A Reinforcement Learning Algorithm
in Cooperative Multi-Robot Domains

FERNANDO FERNANDEZ* and DANIEL BORRAJO**
Universidad Carlos 1l de Madrid, Avda/de la Universidad 30, 2891 1-Leganés, Madrid, Spain,
e-mail: ffernand@inf.uc3m.es, dborrajo@ia.uc3m.es

LYNNE E. PARKER
University of Tennessee, 203 Claxton Complex, 1122 Volunteer Blvd, Knoxville, TN 37996-3450,
U.S.A.; e-mail: parker@cs.utk.edu

Abstract. Reinforcement learning has been widely applied to solve a diverse set of learning tasks,
from board games to robot behaviours. In some of them, results have been very successful, but some
tasks present several characteristics that make the application of reinforcement learning harder to
define One of these areas is multi-robot learning, which has two important problems. The firs is
credit assignment, or how to defin the reinforcement signal to each robot belonging to a cooperative
team depending on the results achieved by the whole team. The second one is working with large
domains, where the amount of data can be large and different in each moment of a learning step. This
paper studies both issues in a multi-robot environment, showing that introducing domain knowledge
and machine learning algorithms can be combined to achieve successful cooperative behaviours.

Key words: reinforcement learning, function approximation, state space discretizations, collabora-
tive multi-robot domains.

1. Introduction

Reinforcement Learning (Kaelbling et al., 1996) allows one to solve very different
kinds of tasks by representing them as trial and error processes where single rein-
forcement signals indicate the goodness of performing actions at states. There are
many different tasks that can be represented in this way, and they range from board
games such as backgammon (Tesauro, 1992), to robot behaviours (Mahadevan and
Connell, 1992). In these cases, the designer only needs to defin the set of possible
states, the set of possible actions, and typically a delayed reinforcement signal so
that any reinforcement learning algorithm, such as Q-Learning (Watkins, 1989),
can be applied.

Cita bibliográfica
Published in: Journal of Intelligent and Robotic Systems, August 2005, vol. 43, n. 2-4, p. 161-174

Rectángulo

Multi-robot learning (Stone and Veloso, 2000; Balch and Parker, 2002) is an-
other area where the application of reinforcement learning could produce improve-
ments if it could be studied from the reinforcement learning perspective. However,
to apply reinforcement learning to such domains is not easy, especially when they
are inherently cooperative (Parker, 2002) (i.e., where the utility of the action of one
robot is dependent upon the current actions of the other team members), because
credit assignment is hard to define Another problem is that the definitio of the
state of a team member can be very different, given that it can introduce local
information of such a member, but it could even introduce information commu-
nicated from other team members. So, this information could be incomplete in
different moments of the learning task because of its sensing capabilities, resulting
in uncertainty about the whole state. In other words, it could transform a Markov
Decision Process to a Partially Observable Markov Decision Process (Puterman,
1994). Furthermore, given that a lot of information can be used, the state space
of each robot grows, requiring generalization techniques (Santamaria et al., 1998),
that allow the generalization of knowledge acquired from a limited experience to
any situation in the whole state space. Several other problems can be added to
the previous ones, such as non-determinism in actions, limited training experience,
etc.

In (Fernandez and Parker, 2001), it was shown that a cooperative task can be
mapped to a single reinforcement learning problem, and that the behaviour ob-
tained from local information can be improved by increasing the perception of the
robots to include information of other robots and refinin the reinforcement signal
to take into account this new information. The task used in that experimentation
was the Cooperative Multi-robot Observation of Multiple Moving Targets task
(CMOMMT) (Parker, 2002), that was redefine as a reinforcement learning do-
main, and the reinforcement learning algorithm applied was the VQQL algorithm
(Fernandez and Borrajo, 2000). This paper explores the application of a new re-
inforcement learning technique, the ENNC-QL algorithm (Fernandez and Borrajo,
2002), in such a domain, comparing the results achieved with previous approaches.
This algorithm is a mixed model between generalization methods based on super-
vised function approximation (Bertsekas and Tsitsiklis, 1996) and generalization
methods based on state space discretization (Moore and Atkeson, 1995). Experi-
ments in robot navigation domains illustrate that the mixed model is able to obtain
better results than the two components separately.

Thus, the goal of this paper is two-fold. First, to verify whether the ENNC-
QL algorithm is able to scale-up from learning behaviours in single robot domains
(such as the robot navigation task presented in (Fernandez and Borrajo, 2002)) to
learning cooperative behaviours in multi-robot domains (such as the CMOMMT
domain). Second, to verify whether the adaptation of the CMOMMT domain as
a reinforcement learning domain presented in (Fernandez and Parker, 2001) is
general enough to be solved with different reinforcement learning techniques, in
this case, ENNC-QL.

The next section introduces the ENNC-QL algorithm, while Section 3 describes
the CMOMMT domain. Section 3 also briefl describes some previous approaches
to this domain, introducing the view of the domain as a reinforcement learning
domain. Section 4 shows the experiments performed with the ENNC-QL algorithm
on the CMOMMT domain, comparing the results with the previously described
approaches. Finally, Section 5 presents the main conclusions and future research.

2. ENNC-QL

This section describes the ENNC-QL algorithm, which can be define as a re-
inforcement learning method based on discretizing the state space environment,
but reducing the effect of losing the Markov property, and hence, reducing the
introduction of non-determinism (Ferndndez and Borrajo, 2002). This method is
closely related to other methods based on the supervised approximation of the value
functions, so it can be considered as a hybrid model. The algorithm is based on
an iterative process that allows the computation of both the discretization and the
action-value function at the same time. In each iteration, new regions are computed
from the value function approximation borders, computed in the previous iteration,
and the value function approximation is also recomputed from the optimal local
discretization computed at that moment.

The algorithm used for the supervised learning of the action-value function is
the ENNC algorithm, briefl described next.

2.1. EVOLUTIONARY DESIGN OF NEAREST NEIGHBOUR CLASSIFIERS

1-Nearest Neighbour Classifier (1-NN) are a particular case of k-NN classifier
that assign to each new unlabeled example e the label of the nearest prototype ¢
from a set of N different prototypes previously classifie (Duda and Hart, 1973).
The main generic parameters of this sort of classifier are: the number of prototypes
to use, their initial position, and a smoothing parameter. The ENNC algorithm
(Fernandez and Isasi, 2002, 2004) is a 1-nearest neighbour classifie whose main
characteristic is that it has a small number of user define parameters: it only
needs the number of iterations to run (say N). This means that none of the above
parameters has to be supplied.

The algorithm starts with only one prototype in the initial set of prototypes. This
set is modifie iteratively by the execution of several operators in each execution
cycle. At the end of the evolution, the classifie is composed of a reduced set of
prototypes, which have been correctly labeled with a class value. The main steps
of the algorithm are summarized as follows:

— Initialization. The initial number of prototypes is one. The method is able to
generate new prototypes stabilizing in the most appropriate number in terms
of a define “quality” measure.

— Execute N cycles. In each cycle, execute the following operators:

Information Gathering. At the beginning of each cycle, the algorithm com-
putes the information required to execute the operators. This information
relates to the prototypes, their quality and their relationship with existing
classes.

Labeling. Label each prototype with the most popular class in its region.

Reproduction. Introduce new prototypes in the classifie . The insertion of
new prototypes is a decision that is taken by each prototype; each prototype
has the opportunity of introducing a new prototype in order to increase its
own quality.

Fight. Provide each prototype the capability of getting training patterns from
other regions.

Move. Realloce of each prototype in the best expected place. This best place
is the centroid of all the training patterns that it represents.

Die. Eliminate prototypes. The probability to die is inversely proportional to
the quality of each prototype.

Once this classificatio approach is presented, the next section shows how to
use it in a reinforcement learning method.

2.2. THE ENNC-QL ALGORITHM

We defin the learning problem in ENNC-QL as follows. Given a domain with
a continuous state space, where an agent can execute a set of L actions A =
{ai, ..., ar}, the goal is to obtain an approximation of the action value function
0O(s, a) (Bellman, 1957). Specificall , L approximations Q. (s), fori =1,..., L,
are computed, given the action parameter a is extracted from the function Q.

A high level description of the algorithm is shown in Figure 1. The algorithm
starts with an initialization step, where the L/Q\m. (s) approximators are initialized,
typically to 0. Given that the function approximator used, the ENNC algorithm,
follows a nearest prototype approach, it can be considered that the prototypes of
ENNC generate a state space discretization. So, the way of initializing L nearest
prototype approximators to the 0 value is to create L nearest prototype classifier
of only one prototype labeled as 0.

The second step is an exploratory phase. This phase generates a set T of expe-
rience tuples, of the type (s, a;, §', r), where s is any state, a; is the action executed
from that state, s’ is the state achieved and r is the immediate reward received
from the environment. This initial exploration is not the focus of this work, but
different approaches could be used, from random exploration to human directed
exploration (Smart, 2002).

From this initial set of tuples, an iterative process is executed, where the ap-
proximators Q,, (s) are learned. Given that these approximators generate a set of
prototypes, these prototypes can be considered to discretize the state space. Thus,

Initialization

\
‘ Exploration Phase ‘

Learning phase 1

\) Expericnce tuples

’ Learn State Space Representation ‘

State space o
representations Q approximation

| Learn Q Approximation (Deterministic) ‘

st End Condition
ate spacc

representations and Q approximation | Trye

Learn Q Table (Non—Deterministic)

State space representations and
Q Table

Learning phase 2 End

Figure 1. High level description of the ENNC-QL algorithm.

sasse[)

Arg
""" Maxy |t g
1

Figure 2. Function approximation view of the ENNC-QL algorithm in the firs learning phase.

at the same time that the /Q\a,- (s) are computed, L state space discretizations, Sy, (s),
are computed too, given that each S,, (s) is composed of the prototypes of /Q\a,. (s)
without the class labels. So, at the end of this iterative phase, the L new state space
representations, as well as the approximation of the Q function, are obtained. The
architecture of ENNC-QL in this firs learning phase is shown in Figure 2.

In each iteration, from the initial set of tuples, and using the approximators
/Q\ai (s),i = 1,..., L, generated in the previous iteration, the Q-Learning up-
date rule for deterministic domains can be used to obtain L training sets, 7.,

1
i =1,..., L, with entries of the kind (s, g, ,,) Where g, ,, is the resulting value

of applying the Q-Learning update function (Watkins, 1989) to each training tuple,
i.e.qsoq =r+y maXg;ea Qa.i (s”). In this firs iteration, Qai (s)=0,i=1,...,L,
for all s, so the possible values for ¢, ,, depend only on the possible values of r. If
we suppose the r values are always 0, except when a goal state is achieved, where
a maximum reward of ry,x is obtained, the only two values for ¢g; ,, are 0 and ryax
in the firs iteration. However, in the following iteration, there will be experience
tuples (s, a;, s’), for which some Qal{ (s") will be rpax, so examples of the kind
(s, ¥ Fmax) Will appear, and a new approximator will be learned with this new data.
Repeating this process iteratively the whole domain will be learned from examples
of the kind (s, y'rmax), fort =0, ..., k.

At the end of this phase, the approximation of the action-value function and
the new state space representation have been computed. These new representations
have a very important property. If we assume the original domain is deterministic,
and that the ENNC classifie is able to exactly differentiate all the classes (the
different values of the Q function), the new state space discretization satisfie the
Markov property, and it does not introduce non-determinism, so it will accurately
approximate the Q function.

However, the original state space representation may be stochastic, so the clas-
sifie may not be perfect, and errors could be introduced in the Q function approx-
imation and the new state space representation. These facts motivate the second
learning phase of the algorithm, that uses the state space discretizations obtained
to learn a tabular representation of the Q function as Figure 3 shows.

The second learning phase helps to reduce the errors generated in the firs phase
because it uses the stochastic version of the Q-Learning update function, define
in Equation (1):

0(s,a) < (1 —a)Q(s, a) + alr + y max Q(s', a")]. ey

__

t
Actions :
States ;
t
8,9 Q Table: §(s ()) |
P
3
K
[
I
|
» i
t
:
A t
...... QS (()a)) ;
Arg !
Max U oa
ay —Lél
I
A \ :
Sl(b) Qs (s)ay) :
I
3
t
t

Figure 3. Architecture of ENNC-QL in the second learning phase.

3. Cooperative Multi-robot Observation of Multiple Moving Tar gets

The application domain used as a multi-robot learning test-bed in this research
is the problem entitled Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT), that is define as follows (Parker, 2002). Given:
— 4. atwo-dimensional, bounded, enclosed spatial region;
— V: ateam of m robot vehicles, v;,i = 1,2, ..., m, with 360° fiel of view
observation sensors that are noisy and of limited range;
— Of(t):asetofn targets, 0;(t), j = 1,2, ..., n, such that target 0;(¢) is located
within region 4 at time ¢.
A robot v; is observing a target when the target is within v;’s sensing range.
Defin an m x n matrix B(t), as follows:

B(t) = [b;j(t)]mxn such that
b . { 1 if robot v; is observing target 0;(t) in & at time ¢,
ij (1) = .
0 otherwise.
The goal is to develop an algorithm that maximizes the following metric A:

T n .
A= ZZ g(B(Y{),])’

t=1 j=1

where
g(B®),) = |

That is, the goal of the robots is to maximize the average number of targets
in 4 that are being observed by at least one robot throughout the mission that is
of length T time units. Additionally, sensor coverage(v;) is define as the region
visible to robot v;’s observation sensors, for v; € V. In general, the maximum
region covered by the observation sensors of the robot team is much less than
the total region to be observed. That is, (, .y, sensor_coverage(v;) < 4. This
implies that fi ed robot sensing locations or sensing paths will not be adequate in
general, and instead, the robots must move dynamically as targets appear in order
to maintain their target observations and to maximize the coverage. Additionally,
we do not assume that the number of targets is constant or known to the robots.

In (Parker and Touzet, 2000), some results are reported in the CMOMMT appli-
cation. In that work, two main approaches were presented: a hand-generated solu-
tion and a learning approach. The hand-generated solution (called A-CMOMMT)
was developed by a human engineer, and is based on weighted vectors of attraction
from each robot to the targets and repulsion from other robots. The result of that
approach is that each robot is attracted to nearby targets and is repulsed by nearby
robots, with the movement of the robot calculated as the weighted summation of
attractive and repulsive force vectors.

The learning approach presented in (Parker and Touzet, 2000) was called Pes-
simistic Lazy Q-Learning. It is based on a combination of lazy learning (Aha,

1 if there exists an i such that b;; (1) =1,
0 otherwise.

1997), Q-Learning, and a pessimistic algorithm for evaluating global rewards. This
instance-based algorithm stores a set of situations in a memory in order to use them
when needed. A pessimistic utility metric is used to choose the right action from
this set of situations.

In (Fernandez and Parker, 2001), the use of the VQQL model over this domain
can be found. This algorithm is based on the unsupervised discretization of the state
space, so tabular representations of the Q (s, a) function can be applied (Fernandez
and Borrajo, 2000). Furthermore, that work define the CMOMMT application as
a delayed reinforcement learning problem as follows:

— In the CMOMMT domain, relevant input data consists of the locations of
the targets and the other robots. However, at each moment, we likely have
a partially observable environment, since not all targets and robots will be
generally known to each robot. As an approximation, the approach can main-
tain information about the nearest targets and the nearest robots, using a mask
when information is not known. So, the size of the input data depends on
the number of targets and robots used as local information, and may differ in
different experiments.

— Actions are discretized into eight skills, following the cardinal points: go
North, go North—East, go East, etc. Additional actions can be introduced if
desired. Then, if the agent is in a discretized state §, and performs the action
“g0 North”, it will be moving until it arrives to a discretized state §' # §.

— The reinforcement function changes in the experiments, depending on the in-
put data that is received. In most cases, positive rewards are given when targets
are observed, so a higher reward is obtained with higher numbers of targets
in view. This positive reward is counteracted in some experiments when other
robots are in view, which is the criterion used to defin whether or not the
robots are collaborating. Therefore, negative reinforcements may be received
if other robots are in the same viewing range. Furthermore, a delayed rein-
forcement approach has been followed, so reinforcements are only received at
the end of each trial.

4. Experimentsand Results

The experiments are aimed at comparing the application of the ENNC-QL model
to the CMOMMT domain, to that of the VQQL model, following the same experi-
mentation setup in (Fernandez and Parker, 2001), described in Section 3. The only
difference with those experiments is that length of actions, i.e. the time the robot
is executing each action, is fi ed, given that in this case, there are not discretized
regions definin the size of the actions. So two different experiments are performed.
In the firs one (called local VQQL and local ENNC-QL, respectively), the only
input data used is information on the furthest target in view of the robot. Thus, each
RL state is a two component tuple storing the x and y component of the distance
vector from the robot to the furthest target in view. Figure 4 shows the x and y

1000

500

y component
o

-500

-1000

-1000 -500 0 500 1000
X component

Figure 4. Distance vectors from the robot to the furthest target within viewing range.

components of such a state, for a set of states obtained from a random movement
of a robot in the domain.

In this sense, we can see how this input data already introduces statistical in-
formation. For instance, the x component and y component are such that the dis-
tance vector is smaller than the range of view of the robots, except for the point
(1000, 1000), which is the mask value used when the robot cannot see any target.

In this case, the delayed reinforcement function is the number of targets that
the agent sees. The number of targets is 10, while the number of robots is one in
the learning phase, and 10 in the test phase. In this case, no collaboration strategy
has been define in the experiment among the robots, and positive delayed reward
is only given at the end of each trial. The reward is define as the the number of
targets under observation. Furthermore, if the robot loses all the targets, it receives a
negative reinforcement, and remains motionless until some target enters its viewing
range. The duration of each trial in the learning phase is 100 simulation steps.

The goal of the second experiment is to achieve a better performance by intro-
ducing collaborative behaviors among the robots. In this sense, given that the only
signal that the robots receive in order to learn their behavior is the reinforcement
signal, the collaboration must be implicitly introduced. To achieve this, the state
space representation is increased in order to incorporate more information about
targets and other robots. Thus, a state is composed of information about the nearest
target within view, the furthest target within view, as well as the nearest robot. This
increases the state vector from two to six components. Even if this number is not
very high, it typically makes uniform discretization based reinforcement learning
methods require an impractical amount of experience.

Adding this new information requires a change in the training phase as well,
so the ten robots are present in the learning phase, even when only one of them is
learning the behavior. In the test phase, all the robots will use the behavior learned
by the firs one.

Furthermore, in this approach (called collaborative VQQL and collaborative
ENNC-QL, respectively) the reinforcement signal now incorporates a negative
reward that is given at the end of each trial in order to achieve a collaborative
behavior. This negative reward is based on whether or not the robot has another
robot in its range of view. Thus, the reinforcement function for each robot i at the
last moment of the trial, r;(T'), is calculated in this way (following the notation
introduced in Section 3):

ri(T) = (Z b,;,(T)) — k(T),)

j=1

where _ .
—) = { 1 if robot v; is observing target 0;(t) in & at time ¢,
Y 0 otherwise,
— n is the number of targets,
— and k(T) is a function whose value is 2 if the robot can see other robots, or 0
otherwise.

The basic idea is that the optimal behavior will be achieved when each robot
follows a different target, to the greatest extent possible. This negative reward does
not ensure this characteristic, but it approximates it. In future work, we would like
to continue studying other reward functions and ways of modeling the domain.

All the approaches and the experiments performed are summarized in Figure 5,
which shows the percentage of targets under observation for all the methods de-
fine 1in a trial of 1000 units length. For the VQQL and the ENNC-QL algorithms,
the value is averaged over 10 different trials, in order to avoid bias from initial
situations.

First, the figur compares the results of the hand-generated solution and the
Pessimistic Lazy Q-learning approach, along with two simple control cases, local
(hand-made) solution and a random action selection policy (Parker, 2002). These
results show that the pessimistic algorithm is better than the random and the local
approaches, obtaining a 50% rate of performance. However, this result is far from
the 71% achieved by the hand-generated solution (A-CMOMMT) of (Parker and
Touzet, 2000).

For local VQQL, Figure 5 shows the results of the learning process for different
state space sizes. In this case, with only 16 different states the robots achieve
a 59% rate of performance; representations with a higher number of states do
not provide higher performance improvements. When the collaborative strategy
is used, a higher number of states is needed to achieve a good behavior because
of the increment in the number of input attributes. For state space representations
of only 64 states, around a 40% rate of performance is achieved. For 256 states,

10

80 T T
570—____________—
g 1
g9 60 - - o o
2 o = — — 3
o i ©
_’g 50 —““+ "" N
=
D .
g2 40t n
% .

s .
&= 0~ "TTT T TTT T ITTTT T TTILT o ITTTT o IITT o ITTTT T
& .
20 4 !] 1 1 1 ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000
Number of States
A-CMOMMT —— Collaborative VQQL - + -
Pessimistic Lazy Learning -~~~ Local ENNC-QL — —
Local ----- Collaborative ENNC-QL'1 - -
Random - - - - Collaborative ENNC-QL 2 —

Local VOOL — ¢ -
Figure 5. Results of different approaches on the CMOMMT application.

the performance is increased up to 50%, and for 1024 states, the 60% level of
performance achieved previously is also obtained. The real improvement appears
with 2048 states, where the percentage of targets under observation is 65% — fve
percentage points higher than in the previous experiment, and near the best hand-
generated solution reported in (Parker and Touzet, 2000). Increasing the number
of states does not improve performance, given that the problem of a very large
number of states (and bad generalization) appears. Note also that the problem
generally assumes many more targets than robots, so in general, we would not
expect a performance of 100% of targets under observation.

VQQL is the only method of the ones described here that requires investigating
different state space sizes. This is because if the different sizes are not tested, it
is not possible to verify which will be the result, and depending on the problem,
the optimal size may be different. The main advantage of ENNC-QL is that this
value is automatically computed. That means that the designer does not need to
worry about the complexity of the problem, and only needs to run the algorithm.
Then, the algorithm outputs only one result, whose performance is the one shown
in Figure 5.*

An interesting issue when using the ENNC-QL algorithm in this domain is that
it only requires one iteration in its firs learning phase to differentiate the areas
with negative rewards from the areas with null or positive rewards because negative
rewards are not propagated to the rest of the environment. In the second learning

* However, given that the ENNC algorithm is stochastic, it may result in different values in
different learning processes, so the results provided in Figure 5 are the average value of 5 different
learning processes.

1"

. Execution Prototypes Success Success
Execution Prototypes Success (option 2) (option 1)
! 107.2 412 1 187.37 67.41 66.44
2 91.37 6142 2 192.87 66.96 61.34
3 110 38.22 3 192.12 65.99 60.5
4 90.5 58.88 4 196.5 66.38 62.35
5 110.62 59.62 5 149.75 65.91 61
| Average 101.9 5845 | | Average 18372 66.53 62.32 |
| Std. Dev. 8.8 EE | Std.Dev. 1358 0.52 1.65 |
(a) Local ENNC-QL (b) Collaborative ENNC-QL

Figure 6. Results of different executions of the ENNC-QL algorithm.

phase, positive rewards will modify the approximation of the Q function obtained
in the previous phase, refinin the obtained policy.

The firs result obtained is called Local ENNC-QL, where only the coordi-
nates from the nearest target are used. The success achieved by this approach
is 58.45% of targets under observation, for state space discretizations of around
100 states, so similar results to VQQL are achieved. However, when the data from
the nearest robot and the furthest target are used too (solution called Collaborative
ENNC-QL 1) the results increase up to the 62.33%, very close to VQQL. How-
ever, in this case, the number of states used is less than 200, instead of the more
than 2,000 used with VQQL. So similar solutions are achieved, but with fewer
states and automatically. In both cases, the behavior learned is the same for all the
robots. However, if each robot is allowed to learn its own Q table in the second
learning phase of the ENNC-QL algorithm (called Collaborative ENNC-QL 2),
the performance increases to 66.53%, very close to the best hand made solution
reported. Thus, ENNC-QL offers two main advantages over VQQL. On the one
hand, the number of states generated is smaller. On the other side, the number of
states is automatically computed, so parameter tuning is not required.

Figure 6 describes the results obtained in each of the fve executions, showing
that a small difference exists among them (represented by their standard devia-
tions), but obtaining good results in all of them, taking into account both the success
in solving the task and the average number of prototypes achieved for the state
space discretizations.

5. Conclusionsand Further Research

In this paper, we have shown how a cooperative multi-robot domain can be studied
from a reinforcement learning point of view, only by definin a set of discretized
actions, limiting the state space to use only attributes that the designer considers
necessary, carefully definin a reinforcement function, and using a technique that

12

allows generalization from limited experience to a continuous state space. Two
main phases are required. In the first the designer must choose the state space, tak-
ing into account information that s/he considers necessary. In the second, a method
able to generalize must be used, because even if the designer chooses a reduced set
of attributes definin a state, this value could still be very large. In this case, the
ENNC-QL algorithm has been chosen, obtaining good results when compared with
previous approaches, and showing that it can be successfully applied in continuous
cooperative domains.

Future work has two main lines. The firs is trying to fin automatic methods
for definin the right set of attributes to defin the state, that, in the machine
learning literature, is typically called feature selection (Tsitsiklis and Roy, 1996).
The second research line is to defin a correct reinforcement function from the
set of features obtained in the previous step. In this sense, Inverse Reinforcement
Learning (Ng and Russel, 2000) could help to learn the reinforcement function
from the hand-generated solution, and then, try to learn an improved policy.

References

Aha, D.: 1997, Lazy Learning, Kluwer Academic Publishers, Dordrecht.

Balch, T. and Parker, L. E. (eds): 2002, Robot Teams: from Diversity to Polymorphism. A. K. Peters
Publishers.

Bellman, R.: 1957, Dynamic Programming, Princeton Univ. Press, Princeton, NJ.

Bertsekas, D. P. and Tsitsiklis, J. N.: 1996, Neuro-Dynamic Programming, Athena Scientific
Bellmon, MA.

Duda, R. O. and Hart, P. E.: 1973, Pattern Classificatio and Scene Analysis, Wiley, New York.

Fernandez, F. and Borrajo, D.: 2000, VQQL. Applying vector quantization to reinforcement learning,
in: RoboCup-99: Robot Soccer World Cup II1, Lecture Notes in Artificia Intelligence, Vol. 1856,
Springer, Berlin, pp. 292-303.

Fernandez, F. and Borrajo, D.: 2002, On determinism handling while learning reduced state space
representations, in: Proc. of the European Conf. on Artificia Intelligence (ECAI 2002), Lyon,
France, July.

Fernandez, F. and Isasi, P.: 2002, Automatic findin of good classifier following a biologically
inspired metaphor, Computing Informatics 21(3), 205-220.

Fernandez, F. and Isasi, P.: 2004, Evolutionary design of nearest prototype classifiers J. Heuristics
10(4), 431-454.

Fernandez, F. and Parker, L.: 2001, Learning in large cooperative multi-robot domains, Internat.
J. Robotics Automat. 16(4), 217-226.

Kaelbling, L. P., Littman, M. L., and Moore, A. W.: 1996, Reinforcement learning: A survey,
J. Artificia Intelligence Res. 4, 237-285.

Mahadevan, S. and Connell, J.: 1992, Automatic programming of behaviour-based robots using
reinforcement learning, Artificia Intelligence 55(2/3), 311-365.

Moore, A. W. and Atkeson, C. G.: 1995, The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces, Machine Learning 21(3), 199-233.
Ng, A. Y. and Russel, S.: 2000, Algorithms for inverse reinforcement learning, in: Proc. of the

Seventeenth Internat. Conf. on Machine Learning.

Parker, L. and Touzet, C.: 2000, Multi-robot learning in a cooperative observation task, in:
L. E. Parker, G. Bekey and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4,
Springer, Berlin, pp. 391-401.

13

Parker, L. E.: 2002, Distributed algorithms for multi-robot observation of multiple moving targets,
Autonom. Robots 12(3), 231-255.

Puterman, M. L.: 1994, Markov Decision Processes — Discrete Stochastic Dynamic Programming,
Wiley, New York.

Santamaria, J. C., Sutton, R. S., and Ram, A.: 1998, Experiments with reinforcement learning in
problems with continuous state and action spaces, Adaptive Behavior 6(2), 163-218.

Smart, W. D.: 2002, Making reinforcement learning work on real robots, PhD Thesis, Department of
Computer Science at Brown University, Providence, RI.

Stone, P. and Veloso, M.: 2000, Multiagent systems: A survey from a machine learning perspective,
Autonom. Robots 8(3).

Tesauro, G.: 1992, Practical issues in temporal difference learning, Machine Learning 8, 257-277.

Tsitsiklis, J. N. and Van Roy, B.: 1996, Feature-based methods for large scale dynamic programming,
Machine Learning 22, 59-94.

Watkins C. J. C. H.: 1989, Learning from delayed rewards, PhD Thesis, King’s College, Cambridge,
UK.

14

