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Abstract
The wear state of the punch in sheet-metal stamping processes cannot be directly observed, necessitating the use of indirect
methods to infer its condition. Past research approaches utilized a plethora of machine learning models to infer the punch
wear state from suitable process signals, but have been limited by the lack of industrial-grade process setups and sample sizes
as well as their insufficient interpretability. This work seeks to address these limitations by proposing the sheared surface of
the scrap web as a proxy for the punch wear and modeling its quality from acoustic emission signals. The experimental work
was carried out in an industrial-grade fine blanking process setting. Evaluation of the model performances suggests that the
utilized regression models are capable of modeling the relationship between acoustic emission signal features and sheared
surface quality of the scrap webs. Subsequent model inference suggests adhesive wear on the punch as a root cause for the
sheared surface impairment of the scrap webs. This work represents the most extensive modeling effort on indirect punch
wear monitoring in sheet-metal stamping both from amodel prediction and model inference perspective known to the authors.

Keywords Sheet-metal stamping · Machine learning · Punch wear · Data mining

Introduction

Sheet-metal stamping processes are among the most fre-
quently utilizedmanufacturing technologies due to their high
resource efficiency (Klocke, 2014). Unexpectedly high tool
wear can lead to unplanned machine down times, excess
waste due to scrap production, costly finishing treatments
required to compensate for product impairment, and high
repair or replacement costs in case of excessively damaged

B Martin Unterberg
M.Unterberg@wzl-tf.rwth-aachen.de

Marco Becker
M.Becker@wzl-tf.rwth-aachen.de

Philipp Niemietz
P.Niemietz@wzl-tf.rwth-aachen.de

Thomas Bergs
T.Bergs@wzl-tf.rwth-aachen.de

1 Laboratory for Machine Tools and Production Engineering
(WZL), RWTH Aachen University, Campus-Boulevard 30,
52074 Aachen, Germany

2 Fraunhofer Institute for Production Technology (IPT),
Steinbachstraße 17, 52074 Aachen, Germany

critical tool components, such as the punch (Unterberg et al.,
2021).

The punch wear state is not directly observable in indus-
trial sheet-metal stamping processes. Therefore, the indus-
trial approach towards controlling the punch wear currently
consists of (i) preventive and (ii) reactive maintenance.
The punch is either (i) replaced or redressed within fixed
maintenance intervals or (ii) replaced or redressed when nec-
essary, e.g. when impaired product quality is observed or an
unplanned machine downtime occurred.

Based on the actual punch wear state, this approach has
different implications. If the punch is replaced or maintained
too early (non-critical wear state), both the planned machine
downtime and the unnecessarymaintenance of the punch lead
to excess cost and wasted resources. If the punch is replaced
or maintained too late (critical wear state), this does not only
lead to unplanned machine downtimes, but also endangers
other tool components through changes in the kinematic sys-
tem induced by the punch wear.

Tool wear (and thus punch wear) does not progress lin-
early with production time (Behrens et al., 2016) and can be
roughly separated into 3 phases: a break-in phase, a steady-
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Fig. 1 Theoretical tool wear over the tool life

state wear phase and a failure phase as visualized in Fig. 1
(adapted from Groover (2010)).

Ideally, the punch wear state would be known at every
stroke to infer optimal maintenance intervals. However, fre-
quent direct measurements of the punch wear state (direct
tool wear monitoring), e.g. by disassembling the tool and
using a suitable wear evaluation metric, impair the economic
viability of the process.

Indirect tool wear monitoring denotes leveraging pro-
cess signals, such as force-displacement or acoustic emission
(AE) signals, to infer the wear state of the tool from suitable
signal characteristics. Although indirect tool wear monitor-
ing is a frequently researched topic within the scientific
community, no solution has prevailed so far in industrial
sheet-metal stamping processes, highlighting the need for
industrial applicable and validated approaches (Niemietz et
al., 2022).

Unsupervisedmachine learning approaches do not require
costly label generation in the form of punch wear evaluation
to infer structural changes within a physical system. Prior
works of the authors showed that representation learning
approaches, such as UMAP and PCA embeddings (Unter-
berg et al., 2021) for AE signals and reconstruction error
sequences of autoencoders (Niemietz et al., 2021) for both
AE and force-displacement signals in fine blanking resem-
ble the expected punch wear, lack, however, validation in the
formof an approximated ground truth of the (either indirectly
or directly) observed tool wear as a benchmarking tool for
the developed approaches.

Niemietz et al. derived wear estimators from suitable
representations of domain-specifically preprocessed force-
displacement signals to model the punch wear in a fine
blanking process. The validity of the estimators was exam-
ined with sparse wear stage information, motivating more
extensive data collection. Moreover, the authors state that
existing approaches to inferring punch wear information
largely depend on artificially introduced wear states. This
highlights the need for further research with industrial-grade
process setups and emphasizes the importance of modeling

and understanding transitions betweenwear stages (Niemietz
et al., 2022). A similar representation learning approach to
Niemietz et al. (2021) was followed by Asahi et al. The
authors used the reconstruction error sequence of an autoen-
coder trained on collected "normal" (as in an unworn punch
state) time series data from various sensor sources during a
stampingprocess. The authors showed that the reconstruction
error, calculated for each process cycle, can be interpreted as
an anomaly score for the respective process cycle (Asahi et
al., 2021). The authors used the reconstruction error as an
input for classification models with 3 class labels, represent-
ing 3 consecutive wear stages. Kubik et al. used 5 stages
of artificially introduced abrasive punch wear states as class
labels in a stamping process. The authors used support vector
machines tomodel the correlation between extracted features
from force-displacement signals and the wear states. The
signals were gathered for varying punch wear states, stroke
frequencies, and sensor positions. Kubik et al. evaluated the
model performances on the basis of their (i) classification
accuracies and (ii) class separabilities. The authors empha-
size the importance of leveraging domain knowledge during
data acquisition, preprocessing, and transformation to opti-
mize formodel performance.Moreover, the authors highlight
the need to evaluate different process signals, such as AE, as
correlation variables for the punch wear (Kubik et al., 2022).

AE signals are based on transient elastic waves generated
by the sudden release of energy, e.g., crack propagation, plas-
tic deformation, or impacts (DINEN1330-9:2017-10, 2017).
In contrast to force sensors, AE sensors are inexpensive
and easy to mount and maintain, making them suitable for
industrial usage. Compared to force-displacement signals,
extracting relevant information from AE signals typically
requiresmore effort due to their complex structure (Kollment
et al., 2018). This highlights the need to obtain a high signal-
to-noise ratio for AE signals with suitable preprocessing and
transformation techniques, such as frequency-domain analy-
sis. Frequency-domain analysis decomposes a time-domain
signal into its frequency components. Past research showed
that under sliding conditions, the behavior of these frequency
components of AE signals changes with the wear state (Bac-
car & Söffker, 2015).

Shanbhag et al. used various frequency characteristics
of AE signals from a semi-industrial sheet-metal stamping
process setup to detect the onset and severity of galling, a
phenomenon caused by adhesive wear. The authors state
that the mean frequency feature, a scalar value representing
the averaged frequency content of a signal weighted by the
amplitudes, can be used to identify galling. Furthermore, the
authors identified the frequency range 100–200kHz as the
frequency range that contained the most relevant informa-
tion about the onset and severity of galling for their process
setup (Shanbhag et al., 2020).
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In summary, the following research deficits are identified
and addressed within this work:

1. There is a lack of research for industrial-grade sample
sizes and process setups on punch wear monitoring with
AE signals.

2. For industrial-grade sheet-metal stamping processes, a
suitable proxy for isolating the punch wear has yet to be
identified in literature, necessitating disassembling and
reassembling the tool to assess the punch wear state and
thus affecting the process setup.

3. Past unsupervised approaches towards punch wear mon-
itoring lack a sufficient amount of labels to evaluate the
performances of said approaches.

4. Thenumberof class labelsutilized in supervised approach
es to punch wear monitoring does not account for the
transient nature of wear processes within sheet-metal
stamping, neglecting transitions betweenwear stages and
impeding inference from model decisions.

5. While recent machine learning approaches with highly
flexible architectures towards punch wear monitoring are
promising, they lack interpretability.

This work seeks to address these deficits as follows. The
sheared surface roughness of the scrap web, which denotes
the scrap part that results from the shearing operation, is pro-
posed as a proxy for the punch wear in sheet-metal stamping
processes and the evolution of this proxy over the lifespan
of two punches is analyzed. Moreover, the correlation of this
proxy with features of AE signals from an industrial-grade
process setup and data set size is modeled with different
approaches. Finally, model performances and model predic-
tions are evaluated regarding the prediction quality and the
feature importances for a comprehensive and interpretable
feature space.

The developed methodology is laid out in the section
“Methodology”. The results of the analyses are presented
and discussed in the section “Results and discussion”. The
section “Summary and outlook” summarizes this work and
suggests open research questions.

Methodology

The following section describes the developed methodol-
ogy. The section “Process setup” presents the process setup
for the experiment. Following, the section “Sensoric setup”
describes the sensory setup for the experiment. The section
“Scrap web measurements” presents the measurement pro-
cess of the sheared surface roughnesses of the scrab webs.
The domain-specific data preprocessing approach (segmen-
tation, filtering, and feature extraction) is documented in
the section “Data preprocessing”. To account for missing

data,multiple imputationwas usedwith different approaches,
described in the section “Synthetic label generation”. The
developed analysis pipeline to (i) analyze the correlation
between the sheared surface roughnesses of the scrab webs
and the AE signal features with regards to the process phase
and to (ii) infer feature importances from the resultingmodels
is presented in the section “Data analysis pipeline”.

Process setup

The experimental series was carried out on an industrial-
grade fine blanking machine of type Feintool XFT 2500
speed. In total, 8 high-strength sheet-metal coils of grade
58CrV4with a sheet-metal thickness of 5mmwere processed
with a tool cavity of 2 and stroke frequency of 50min−1. The
supplier reported a tensile strength of 568MPa for the sheet-
metal coils. A counter holder force of 300kN and a press
plate force of 500kN were chosen according to the mate-
rial specifications. No V-ring indenter was used. The punch
steel was chosen as a powder metallurgical cold work steel of
grade K490 with a titanium aluminum carbon-nitride coat-
ing. The chosen lubricant was a chlorine-free lubricant of
type WISURA FMO 5020. The experiment was carried out
over the span of 3 consecutive days.

Sensoric setup

An acoustic emission sensor of type Kistler 8152C0 with a
frequency response of 50–400kHz was mounted structurally
close to the punch to avoid dampening effects, similar to the
setup presented in Unterberg et al. (2021). A Kistler 5125C
piezotron coupler was used to process the sensor signal. The
AE signal was sampled with a sampling frequency of 1MHz.
Furthermore, a Mikroepsilon optoNCDT laser triangulation
sensor was used to retrieve information about the process
phase that corresponds to the AE signal in a given timeframe
ex post. This distance signal was sampled with a sampling
frequency of 10kHz. Both distance and AE measurements
were stopped whenever the process was stopped, e.g. due to
coil changes, and were written to .tdms files with a shared
timestamp. The sensory setup on tool site is shown in Fig. 2.

Scrap webmeasurements

In fine blanking, the shearing edges of the punch and the
sheared surface of the scrap web represent a tribological sys-
tem during the shearing (see Fig. 3a) and stripping phase (see
Fig. 3b) with the lubricant as an intermediate and the punch
wear as an initial size (Voigts, 2021). Followingly, the qual-
ity of the sheared surface of the scrap web is a result of the
interaction of the punch with the surface during the shear-
ing and stripping phase and is, from a physical standpoint,
a suitable proxy for the punch wear. FV denotes the V-ring
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Material Scrap webs

Position of AE sensor

Distance sensor

Fig. 2 Sensoric setup for the experimental stroke series

Fig. 3 Visualization of the a shearing and b stripping phase in fine blanking

indenter force, FC the counter holder force, FP and FE the
resulting punch and ejection forces in Fig. 3.

Scrap webs were sampled every 200th stroke, beginning
with thefirst and endingwith the last strokeof the experiment.
In total, 203 scrap webs were sampled.

The most severely worn shearing edge surfaces of the
punches were identified qualitatively ex post with a scanning
electron microscope (SEM) at 40-fold magnification, see
Fig. 4a. The identified surfaces showed severe delamination,
abrasive and adhesive wear. Subsequently, the roughness of
the corresponding surfaces of the scrap webs was tested at
scale.

The roughness was tested with a stylus-based tactile pro-
filometer of type Jenoptik Waveline W920RC. The selected
surfaces are shown in Fig. 4b and the testing setup is shown
in Fig. 4c. The length of the profile measurement section was
chosen as 2.4mm. To robustify the measurements towards
extreme profile spikes and to account for inhomogeneous
surfaces:

1. The arithmetic average Ra of the profile height devia-
tions from the mean line was chosen to characterize the
surfaces.

2. Per surface, 3 measurements were carried out with an
offset to each other of 0.8mm.

3. The mean of all 12 measurements (3 measurements per
surface, 2 surfaces per punch, 2 punches) of a given scrap
web was calculated and chosen as a representation of the
scrap web roughness at the given stroke number.

Data preprocessing

To increase the signal-to-noise ratio and reduce computa-
tional load, the quasi-continuous AE signals were segmented
in two subsequent segmentation steps and followingly, a fea-
ture extraction was performed, as visualized in Fig. 5.

In a first step (rough segmentation), strokes (i.e. one clos-
ing and the subsequent opening cycle of the tool) were
detected using threshold values based on the known sheet-
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Fig. 4 a SEM of the punches
before/after, b Selected sheared
surfaces of the scrap webs, and c
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Fig. 5 Segmentation and feature extraction pipeline

metal thickness of 5mm in the distance signals. The top dead
center (TDC) was then identified as a local minimum in the
distance signal, representing the end of the shearing phase.
From the TDC, both the shearing and the stripping phases
were identified and extracted by manually segmenting the
first stroke of the experiment (determining the distance of
the shearing and stripping phases relative to the TDC) and
then using this distance with an automated Python script that
(i) identifies the TDC of a stroke and (ii) extracts the shear-
ing and stripping phase of a stroke (fine segmentation), see
Fig. 6.

Since the AE and distance signals were sampled with dif-
ferent sampling frequencies, misalignment occurred within
each sequence of process phases. Misalignment in this con-
text means that for each stroke i , the shearing and stripping
phases of all other strokes k with k �= i are shifted in time rel-
ative to stroke i . This shift is equal for both process phases and
varies stroke-wise.An implementation ofMueen’sAlgorithm
for Similarity Search (MASS) (Yeh et al., 2016) from the
Python library stumpy was used to quantify the shifts within
the sequence of stripping phases to a reference stroke, since
the initial burst in the stripping segments is easily detectable,
see Fig. 6. This information was then used to extract the
aligned shearing and stripping segments from the rough seg-
mentation.

To efficiently process the raw AE and distance data, the
Python libraries npTDMS, pandas and NumPy were used.

Fig. 6 Segmented stroke of the experimental series

To reduce noise in the AE signals, the resulting segments
were band-pass filtered with a passband frequency range of
50–400kHz after fine segmentation, which matches the fre-
quency response of the AE sensor. The digital filtering was
carried out with a Butterworth filter of order 6 using the
Python library SciPy. For the feature extraction, the Python
library TSFEL was used with all 390 available statistical,
temporal, and spectral features (Barandas et al., 2020). To
reduce the data load for subsequent data modeling, instead
of a slidingwindow, the whole signal was used for the feature
extraction. A further reduction of the feature space through
a subsequent feature selection step was omitted to not intro-
duce any further bias into the pipeline.
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Synthetic label generation

The following assumptions were made prior to the experi-
ment:

1. The roughness evolution of the sheared surfaces of the
scrap webs has an underlying physical causation and is
correlated with punch wear phenomena, thus, it is not
completely stochastic. Subsequently, the missing data
can be imputed with suitable models at the cost of intro-
ducing further uncertainty.

2. The mean of the actual roughness measurements for a
scrap web is, even in the presence of measurement errors,
the most reliable proxy for this physical causation at a
certain stroke available in this work. Therefore, the actual
roughnessmeasurements should be present in all models.

To reduce the total amount of bias introduced into the sub-
sequently trained models with the selection of an imputation
model and to account for stochastic effects in the underlying
physical process, various amounts of synthetic datawere gen-
erated and different imputation approaches were carried out.
This approach is visualized in Fig. 7. The regression models
were trained with a combination of the 203 averaged sample
roughnesses and for each model run randomly drawn s ∈ {0;
1000; 2000; 4000; 8000; 16,000; 32,000; 40,247} synthetic
labels. The synthetic labelswere generatedwith interpolation
methods with ascending model complexity:

1. Data repetition (assign roughness measured for scrap
web 1 to grids 1–200, roughness for grid 200 to grids
201–400 etc.)

2. Linear interpolation
3. Cubic spline interpolation (smoothing factor chosen as

0, thus interpolating through each data point)
4. Gaussian process regression

The kernel for the Gaussian process regression (GPR) was
chosen as a sum-kernel consisting of awhite noise kernel and
a Matérn kernel to introduce measurement noise and model

the underlying physical process. A Gaussian process was fit
to the roughness measurements with the GaussianProcess-
Regressor class from the sklearn library. The synthetic data
was then sampled from the Gaussian process for each model
run.

Data analysis pipeline

The data analysis pipeline for one model run is visualized in
Fig. 8.

The task ofmodeling the roughnessmeasurements and the
synthetic roughness data from the AE features was treated
as a regression problem. Prior to selecting the modeling
approaches, a list of 3 criteria for the selection was compiled:

1. To infer the nature of the relationship (linear vs. non-
linear) between AE features and roughness data, both
a linear and a nonlinear modeling approach should be
chosen and compared.

2. Since no prior feature selection step was performed,
both modeling approaches should utilize regularization
to avoid overfitting.

3. To allow a high number of model runs for large data sets,
both modeling approaches should be highly scalable.

Based to these criteria, two modeling approaches were
chosen, namely eXtreme Gradient Boosting regression
(XGBoost) and Least absolute shrinkage and selection oper-
ator regression (Lasso).

XGBoost is an end-to-end gradient tree boosting method
with regularization. It uses both L1 and L2 regularization,
controlling final model complexity, and avoiding overfitting
even in the presence of a large number of input features
(Chen & Guestrin, 2016). As a gradient tree boosting
method, XGBoost is capable of learning nonlinear relation-
ships between predictor variables and labels, and has shown
on-par performance or even outperformed recently proposed
deep learning models for classification and regression in tab-
ular data sets (Shwartz-Ziv & Armon, 2022). XGBoost has
the ability to utilize multiple CPU cores in parallel, speeding

Linear interpolation

Spline interpolation

Data repetition

Gaussian process

Sampled scrap
webs

Roughness
sequence

Multiple imputationRoughness testing

Synthetic
label generation

Synthetic label
sets

Fig. 7 Synthetic label generation pipeline
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up training and prediction substantially (Chen & Guestrin,
2016). Moreover, tree-based methods offer the advantage
of efficient interpretation of model predictions in terms of
feature importance, i.e. through the TreeSHAP algorithm.
Compared to the model-agnostic KernelSHAP, TreeSHAP
reduces computational complexity from exponential to poly-
nomial time (Lundberg et al., 2020). Overall, XGBoost is
highly scalable for both prediction and inference purposes
and thus a suitable choice for this work.

Lasso is an even more restrictive modeling approach
than linear regression, since in addition to modeling linear
relationships between predictor variables and labels, Lasso
produces coefficients that are exactly 0 through L1 regular-
ization. This allows inference of which features are ruled out
as unimportant for the regression task and which are seen as
important after the training process and effectively performs
feature selection (Tibshirani, 1996). As a linear regression
with L1 regularization, Lasso is scalable to large data sets
and a high number of model runs.

For every

• data set size (e.g. 1203 labels, consisting of 1000 syn-
thetic labels and 203 averaged actual measurements),

• process phase (e.g. shearing) and
• imputation method (e.g. cubic spline),

100 random train/test splits (75%/25%) were drawn.
Additionally, the synthetic labels from the GPR were sam-
pled repeatedly for every model run from the Gaussian
process.

Subsequently, the StandardScaler module from sklearn
was used to standardize the model input for each model run.
A StandardScaler object was fit to and then used to transform
(standardize) the training set and subsequently transform

(without another fitting procedure) the test set to prevent data
leakage from the test to the training set.

For the XGBoost regressions, the Python library xgboost,
developed and maintained by the authors of Chen and
Guestrin (2016), was used. To reduce computation time,
the default library parameters were used as documented
in XGBoost (2023) without further hyperparameter opti-
mization. For Lasso regressions, 5-fold cross-validation was
carried out with 25 different regularization parameters λ

between 0.02 and 0.5 for each model run with the LassoCV
module from sklearn. This range has been determined empir-
ically.

To evaluate model performances, the mean squared error
(MSE) for every drawn test set has been evaluated.

For Lasso regressions, the feature importance was directly
derived by identifying nonzero coefficients and inferring the
important features from the trainedmodel for eachmodel run.
For the resulting XGBoost models, the SHapeley Additive
exPlanations (SHAP) method was used. SHAP is a method
proposed by Lundberg and Lee towards model interpretabil-
ity that is rooted in coalitional game theory. Features can
be seen as players (in a game-theoretical sense) that coa-
lesce with each other in a game (prediction task). Shapely
values are a fair distribution of the game pay-out, thus Lund-
berg and Lee propose utilizing Shapely values as a measure
of feature importance in machine learning tasks. Features
with high Shapely values have a higher contribution tomodel
predictions (thus, they receive a higher pay-out in a game-
theoretical sense) than features with low Shapely values
(Lundberg & Lee, 2017). The Python library shap, devel-
oped and maintained by the authors of Lundberg and Lee
(2017), was used. The library contains an implementation of
TreeSHAP for tree-based models.
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Fig. 9 Samplewise mean scrap web surface roughness

The following approach was taken for each model run
i ∈ {1; 2; 3; . . . ; 100} for a fixed process phase, data
set size, imputation method, and model configuration with
M(MSEmodel) denoting the median MSE for all model runs
within the configuration:

1. If MSEXGBi < M(MSEXGB): Extract feature names
with the highest 25 SHAP values of the XGBoost model,
evaluated on the test set. Every extracted feature name
scores one point.

2. If MSELassoi < M(MSELasso): Extract all feature
names with nonzero coefficients from Lasso model.
Every extracted feature name scores one point.

The scores were calculated across all configurations and
used to calculate the relative frequency of each feature that
occurs in the most important features. The following section
presents the results of the described approach.

Results and discussion

The section “Scrap web roughness development” presents
the results of the scrap web surface roughness measure-
ments and visualizes the generated synthetic label sets. The
model performances are presented and discussed in the sec-
tion “Model performances”, followed by an evaluation of the
feature importances in the section “Global Feature Impor-
tances”.

Scrap web roughness development

Figure9 shows the mean roughness values as outlined in the
section “Scrap web measurements” for all sampled scrap
webs.

Until the approximately 3400th stroke, the mean rough-
ness of the examined scrap web surfaces increases rapidly,
possibly resembling the break-in phase of the punch as visu-
alized in Fig. 1. Until approximately stroke 15,400, the trend

Fig. 10 Resulting synthetic label sets

of the mean surface roughness appears to be slightly decreas-
ing but rapidly increases from there on.

Interestingly, the AE data shows a high-energy event
within the shearing phase of stroke 15,401. The energy of this
AE signal evaluates to 7,997.83V2, while the second high-
est energy during shearing evaluates to 457.55V2 at stroke
39,845 - with a standard deviation within all 40,450 strokes
of 53.12V2, this energy difference represents a deviation of
almost 142 standard deviations from the mean. It is likely,
that this high-energy event is connected to the rapid increase
of measured surface roughness of the scrap webs (e.g. small
fractures on the shearing edges of the punches). However,
this connection is not ascertainable with certainty ex post,
and further analysis is out of the scope of this work.

The rapid increase inmean surface roughness continues to
approximately stroke 21,000. After stroke 21,000 the trend
shows an increase towards the end of the stroke series, with
the last mean roughness representing the maximum of the
data set.

Figure10 shows the resulting sets of synthetic labels as
outlined in the section “Synthetic label generation”.

For the GPR, this represents a randomly drawn sam-
ple from the Gaussian process, clearly introducing a high
amount of noise in comparison to the remaining interpola-
tion approaches.

Model performances

Figure11 visualizes the distribution of MSEs for the shear-
ing segments and the respective examined configurations.
Interestingly, the dispersion is exceptionally high for Lasso
models trained and evaluated on small data sets for the
shearing segments, with multiple training and test set con-
figurations yielding an MSE of more than 10. Therefore, the
distribution of MSEs was additionally visualized with a cut-
off MSE of 0.05 in Fig. 12. The distribution of MSEs for the
stripping segments is visualized in Fig. 13.
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Fig. 11 Comparison MSEs
shearing
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Fig. 12 Limited view Lasso
MSEs shearing

The dispersion for Lasso models trained and evaluated
on smaller stripping data sets is clearly lower than for the
shearing segments,with an on-par performance of Lassowith
XGBoost for training and test sets sampled from the 203
averaged roughnessmeasurements (number of synthetic data
points 0). In contrast, for the stripping segments, the linear
models appear to be robust toward the selection of the training
and data set even for small data sets.

Comparing both the absolute MSE values and the trend
with increasing data set sizes, it becomes apparent that
XGBoost models outperform Lasso models across all impu-
tation methods. While the errors evaluated on the test sets of
XGBoost models decrease with increasing data set (and thus
both training set and test set) sizes, the same does not hold
for Lasso models. This is further emphasized by comparing
the statistical quantities mean, median and standard devia-
tion (SD) for the MSEs across all model runs within a fixed
model and imputation method configuration as presented in
Table 1. These statistical quantities confirm the qualitative
findings derived from Figs. 11 and 13: While both modeling
approaches appear to be able to predict the test set labels well
from the given features, XGBoost outperforms Lasso both in
terms of mean and median of the MSE. Furthermore, com-
paring themean andmedian of Lassomodels for the shearing
segments confirms the identified dispersion in Fig. 11 since,
depending on the imputation method, the mean MSE is 6–8
times higher than the median. The same does neither hold

true for the XGBoost models trained and evaluated on the
shearing segments, nor for the XGBoost and Lasso models
trained and evaluated on the stripping segments.

As documented in the section “Scrap web roughness
development”, stroke 15,401 showed exceptionally high sig-
nal energy during the shearing phase. Since this stroke was
included in every data set either as a training or test sample
(see section “Synthetic label generation”) and its features
showed, upon further investigation, substantially different
values from all other strokes, its impact on the model perfor-
manceswas additionally examined by excluding the shearing
and stripping phase of this stroke from the data sets and eval-
uating the resulting model performances.

For shearing, the resulting Lasso models yielded a mean
MSE of 0.032with a standard deviation (SD) of 0.006, which
represents a substantially better performance than for the
data sets that included the shearing segment of stroke 15,401
(mean MSE 0.229, SD 0.952). In contrast, the performance
of the XGBoost models for the shearing segments did not
change substantially (mean MSE 0.018, SD 0.009 without
stroke 15,401 vs. mean MSE 0.019, SD 0.010 with stroke
15,401). Excluding the stripping segment of stroke 15,401
did not influence the performance of Lasso and XGBoost
models, indicating that only the shearing segment of stroke
15,401 represents an extreme value. Further investigation
revealed that the high MSEs of Lasso models (see Fig. 11)
were caused by the presence of stroke 15,401 in the test sets.
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Fig. 13 Comparison MSEs
stripping
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Table 1 Mean, median and standard deviation (SD) of theMSEs across
all model runs and data set sizes for the respective configurations

Shearing

XGBoost Lasso

Interpolation Mean Median SD Mean Median SD

Repetition 0.019 0.016 0.010 0.230 0.035 1.005

Linear 0.014 0.011 0.011 0.240 0.030 0.992

Cubic spline 0.016 0.013 0.010 0.223 0.032 0.921

GPR 0.027 0.025 0.009 0.222 0.036 0.883

Stripping

XGBoost Lasso

Interpolation Mean Median SD Mean Median SD

Repetition 0.023 0.020 0.012 0.039 0.039 0.007

Linear 0.018 0.014 0.013 0.034 0.033 0.006

Cubic spline 0.020 0.016 0.011 0.036 0.035 0.005

GPR 0.028 0.025 0.010 0.040 0.039 0.005

Other than the tree-based XGBoost, Lasso models failed to
predict within the usual label value range when encountering
the substantially different feature values of stroke 15,401 due
to their linear structure, which explains the unusually high
MSEs in test sets containing this stroke.

From a physical standpoint, while the AE signal measured
during the stripping phase only contains information about
the friction between the punch and the scrapweb, the shearing
segments contain, besides the friction between the punch and
the scrap web, information about the plastic deformation of
the material. While XGBoost models outperformed Lasso

models, bothmodeling approacheswere capable ofmodeling
the relationship between the AE signal features and the scrap
web surface roughnesses.

Global feature importances

Figure14 presents the 25 features that show the highest rel-
ative frequencies (as described in the section “Data analysis
pipeline”, further denoted as feature importances) for the
shearing segments across all data set sizes, interpolation
methods, and models that resulted in a better-than-median
performance (as in lower-than-median MSE) of a respec-
tive configuration. The analogous feature importances for
the stripping segments are presented in Fig. 15. The fea-
ture importances for the shearing segments excluding stroke
15,401 are shown inFig. 16. Since the feature importances for
the stripping segments did not change after removing stroke
15,401, a further visualization is omitted.

The features labeled FFT... kHz represent the FFT mean
coefficient features from TSFEL.

The identified feature importances suggest that across all
model runs, similar features contribute to model decisions
with a better-than-median performance, indicating a strong
correlation of the contained information with the measured
and synthetic roughness values of the examined scrap web
surfaces.

A discussion of all the features represented in the pre-
sented feature importances is not in the scope of the scientific
contribution of thiswork, andwill therefore be omitted.How-
ever, evidently, the information contained in certain FFT
mean coefficient features contributed frequently to the pre-
dictions of the better-than-median performingmodels, which

Fig. 14 Global feature
importances shearing
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Fig. 15 Global feature
importances stripping

Fig. 16 Global feature
importances shearing (stroke
15,401 removed)

interestingly holds true for both process phases. Therefore,
the source code from the TSFEL library for the computation
of these features is described here:

(i) Compute a spectrogram of the time series utilizing
SciPy’s spectogram function, yielding a matrix with rows
corresponding to frequency ranges and columns correspond-
ing to time ranges and

(ii) calculate the arithmetic mean with NumPy’s mean
function along the columns, i.e. the time ranges, for a given
frequency range (matrix row). In total, the frequencies were
divided into 256 ranges within this work, yielding 256 FFT
mean coefficient features.

While both for shearing and stripping segments fre-
quency ranges such as 64–66kHz or 257–259kHz appear,
the findings suggest that for both shearing and stripping,
the frequency range 103–144kHz carries the most relevant
information to enable model predictions (with a higher-than-
median performance) of the scrap web roughnesses. For
the data sets that were sampled from all strokes, the FFT
mean coefficient for the frequency range 107–109kHz rep-
resents the feature with the highest feature importance across
all model runs. Removing stroke 15,401 from the data sets
slightly changes the feature importances for the shearing seg-
ments. The FFT mean coefficient for the frequency range
107–109kHz places 5th, whereas the FFT mean coefficients
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Fig. 17 Frequency content of every 100th stripping segment

for the frequency ranges 119–121kHz and 117–119kHz rep-
resent the featureswith the highest and second highest feature
importances.

Figure17 visualizes the frequency content of every 100th
stripping segment of the stroke series using consecutive
FFTs and 3 resulting scrap web surfaces from the beginning,
middle, and end of the experiment, color-coded with their
respective stroke number. The FFTs have been smoothed
for better visibility with a rolling mean (window size of
600).

As laid out in the section “Introduction”, Shanbhag et al.
experimentally identified the frequency range 100–200kHz
as the frequency range that carries the most important infor-
mation about the onset and severity of galling, caused by
adhesive wear on the punch. Although more research is
needed to understand the causes for the evolution of the scrap
web roughness, the identified important frequency range
103–144kHzpoints to adhesivewear on the punch and result-
ing galling as a root cause for the development of the sheared
surface roughness of the scrap webs. This would imply sig-
nificant adhesive wear on the punch during the presumed
break-in phase, see Fig. 9.

While similarities in the feature importance between the
shearing and stripping phases can be observed, substantial
differences occur, e.g. for the median absolute difference
(MAD), a measure of statistical dispersion of a signal. MAD
has a feature importance for stripping segments, however,
it does not appear in the top 25 for the shearing seg-
ments.

The importanceof the frequency-domain features becomes
apparent when evaluating the top 10 features. For stripping,
9 of the 10 most important features are frequency-domain
features. For shearing, all 10 of the 10 most important fea-
tures are frequency-domain features. These findings further
emphasize the importance of frequency-domain representa-
tions for AE signals.

Summary and outlook

The objective of thisworkwas to examine the development of
the roughness of selected sheared surfaces of scrap webs (the
scrap part resulting from the shearing operation) throughout
the life of two fine blanking punches as a proxy for the punch
wear and to analyze the correlation of this development with
acoustic emission signal features for the shearing and strip-
ping process phases.

The experimentalworkwas carried out using an industrial-
grade fine blanking plant with acoustic emission and laser
triangulation signals collected for 40,450 strokes. The scrap
webs were sampled every 200th stroke and the roughnesses
of selected sheared surfaces of these scrap webs were tested.
Different imputation methods were used to account for miss-
ing data between two subsequent scrap web samples. The
acoustic emission signals were segmented into shearing and
stripping phases and a comprehensive set of features was
extracted for both process phases of each stroke.

In total, 12,800 XGBoost and Lasso regression models
were trainedon randomly sampled anddifferently sized train-
ing sets and evaluated regarding the mean squared errors of
their test set predictions.

Both XGBoost and Lasso were able to model the scrap
web surface roughnesses from the features of the acous-
tic emission signals. XGBoost outperformed Lasso for both
process phases and across all data set sizes and imputa-
tion methods. Lasso models exhibited high mean squared
errors for test sets containing the shearing phase of a stroke
with extreme feature values compared to the other strokes
(with a label in the usual range) due to their linear struc-
ture. Removing the stroke resulted in substantially improved
Lasso model performances for the shearing segments, espe-
cially for smaller data set sizes.

Evaluation of feature importances suggests that informa-
tion contained in the frequency range 103–144kHzwasmost
relevant for successful predictions (models with lower-than-
median error) for both the shearing and stripping phases. This
finding suggests that the development of the sheared surface
roughness of the scrap webs was mainly caused by adhesive
punch wear progression and manifested in the acoustic emis-
sion signal during both the shearing and stripping phases.

In conclusion, several open research questions and poten-
tial for future work arise:

1. Forwhich process configurations (material, punch geom-
etry, stroke frequency,...) and process signals are the
findings reproducible, and for which not?

2. Which punch wear mechanisms explain the development
of the sheared surface roughness of the scrap webs?

3. How do extreme feature values influence model perfor-
mances and model inference in different process settings
and how can this be handled robustly?
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4. In what way do feature importances and model per-
formances change with different feature spaces (i.e.
time-frequency features)?

5. How does the proposed approach perform compared to
existing punch wear estimators?
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