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Abstract
We propose a decision support approach, called DESMILS, to solve multi-item lot sizing problems with a large number of
items by using single-item multiobjective lot sizing models. This approach for making lot sizing decisions considers multiple
conflicting objective functions and incorporates a decision maker’s preferences to find the most preferred Pareto optimal
solutions. DESMILS applies clustering, and items in one cluster are treated utilizing preferences that the decision maker has
provided for a representative item of the cluster. Thus, the decision maker provides preferences to solve the single-item lot
sizing problem for few items only and not for every item. The lot sizes are obtained by solving a multiobjective optimization
problem with an interactive method, which iteratively incorporates preference information and supports the decision maker in
learning about the trade-offs involved. As a proof of concept to demonstrate the behavior of DESMILS, we solve a multi-item
lot sizing problem of a manufacturing company utilizing their real data. We describe how the supply chain manager as the
decision maker found Pareto optimal lot sizes for 94 items by solving the single-item multiobjective lot sizing problem for
only ten representative items. He found the solutions acceptable and the solution process convenient saving a significant
amount of his time.

Keywords Lot sizes · Inventory management · Interactive method · Multiple criteria optimization · NIMBUS

Introduction

In a strategic buyer–supplier relationship, both buyer and
supplier aim to create a benefit in order to gain a competi-
tive advantage (Tanskanen & Aminoff, 2015). Lot sizing is
central to the cost-effectiveness of inventory management
in manufacturing companies and, therefore, it has motivated
much research in production planning and control. Beginning
with the economic order quantity concept of Harris (1913)
in 1913, numerous variants and extensions of lot sizing mod-
els have been proposed in the literature [see e.g. the surveys
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(Andriolo et al., 2014; Glock et al., 2014)]. Integrating a
lot sizing problem to other related problems has also been
studied, such as integration with scheduling (Copil et al.,
2017), supplier selection (Aissaoui et al., 2007), cutting stock
problem (Melega et al., 2018), manufacturing and remanu-
facturing (Naeem et al., 2013), or safety strategy placement
(Kania et al., 2022).

Lot sizing problems focus on the trade-off of meeting cus-
tomer demand while minimizing cost. It naturally introduces
conflicting objective functions even though many studies in
the literature consider it as a single objective optimization
problem and set demand as a constraint. Dealing with more
complex situations such as demand and lead time uncertainty
or integrating lot sizing problems with other problems intro-
duce more conflicting objective functions. Therefore, some
studies consider more than one objective function in their lot
sizing problems [see e.g. Aslam Amos (2010), Heikkinen et
al. (2021) and Kania et al. (2021)].

Tools that support optimization of multiple (conflicting)
objective functions belong to the field of multiobjective opti-
mization (Miettinen, 1999). Because of multiple objective
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functions to be optimized simultaneously, a multiobjective
optimization problem typically does not have one optimal
solution, but a set of compromise solutions, called Pareto
optimal solutions. A solution is Pareto optimal if none of the
objective functions can be improved without impairing at
least one of the others. The goal of multiobjective optimiza-
tion is to support a decision maker (DM), who is an expert
in the problem domain, to find his/her most preferred solu-
tion among the Pareto optimal solutions. Interactive methods
(Miettinen et al., 2016), which iteratively incorporate the
DM’s preferences, are regarded as promising to find a most
preferred solution for the DM. These methods allow the DM
to learn about the problem and trade-offs among the objective
functions during the decisionmakingprocess. TheDMis also
allowed to adjust his/her preferences and improve the solu-
tion until he/she finds themost preferred solution for him/her.
So far, however, as shown in the survey in Heikkinen et al.
(2021), there have been only few studies applying interactive
multiobjective optimization in lot sizing problems.

Most studies in lot sizing consider a single item only
(Brahimi et al., 2017), but in reality, companies need to decide
order quantities for many items, or even thousands of items
for a big company. Therefore, some studies focus on multi-
item lot sizing problems. However, most of themmodel their
problem as an optimization problem with a single objective
function. In Absi et al. (2013), a multi-item capacitated lot
sizing problem with setup times and lost sales is studied.
The objective function to be optimized in this paper is the
total cost that aggregates production, setup, inventory and
shortage costs. In Li et al. (2012), a multi-item capacitated
dynamic lot sizing problem is considered and a framework
proposed to minimize a single objective function represent-
ing total costs, including production cost, inventory holding
cost and fixed setup cost. A multi-item capacitated lot siz-
ing problem with remanufacturing is dealt with in Cunha
et al. (2019). The authors propose a method to solve their
mixed integer lot sizing problem to minimize the total pro-
duction/remanufacturing, setup and holding costs.

Only few researchers used multiobjective optimization
to solve their multi-item lot sizing problems. A multi-item
capacitated lot sizing problem with setup times, safety stock
and demand shortage costs were studied inMehdizadeh et al.
(2016). The authors modeled an optimization problem with
two objective functions to minimize total costs and simul-
taneously minimize required storage space. In Ammar et al.
(2020), a multi-item capacitated lot sizing problemwith con-
sideration of setup times and backloggingwas addressed, and
an optimization problem with two objective functions was
solved to minimize total costs and total inventory level of
items.

To the best of our knowledge, the literature in multi-
item lot sizing problems has considered a sum of functions
(e.g., total costs) for all items as one objective function (e.g.,

minimizing total costs). This kind of a model treats each
item similarly and cannot accommodate different preferences
from theDMin lot sizing decisions for different items. In fact,
the DM may have different preferences in his/her lot sizing
decision e.g., for itemswith a low and a high demand or items
with a low and a high price. It is demonstrated in Kania et al.
(2022) that the DM had different preferences for two items
with a high and a low demand. In the case considered, he paid
more attention to inventory turnover values for the item with
a high demand and a low price, but was more concentrated
on cycle service level for the item with a low demand and a
high price.

A single decision making process cannot accommodate
difference preferences in deciding lot sizing for different
items. However, repeating the decision making process for
every single item is laborious. In machine learning, cluster-
ing divides a set of objects into clusters, such that objects in
the same clusters are more similar to each other than objects
in the different clusters [see e.g. Xu and Tian (2015) and Xu
and Wunsch (2005)]. This clustering idea has inspired us to
divide items into clusters, so that one cluster can be con-
sidered with similar preference information, and, therefore
the decision making process is only conducted once for each
cluster. The aim is to decrease the amount of effort required
from the DM.

In this paper, we propose an approach, called DESMILS,
to support decision making in multi-item multiobjective lot
sizing problems. This approach expects the DM to solve
a single-item multiobjective lot sizing problem for a small
amount of selected items. Then the preferences obtained
from the DM are accommodated in deriving lot sizes for
the other items. Therefore, the need of repeating a deci-
sion making process for each item separately is avoided.
DESMILS enables applying interactive multiobjective opti-
mization methods in solving multi-item lot sizing problems.
It can also be applied for any variant or extension of single-
item lot sizing models (mentioned earlier).

The idea of the novel approach is to cluster items so that
items in the same cluster can be treated with similar pref-
erences in the lot sizing decision. Hence, the DM is only
required to do the decision making process for one repre-
sentative item of each cluster, instead of every single item.
The DM can choose the number of clusters which implies
the number of decision making processes that he/she is con-
venient to conduct (for the representatives of each cluster).
Finally, the preference information from the DM is utilized
to find the optimal lot sizes for remaining items.

As a proof of concept, we demonstrate the approach with
a real problem in a manufacturing company. The supply
chain manager from the company acted as the DM. In the
case study, we use the lot sizing problem integrated with
safety strategy placement proposed in Kania et al. (2022).
We demonstrate that DESMILS could successfully support
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the DM in finding the most preferred lot sizes for 94 items.
The DM appreciated the benefit of DESMILS to find solu-
tions that best represent his preferences without having to
conduct 94 decision making processes individually. Instead,
he only needed to repeat the decision making process for few
times (an acceptable number for him). This saved much time
and effort.

For measuring the performance of supply chain manage-
ment in lot sizing, key performance indicators (KPIs) are
widely used (Akyuz & Erkan, 2010). Managerial insight
here is that objective functions are as such useful KPIs as
they are the metrics used in day-to-day operations for per-
formance evaluation purposes. By considering the KPIs, the
DM verified that the results were satisfying and highlighted
the usefulness of this approach in his daily operations.

The rest of the paper is organized as follows. First,
some background information of multiobjectove optimiza-
tion is given in section“Background on multiobjective opti-
mization”, while the proposed decision support approach
DESMILS to solve a multi-item lot sizing problem is
described in section“DESMILS: decision support for a mul-
ti-item lot sizing problem”. Our case study and the obtained
results are described in section“Case study”. Finally, con-
clusions and future research ideas are given in section
“Conclusions”.

Background onmultiobjective optimization

Basic concepts

We consider multiobjective optimization problems formu-
lated as follows:

minimize f (x) = ( f1(x), . . . , fk(x))T

subject to x ∈ S,
(1)

where k ≥ 2 is the number of objective functions. The
objective functions fi : S → R, i = 1, . . . , k, which
are at least partly conflicting with each other, are to be
optimized simultaneously. The set S ⊆ R

n is the feasible
region formed by constraints. A vector of decision variables
x = (x1, . . . , xn)T ∈ S is called a feasible solution and the
corresponding vector z = f (x) = ( f1(x), . . . , fk(x))T is
called a feasible objective vector, which belongs to the fea-
sible objective region Z = f (S) ⊆ R

k .
In consequenceof the conflictingobjective functions,mul-

tiobjective optimization problems (1) do not typically have
any solution where all objective functions can achieve their
individual optima. Instead, there are several so-called Pareto
optimal solutions that represent trade-offs among the con-
flicting objective functions. A decision variable vector x′
and the corresponding objective vector z′ = f (x′) are Pareto

optimal if there does not exist any z = f (x), x ∈ S such
that zi ≤ z′i for i = 1, . . . , k and z j < z′j for at least
one j = 1, . . . , k. We define an ideal point z∗ and a nadir
point znad of problem (1) which represent the lower and
upper bounds of the ranges of the objective function values
among the Pareto optimal solutions, respectively. We also
define a vector that is strictly better than the ideal point,
which is called a utopian point z∗∗ = (z∗∗

1 , . . . , z∗∗
k )T where

z∗∗
i = z∗i −ε, i = 1, . . . , k and ε is a relatively small positive
scalar.

As the final solution of problem (1), one of the Pareto
optimal solutions needs to be selected. The expertise of the
DM, who has knowledge about the problem and is responsi-
ble for making decisions in the problem domain, is needed in
this process. Solving a multiobjective optimization problem
means helping the DM in finding his/her most preferred solu-
tion. Besides the DM, solving a multiobjective optimization
problem involves an analyst. The analyst supports the DM in
the mathematical aspects of the problem and is responsible
for making preparations of the multiobjective optimization
method before the DM is involved.

Many methods have been developed to solve multiobjec-
tive optimization problems and they can be classified based
on how the DM’s preferences are considered in the meth-
ods (Miettinen, 1999). No-preference methods do not use
any preferences from the DM, a priori methods ask the DM’s
preferences before running the optimization algorithm, a pos-
teriori methods ask the DM’s preferences after having found
a representative set of Pareto optimal solutions, and interac-
tive methods ask the DM’s preferences iteratively during the
decision making process. Among these methods, interactive
methods are regarded as promising because they allow the
DM to learn during the decision making process and change
his/her preferences until he/she finds the best solution for
him/her (Miettinen & Mäkelä, 2006; Xin et al., 2018).

Scalarizing functions

Many methods suggested for solving multiobjective opti-
mization problems utilize scalarizing functions (Miettinen,
1999). Via scalarizing functions, the multiple objective func-
tions are transformed into a single objective function and
the resulting problem is solved with an appropriate single
objective optimization method. Scalarizing functions must
be selected carefully, e.g., to guarantee the Pareto optimality
of the solution obtained. The scalarizing functions typically
include preference information obtained from theDM. There
aremanyways to ask this information (Miettinen, 1999). One
of them is asking for desirable values for each objective func-
tion z̃1, . . . , z̃k . They are called aspiration levels. The vector
z̃ consisting of aspiration levels is called a reference point.

Several scalarizing functions have been introduced in the
literature (Miettinen & Mäkelä, 2002). One of the widely
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used scalarizing functions is the achievement scalarizing
function (ASF) (Wierzbicki, 1980). An ASF finds the closest
Pareto optimal solution to the reference point. This function
works well both with feasible and infeasible reference points
to find a Pareto optimal solution for the multiobjective opti-
mization problem (1). The ASF which is used in DESMILS
can be written as follows:

minimize max
i=1,...,k

{
fi (x) − z̃i
znadi − z∗∗

i

}
+ ρ

k∑
i=1

fi (x)

znadi − z∗∗
i

subject to x ∈ S,

(2)

where ρ > 0 is a relatively small scalar that guarantees the
Pareto optimality of the solutions to (1) (Miettinen, 1999).

Synchronous NIMBUSmethod

The synchronous NIMBUS method (Miettinen & Mäkelä,
2006) is an interactive method that has been used in many
applications [see e.g., Saccani et al. (2020), Sindhya et al.
(2017) and Ruotsalainen et al. (2010)].We summarize it here
since it will be applied in the case study. In this method, the
DM gives her/his preferences with a so-called classification
and several scalarizing functions are formulated by using
the preference information from the DM to get new Pareto
optimal solutions following the preferences.

NIMBUS needs a starting point (a Pareto optimal objec-
tive vector), and the DM gives his/her preferences to indicate
what kind of changes in the objective function values would
lead to a more preferred solution. The starting point can
be specified by the DM or it can be a so-called neutral
compromise solution which is located, roughly speaking,
approximately in the middle of the Pareto optimal set. The
neutral compromise solution is calculated by solving the
ASF (2) with z̃i = (znadi + z∗∗

i )/2 as aspiration levels for
i = 1, . . . , k. The starting point is presented to the DM in
the first iteration, together with the ideal and nadir points.
Then, in each iteration, the DM gives his/her preferences by
classifying each objective function (with the current value)
into up to five classes by indicating whether he/she wants to:

1. improve the current value (I<),
2. improve the current value to a certain aspiration level (I≤),
3. keep the current value (I=),
4. impair the current value until a certain bound (I≥), or
5. let the current value change freely (I 	).

When a classification is feasible (i.e., some objective
functions are to be improved and some are allowed to get
worse), up to four different scalarizing functions are utilized
to generate new Pareto optimal solutions reflecting the DM’s
preferences aswell as possible. TheDMgives anupper bound
for howmany solutions he/shewants to see and compare. The

new Pareto optimal solutions are then presented to the DM
who chooses one solution to continue to the next iteration
(use it as the starting point of a new classification) or stop
with this solution as the final one, if he/she is satisfied with
it. There is also a possibility to generate a desired number
of intermediate solutions between any two Pareto optimal
solutions. Further details about the synchronous NIMBUS
method can be seen in Miettinen and Mäkelä (2006).

DESMILS: decision support for a multi-item
lot sizing problem

The idea of DESMILS is to extend a single-item multiobjec-
tive lot sizing model to be applied in multi-item lot sizing
with a large number of items. This approach can be imple-
mented in any variant of a single-item lot sizing problem,
which is intended to be extended to a multi-item problem,
if the single-item problem is modeled as a multiobjective
optimization problem. As examples, this approach is appro-
priate for the lot sizing problem under demand uncertainty in
Kania et al. (2022), the lot sizing problem with safety stock
and safety lead time in Kania et al. (2021), and the lot siz-
ing problem with supplier selection in Ustun and Demirtas
(2008). DESMILS enables single-item lot sizing models to
be used in case of a large number of items without having
to conduct the decision making process separately for every
single item.

As said, in multiobjective optimization, the final solu-
tion depends on preference information provided by the
DM during the decision making process. If the decision
making process is considered separately for each item, the
DM may provide different preferences in deciding lot sizes
for different items. However, repeating the decision mak-
ing process for each item is laborious in case of a large
number of items. To address this concern, we propose a deci-
sion support approach that can accommodate item-specific
preference information from the DM without a need of
repeating the decision making process for each item sepa-
rately. Here, we refer to item-specific preference information
as the preference information that the DM provides for solv-
ing a single-item lot sizing problem for a specific item. The
proposed approach is called DESMILS as an abbreviation of
Decision Support for Multi-Item Lot Sizing Problem.

Considering a large number of items, the DM typically
does not have totally different item-specific preference infor-
mation for all the items. He/shemay have similar preferences
for some items.He/she usually gives his/her preference infor-
mation in the lot sizing problem based on some properties,
such as price, demand, size, and/or location of the supplier.
For example, he/she avoids holding stocks for expensive or
large items but carries more stocks (for instance in safety
stock) for the items with a high demand. DESMILS divides
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Fig. 1 Flowchart of DESMILS

the items into clusters based on the properties that influ-
ence the DM’s opinion in making lot sizing decisions. In
this way, we assume that the items in the same cluster have
similar item-specific preference information, and therefore,
the DM only needs to give preference information for one
item which is representative of the cluster. Then, this infor-
mation is extended to other items in the same cluster that are
similar enough to the representative one.

DESMILS has four stages, as shown in Fig. 1. We assume
that the total number of items is m. In the first stage, these
items are divided into c clusters, where c is clearly smaller
than m. Each cluster has one or more items with one item
regarded as the representative of the cluster. The representa-
tive of each cluster is called a cluster center. In the second
stage, the decision making process is conducted c times with
an interactive method, where the DM gives his/her prefer-
ences to find preferred lot sizes for each cluster center. The
remaining items in the cluster are called cluster members.We
propose an approach in the third stage to find reference points
for these items by using the preference information that the

DM provided for the corresponding cluster center and repeat
this for each cluster. Finally, we obtain the solutions for the
clustermembers using these reference points in the last stage.

The involvement of a DM is needed in the clustering
stage and the decision making stage. In the clustering stage,
the DM is asked to provide the number of decision making
processes he/she wants to conduct and check the clustering
results. In the decisionmaking stage, theDMprovides his/her
preferences to solve the single-item lot sizing problem for
c cluster centers. The other stages do not involve the DM.
There are two kinds of data needed in DESMILS: properties
that influence lot sizing decisions, and data needed as input
for solving single-item lot sizing problems. For example, in
the case study considered in section“Case study”, properties
that influence lot sizing decisions are SS, SOT, purchasing
price, transit time, daily average demand, and physical size
of the item. Furthermore, demand data for 24 periods, price,
lead time, previous order data, minimum order quantity and
rounding value are the input data used to solve the single item
lot sizing problems in the case study, where the company
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needs to solve a multiobjective lot sizing problem described
in Appendix A.

In what follows, we give details of each stage.

Clustering stage

As said, the DM’s lot sizing decisions are usually influenced
by certain properties, and they are used in this stage to divide
items into clusters. Therefore, investigating theDM’s reason-
ing in making his/her decision is important in this stage to
ensure items with similar item-specific treatment are placed
in the same cluster. The analyst can interview the DM to
investigate which properties influence his/her lot sizing deci-
sions.

The purpose of the clustering stage is to assign m items
into c clusters so that the items in the same cluster can be
treated with similar preferences. By using the properties that
influence the DM’s lot sizing decisions, we divide items into
clusters, where each cluster has one representative item as
a cluster center and the remaining items as cluster mem-
bers. Naturally, any appropriate clustering technique, which
is usually used in machine learning, can be used in this
stage. However, it is important to select a clustering tech-
nique that provides one of the items as the center of the
cluster and not, for example, some average. Therefore, in this
research, we use the k-medoids clustering technique (Kauf-
man & Rousseeuw, 1990). The idea of taking an item which
is nearest to the means of items as the center of the corre-
sponding cluster fits our purpose.

In some clustering methods, including k-medoids, the
number of clusters c is required to be specified as input. This
enables the DM to decide the number of the decision making
processes that he/she prefers to do. The methods that have
been developed to determine the optimal number of clusters,
such as the elbow method (Thorndike, 1953), which is the
oldest and most widely used method in cluster analysis, can
also be used to give a suggestion to the DM. However, the
number of clusters needs to be confirmed by the DM and the
items of each clusters need to be checked by the DM so that
items in the same cluster can be treated similarly.

Decisionmaking stage

In the previous stage, c cluster centers were identified to
represent all the other items. Therefore, we need to conduct
c decision making processes in this stage to solve the single-
item lot sizing problem for each cluster center. The data used
in this stage depends on the single-item lot sizing problem to
be solved.

Any appropriate multiobjective optimization methods can
be applied to find the most preferred lot sizes for each cluster
center. However, to be able to reflect the preference informa-
tion from the DM to be used for the next stage, the method
used in this stage should have a starting point. In the case
study considered in this paper, we used the interactive NIM-
BUS method as its type of providing preference information
was preferred by the DM in question. In NIMBUS, we used
a neutral compromise solution (as defined in Sect. 2.3) as a
starting point, which helps us to reflect the preference infor-
mation from the DM to be used for the next stage. The final
solutions and the starting points for each cluster center are
output of this stage and they are needed in the next stage.

Deriving reference points stage

After obtaining solutions for all cluster centers in the pre-
vious stage, we need to determine optimal lot sizes for all
cluster members by utilizing the preference information that
the DM provided for the corresponding cluster center. In this
stage, we derive a reference point for each cluster member
and use them to obtain the solution in the next stage. The ref-
erence point represents the desired values that the DMwants
to achieve for each objective function based on his/her pref-
erence information for the cluster center. Since DESMILS
repeats the same task for each cluster, in what follows, we
describe the solution process for one cluster as an example.

The preference information from the DM is interpreted
as the direction from the starting point to the most preferred
solution that the DM selected for the cluster center. We call it
a reference direction. Figure2 illustrates the idea how to use
this reference direction to get a reference point for one cluster
member (the reference points for other cluster members are
obtained in the same way). A starting point for the cluster
member is needed and it can be calculated in the same way

Fig. 2 The idea of finding a reference point to obtain the solution for the cluster member
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as in the interactive method that was used in the previous
stage. By moving from the starting point in the direction of
the reference vector, a reference point for the cluster member
is obtained.

We need to emphasize that each item has its own set
of Pareto optimal solutions, which means that the cluster
center and cluster member have different feasible objective
regions. Therefore, transformation is needed to make the
reference direction of the cluster center appropriate for the
clustermember. For this purpose,wefirst normalize the refer-
ence direction of the cluster center to a proportional position,
and then denormalize the proportional position of the refer-
ence direction to the region of the cluster member. After the
normalization and denormalization processes, the reference
direction can be used to find a reference point for the cluster
member. Algorithm 1 outlines the general idea of this stage
and the details of the algorithm are given afterwards.

Algorithm 1: Algorithm to derive reference points for
each cluster member
Input: The starting point of the cluster center zs and final

solution of the cluster center z
Output: The reference point for each cluster member

1 Calculate the reference direction for the cluster center zr
2 Normalize zr to a proportional position żr
3 foreach cluster member do
4 Calculate the starting point of the cluster member ys
5 Denormalize żr into the feasible objective region of cluster

member, denoted by yr
6 Calculate the reference point y
7 end

From the previous stage, for the cluster center, the starting
point zs and the final solution z have been obtained. They are
used to calculate the reference direction for the cluster center
zr = (zr1, . . . , zrk)T , where zri = zi − zsi , i = 1, . . . , k.
This reference direction is then normalized to a proportional
position żr = (żr1, . . . , żr k)T using the following formula:

żr i = zri
zsi

, i = 1, . . . , k.

To avoid the division by zero, when zsi = 0 for at least one
i , the feasible objective region can be shifted, for example,
by one unit. This means that one unit is added to all values of
the reference direction and the starting point (zri = zri + 1
and zsi = zsi + 1 for i = 1, . . . , k).

The normalized reference direction żr is utilized for all
cluster members in this cluster to find a reference point
for each cluster member. In what follows, we describe the
process to find the reference point for one member, as an
example.

The starting point for the cluster member, denoted by
ys = (ys1, . . . , ysk)T , is calculated in the sameway as in the

second stage for the cluster center. The reference direction
for the cluster member yr = (yr1, . . . , yrk)T is then calcu-
lated by denormalizing żr into the feasible objective region
of the cluster member using the following formula:

yri = żr i ysi , i = 1, . . . , k.

To find the reference point for the cluster member, the
starting point ys is directed to follow the preference infor-
mation from the DM which is represented in the reference
direction yr . The reference point y = (y1, . . . , yk)T is then
obtained with the following formula:

yi = yri + ysi , i = 1, . . . , k.

Solution generation stage

Reference points found in the previous stage represent the
preferred solutions that the DM wants to achieve for each
cluster member. However, y may not be a Pareto optimal
solution of the lot sizing problem of the cluster member.
Therefore, we find the closed Pareto optimal solution bymin-
imizing the ASF(2) with y as the reference point. In this way,
a Pareto optimal solution which represents the DM’s prefer-
ence is found for each item.

Case study

In this section, we demonstrate how the proposed approach
DESMILS can provide decision support in solving a real lot
sizing problem in a manufacturing company. To be more
specific, the company is a semi-heavy vehicles company.
The company considered needed to determine the optimal
lot sizes for 94 items. From the ERP system of the company,
we received two kinds of data needed in DESMILS: prop-
erties that influence lot sizing decisions, and data needed as
input for solving single-item lot sizing problems.

The company deals with a multi-item lot sizing problem
within periodic review policy under stochastic environment
on demand. To handle demand uncertainty, they hold extra
stock with the combination of safety stock (SS) and safety
order time (SOT). For performance measurement, the com-
pany uses KPIs. Among theseKPIs, they selected purchasing
and ordering costs (POC), holding cost (HC), cycle ser-
vice level (CSL) and inventory turnover (ITO) as the most
important KPIs for lot sizing decisions. They found the mul-
tiobjective lot sizingmodel described inKania et al. (2022) to
best match their needs, where their KPIs are objective func-
tions to be optimized. Thus, the model has four objective
functions: minimizing POC, minimizing HC, maximizing
CSL andmaximizing ITO. Details of themultiobjective opti-
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mization problem, which is solved in this section, are given
in Appendix A.

In this case, the time period for inventory planning was
one week, and the company wanted to determine the opti-
mal order quantity for 24 weeks and simultaneously decide
the optimal values of SS and SOT. In the beginning of each
period, the company needs to place an order for each item,
and the order arrives after a constant lead time. The company
has agreements with suppliers limiting the orders: they are
only able to order at least a certain minimum order quantity
andmultiples of a rounding value. Theminimum order quan-
tities, rounding values, and lead times vary for different items
and these are specified as input of the optimization problem.
Besides that, the predicted demand data for the following 24
weeks, the previous orders that are supposed to arrive during
the lead time period, the price to purchase one unit of item,
and the cost to place an order were also needed as input of
the optimization problem (see Appendix A).

The supply chain manager of the company is responsible
for making lot sizing decisions and he was the DM in this
study. He agreed with the model described in Appendix A,
but wanted to add bounds for CSL and ITO as additional con-
straints. The minimum value of CSL which was acceptable
for him was 0.9. For ITO, the DM appreciated high value but
values higher than 80 were not reasonable for him.

Clustering stage

First, we interviewed the DM to understand which properties
influence his decisions in lot sizing. The DM said that there
are six relevant properties: SS, SOT, purchasing price, transit
time, daily average demand, and physical size of the item.
SS and SOT are the results of optimization, but the company
predicts them for production planning purposes and they are
used by the DM to set desired values for CSL. The purchas-

ing price is important in deciding POC and HC, transit time
influences his desires in CSL and ITO, while daily average
demand is necessary for all objective functions. To consider
the physical size of an item, the DM has access to data on the
‘number of units in one handling unit’. It shows the number
of units of an item that can be packed in one handling unit,
for example, a pallet. One handling unit can store many units
of an item if it is a small item, otherwise, it is only able to
store few units of a big item. This data affects his decisions
in deciding HC and CSL.

As said, we received data from the ERP system of the
company containing information about the six properties that
influence the DM’s lot sizing decisions. The data was used to
cluster the 94 items with the k-medoids clustering technique.
Tohelp in determining the number of clusters, an elbowgraph
was presented to the DM showing the distortion of the sum of
square error values of the distances between cluster centers
and cluster members. The best number of clusters is usually
found if there is an ‘elbow’ in the curve, that is, where the
distortion of the following cluster does not decrease much.
However, in this case, the distortion basically decreasedwhen
the number of cluster increased, but there was no elbow vis-
ible. Therefore, the decision of the number of clusters relied
on the DM.

According to the DM, an acceptable number of clusters
for 94 items was between 7 and 12 clusters. Therefore, he
wanted to see the clustering results in this range (i.e, cluster
centers and cluster members for different numbers of clus-
ters). After comparing the clustering results of 7–12 clusters,
the DM decided that the appropriate number of clusters was
10. The reason was that with 10 clusters, the items in the
same cluster could be best treated with similar preferences.
The result of the clustering with 10 clusters is presented in
Fig. 3, where different colours represents different clusters.
Therefore, the DM needed to complete a total of 10 decision

Fig. 3 Result of clustering (ten clusters indicates by different colours)
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making processes, and this number was acceptable for him.
(This number is clearly lower than repeating the process for
each of the 94 items.)

Decisionmaking stage

For compactness, we here describe the solution process for
one cluster only (the other clusters were treated in the same
way). The considered cluster is shown in red colour in Fig. 3
(cluster 10). Items in this cluster have low purchasing prices,
low transit times, and quite low values for the other elements.
Based on the data from the company, the cluster center of
this cluster has the price of 57.09 and the lead time of four
weeks. The minimum order quantity and the rounding value
of this item are both 45 units, while the demand data and the
previous orders that are supposed to arrive during the four
week lead time period, can be seen in Fig. 4.

TheDMwanted to use the interactive NIMBUSmethod to
find the best lot sizes for the cluster centers since he preferred
to give his preferences in the form of a classification and he
loved the way NIMBUS handles classification. However, the
lot sizing problem to be solved is computationally expensive
(Kania et al., 2022), and therefore solving one scalarizing
function spends several minutes andNIMBUS needs to solve
up to four scalarizing functions on each iteration. To reduce
the waiting time of the DM, we generated a representative
set to approximate Pareto optimal solutions in advance, and
used NIMBUS to help the DM select one of them.

Because of the complexity of lot sizing problems, evolu-
tionary algorithms, have become popular and efficient tools
to approximate the set of Pareto optimal solutions in these
problems (Goren et al., 2010). In this case, we applied an evo-
lutionarymethod calledNSGA-III (Deb&Jain, 2014),which
has been developed formultiobjective optimization problems
with more than three objective functions. We applied the
implementation of NSGA-III in a framework called pymoo
(Blank &Deb, 2020), because it can handle integer variables
and many constraints. Details of generating the representa-
tive set for the cluster center are presented in Appendix B.

A graphical user interface is important in decision making
processes with interactive methods to facilitate interaction
between the DM and the method. We used DESDEO (Misi-
tano et al., 2021), an open source Python framework, which
provides implementations and graphical user interfaces for
various interactive multiobjective optimization methods,
including NIMBUS. The feature of having a pre-generated
set of solutions is also provided in this framework.

As mentioned in Sect. 2.3, in the first iteration of NIM-
BUS, the starting point together with the ideal and nadir
points are presented to the DM to support providing the first
classification. Figure5 shows the corresponding screenshot
of NIMBUS in DESDEO. In this case, the starting point
(objective vector) for the cluster center was (146 066.8,

525.1, 0.98, 44.65), while the ideal and nadir points were
(144466.8, 332.42, 1, 79.42) and (152604.9, 2 989.05, 0.906,
9.89), respectively. The objective function values in the start-
ing point are indicated by pink bars in Fig. 5. The graphical
user interface supports the DM in remembering the direction
of improvement. The first and the second objective functions
are to be minimized (pink bar starts from the left) and the
others are to be maximized (pink bars start from the right);
and the shorter the pink bar, the closer the current value is to
the ideal value.

In the first iteration, the DM wanted to improve ITO
until 60, and allowed CSL to decrease until 0.91, while the
other objective functions were allowed to change freely. He
wanted to compare up to four solutions, but he only got two
different solutions because of the same results in optimiz-
ing some of the scalarizing functions. The solutions were
(147 266.8, 332.42, 0.9258, 79.42) and (147 266.8, 361.61,
0.9747, 72.37). The solutions were visualized for the DM
in DESDEO to help comparisons. The DM chose the second
solution since it had a better CSL value. The ITO value of this
solution was worse than in the first one, but it was acceptable
for the DM. The DM continued to the next iteration with the
selected solution.

The DM was already rather satisfied with the current
solution, but he wanted to explore whether he could get
a better solution. (He appreciated the feature of NIMBUS
that allowed him to go back to the previous solution if the
solutions of the next iterations are not getting better. Thus,
there was no risk of losing the previous solution by trying
new preferences.) For the second iteration, he allowed to
impair ITO until 25, but he wanted to improve CSL until
0.99 and let the other objective functions change freely. The
solutions obtained in this iteration were (151 004.9, 729.45,
0.999999995, 26.92), (146 866.8, 455.03, 0.996, 52.55),
(149 035.85, 615.6, 0.999997, 32.7) and (152 604.9, 565.97,
0.999999994, 34.67). The DM selected the second solution,
where he got the best values for POC, HC and ITO, and the
CSL valuewas acceptable.When compared to the solution of
the first iteration, the current solution had a better CSL value
and an acceptable value for ITO, hence the DM decided to
continue with the current solution for the next iteration.

The DM was satisfied with the CSL and ITO values and
wanted to improve HC as much as possible in this iteration.
Because of trade-offs, he had to allow impairment in at least
one other function, and he preferred to sacrifice ITO a bit
until 50. He allowed POC to change freely and kept CSL in
the current value. Hewanted to see up to four solutions but he
only got three different ones. The solutionswere (150 035.85,
405.4, 0.997, 55.91), (147 266.8, 332.42, 0.926, 79.42) and
(147 466.8, 390.81, 0.995, 58.51). He selected the first one
with the best CSL value and an acceptable ITO value. Hewas
planning to stop with this solution. However, when he saw
the corresponding decision variable values, he found SS and
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Fig. 4 Demand and previous order data for the cluster center

Fig. 5 Graphical user interface of NIMBUS in DESDEO

SOT values unacceptable, and wanted to start the decision
making process again from the beginning to get a better CSL
value.

The DM was again shown the information in Fig. 5. He
wanted to improve CSL until 0.9999, sacrifice ITO to 40 and
let POC and HC change freely. He wanted to see up to four
solutions but got these two solutions: (150 035.85, 498.82,

0.999993, 40.89). Based on the previous experiences and
learning there, he wanted to play safe with CSL and chose
the first one with a better CSL value.

In the second iteration, he preferred to improve HC until
400 and sacrifice on ITO to 35. He let POC change freely
and kept CSL in the current value. He was then presented
with these four solutions: (150 035.85, 498.82, 0.999993,
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Fig. 6 Result for cluster center

40.89), (149 835.85, 492.99, 0.999991, 41.13), (149 835.85,
411.24, 0.997, 55.02) and (150 035.85, 405.4, 0.997, 55.91).
The second solution was the best for the DM and he decided
to stop with it as the final one. The DM was very pleased
with the final solution as well as the corresponding decision
variable values.

The lot sizes that arrive for each planning period can be
seen in Fig. 6 in red. The previously set order data for the
first four weeks are followed by the optimized lot sizes after
week 4 (the lead time was 4 weeks in this cluster). The fig-
ure shows that no order is needed for weeks 5, 8, and 22.
Following the DM’s preferences in the decision making pro-
cess, we do not need to order in every single period to have a
balance between POC and HC. In this case, orders for weeks
5, 8, and 22 are unnecessary to save on ordering costs. The
final SS and SOT values were 74 units and one day, respec-
tively. The inventory level indicated by the green line shows
that the company had excess inventory during the lead time
period, and it then decreased and followed the demand quan-
tity with the optimized lot sizes. Thus, the company saved
money invested in the inventory. The DM was pleased with
the improvement in the inventory level but keep the safety
level high, following his preferences.

Deriving reference points stage

From the previous stage, we got the final, optimized solu-
tion for the cluster center z = (149 835.85, 492.99, 0.999991,
41.13) while the starting point of the interactive solution pro-
cess was zs = (146 066.8, 525.1, 0.98, 44.65). With these
points, we calculated the reference direction of the cluster
center as zr = (3 769.05, −32.11, 0.012132, −3.53) and the
normalization of zr was żr = (0.0258, −0.0612, 0.01228,
−0.07896).

This cluster had 14 cluster members (besides the cluster
center). As described in section“Deriving reference points
stage”, we calculated starting points for each cluster mem-
ber. Because we used NIMBUS and the neutral compromise
solution as the starting point for the cluster center, we cal-
culated neutral compromise solutions as starting point for
cluster members. We then followed Algorithm 1 to calcu-
late the reference point for each cluster member. The starting
points and the reference points for the cluster members in
this cluster can be seen in Table 1.

Solution generation stage

For each cluster member, we considered the correspond-
ing reference point, minimized the ASF (2) and derived a
solution. These solutions are presented in Table 2. The DM
accepted them and appreciated that each item had its solu-
tions following his preferences. He was able to find solutions
for the cluster with 15 items with only one decision making
process, thanks to DESMILS.

The steps from the decisionmaking stage until the solution
generation stage were repeated for other clusters. The DM
provideddifferent preferences in the decisionmakingprocess
for the different cluster centers and he was pleased with the
results of both cluster centers and cluster members, which
followed his preferences.

Compared with the traditional method used in the com-
pany (without anydecision support tool), theDMemphasized
the following benefits in using DESMILS.

1. The DM can consider different KPIs simultaneously and
understands the trade-offs among them, when he is able
to compare different solutions and change his preferences
during the decisionmaking process. Thus, he can train his
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Table 1 Starting points and
reference points for cluster
members

Item Starting points Reference points

POC HC CSL ITO POC HC CSL ITO

1 202 451.84 1 778.92 0.912 21.68 209 396.1 554.38 0.924 54.79

2 110 688.96 1 232.14 0.965 13.99 114 485.68 383.98 0.978 35.38

3 248 950 2 875.84 0.926 13.34 257 489.19 896.22 0.938 33.73

4 142 384.4 1 570.19 0.999 12.96 147 268.3 489.33 1.014 32.75

5 216 751.6 2 724.29 0.922 12.83 224 186.36 848.99 0.935 32.44

6 256 988.32 2 483.68 0.977 19.08 265 803.23 774.01 0.991 48.24

7 178 282 1 229.85 0.939 21.63 184 397.22 383.27 0.952 54.68

8 158 921 2 510.89 0.906 10.61 164 372.12 782.49 0.919 26.82

9 139 796 2 495.98 0.923 11.65 144 591.12 777.84 0.935 29.45

10 296 462.4 4 069.06 0.956 13.45 306 631.3 1268.08 0.969 34.01

11 166 792.35 1 597.38 0.914 17.46 172 513.46 497.81 0.927 44.14

12 172 367.85 1 873.49 0.902 16.24 178 280.21 583.85 0.915 41.05

13 214 529.6 2 672.44 0.965 14.83 221 888.14 832.84 0.978 37.49

14 176 194.6 1 896.18 0.933 15.46 182 238.22 590.92 0.946 39.09

Table 2 Solutions for cluster members

Item POC HC CSL ITO

1 205 331.2 330.48 0.939 77.92

2 112 688.96 458.07 0.973 38.13

3 251 550 690.96 0.942 78.21

4 144 784.4 652.87 0.999 32.79

5 221 748.84 591.29 0.947 66.14

6 265 234.88 571.19 0.990 62.16

7 180 882 524.75 0.951 55.34

8 161 321 870.53 0.950 50.54

9 142 589.12 341.04 0.945 60

10 298 862.4 1 071.85 0.975 64.02

11 169 749.9 482.91 0.953 79.99

12 175 525.4 397.89 0.945 79.99

13 220 466 515.15 0.991 64.8

14 179 509.68 539.97 0.956 79.96

team members and other stakeholders of the company on
this aspect of lot sizing for better results.

2. The optimal lot sizes provided by DESMILS improve
inventory planning and control in his company. The inven-
tory value, which is a core KPI for the top management,
was reduced for all items in this case study.

3. Saving time is a significant issue in daily operations. Com-
pared with the previous way, where it is mostly done item
by item, DESMILS save a significant amount of time and
effort. DESMILS also allows the DM to decide the num-
ber of clusters, and therefore, he can control the effort
needed to solve his multi-item lot sizing problems.

4. DESMILS also reduces the risk of human error. When
processes are not controlled only by traditional methods,

the risk of unintentional forgetting is reduced. It in turn
supports production needswhen the right amount ofmate-
rial is available at the right time.

As said, the company already had KPIs in use, and the
suitable ones were selected as the objective functions. In this
way, the results of the optimization were used as a source
of information to KPIs, for example, for reporting purposes
to senior management. Based on the KPI information in the
objection functions, he confirmed that the results are accept-
able and reflect his preferenceswell. This allows him to focus
on nurturing and developing company’s buyer–supplier rela-
tionships and developing lot sizing processes there.

Being a good buyer with convincing and predictable
lot sizing planning is a good method to successful buyer–
supplier relationship when creating competitive advantage.
Naturally, our approach does not only focus on the develop-
ment of the activities of the company in question. Production
companies in general could improve their inventory manage-
ment with our approach.

Conclusions

In this paper, we have introduced DESMILS, a decision sup-
port approach to solve multi-item lot sizing problems. Our
motivation is to enable any single-item lot sizing model,
which is formulated as a multiobjective optimization prob-
lem, to be applied inmulti-itemproblemswith a large number
of items. Our approach applies an interactive multiobjective
optimization method to solve a single-item lot sizing prob-
lem for few selected items. It then accommodates preferences
obtained from the DM so that the DM does not need to repeat
the decision making process for each item separately. The
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preferences are used to derive optimal lot sizes for the other
items.

The idea ofDESMILS is to divide items into clusters using
properties that influence the DM’s lot sizing decisions, with
the reasoning that items in the samecluster canbe treatedwith
similar preferences in the lot sizing decision. Therefore, we
only need to conduct the decision making process, where the
DM provides his/her preferences, for one representative item
for each cluster.We then translate the preference information
to derive Pareto optimal lot sizes for the remaining items in
the same cluster. In this way, optimal lot sizes that represent
the DM’s preferences are obtained for all items.

As a proof of concept, a real lot sizing problem from
a manufacturing company was solved to demonstrate the
applicability of the proposed approach. Lot sizes were to be
determined for 94 items and with DESMILS, Pareto optimal
solutions reflecting the DM’s preferences were found for all
items. However, the DM had to solve only a limited num-
ber of lot sizing problems. The DM was satisfied with all of
the solutions and the corresponding decision variables. He
appreciated that he could find lot sizes for each item reflect-
ing his preferences with a limited amount of effort from his
side.

Solving multi-item lot sizing problems incorporating a
DM’s preferences in deciding lot sizes for different items
was proposed for the first time in this research. Hence, test-
ing this approach with different types and characteristics of
the problems and with different numbers of items are topics
of future research extending this work. In our case study, the
elbow method failed to help the DM in setting the number of
clusters. Therefore, our future work includes finding better
support the DM in this. Furthermore, in the case considered,
there is no information about connections and dependencies
between items, but it can be a possible future research direc-
tion.
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Appendix A: Multiobjective optimization
model

Based on the needs of the real case study, we used the lot
sizing model proposed in Kania et al. (2022) to consider
single-item lot sizing. This model follows a periodic review
policy, where orders are reviewed over discrete time peri-
ods t = 1, . . . , T . This is a single-item lot sizing model to
determine the optimal order quantity (Q(t)) for each period
considered and simultaneously decide the optimal values of
SS and SOT . There are four objective functions and four
constraints in the model. The two objective functions related
to costs (i.e., POC and HC) are considered as different objec-
tive functions here, because there is trade-off between them
and the DM wants to study the trade-off.

min POC =
∑
t

Q(t) p +
∑
t

Y (t) c,

HC =
∑
t

I (t − 1) + I (t)

2
h,

max CSL = F

(
SS + μ SOT

σ

)
,

I T O =
∑
t

D(t) + σ

(I (t − 1) + I (t))/2
,

s.t.
I (t − 1) + ∑t

i=t−
L� Q(i) − SS∑t+
P�
j=t D( j) + (P − 
P�)D(�P)

≥ 1,

for t = 1, . . . , T ,

Q(t) = Y (t) (moq + a r) , for any integer a ≥ 0

and t = 1, . . . , T ,

I (t) ≥ SS + SOT D(t) , for t = 1, . . . , T ,

SS ≥ 0 and SOT ≥ 0,

where

p price to purchase one unit of the item
c cost to place one order
h cost to hold one unit for one period
L lead time

D(t) predicted demand during period t
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σ standard deviation of demand D(t)
μ average demand D(t)

moq minimum order quantity (for lot size)
r rounding value (for lot size)

Y (t) order indicator (Y (t) = 1 if Q(t) > 0, otherwise
Y (t) = 0)

I (t) inventory position at the end of period t
(I (t) = I (t − 1) + Q(t − 
L�) − D(t))

P the consideration period for one order (P = L +
SOT ).

Appendix B: Details of generating solutions
for the decisionmaking stage

As said, the lot sizing problem to be solved in the case study is
a computationally expensive problem. Therefore, generating
many solutions to approximate Pareto optimal solutions is a
challenge. The minimum order quantity and rounding value
as well as constraints limit the range of feasible solutions.
Here, we applied NSGA-III by using the pymoo framework.
We combined solutions obtained with different initial popu-
lations and various parameters of evolutionary operators that
were available in the framework, to get more different solu-
tions (Deb & Jain, 2014).

We applied the structured approach described in Das and
Dennis (1998) with the number of partitions from 1 until
20 to generate initial populations. We also combined differ-
ent types of crossover operators for integer variables, i.e.,
simulated binary crossover, exponential crossover, uniform
crossover, half uniform crossover, and four point crossover.
We used crossover probability of 0.9 for all of them, except
exponential crossover where we used probability of 0.95. For
mutation, we used polynomial mutation for integer variables
with mutation probability 0.9. The parameters were selected
after several experiments and we found that these parame-
ters were good enough for our case. For other parameters,
we used the default values in pymoo (Blank & Deb, 2020).
In this way, we obtained 568 solutions for the cluster center
in Sect. 4.2 in almost 24h. However, this process was done
without the involvement of the DM, and there was no com-
putational overhead involved in the interactive process.
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