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Abstract: The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. 

A neural model, whose structure is mainly based on some physical equations describing the engine 

behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three 

interconnected neural sub-models, each of them constituting a nonlinear Multi-Input Single-Output Output 

Error model. The structural identification and the parameter estimation from data gathered on a real engine 

are described. The neural direct model is then used to determine a neural controller of the engine, in a 

specialized training scheme minimising a multivariable criterion. Simulations show the effect of the 

pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are 

flexible and parsimonious nonlinear black-box models, with universal approximation capabilities, can 

describe or control accurately complex nonlinear systems, with few a priori theoretical knowledge. The 

presented work extends optimal neuro-control to the multivariable case and shows the flexibility of neural 

optimisers. Considering the preliminary results, it appears that neural networks can be used as embedded 

models for engine control, to satisfy the more and more restricting pollutant emission legislation. 

Particularly, they are able to model nonlinear dynamics and outperform during transients the control schemes 

based on static mappings. 
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1. Introduction 
Neural techniques are used in various domains and particularly for system modelling and control 

(Chen, Billings and Grant, 1990; Narendra and Parthasarathy, 1990; Pham, 1995; Nørgaard et al., 

2000). Neural networks bring important benefits by suppressing theoretical difficulties that appear 

when applying classical techniques on complex systems. Including nonlinearities in their structure, 

they can describe or control accurately complex nonlinear systems, with few a priori theoretical 

knowledge. In (Bloch and Denoeux, 2003), the advantages of neural models are summarized: they 

are flexible and parsimonious nonlinear black-box models, with universal approximation 

capabilities. 
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In this paper, neural techniques are applied to model and control a turbocharged Diesel engine. The 

objective is to build a model to be used to control the Diesel engine. The engine speed and the 

exhaust gas opacity that characterizes one type of pollution must be controlled. More precisely, the 

control should allow reducing the opacity peaks that occur during engine acceleration. Neural 

networks are used because they can approximate and replace the complex and nonlinear 

thermodynamical, mechanical and chemical equations that describe the Diesel engine (Cook et al., 

1996). For Diesel engines control, neural networks have been already used (Hafner et al., 1999). 

Other works use neural predictors to optimise Air-Fuel Ratio (AFR) control (Majors et al., 1994; 

Magner and Jankovic, 2002; Bloch et al., 2003). The work presented here is application oriented, 

just as the papers cited above. It extends optimal neuro-control to the multivariable case and shows 

the flexibility of neural optimisers. Considering the preliminary results, it appears that neural 

networks can be used as embedded models for engine control, to satisfy the more and more 

restricting pollutant emission legislation. Particularly, they are able to model nonlinear dynamics 

and outperform during transients the control schemes based on static mappings. 

Section 2 presents the building of the neural model for the rotation speed and the exhaust gas 

opacity. The structure of this model is mainly based on some physical equations describing the 

engine behaviour. The final model is composed of three interconnected neural sub-models, each of 

them constituting a nonlinear Multi-Input Single-Output (MISO) Output Error (OE) model. The 

structural identification (i.e. the determination of the regressor structure and the internal 

architecture) and the parameter estimation from data gathered on a real engine are described. 

Experimental results are then presented. 

In section 3, the (direct) model obtained in the previous section is used to determine a neural 

controller of the engine, in a specialized training scheme based on the minimisation of a 

multivariable criterion. The simulation of a trajectory tracking of the engine speed with and without 

pollution constraints is finally presented. 

 

2. Neural modelling 

2.1. A neural model of a Diesel engine 

A turbocharged Diesel engine can be decomposed into subsystems as presented in Figure 1. The 

atmospheric air goes through the turbocharger compressor, the air intake manifold, and the 

combustion chamber. The injection pump injects fuel in the combustion chamber while the valves 

are closed, and the mixture burns. The gases produced by the explosion pass through the exhaust 

manifold and turbocharger turbine and are ejected out away. Five states have been modelled: the 

engine speed , the intake manifold pressure , the inlet airflow , the fuel flow  and the 
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opacity  of the exhaust gas. This work is mainly focused on the engine speed and exhaust gas 

opacity. The only control variable considered here is the position  of the injection pump. 

 

 
Figure 1: Turbocharged Diesel engine. 

 

The physical relations that describe the behaviour of an internal combustion engine are used to 

design the corresponding neural model. Among the different possibilities, the Diesel engine speed 

R, the intake manifold pressure P and the exhaust gas opacity Op can be described with the 

following formal relations: 

€ 

dR(t)
dt

= fR R(t), P(t), T(t)( )

dP(t)
dt

= fP R(t), P(t)( )

Op(t) = fOp R(t), ˙ m (t), ˙ m f (t)( )

 (1) 

It is worth noting that the speed dynamics is mainly due to the engine inertia and that the speed 

value naturally depends on the injected fuel rate and thus on the injection pump position . On the 

other hand, the opacity depends on the ratio between the air and fuel masses (AFR) used in the 

combustion, and then on the flows of air 

€ 

˙ m  and fuel 

€ 

˙ m f . 

These relations are used to construct the neural model used to estimate the speed, the pressure and 

the opacity. The first step consists in discretizing the previous equations, which gives: 
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€ 

R(k) =  FR R(k −1),, R(k − nRR ), P(k −1),, P(k − nPR ), T(k −1),,T(k − nTR )( )

   

€ 

P(k) = FP R(k −1),, R(k − nRP ), P(k −1),, P(k − nPP )( )

 

 (2)

 

€ 

OP (k) =  FOp R(k), ˙ m (k), ˙ m f (k)( ) 

where 

€ 

FR , 

€ 

FP  and 

€ 

FOp are models in discrete time k of the engine speed, the intake manifold 

pressure and the exhaust opacity, respectively, and where 

€ 

nRR , 

€ 

nPR , 

€ 

nTR , 

€ 

nRP  and 

€ 

nPP  are orders 

that must be identified. 

Some modifications of the opacity model are needed. First, the opacity is measured at the exhaust of 

the Diesel engine. This means that there is some pure delay between the opacity measurement and 

the other variables and that there are some dynamics due to the gas transportation. Secondly, the 

opacity depends on the injected fuel flow 

€ 

˙ m f . Some works (Blanke and Andersen, 1985) show that 

this quantity mainly depends on the engine speed R and on the injection pump position T: 

€ 

˙ m f (k) = f R(k),T(k)( )  (3) 

The opacity can be then expressed as: 

  

€ 

Op(k) = FOp Op(k −1),, Op(k − nOp), T(k − d), R(k − d), ˙ m (k − d)( ) (4) 

where 

€ 

d is the delay mentioned above and 

€ 

nOp the order of the opacity model. 

One objective of the modelling is to control the engine. However, the complete model obtained is 

not easy to use for control because of the interdependency of the speed and pressure models. Some 

simplifications have been thus carried out. On one hand, the speed at time k depends on the control 

variable T, the speed R and the pressure P, at previous times. On the other hand, this pressure P 

depends on speed R at previous times. It is then possible to express the speed as a function 

depending on the control T and speed R only. Finally, the engine speed, the pressure and the opacity 

are given by: 

  

€ 

R(k) = FR R(k −1),, R(k − nRR ), T(k −1),, T(k − nTR )( )
P(k) = FP R(k −1),, R(k − nRP ), P(k −1),, P(k − nPP )( )

OP (k) = FOp Op(k −1),, Op(k − nOp), R(k − d), T(k − d), ˙ m (k)( )
 (5) 

The three unknown models 

€ 

FR , 

€ 

FP  and 

€ 

FOp were estimated from data by using neural structures, 

more precisely conventional MLP (Multi-Layer Perceptron) architectures with one hidden layer of 

sigmoidal units and linear activation function for the output unit (see (Bloch and Denoeux, 2003), 

for example). The training (i.e. estimation of the parameters) was performed by minimizing the 

mean squared error function, with a batch Levenberg-Marquardt algorithm (see (Nørgaard et al., 

2000), for example). Note that each neural model is identified in the form of a Multi-Input Single-

Output (MISO) Output Error (or simulation) model, involving, among the regressors, delayed 

estimates, not delayed measurements, of the output. 
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To complete the models, the orders of the regressors (i.e. the lag space) and the number of nodes in 

the hidden layer must be determined for each sub-model. The neural structure selection used is 

presented on Figure 2. For each order value, the neural network is trained with a given node 

number, chosen large enough, and the Final Prediction Error (FPE) criterion is calculated. The 

optimal order corresponds to the minimal FPE value. The neural network is then trained with this 

order, but for several values of the node number in the hidden layer. Again an analysis of the FPE 

criterion gives the optimal node number corresponding to the minimal FPE value and thus the final 

network structure. 

 
Figure 2: Structural identification process. 

 

This process is repeated for each network, leading to the final models of speed and opacity: 

€ 

ˆ R (k) = NNR ˆ R (k −1), ˆ R (k − 2), T(k −1)( )
ˆ P (k) = NNP ˆ P (k −1), ˆ R (k −1)( )

OP (k) = NNOP OP (k −1), T(k − 4), ˆ R (k − 4), ˙ m (k − 4)( )
 (6) 

The complete model consists then in three interconnected neural networks. Each neural network is a 

multilayer perceptron composed of several inputs, an output and a single hidden layer. One of them 

reconstructs the engine speed R from the control T. The external input of the pressure model is the 

speed model output. The opacity is estimated from the speed and airflow estimates and the control 

variable. These recurrent neural networks have been trained using data of the control variable T, the 
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speed R, the airflow 

€ 

˙ m  and the opacity 

€ 

Op . The complete simulation model is then obtained by 

connecting the networks. 

 

2.2. Experimental results 

The following figures present some results obtained from a real Diesel engine. Figures 3, 4 and 5 

present the measurements and estimations respectively for the speed, pressure and opacity, for data 

used to train the neural models (identification data). In order to validate the model, another time 

sequence for the input T was applied to the real system and the neural model. The corresponding 

measurements and estimations of speed, pressure and opacity are given in Figures 6, 7 and 8. 

 
Figure 3: Measurements and estimates of speed (rpm), identification data. 

 

 
Figure 4: Measurements and estimates of pressure (kPa), identification data. 

 



 7 

 
Figure 5: Measurements and estimates of opacity (%), identification data. 

 

Even if the estimations are given by a complete simulation neural model whose single input is the 

injection pump position T, the estimates of speed, pressure and opacity are very close to the 

measurements. The engine model reproduces the static and the dynamical behaviour of the system 

with a good precision. Figures 5 and 8 show that peaks and static levels of opacity are well 

estimated, despite the dynamics and nonlinearities. 

 
Figure 6: Measurements and estimates of speed, validation data. 
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Figure 7: Measurements and estimates of pressure (kPa), validation data. 

 

 
Figure 8: Measurements and estimates of opacity (%), validation data. 

 

3. Neural control 

3.1. Introduction and theory 

There is presently a vast literature on neuro-control and successive states of the art have been 

regularly provided (Hunt et al., 1992; Narendra, 1996; Narendra and Lewis, 2001). As almost all 

linear control schemes can be extended to nonlinear systems by using neural networks, various 

neuro-control schemes can be found, like inverse control (He et al., 1999), internal model control 

(Hunt and Sbarbaro, 1991; Rivals and Personnaz, 2000), predictive control (Eaton et al., 1994; 

Soloway and Haley, 1996; Chen et al., 1999; Vila and Wagner, 2003), optimal control (Plumer, 

1996) and adaptive control (Chen and Khalil, 1995). The control can be direct or indirect, 

depending on whether a neural model of the system is needed or not. In the presented application, 

the stability issue of the control scheme is not considered. The approach used for constructing the 

control is indirect since a neural network model of the engine is used. The controller is a neural 
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network that has to be trained to satisfy the objective of speed tracking with opacity constraint. The 

training scheme used is the specialized training, generally credited to Psaltis (Psaltis et al., 1988), 

detailed in (Nørgaard et al., 2000). Its principle is displayed on Figure 9. 

 

 
Figure 9: Architecture of training for control. 

 

The control parameters (neural controller weights) are generally learned to minimize the sum of 

squared errors between the reference and the system output. The main difficulty lies in the fact that 

the minimization algorithm requires the Jacobian of the system, i.e. the derivatives of the output 

with respect to the input, which, most of the time, is unknown. This problem is overcome by 

including a neural (direct) model of the system in the training scheme and estimating the Jacobian 

from this model. 

This method was applied to control the engine with, as direct model, the neural model presented in 

the previous section. The criterion, adapted to include the engine speed and the opacity, is then a 

multivariable criterion. However, for sake of simplicity, the algorithm, applied in the multivariable 

case for engine control, is first detailed for a criterion containing only one variable. 

To tune the neural controller parameters, a recursive algorithm is used, in an approach very close to 

adaptive control. The criterion is defined at discrete time t by: 

€ 

Jt (W ) =
1
2

ey (W ,k)
2

k=1

t
∑  (7) 

where 

€ 

ey (W ,k) =Yref (k) −Y (W ,k) , 

€ 

Yref (k)  and 

€ 

Y (k) are respectively the desired output, i.e. the 

reference, and the actual output of the system, at time k. 

The general rule used to update the weights is as follows: 

€ 

W t =W t−1 −µt [Rt (W
t−1)]−1J't (W

t−1) (8) 

where 

€ 

W t  denotes the controller parameter vector 
  

€ 

W = w1 w2wn( )T  updated at time t, 

€ 

µt  the 

step length. The gradient 

€ 

J'(W )  of the criterion is defined by: 
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€ 

J'(W ) =
∂J(W )
∂w1

∂J(W )
∂w2


∂J(W )
∂wn

 

 
 

 

 
 

T
 (9) 

The matrix 

€ 

R(W ) can be chosen in various ways. In the steepest descent algorithm, 

€ 

R(W ) = I  

(identity matrix). This algorithm is the simplest, but it is rarely efficient and not compatible with the 

differences of scales that can exist between the parameters. In the Gauss-Newton algorithm, 

€ 

µt =1 

and 

€ 

R(W ) is an approximation of the Hessian (or second derivatives) matrix. Some theoretical 

developments can be found in (Ljung and Söderström, 1983; Nørgaard et al., 2000).  

The algorithm description needs to develop the first and the second derivatives of the criterion with 

respect to the weights. From (7): 

€ 

∂Jt (W )
∂wi

=
∂Jt−1(W )
∂wi

+
1
2
∂ey (W ,t)

2

∂wi
=
∂Jt−1(W )
∂wi

+ ey (W ,t)
∂ey (W ,t)
∂wi

 (10) 

and then: 

€ 

Jt
' (W ) = Jt−1

' (W ) + ey (W ,t)Ψy (W ,t)  (11) 

where 

  

€ 

Ψy (W ,t) =
∂ey (W ,t)
∂w1


∂ey (W ,t)
∂wn

 

 
 

 

 
 

T
 (12) 

When applying the rule (8), the term 

€ 

Jt−1
' (W t−1)  is considered to be zero since 

€ 

W t  minimize 

€ 

Jt  at 

every step (Ljung and Söderström, 1983). Thus: 

€ 

Jt
' (W t−1) = ey (W

t−1,t)Ψy (W
t−1,t) (13) 

The second derivative is developed as follows: 

€ 

∂2Jt (W )
∂wi∂w j

=
∂2Jt−1(W )
∂w j∂wi

+
∂ey (W ,t)
∂w j

∂ey (W ,t)
∂wi

+ ey (W ,t)
∂2ey (W ,t)
∂w j∂wi

 

 
 
 

 

 
 
  (14) 

Assuming that the error 

€ 

ey  can be considered as a white noise, not correlated with the second 

derivatives 

€ 

∂2ey
∂w j∂wi

, the approximate Hessian of the criterion, at iteration t, 

€ 

Rt , can be written in a 

matrix form: 

€ 

Rt (W ) = Rt−1(W ) +Ψy (W ,t)Ψy
T (W ,t)  (15) 

Finally, we have: 

€ 

W t =W t−1 − [Rt ]
−1ey (W

t−1,t)Ψy (W
t−1,t)

Rt = Rt−1 +Ψy (W
t−1,t)Ψy

T (W t−1,t)

 
 
 

  
 (16) 

To replace the matrix inversion with a scalar one, the classical matrix inversion lemma is used: 
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€ 

W t =W t−1 − Pt ey (W
t−1,t)Ψy (W

t−1,t)

Pt = Pt−1 −
Pt−1Ψy (W

t−1,t)Ψy
T (W t−1,t) Pt−1

1+Ψy
T (W t−1,t) Pt−1Ψy (W

t−1,t)

 

 
 

 
 

 (17) 

The vector 

€ 

Ψy , defined in (12), contains the derivatives 

€ 

∂ey (W ,t)
∂wi

 that are developed as follows: 

€ 

∂ey (W ,t)
∂wi

= −
∂Y (W ,t)
∂wi

= −
∂Y (W ,t)

∂U(W ,t −1)
∂U(W ,t −1)

∂wi
 (18) 

where U is the input vector of the system, i.e. the neural controller output. Replacing the Jacobian 

of the system by the Jacobian of the neural model gives: 

€ 

∂ey (W ,t)
∂wi

= −
∂ ˆ Y (W ,t)

∂U(W ,t −1)
dU(W ,t −1)

dwi
 (19) 

where 

€ 

ˆ Y (W ,t) is the model output and where 

€ 

dU(W ,t −1)
dwi

 only depends on the controller structure. 

 

The controller parameter learning method previously described is now applied to a multivariable 

criterion, involving two system outputs Y and Z. Defining 

€ 

ey (W ,k) =Yref (k) −Y (W ,k)  and 

€ 

ez (W ,k) = Zref (k) − Z(W ,k), the criterion can be written: 

€ 

J(W ) =
1
2

ηy ey (W ,k)
2 +ηz ez (W ,k)

2( )
k=1

t
∑  (20) 

where 

€ 

ηy  and 

€ 

ηy  are weighting factors. In this case, using the same notation as before and using 

the matrix inversion lemma twice, the final minimisation algorithm is given by: 

€ 

W t =W t−1 − Pt ηy ey (W
t−1,t)Ψy (W

t−1,t) +ηz ez (W
t−1,t)Ψz (W

t−1,t)( )
M = Pt−1 −

Pt−1Ψy (W
t−1,t)Ψy

T (W t−1,t) Pt−1
1+Ψy

T (W t−1,t) Pt−1Ψy (W
t−1,t)

Pt = M −
MΨz (W

t−1,t)Ψz
T (W t−1,t) M

1+Ψz
T (W t−1,t) MΨz (W

t−1,t)

 

 

 
 
  

 

 
 
 
 

 (21) 

where 
  

€ 

Ψy (W ,t) =
∂ey (W ,t)
∂w1


∂ey (W ,t)
∂wn

 

 
 

 

 
 

T
 and 

  

€ 

Ψz (W ,t) =
∂ez (W ,t)
∂w1


∂ez (W ,t)
∂wn

 

 
 

 

 
 

T
. 

 

3.2. Application to the Diesel engine 

This section describes the simulation of Diesel engine control, i.e. the control application where the 

actual engine is replaced by its model obtained in section 2, as presented on Figure 10. 
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Figure 10: Training applied to the engine model. 

 

Since the objective is to control the engine speed and the opacity, the criterion is defined by: 

€ 

J(W ) =
1
2

Rref (k) − R(W ,k)( )2 +ηOp Opref (k + d −1) −Op(W ,k + d −1)( )2 
 
 

 
 
 

k=1

N
∑  (22) 

where 

€ 

Rref  is the speed reference and where 

€ 

Opref  represents the opacity constraint, defined such 

that the opacity is reduced during the transients. 

€ 

ηOp is the weighting factor of the opacity 

constraint. For instance, with 

€ 

ηOp = 0 , the control is a simple engine speed tracking without opacity 

constraint. The controller output U is calculated by a MLP with one hidden layer of sigmoidal units, 

from inputs which are the speed and opacity references and the speed and opacity system outputs. 

The controller output is then expressed by a neural function of the following form: 

€ 

U(k +1) = NNU Rref (k +1), R(k), R(k −1),Opref (k + d),Op(k + d −1)( ) (23) 

Training was carried out using the algorithm presented in (21). Figures 11 and 12 show the 

simulation results obtained with the resulting neural controller for three values of the weighting 

factor, 

€ 

ηOp = 0, 0.2, 0.8 , for the speed and the opacity respectively. 

It is worth noting that, when 

€ 

ηOp = 0 , the neural controller performs a good tracking of the engine 

speed, since the speed output follows precisely the reference. On the contrary, when the opacity 

constraint is taken into account (

€ 

ηOp ≠ 0 ), a tracking error occurs during the transients 

(acceleration). The peaks of opacity are caused by an excess of injected fuel (depending on the 

injection pump position U) during engine acceleration. Naturally, to satisfy the opacity constraint, 

the neural controller calculates U such that less fuel is injected. This leads to a decrease of the 

acceleration and then to a speed tracking error during the transients. This error increases with the 

weighting factor 

€ 

ηOp while in the same time the peaks of opacity decrease. 
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Figure 11: Engine speed (rpm) with respect to time (s). 

 

 
Figure 12: Opacity (%) with respect to time (s). 

 

4. Conclusion 
In this paper, we presented a control scheme of Diesel engine speed with pollution constraints. This 

scheme used the specialized training of a neural controller using a neural direct engine model. To 

include pollution constraints, the criterion to minimise includes both the engine speed and the 

exhaust gas opacity. The work extends optimal neuro-control to the multivariable case and shows 

the flexibility of neural optimisers. The results highlight the interest of using neural networks both 

for engine modelling and control, despite strong dynamics and nonlinearities (opacity). Obviously, 
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an important work must be done to implement neural controllers on real engines. However, 

considering the preliminary results, it seems that neural networks can be used as embedded models 

for engine control, to satisfy the more and more restricting pollutant emission legislation. 

Particularly, they are able to model the nonlinear dynamics and outperform during transients the 

classical control schemes. They could constitute an interesting alternative to the methods employed 

for pollution control which are based on the use of set point cartographies. 
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