ernmanufacturing plants. Its use is most oftenmotivated by a
variety of customer requirements. In such plants, production
lines are flexible and produce a variety of products produced
at many stages of production. Due to the fact that the pro-
cessing time of different types of products varies, storage
is organized between each stage. This is to guarantee both
continuity of production and the possibility of changing the
order of production.

This paper considers a special case; car production. It con-
sists of four main stages (Fig. 1).

Car production begins at the press shop, where, first of all,
sheetmetal is cut, followedbypressing of the individual com-
ponents of car bodies. The body parts obtained in this way
are connected in the correct order at the body shop. Complete
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bodies are then transported to the paint shop, where the paint-
ing process is carried out. After its completion, the finished
bodies are dried and transferred to the assembly line. This line
comprises of several dozen stands on which all parts of the
car equipment are assembled, including seats, dashboards,
etc. It can be pointed out that the problem of sequencing has
already appeared at the paint shop stage. Several layers of
paint are applied to the car body at many subsequent paint-
ing stations, see Fig. 2: vehicle bodies go through several
production stages before they are actually painted in a spe-
cific color.

The paint shop conveyor system transfers car bodies
between these stages of production, but also includes buffers
in which bodies can be temporarily stored; buffering is par-
ticularly important from the perspective of ensuring the
continuity of the production process. In the event of down-
time in the paint shop due to lack of paint, the vehicles are
stored in the buffer until it is completely filled. Furthermore,
if a failure occurs in the body shop, car bodies stored in the
buffer are successively transported to an output line; prevent-
ing downtime in the painting process.

In some paint stations, e.g. the primary and base paint
shops, changing to a different color results in costs associ-
ated with a change in configuration, which depends on the
sequence; if subsequent vehicles in the conveyor system do
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Fig. 1 The structure of the car production line

Fig. 2 The structure of the car
production line

not have the same color, it is necessary to remove the old
paint from the gun and clean the gun head solvent before
applying a new color. This process not only wastes time
and money, but is also not environmentally friendly. The
painting process is the primary source of air emissions for
regulated chemicals, including volatile organic compounds
(VOCs) and hazardous air pollutants (HAPs). Solid and haz-
ardous waste is also produced by the painting process, e.g.
wasted paint through overspray, chemicals used to clean the
paint lines and application equipment (Geffen&Rothenberg,
2000).

The color of the car is usually already determined when it
enters the paint shop. In addition, often the previous system
(body shop) does not supply cars in a color sequence. That is
why in many paint shops significant optimization potential
lies in setting the batch before entering a given painting sta-
tion. The car sequencing problems currently discussed in the
literature focuses on creating the longest possible blocks of
cars that must be painted in the same color at a given painting
station, by changing the body sequence using a buffer system.
This problem has many names, including the Car Sequenc-
ing Problem (CSP) (Solnon et al., 2008), the Color Batching
Problem (CBP) (Spieckermann et al., 2004) and the Paint
Shop Problem for Words (PPW) (Epping et al., 2004). The
problems considered do not include the periodic cleaning of
paint guns occurring within the actual production system.

Periodic cleaning is necessary due to the need to maintain
a good quality of painting process; if the guns are not cleaned
regularly, the remaining paint will agglutinate, which results
in poor quality of the paint coat. One of the parameters of
periodic cleaning is its interval, which determines the number
of painted car bodies after which this cleaning occurs. From
the point of view of optimization of the painting process,
both the gun cleaning due to color changes and the periodic
cleaning should be considered.

In this paper, the problem of sequencing car bodies
directed to the painting station intended for painting in a
base color is considered. The sequence is changed by using a
buffer with a specific structure and dimensions. Because it is
necessary tominimize solvent consumption and unnecessary
paint loss the process optimization aims to bothminimize the
number of color changes and synchronize these changes with
periodic cleanings. Furthermore the decision-makingprocess
is carried out online in conditions of incomplete information
and a correlation between the loading and unloading sides of
the buffer is ensured. The specificity of this problem results
from the observation of the paint shop’s demand for solutions
taking into account the above-mentioned assumptions. This
problem has been named Car Sequencing Problem 4.0 (CSP
4.0), because it is a part of larger project called Paint Shop
4.0. This concept is still developed in cooperation with Pro-
Point S.A. as a response for the need to automateworkstations
located in the paint shop, using tools typical for Industry 4.0,
like Virtual Engineering and Virtual Commissioning (Bysko
&Krystek, 2020). The project is being commissioned for one
of the foreign car manufacturer. The actual data provided by
the company were used for development of sequencing algo-
rithms. Due to protection of undisclosed information, the
paper does not specify the location of the project, details of
used data and the proposed algorithms implementations.

One of the goals of Industry 4.0 is to introduce smart
factories with systems enabling intelligent management in
order to predict and react effectively and quickly to events
and changes in state of the production system (Giannetti &
Essien, 2022; Oluyisola et al., 2022). It is crucial especially
in the optimization of flexible production systems, an exam-
ple of which is the paint shop presented in this paper. The
initial stage of work on the Paint Shop 4.0 project assumed
the development of a system for managing the buffer located
in the paint shop. The designed smart buffer control system
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(Bysko &Krystek, 2020) is a control system for buffer trans-
port devices integrated with a sequencing algorithm. The
smart system was designed through the development of a
functional model of the buffer, and the building of Virtual
Commissioning environment. From the point of view of the
CSP 4.0, the implemented algorithm plays the main role of
the system.

So far, as part of the work conducted on this problem,
approaches such as using priority and follow-up algorithms
have been reviewed (Bysko & Krystek, 2019; Krystek &
Bysko, 2019). This paper focuses on algorithms which are
based on game theory, i.e. the BSAG-BOSG concept (Buffer
Slot Assignment Game – Buffer-OutShuttle Game), the
IOSG concept (Input–Output Shuttle Game) and its mod-
ified version, the mIOSG concept (modified Input–Output
Shuttle Game). The proposed approaches are presented and
discussed in detail. Test results from these approaches are
compared.

The article is organized as follows. “Literature review”
section presents similar sequencing problems considered in
the literature and the methods used to solve them. “The car
sequencing problem4.0” section describesCSP 4.0 proposed
by the authors. “Game theory approach” section introduces
approaches to solve CSP 4.0 based on game theory and
describes the practical implementation of proposed algo-
rithms. “Conclusions” section presents the experimental
research and discussion of the results obtained. The paper
is concluded in the final Section.

Literature review

A literature review was carried out for the car sequencing
problem in view of the requirements and limitations of var-
ious production departments, in particular the paint shop
and assembly line. This section presents the most commonly
considered sequencing problems and developed methods of
solving them.

The car sequencing problem

Research on scheduling car production processes focused
mainly on the problem of car sequencing. This problem was
presented and described by Parello et al. (1986) for the first
time. The Car Sequencing Problem is concerned with the
sequencing of cars in the assembly shop, in which various
options (e.g. sunroof, air conditioning) are to be installed in
cars by appropriate work stations located along the assem-
bly line. Each workstation is designed to handle a certain
numbers of cars passing along an assembly line. To prevent
overloading the workstation, cars requiring the same options
have to be spaced out in the processing sequence. It was real-
ized from 2005 onwards that it was necessary to expand CSP

to include an assembly line as well as a paint shop. Thus,
additional parameters and constraints associated with the car
painting process were introduced to the primary definition of
CSP. The modified problem became the main subject in the
ROADEF’2005 Challenge, organized by the French Society
of Operations Research andDecisionAnalysis (Solnon et al.,
2008).

In the literature the CSP was solved using different
approaches: constraint programming (Codognet & Diaz,
1996), integer programming (Gravel et al., 2005; Jahren
& Achá, 2018) and branch and bound (Valdondo & Gude,
2007). Among the approximate methods two stand out: the
local search (Neveu et al., 2004) and the very fast local search
method (Estellon et al., 2004) whichwon the ROADEF’2005
Challenge. Other methods were the beam search procedure
(Bautista et al., 2008), tabu search (Zufferey et al., 2006),
simulated annealing (Chew et al., 1992; Briant et al., 2008),
genetic algorithm (Cheng et al., 1999), ant colony optimiza-
tion (Moya et al., 2019; Solnon, 2000; Stutzle &Hoos, 2000)
and hybrid algorithms (Thiruvady et al., 2011, 2014; Zhang
et al., 2018).

The color batching problem

The research, which is closer to the one considered in the
paper, concerned the Color Batching Problem. It is based on
the use of a buffer system to adapt the sequence of cars from
the body shop so that the resulting sequence best suits the
needs of the paint shop. In particular, the goal is to minimize
the number of color changes (or equivalent, maximizing the
average size of color blocks) in the output sequence.

The CBP was formulated as a Sequential Ordering Prob-
lem by Spieckermann et al. (2004). To solve the problem
they proposed to use the Branch and Bound (B&B) algo-
rithm. Moon et al. (2005) developed a color rescheduling
storage, which was used in an automotive factory, and pro-
posed some simple rules to operate the buffer. Two ant colony
optimization algorithms were considered by Hartmann and
Runkler (2008). The methods were tested for two online
re-sequencing stages; filling and releasing the buffer. Two
heuristics: arraying in the filling stage and shuffling applied
to unloading cars from the buffer, were developed by Sun
et al. (2015). Such an approach allowed for quick and effec-
tive solutions to CBP. As a result of conducted research the
authors stated that the developed heuristics can cooperate
with each other in order to obtain competitive solutions for
CBP. In addition the computational time was short. CBP
was also analyzed in the context of the application in M-
to-1 conveyor systems (Ko et al., 2016). The motivation of
their research was the problem of re-sequencing a problem
occurring for a Korean car manufacturer. The authors pro-
posed a mixed-integer linear programming model for CBP
and used dynamic programming for a special case of the
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problem under consideration, i.e. 2-to-1 conveyor system.
They considered two genetic algorithms to find near-optimal
solutions for the general case.

The paint shop problem for words

The methods listed in Sect. 2.2 were based on the use of a
buffer for physical car re-sequencing, but in some literature
studies the problem of color grouping was analyzed based
on the virtual re-sequencing strategy. Such an approach is
also known as the Paint Shop Problem for Words. This issue
was formulated by Epping et al. (2004). In this case, the
car positions in the sequence remain unchanged, but vehicle
colors are assigned again to cars that have identical attributes.

Four heuristics to solve the PPW were described by Xu
and Zhou (2016). They found the beam search algorithm to
be the best of the methods that were tested. In the literature
(Amini et al., 2010; Andres & Hochstättler, 2011), a special
case of PPW was also looked at, i.e. PPW(2,1), known as
the binary problem of PPW, which involves only two colors.
Such a problem occurs where each type of car appears twice
and must be painted in a different color. Virtual and phys-
ical re-sequencing approaches were considered by Sun and
Han (2017). Based on the research conducted they showed
that integration of these two kinds of re-sequencing methods
allows better color grouping results to be obtained compared
with conventional physical re-sequencing.

Verification of assumptions for theoretical problems

Based on the analysis of the problems reviewed in the liter-
ature, in the context of the paint shop, it can be stated that in
reality some assumptions make application of the developed
solutions difficult. Among them are:

1. Access to complete information about the initial
sequence of vehicles in which the order is to be changed.
A production plan is known in the actual production
system, but the sequence of vehicles at each stage of pro-
duction is unknown.Thismeans that the decision-making
process is carried out online in conditions of incomplete
information, for example, the color of the car body can
be read immediately before entering the buffer, therefore
the decision is made on the basis of information about
one current car body that appears on the buffer input.
The color sequence of subsequent bodies on the line pre-
ceding the buffer is unknown.

2. Only one optimization goal; minimization the number of
color changes.
Considering the requirements of industrial plants, it is
necessary to minimize solvent consumption and unnec-
essary paint loss. This can be achieved if the number of

color changes is minimized and, moreover, the aim is to
synchronize these changes with periodic cleaning. Con-
sider the following example:

– the periodic cleaning interval is 3,
– the production plan assumes painting 3 cars to gray
and 2 cars to red.

Sample sequences are presented in Fig. 3. Sequence A
generates three color changes, sequences B and C two,
sequences D and E only one. If we consider only one
optimization criterion, which is minimizing the number
of color changes (maximizing the length of a block of
cars in one color), the D and E sequences are optimal.
Between the groups of car bodies in two colors the min-
imum number of color changes is 1.
Analyzing these sequences from the perspective of two
optimization criteria, it can be seen that for sequences B
and C, periodic cleaning will take place between bodies
of the same color. As a result, the paint remaining in the
guns will be unnecessarily lost because after the cleaning
process the gun will be reloaded with paint of the same
color. Therefore, such sequences are particularly disad-
vantageous from the perspective of minimizing paint and
solvent consumption. Sequence A is an example where
one color change is overlapped with periodic cleaning,
but in addition there are two additional color changes. For
sequences D and E, the only difference is swapping the
order of the red and gray car blocks, but the benefit is sig-
nificant; sequence E requires only one gun to be cleaned,
because the color change occurs at the same time as the
periodic cleaning.
Based on the examples presented, it can be concluded
that the answer to industry requirements is the search for
sequences that not only minimize the number of color
changes, but also synchronize these changes with peri-
odic cleaning of the paint guns.

3. Most of the developedmethodswere either intended only
for sequencing at the buffer output (e.g. Spieckermann
et al., 2004), or did not take into account the need for
correlation of heuristics used at the loading andunloading
stage of the buffer (e.g. Sun et al., 2015).

The car sequencing problem 4.0

Cars that are transported between the welding and paint shop
create the sequence in real time. At the moment when the
car reaches the entry position of the buffer, a video camera
reads a QR on the car containing information on what color
the car body should be painted. This means that the buffer
input sequence is not known in advance, only the produc-
tion plan specified for the specified time horizon is available.
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Fig. 3 Impact of sequence selection on the number of color changes

Fig. 4 Illustration of information
available in the sequencing
process

Thus, input decisions are made based on limited information
(Fig. 4), i.e. only the following data is known:

– The color of the car located on the loading shuttle described
as cIn (1).

– The color of the car located on the buffer input, described
as cNext (2).

– The color of all cars located in the buffer (3).
– The colors of all cars that left the buffer, the last car which
left the buffer is described as cOut (4).

The sequencing problem described can be classified as
an online problem (Fiat & Woeginger, 1998). It consists of
making two decisions in real time (Fig. 5):

1. Entry decision: when a car appears on the buffer input,
the line to which the car is directed is determined.

Fig. 5 Decision making process

2. Exit decision: on the unloading side of the buffer, it is
necessary to decide which car should be directed to the
paint station.

The decision must be completed within one cycle of the
painting operation, which again confirms that the require-
ments of the car industry must be met in real time. One cycle
is equal to the time needed at a given station to paint one car
body. In the automotive industry, cycle times usually range
from 30 s to 3–4 min (Spieckermann et al., 2004).

123



1042 Journal of Intelligent Manufacturing (2024) 35:1037–1053

Fig. 6 Possible solution for the example from Fig. 5

Problem formulation

The problem presented is called the Car Sequencing Prob-
lem 4.0, because it is a part of a larger project: Paint Shop
4.0 (Bysko & Krystek, 2020). An instance of the problem
considered is defined as a tuple (V , C, NRowBuff , NCol-
Buff , NPerClean), based on production plan and technical
parameters, where:

– V = {v1, . . . , vN }—set of vehicles to be produced,
– C = {c1, . . . , cD}—set of available colors and function

c: V → C, that associates color ci to each vehicle vi,
– NRowBuff , NColBuff—buffer size defined by number of
buffer rows and number of buffer columns,

– NPerClean—periodic cleaning interval.

The solution of the CSP 4.0 is a sequence δ = (δn)n∈{1,…, N}

which defines an order in which cars are delivered to the
paint station.The sequence is generated in real time, therefore
the solution is known only after the current production plan
is completed. This means that it is difficult to predict the
consequences of a decision made on an ongoing basis. For
the example shown in Fig. 5, one of the possible sequences
is the sequence δ = δ1, δ3, δ5, δ4, δ2, δ6 (Fig. 6).

Quality indices

In order to evaluate the solution of Car Sequencing Problem
4.0, two quality indices are proposed (1,2).

– Number of Changeovers (NCs): defines the number of
color changes excluding the changes occurring during
periodic cleaning.

NCs =
∑

1 ≤ n ≤ N − 1
nmod N PerClean �= 0

isCCn, n+1 (1)

where: N—number of vehicles to be produced,

isCCn, n+1 =
{
0, c(vn) = c(vn+1)

1, else
—the variable deter-

mining whether there is a color change between the next
two cars, c(vn)—the color of n-th vehicle.

– Effectiveness of Synchronization (ES): determines the
total number of color changes occurring between two sub-
sequences in relation to the number of all color changes.

E S =

∑
1 ≤ n ≤ N − 1

nmod N PerClean = 0

isCCn, n+1

[ N−1
N PerClean

] × 100%

(2)

Hierarchical optimization

The optimization problem is to findNPerClean-element sub-
sequences for which the number of color changes requiring
gun changeovers is minimal. Consequently, the number of
changeovers for the whole sequence, which is a solution
of the problem, is also minimal. For economic reasons, the
most favorable situation is when the gun changeover coin-
cides with periodic cleaning. It should be noted that in the
search for a problem, a hierarchical approach is used. The pri-
mary optimization goal is to minimize the number of color
changes, while the secondary optimization goal is to maxi-
mize the value of the ES indicator. For the example shown
in Fig. 7, two solutions are presented. Figure 8 presents an
optimal solution in terms of the primary optimization goal
and Fig. 9 shows the sequence obtained when the secondary
goal is also taken into account.

Game theory approach

The Car Sequencing Problem 4.0 discussed is making two
real-time decisions regarding the choice of transport line for
a car entering the buffer and the choice of a car directed
to the paint shop. Each of these decisions can be made as a
result of playing the proposed games once (Bysko&Krystek,
2018). This section introduces and describes in detail three
concepts, which are based on game theory. There are: Buffer
Slot Assignment Game–Buffer-OutShuttle Game called the
BSAG-BOSG concept, In–Out Shuttle Game (IOSG) and its
modification calledmodified In–Out Shuttle Game (mIOSG).

John von Neumann presented in 1928 the basic ideas of
game theory, which were originated from the problems of
maximum and minimum (Leonard, 1995). In 1944, mathe-
matician. J. vonNeumann and economist OskarMorgenstern
published a work in which they formulated previously devel-
oped theories (von Neumann & Morgenstern, 1944). A
general model of sequential games in an extensive form was
formulated, such a game is characterized by the finite num-
ber of players, the set of possible strategies or choices for the
players and the payoff function (cost function). The payoff
function determines what is the cost to each player based
on a given strategy profile. J. von Neumann and O. Mor-
genstern described this game structure as a normal form,
players choose strategies simultaneously. A strategy is the
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Fig. 7 Example input sequence

Fig. 8 Example output sequence
obtained after taking into account
the primary optimization goal

Fig. 9 Example output sequence
after taking into account two
optimization goals

complete instruction of actions which player can take in a
game. A payoff function, which assigns a certain payoff to
each player depending on his strategy and the strategy of the
other players. In this article, it is proposed to use theweighted
criteriamethod to determine the players payoff function. This
method consists in reducing a multi-criteria problem to a
single-criteria problem as a result of introducing a substitute
criterion, which is a weighted sum of the criteria. If the num-
ber of players is limited to two and if their sets of strategies
consist of only a few elements, the outcome of the payoff
function can be represented in the so-called payoff matrix.

Due to specific properties, there are many types of strat-
egy games. Game theory has evolved from finite to infinite,
from two players to many players or from certainty prob-
lems to random problems. The subject of this research are
non-cooperative, 2-person non-zero-sum games played once
with complete information and the finite number of strate-
gies. In a such type of game, the players need to choose their
strategies before make any binding decisions. A two player
game is called a zero-sum game if the sum of the payoffs to
each player is constant for all possible outcomes of the game.
Complete information means that the players’ strategies and
payoffs are common knowledge to all players.

One of the fundamental concept in game theory is Nash
equilibrium (Nash, 1950). It defines a situation where each
player’s strategy is optimal given the strategies of all other
players. It also allows predicting the decisions of the players
if they aremaking decisions at the same time and the decision
of one player takes into account the decisions of other play-
ers. A game may include multiple Nash equilibria or none
of them. In this paper the Nash equilibrium as the standard
desired strategy is proposed to model the individual choices
of players in a game.

BSAG-BOSG concept

In the case of theBSAG-BOSGconcept the sequencing prob-
lem is solved by playing two independent games; the BSAG
game is played on the buffer entry side and the BOSG game
is played on the buffer exit side.

Buffer slot assignment game (BSAG)

On the buffer loading side, the decision problem can be
defined analogously to the concept presented by Ayala et al.
(2011). In general, it can be considered that the buffer is a
set of parking spaces (slots) for cars that are on the side of
the entrance. Each of the cars entering can be treated as an
independent decision-making agent. Such a formulation of
the car sequencing problem, as an allocation of assigning a
parking space, allows us to consider CSP 4.0 as a game. It is
assumed that vehicles entering the paint shop are players and
that they compete for parking spaces and want to maximize
profit at the same time. Their payment depends on their own
choices and choices of other players. Taking into account
incomplete access to information and the considered struc-
ture of the buffer, the Buffer Slot Assignment Game can be
defined as follows:

– the set of players: P(BSAG) = {vI, vII} (vI – vehicle located
on the loading conveyor, vII—vehicle located on the buffer
input),

– the set of available strategies: S= {s1, s2, s3, s4, s5} (trans-
port lines),

– the payoff function F V (BS AG)(si , cX) is defined as a
weighted objective function (3), where:

cX =
{

cI n
cNext

f or player VI

f or player VI I
.
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F V (BS AG)(si , cX) = w
V (BS AG)
L Occ F V (BS AG)

L Occ (si )

+ w
V (BS AG)
C Div F V (BS AG)

C Div (si )

+ w
V (BS AG)
L Prio F V (BS AG)

L Prio (si )

+ w
V (BS AG)
BL F V (BS AG)

BL (si , cX)

+ w
V (BS AG)
L BC F V (BS AG)

L BC (si , cX). (3)

where: F V (BS AG)
L Occ (si )—the line occupation criterion (lines

with the smallest occupation are preferred):

FV (BS AG)
L Occ (si )

=

⎧
⎪⎨

⎪⎩

NCol Bu f f −L Occ(si )
NCol Bu f f

f or NCol Bu f f > L Occ(si ) ≥ 0
and Limit = 0

−2, f or L Occ(si ) = NCol Bu f f or Limit = 1
,

F V (BS AG)
C Div (si )—the criterion of line color variety (lines with

the smallest variety of colors are preferred):

F V (BS AG)
C Div (si ) = C − C Div(si )

C
,

F V (BS AG)
L Prio (si )—the line priority criteria (lines with the low-

est priority are preferred):

F V (BS AG)
L Prio (si ) =

{
1

L Prio(si )·N P P , f or L Occ(si ) > 0

1, f or L Occ(si ) = 0
,

F V (BS AG)
BL (si , cX)—the criterion of length of an unblocked

block in the color cX (lines with the longest block length are
preferred):

F V (BS AG)
BL (si , cX) = BL(si , cX)

NCol Bu f f
,

F V (BS AG)
L BC (si , cX)—the criterion of block in cX color

blocked on the left side (lines without such blocks are pre-
ferred):

F V (BS AG)
L BC (si , cX) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
i f on the transport line si

appears a block of cars in cX color
which is blocked f rom the le f t side

1 else

,

Limit = �NRowBuff/2�—requirement imposed by the paint
shop, LOcc (si )—Line Occupancy, determines the number
of cars located on the transport line si ,C—maximumnumber
of available colors, CDiv (si )—Color Diversity, determines
the number of different colors appearing on the transport line
si , LPrio (si )—Line Priority, determines the priority of the

transport line si , which is the same as the priority of the color
to which the line ends Prio(cX):

Prio(cX) = N P P(cX) − N P(cX) − N B(cX)

N P P
,

– NPP—the number cars determined by the production plan,
– NPP(cX)—the number of cars in the color cX determined
by the production plan,

– NP(cX)—number of produced cars in the color cX,
– NB(cX)—the number of cars in the color cX located in the
buffer,

BL (si , cX)—Block Length in given color, determines the
number of cars in cX color, which form on the trans-
port line si a block unblocked on the left side, where
cX ∈ {cIn, cNext}. w

V (BS AG)
L Occ , w

V (BS AG)
C Div , w

V (BS AG)
L Prio ,

w
V (BS AG)
BL , wV (BS AG)

L BC —weights, it is assumed, that the sum
of all weights is 1.

Buffer-OutShuttle game (BOSG) The decision problem on
the buffer output is considered as a game played between
the buffer and the unloading shuttle. The proposed approach
is motivated by an attempt to make the decisions made on
the input and output side of the buffer. For this purpose, the
buffer as a player seeks to obtain a fill state, which is most
advantageous from the perspective of the entry situation. This
is the case when the buffer wants to remove a car from a line
that is completely full, which ends with a car of the same
color as the color of the car located on the loading shuttle. In
turn, the purpose of the unloading shuttle is to optimize the
proposed quality indicators. The proposed Buffer-OutShuttle
Game can be defined as follows:

– the set of players: P(BOSG) = {B, OS}, where B—buffer,
OS—unloading shuttle,

– the set of available strategies: S= {s1, s2, s3, s4, s5} (trans-
port lines),

– the payoff function for player I is determined by the
F B(B O SG)(si , cI n, cNext) function and the payoff func-
tion for player II is determined by the F O S(B O SG)(si , cX)

function.

The payoff function F B(B O SG)(si , cI n, cNext) is
defined as a weighted objective function (4).
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F B(B O SG)(si , cI n, cNext) = w
B(B O SG)
L Occ F

B(B O SG)

L Occ (si )

+ w
B(B O SG)
C Div F B(B O SG)

C Div (si )

+ w
B(B O SG)
L Prio F B(B O SG)

L Prio (si )

+ w
B(B O SG)
F SCcI n F B(B O SG)

F SCcI n (si , cI n)

+ w
B(B O SG)
F SCcNext F B(B O SG)

F SCcNext (si , cNext)
(4)

where:

F B(B O SG)
L Occ (si )

= L Occ(si )

NCol Bu f f
,

F B(B O SG)
C Div (si ) = C Div(si )

C
,

F B(B O SG)
L Prio (si ) =

{
1

L Prio(si )·N P P , f or L Occ(si ) > 0

1, f or L Occ(si ) = 0
,

F B(B O SG)
F SCcI n (si , cI n)—the criterion of free space for car in the

color cIn (lines that free up space for the longest blocks in
color cIn are preferred):

F B(B O SG)
F SCcI n (si , cI n)

=
{

BL(cI N , si )
NoCol Bu f f , f or L Occ(si ) = NCol Bu f f

0, f or L Occ(si ) < NCol Bu f f
,

F B(B O SG)
F SCcNext (si , cNext)—the criterion of free space for car in

the color cNext (lines that free up space for the longest blocks
in color cNext are preferred):

F B(B O SG)
F SCcNext (si , cNext)

=
{

BL(cNext , si )
NCol Bu f f , f or L Occ(si ) = NCol Bu f f

0, f or L Occ(si ) < NCol Bu f f
,

w
B(B O SG)
L Occ , w

B(B O SG)
C Div , w

B(B O SG)
L Prio , w

B(B O SG)
F SCcI n ,

w
B(B O SG)
F SCcNext—weights, it is assumed, that the sum of all

weights is 1.
The payoff function F O S(B O SG)(si , cX) is defined as a

weighted objective function (5).

F O S(B O SG)(si , cX) = w
O S(B O SG)
CComp F O S(B O SG)

CComp (si )

+ w
O S(B O SG)
I SComp F O S(B O SG)

I SComp (si , cX)

+ w
O S(B O SG)
CC PerClean F O S(B O SG)

CC PerClean(si )

+ w
O S(B O SG)
CCompUnCol F O S(B O SG)

CCompUnCol(si ).

(5)

where: F O S(B O SG)
CComp (si )—the color compatibility criterion,

lines ending in color cOut are preferred:

F O S(B O SG)
CComp (si )

=

⎧
⎪⎨

⎪⎩

1,

0,

i f the color at the beginning of the line si

is the same as cOut
else

,

F O S(B O SG)
I SComp (si , cX)—the block length matching criterion

(line for which F O S(B O SG)
I SComp (si , cX) = 1 are preferred):

F O S(B O SG)
I SComp (si , cX)

=
⎧
⎨

⎩
1 − mod

BL(cX , si )
SeqCompletion

SeqCompletion , f or BL(cX , si ) > SeqCompletion
BL(cX , si )

SeqCompletion , f or BL(cX , si ) ≤ SeqCompletion
,

F O S(B O SG)
CC PerClean(si )—the color variation criterion:

F O S(B O SG)
CC PerClean(si )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,
i f periodic cleaning appears

and the color of the beginning of the line si

is di f f erent f rom the color cOut
0, else

,

F O S(B O SG)
CCompUnCol(si )—the criterion of colormatch in the column

(lines that end in the same color are preferred):

F O S(B O SG)
CCompUnCol(si ) = CCompUnCol(si )

N RowBu f f
,

SeqCompletion—Sequence Completion, determines the
number of cars that are currently missing to obtain a
NPerClean-element sequence, CCompUnCol (si )—Color
Compatibility in Unload Column, determined if there is
a color match within the unloading column. wO S(B O SG)

CComp ,

w
O S(B O SG)
I SComp , w

O S(B O SG)
CC PerClean , w

O S(B O SG)
CCompUnCol—weights, it is

assumed, that the sum of all weights is 1.

IOSG concept

Decisions on the entry and exit of the buffer are made based
on the result of the game played between two shuttles, i.e.
loading and unloading. The IS player strives to find the best
transport line for the input car body,while taking into account
the current buffer status. In turn, the goal of the player OS
is to optimize the proposed quality indices. Due to the fact
that the buffer is loaded at a different time than unloading, the
game is played every time a decision is needed on the loading
or unloading side of the buffer, with the decision being used
only for one side of the buffer. The proposed In–Out Shuttle
Game can be defined as follows:
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– the set of players: P(IOSG) = {IS, OS}, where IS—input
shuttle, OS—output shuttle,

– the set of available strategies: S= {s1, s2, s3, s4, s5} (trans-
port lines),

– the payoff function for player IS is determined by the
F I S(I O SG)(si , cI n, cNext) function and the payoff func-
tion for playerOS is determinedby the F O S(I O SG)(si , cX)

function.

The payoff function F I S(I O SG)(si , cI n, cNext) is
defined as a weighted objective function (6).

F I S(I O SG)(si , cI n, cNext) = w
I S(I O SG)
L Occ F

I S(I O SG)

L Occ (si )

+ w
I S(I O SG)
C Div F I S(I O SG)

C Div (si )

+ w
I S(I O SG)
L Prio F I S(I O SG)

L Prio (si )

+ w
I S(I O SG)
F SCcI n F I S(I O SG)

F SCcI n (si , cI n)

+ w
I S(I O SG)
F SCcNext F I S(I O SG)

F SCcNext (si , cNext)
(6)

where:

F I S(I O SG)
L Occ (si ) = F B(B O SG)

L Occ (si )

F I S(I O SG)
C Div (si ) = F B(B O SG)

C Div (si )

F I S(I O SG)
L Prio (si ) = F B(B O SG)

L Prio (si )

F I S(I O SG)
F SCcI n (si , cI n) = F B(B O SG)

F SCcI n (si , cI n)

F I S(I O SG)
F SCcI n (si , cNext) = F B(B O SG)

F SCcI n (si , cNext)

w
I S(I O SG)
L Occ , w

I S(I O SG)
C Div , w

I S(I O SG)
L Prio , w

I S(I O SG)
F SCcI n ,

w
I S(I O SG)
wF SCcNext —weights, it is assumed, that the sum of all

weights is 1.
The payoff function F O S(I O SG)(si , cX) is defined as a

weighted objective function (7).

F O S(I O SG)(si , cX) = w
O S(I O SG)
CComp FCComp(si )

+ w
O S(I O SG)
I SComp FI SComp(si )

+ w
O S(I O SG)
CC PerClean FCC PerClean(si , cX)

+ w
O S(I O SG)
CCompUnCol F

CCompUnCol
(si )

(7)

where:

F O S(I O SG)
CComp (si ) = F O S(B O SG)

CComp (si )

F O S(I O SG)
I SComp (si , cX) = F O S(B O SG)

I SComp (si , cX)

F O S(I O SG)
CC PerClean(si ) = F O S(B O SG)

CC PerClean(si )

w
O S(I O SG)
CComp , wO S(I O SG)

I SComp , wO S(I O SG)
CC PerClean , w

O S(I O SG)
CCompUnCol

—weights, it is assumed, that the sum of all weights is 1.

mIOSG concept

We propose also a modification of the IOSG game. The
proposed modified In–Out Shuttle Game can be defined as
follows:

– the set of players: P(mIOSG) = {IS, OS}, where IS—input
shuttle, OS—output shuttle,

– the set of available strategies: S= {s1, s2, s3, s4, s5} (trans-
port lines),

– the payoff function for player IS is determined by
the F I S(m I O SG)(si , cI n, cNext) function and the pay-
off function for player OS is determined by the
F O S(m I O SG)(si , cX) function.

The proposed change was to take into account the buffer
status when making decisions regarding the selection of the
body to be unloaded and concerned the extension of the pay-
out function of the OS player (8) to the following form:

F O S(I O SG)(si , cX) = w
O S(m I O SG)
CComp F O S(m I O SG)

CComp (si )

+ w
O S(m I O SG)
I SComp F O S(m I O SG)

I SComp (si )

+ w
O S(m I O SG)
CC PerClean F O S(m I O SG)

CC PerClean (si , cX)

+ w
O S(m I O SG)
CCompUnCol F O S(m I O SG)

CCompUnCol(si )

+ w
O S(m I O SG)
C Div F O S(m I O SG)

C Div (si )

+ w
O S(m I O SG)
L Prio F O S(m I O SG)

L Prio (si ) (8)

where:

F O S(m I O SG)
CComp (si ) = F O S(I O SG)

CComp (si )

F O S(m I O SG)
I SComp (si ) = F O S(I O SG)

I SComp (si )

F O S(m I O SG)
CC PerClean (si , cX) = F O S(I O SG)

CC PerClean(si , cX)

F O S(m I O SG)
CCompUnCol(si ) = F O S(I O SG)

CCompUnCol(si )

F O S(m I O SG)
C Div (si ) = F B(B O SG)

C Div (si )

F O S(m I O SG)
L Prio (si ) = F B(B O SG)

L Prio (si )
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w
O S(m I O SG)
CComp , w

O S(m I O SG)
I SComp , w

O S(m I O SG)
CC PerClean , w

O S(m I O SG)
CCompUnCol ,

w
O S(m I O SG)
C Div , wO S(m I O SG)

L Prio —weights, it is assumed, that the
sum of all weights is 1.

The payout function of the IS player (9) is given by a
formula analogous to the formula (6):

F I S(m I O SG)(si , cI n, cNext) = w
I S(m I O SG)
L Occ F

I S(m I O SG)

L Occ (si )

+ w
I S(m I O SG)
C Div F I S(m I O SG)

C Div (si )

+ w
I S(m I O SG)
L Prio F I S(m I O SG)

L Prio (si )

+ w
I S(m I O SG)
F SCcI n F I S(m I O SG)

F SCcI n (si , cI n)

+ w
I S(m I O SG)
F SCcNext F I S(m I O SG)

F SCcNext (si , cNext)
(9)

where:

F I S(m I O SG)
L Occ (si ) = F I S(I O SG)

L Occ (si )

F I S(m I O SG)
C Div (si ) = F I S(I O SG)

C Div (si )

F I S(m I O SG)
L Prio (si ) = F I S(I O SG)

L Prio (si )

F I S(m I O SG)
F SCcI n (si , cI n) = F I S(I O SG)

F SCcI n (si , cI n)

F I S(m I O SG)
F SCcNext (si , cNext) = F I S(I O SG)

F SCcNext (si , cNext)

w
I S(m I O SG)
L Occ , w

I S(m I O SG)
C Div , w

I S(m I O SG)
L Prio , w

I S(m I O SG)
F SCcI n ,

w
I S(m I O SG)
F SCcNext —weights, it is assumed, that the sum of all

weights is 1.

Implementation of game theory-based algorithms

The classic game theory approach to solving a non-
cooperative game is the Nash equilibrium. It is proposed
to search for the Nash equilibrium in pure strategies. The
presented theory-based concepts have been implemented in
C# and Python. In order to find the Nash equilibrium points
of the considered games, the free Nashpy library and the
Lemke-Howson algorithm implemented in it were used.

In game theory a payoff matrix is a table in which strate-
gies of one player are listed in rows and those of the other
player in columns. The cells show payoffs to each player
such that the payoff of the row player is listed first. Depend-
ing on the value in the payoff matrix, there may be one Nash
equilibrium, many permissible Nash equilibria, or a Nash
equilibrium in pure strategies may not exist. In a situation
where the Nash equilibrium in pure strategies does not exist
or there are many Nash equilibrium points, the following
procedure of selecting one solution was proposed:

1. Select from the found Nash equilibria (or in the absence
of any – from among all elements of the payout matrix)
those for which the player’s payout:

– vI for the BSAG game,
– OS for the BOSG game,
– IS for the IOSG and mIOSG games played at the input
of the buffer,

– OS for the IOSG and mIOSG games played at the
buffer output,

is the greatest.
2. If more than one acceptable solution is found, select

among them solutions for which a player’s payout:

– vII for the BSAG game,
– B for the BOSG game,
– OS for the IOSG andmIOSGgames played at the input
of the buffer,

– IS for the IOSG andmIOSGgames played at the buffer
output,

is the greatest.
3. If more than one acceptable solution is found, choose the

first one.

The payoff matrix row where the Nash equilibrium is
located specifies the buffer line to which the car should be
directed (on the input side of the buffer) or from which line
the car should be directed to the paint station (on the output
side of the buffer), depending on whether an entry or exit
decision is made.

When constructing a payoff matrix, attention is paid to
how its value is determined diagonal:

1. BSAG-BOSG model – in the case of a game played at
the buffer input, the value of the payout for the second
player (the car at the buffer input) is calculated as if on
a given transport line there was a car from the loading
shuttle; in the case of a game played at the buffer output,
the value of the payout for player B is calculated as if the
first car was unloaded from a given transport line.

2. IOSG and mIOSGmodel – the value of the payout for an
IS player is calculated as if the first carwas unloaded from
a given transport line; payout value for the OS player is
calculated as if it were on a given transport line car from
the input conveyor.

Case study

This chapter explains the application of the selected game
theory approach to an example CSP 4.0 with the initial buffer
state shown in Fig. 10.
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Fig. 10 Example initial buffer
state

For the purposes of this example, the following assump-
tions were made:

Instance Production
plan

Initial
buffer state

Production
state

V = {v1,..,
v150}
C = {c1,..,
c6}
NRowBuff
= 5
NColBuff =
5
NPerClean
= 7

NPP(blue) =
56
NPP(orange)
= 21
NPP(red) =
12
NPP(green)
= 17
NPP(black)
= 25
NPP(yellow)
= 19

NB(blue) = 5
NB(orange)
= 1
NB(red) = 6
NB(green) =
2
NB(black) =
0
NB(yellow)
= 0

cIn = cOut
= blue
cNext =
red
NP(blue) =
1, so only
one car
body was
painted

The BSAG-BOSG concept is used for the proposed prob-
lem. It is assumed that the decision is made first on the
entry side of the buffer. Therefore, in order to determine the
buffer line on which the vehicle from the loading conveyor
is to be directed, it is necessary to play the game BSAG.
The following weights are assumed for the components of
the payoff functions F V (BS AG)(si , cX): wV (BS AG)

L Occ = 0, 2,

w
V (BS AG)
C Div = 0, 1, w

V (BS AG)
L Prio = 0, 1, wV (BS AG)

BL = 0, 4,

w
V (BS AG)
L BC = 0, 2.
After calculating the payouts of all players, the payoff

matrix for the BSAG game is as follows:

vII

vI − 0.13;
− 0.05

− 0.13;
0.62

− 0.13;
0.16

− 0.13;
0.45

−
0.13;
0.51

0.38; −
0.05

0.38;
0.13

0.38;
0.16

0.38;
0.45

0.38;
0.51

0.37; −
0.05

0.37;
0.62

0.37;
0.11

0.37;
0.45

0.37;
0.51

0.85; −
0.05

0.85;
0.62

0.85;
0.16

0.85;
0.21

0.85;
0.51

0.35; −
0.05

0.35;
0.62

0.35;
0.16

0.35;
0.45

0.35;
0.09

Nash equilibrium points are determined for the presented
payoff matrix. There is only one such point: (0.85; 0.62). As

the car body in color cIn is first directed to the buffer, a deci-
sion is made to direct the vehicle on the loading conveyor to
the line 4 (according to the choice of this car body). The state
of the buffer is changing (Fig. 11). Then, a decision is made
on the output side of the buffer. The BOSG game is played to
define the line from which the car body should be directed to
be painted. The following weights are assumed for the com-
ponents of the payout function F B(B O SG)(si , cI n, cNext):
w

B(B O SG)
L Occ = 0.35, w

B(B O SG)
C Div = 0.15, w

B(B O SG)
L Prio =

0.1, w
B(B O SG)
F SCcI n = 0.25, w

B(B O SG)
F SCcNext = 0.15 and for

the components of the payout function F O S(B O SG)(si , cX):
w

O S(B O SG)
CComp = 0.35, wO S(B O SG)

I SComp = 0.15, w
O S(B O SG)
CC PerClean =

0.35, wO S(B O SG)
CCompUnCol = 0.15.

After calculating the payouts of all players, the payoff
matrix for the BOSG game is as follows:

OS

B 0.33;
0.38

0.48;
0.1

0.48; 0 0.48;
0.43

0.48;
0.38

0.26;
0.38

0.18;
0.1

0.26; 0 0.26;
0.43

0.26;
0.38

0.28;
0.38

0.28;
0.1

0.17; 0 0.28;
0.43

0.28;
0.38

0.17;
0.38

0.17;
0.1

0.17; 0 0; 0.43 0.17;
0.38

0.26;
0.38

0.26;
0.1

0.26; 0 0.26;
0.43

0.18;
0.38

Nash equilibrium points are determined for the presented
payoffmatrix. There is only one such point: (0.48; 0.43). Due
to the optimization of the quality indicators, it is assumed that
the choice of theOS player ismore important. On this basis, a
decision ismade to direct the vehicle from line 4 to bepainted.
Playing games continues until the end of production.

Computational experiments and results

The buffer model shown in Fig. 12 was used for the com-
putational experiments. It consisted of 25 positions (5 ×
5), intended for car body buffering, and 2 shuttles used to
transport the car bodies to the correct transport line (loading
shuttle) and to the painting station from the buffer (unloading
shuttle).
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Fig. 11 Buffer state after making
a decision

Fig. 12 The structure of the
buffer considered

For the purpose of the research, 2 sets of real and exper-
imental data were used. The first set consisted of 5 real
samples, each with 100 car bodies and the second consisted
of 5 experimental samples, each with 1000 car bodies. Sam-
ples with 1000 cars are marked with an additional *. The
cars were painted in one of 6 possible colors. The individual
samples differed only in the order in which the car bodies
were transported to the buffer. Each instance had the same
set of parameters:

– V = {v1, …, v100},
– C = {c1, …, c6},
– NRowBuff = 5, NColBuff = 5,
– NPerClean = 7.

The color distribution in each set was the same and was: C1:
6%, C2: 38%, C3: 29%, C4: 14%, C5: 10%, C6: 3%.

The aim of the research was to compare the quality of the
CSP 4.0 solutions between three proposed algorithms which
are based on game theory. For this purpose proposed quality
indices NC and ES were calculated.

Experimental setup

Experimental studies were conducted for each of the pro-
posed game theory concepts, assuming empirically selected
values of payout function weights:

1. BSAG-BOSG concept:

– weights for F V (BS AG)(si , cX) function:
• w

V (BS AG)
L Occ = 0.2,

• w
V (BS AG)
C Div = 0.1,

• w
V (BS AG)
L Prio = 0.1,

• w
V (BS AG)
BL = 0.4,

• w
V (BS AG)
L BC = 0.2;

– weights for F B(B O SG)(si , cI n, cNext) function:
• w

B(B O SG)
L Occ = 0.35,

• w
B(B O SG)
C Div = 0.15,

• w
B(B O SG)
L Prio = 0.1,

• w
B(B O SG)
F SCcI n = 0.25,

• w
B(B O SG)
F SCcNext = 0.15;

– weights for F O S(B O SG)(si , cX) function:
• w

O S(B O SG)
CComp = 0.35,

• w
O S(B O SG)
I SComp = 0.15,

• w
O S(B O SG)
CC PerClean = 0.35,

• w
O S(B O SG)
CCompUnCol = 0.15.

2. IOSG concept:

– weights for F I S(I O SG)(si , cI n, cNext) function:
• w

I S(I O SG)
L Occ = 0.2,

• w
I S(I O SG)
C Div = 0.1,

• w
I S(I O SG)
L Prio = 0.1,

• w
I S(I O SG)
F SCcI n = 0.4,

• w
I S(I O SG)
wF SCcNext = 0.2;

– weights for F O S(I O SG)(si , cX) function:
• w

O S(I O SG)
CComp = 0.35,

• w
O S(I O SG)
I SComp = 0.15,

• w
O S(I O SG)
CC PerClean = 0.35,

• w
O S(I O SG)
CCompUnCol = 0.15.
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Table 1 NC quality index values for 100-element instances

Dataset No NCs

BSAG-BOSG IOSG mIOSG

Data_01 16 22 17

Data_02 15 37 20

Data_03 14 18 25

Data_04 21 25 24

Data_05 15 27 18

Table 2 ES quality index values for 100-element instances

Dataset No ES

BSAG-BOSG (%) IOSG (%) mIOSG (%)

Data_01 71 79 71

Data_02 71 86 86

Data_03 79 79 86

Data_04 86 79 50

Data_05 64 64 79

3. mIOSG concept:

– weights for F I S(m I O SG)(si , cI n, cNext) function:
• w

I S(m I O SG)
L Occ = 0.2,

• w
I S(m I O SG)
C Div = 0.1,

• w
I S(m I O SG)
L Prio = 0.1,

• w
I S(m I O SG)
F SCcI n = 0.4,

• w
I S(m I O SG)
F SCcNext = 0.2;

– weights for F O S(I O SG)(si , cX) function:
• w

O S(m I O SG)
CComp = 0.3,

• w
O S(m I O SG)
I SComp = 0.1,

• w
O S(m I O SG)
CC PerClean = 0.3,

• w
O S(m I O SG)
CCompUnCol = 0.1,

• w
O S(m I O SG)
C Div = 0.1,

• w
O S(m I O SG)
L Prio = 0.1.

Evaluation of solutions

The values of NC and ES indices assessing the results
obtained using the proposed game theory approaches, for
the set of 100-element instances, are summarized in Tables 1
and 2, respectively.

The analysis of the NC values shows that modification of
the IOSG approach (extending the OS player payout with
an additional two criteria, i.e. the criteria of color diversity

Table 3 NC quality index values for 1000-element instances

Dataset No NCs

BSAG-BOSG IOSG mIOSG

Data_01* 149 153 169

Data_02* 165 156 160

Data_03* 168 164 168

Data_04* 171 165 154

Data_05* 174 175 164

Table 4 ES quality index values for 1000-element instances

Dataset No ES

BSAG-BOSG (%) IOSG (%) mIOSG (%)

Data_01* 73 71 71

Data_02* 75 75 70

Data_03* 75 73 76

Data_04* 67 73 71

Data_05* 70 70 65

and line priority), in the case of the most tested instances,
allows better results to be obtained in comparison with the
unmodified model. The number of paint gun changeovers for
the BSAG-BOSG algorithm is the smallest among all tested
models. Based on the data contained in Table 2, it cannot be
clearly determined which of the tested models is the best in
terms of the ES indicator.

The values of NC (Table 3) and ES (Table 4) indicators for
1000-element instances are comparable for all testedmodels.

Evaluation of Nash equilibrium

In order to select the best algorithm from the proposed con-
cepts, an additional analysis of occurrences of the following
situations was performed: one Nash equilibrium (1-RN),
multiple admissible Nash equilibria (N-RN, where N ∈ C,
N > 1) or no Nash equilibria (0-RN). Table 5 and Table 6
present the results of this analysis for 100-car and 1000-car
samples.

Comparing all of the game theory approaches tested, it can
be noted that the BSAG-BOSG algorithm is characterized
by the largest number of decisions based on the occurrence
of one Nash equilibrium in pure strategies, and this applies
only to the game played at the buffer input (BSAG). No Nash
equilibria in pure strategies occurs most often for the game
played on the buffer output (BOSG). The mIOSG algorithm
was considered the best of the existing game theory concepts
because it has a similar number of decisions made based on
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Table 5 The analysis of occurrences of situation 1-RN, N-RN and 0-RN for samples consisting of 100 cars

Dataset
No

BSAG-BOSG IOSG mIOSG

BSAG BOSG

1-RN
(%)

N-RN
(%)

0-RN
(%)

1-RN
(%)

N-RN
(%)

0-RN
(%)

1-RN
(%)

N-RN
(%)

0-RN
(%)

1-RN
(%)

N-RN
(%)

0-RN
(%)

Data_01 92 8 0 49 46 5 70 30 0 88 11 2

Data_02 93 7 0 69 28 2 45 55 0 78 21 2

Data_03 89 11 0 59 38 3 63 35 2 78 21 1

Data_04 88 12 0 59 37 4 71 29 0 75 25 1

Data_05 90 10 0 58 38 4 50 50 1 76 23 1

Table 6 The analysis of occurrences of the situation 1-RN, N-RN and 0-RN for samples consisting of 1000 cars

Dataset No BSAG-BOSG IOSG mIOSG

BSAG BOSG

1-RN
(%)

N-RN
(%)

0-RN
(%)

1-RN
(%)

N-RN
(%)

0-RN
(%)

1-RN
(%)

N-RN
(%)

0-RN
(%)

1-RN
(%)

N-RN
(%)

0-RN
(%)

Data_01* 96 4 0 56 39 39 5 68 0 83 17 1

Data_02* 97 4 0 56 37 37 7 67 0 83 17 0

Data_03* 98 2 0 56 37 37 7 67 0 82 17 1

Data_04* 93 7 0 54 40 40 6 64 0 82 17 1

Data_05* 90 10 0 55 38 38 7 65 0 82 17 1

one Nash equilibrium in pure strategies (similar to the BSAG
model), while no Nash equilibria occurred in only 1–2% of
decisions (much less than in the BOSG model, not much
more than for the IOSG model).

The no Nash equilibrium in pure strategies occurred most
often for the BSAG-BOSG model, and this applies only to
the game played at the buffer output (BOSG). However, in
the case of the buffer entry game (BSAG), the vast majority
of decisions were made based on one Nash equilibrium in
pure strategies, which is the most desirable solution. The
best solution is the mIOSG model, because there were few
situations where the Nash equilibrium in pure strategies was
not found, and compared to the IOSGmodel, more decisions
were made based on the one Nash equilibrium.

Based on the conclusions presented, it was found that it is
not possible to clearly indicate which of the proposed game
theory concepts is the best, taking into account the NC and
ES indices. However, the mIOSG algorithm was chosen due
to the largest number of 1-RN situations for the tested data.

Conclusions

In this paper the problem of production sequencing was ana-
lyzed; this is part of the production planning process that
appears in the car production industry and is important both
economically and ecologically. In order to take into account
the demands on the industry, this problem has again been for-
mulated as amulti-criteria optimizationmodel. In thismodel,
one goal reflects the traditional goal of minimizing the num-
ber of color changes associated with paint gun changeovers,
while the other, very practical goal, related to synchronizing
gun changeovers with necessary periodic cleanings, results
from the principle of the paint systems used in car factories.

The game theory was proposed to solve this novel
problem, which was significantly different from the ones
considered in the literature to date. Three approaches, BSAG-
BOSG, IOSG, and mIOSGwere developed and they allowed
for the incorporation of several important features. Among
themost important ones there is the need to develop amethod
that allows for unloading and loading the buffer. However, it
is important that there should be some kind of information
feedback between the input and output algorithm so that input
decisions are made taking into account the exit situation and
vice versa. The algorithm analyzes the effects that the buffer
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entry decisionwill have on its exit situation, and analogously,
buffer exit decisions are made taking into account the entry
situation. As a result, the decisions made are aimed at opti-
mizing both indicators determining the quality of the output
sequence as well as the buffer status. In the algorithm, this is
implemented, e.g. by the criterion of free space for cIn and
cNext cars. At this point, another important feature can be
distinguished; the buffer entry decision is made taking into
account information about both the car on the loading con-
veyor belt and the car on the position preceding this conveyor
belt. This allows the elimination of the situation of blocking
the favorable position from the perspective of the cNext car.
The last of the important features of the algorithms devel-
oped is the inclusion of a production plan from the parent
system; as a result the algorithms have the property of being
able to keep up with the currently changing state of produc-
tion. A production plan is created for a limited time period;
usually 3–4 h. In the algorithm this was accomplished using
the parameter, which is the priority of the line.

To test the proposed algorithms, a number of experi-
ments were carried out using both real and test data. In
addition, to select the best out of the developed approaches,
an additional analysis was performed of occurrences of the
following situations: one Nash equilibrium, multiple admis-
sible Nash equilibria or no Nash equilibria. Based on the
results obtained, the mIOSG algorithm was considered the
best choice.

The algorithms proposed in this article, based on theory-
based models, can be successfully applied in a real factory,
the only problem could be the need to train employees
(e.g. maintenance) in the parameterization of the developed
approaches. However, these algorithms are characterized by
simplicity of implementation, thanks to the possibility of
using publicly available programming libraries to solve the
problem of searching for Nash equilibria.

Future research will focus on the following aspects. Dur-
ing the first stage, experiments will be carried out verifying
the impact of the weighted values present in the objective
function on the quality of the solutions obtained. Currently
these weights have been chosen arbitrarily. During the next
stage an attempt will be made to optimize the operation of
algorithms again. During the final stage, modification of the
algorithms will be carried out, allowing them to be used for
any buffer structure.
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