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Abstract

The harmonic functions have proved to be a powerful technique for motion
planning in a known environment. They have two important properties: given an
initial point and an objective in a connected domain, a unique path exists between
those points. This path is the maximum gradient path of the harmonic function
that begins in the initial point and ends in the goal point. The second property is
that the harmonic function cannot have local minima in the interior of the domain
(the objective point is considered as a border). This paper proposes a new method
to solve Laplace’s equation. The harmonic function solution with mixed bound-
ary conditions provides paths that verify the smoothness and safety considerations
required for mobile robot path planning. The proposed approach uses the Finite
Elements Method to solve Laplace’s equation, and this allows us to deal with com-
plicated shapes of obstacles and walls. Mixed boundary conditions are applied to
the harmonic function to improve the quality of the trajectories. In this way, the
trajectories are smooth, avoiding the corners of walls and obstacles, and the poten-
tial slope is not too small, avoiding the difficulty of the numerical calculus of the
trajectory.

Results show that this method is able to deal with moving obstacles, and even
for non-holonomic vehicles. The proposed method can be generalized to 3D or
more dimensions and it can be used to move robot manipulators.

Keywords: Motion Planning, Harmonic Functions, Finite Elements

1 Introduction

Robot motion control can be viewed as an underconstrained problem. The robot
exists at a certain configuration and must achieve a certain goal configuration using
any free path. If properly specified, such underconstrained interpolation problems can
be solved using Laplace’s equation. Intuitively, Laplace’s equation can be thought of
as governing the shape of a thin membrane: obstacle positions are pulled up and goal
positions are pulled down. If a ball bearing is dropped to the membrane, it will always
fall into one of the goal positions, never hitting the obstacles. The movement of the
ball corresponds to a change in the state of a robot (e.g., the movement of joints during
a task). The trajectory of the ball is always a smooth obstacle-avoiding path.
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The harmonic functions are solutions to Laplace’s equation. The harmonic poten-
tials have proved to be a powerful technique for robot motion planning in a known
environment [3]. They have two important properties: given an initial point and an
objective in a connected domain, a unique path exists between those points. This path
is the maximum gradient path of the harmonic function that begins in the initial point
and ends in the goal point. The second property is that the harmonic function cannot
have local minima in the interior of the domain (the objective point is considered as
a border). These properties mean that a path can always be found if it exists and it is
impossible to be stuck in a local minima. These are the most important properties that
make harmonic functions extremely interesting for motion planning purposes.

Our approach has the following advantages over the methods used previously (Fi-
nite Difference Methods): 1) It uses the Finite Elements Method to solve the partial
differential equation (PDE) problem. This method permits complicated shapes of the
obstacles and walls. 2) It uses mixed boundary conditions because in this way the tra-
jectories are smooth, the potential slope is not too small (avoiding troubles of path trac-
ing through a gradient-based strategy), and the trajectories avoid the corners of walls
and obstacles. 3) It can be generalized to 3D or more dimensions and it can be used
to move robot manipulators. 4) It can be used for motion planning of non-holonomic
vehicles.

1.1 Previous work

Every method concerning robot motion planning has its own advantages and ap-
plication domains, as well as its disadvantages and constraints. Therefore, it would be
rather difficult either to compare methods or to motivate the choice of a method upon
others.

One of the current directions in the robot motion research is to include consid-
erations regarding obstacle avoidance with trajectory generation, for example meth-
ods such as the Rapidly-Exploring Random Tree (RRT) or extensions of Probabilistic
Roadmap.

The first solution to this problem is robot motion planning through artificial poten-
tial fields (APF). It considers simultaneously the problems of obstacle avoidance and
trajectory planning (Arkin [1][2]). In addition, the dynamics of the manipulator is di-
rectly taken into account, which leads, in our opinion, to a more natural motion of the
robot. The approach of our method belongs to these kind of solutions.

The first use of the APF concept for obstacle avoidance was presented by Khatib
[6]. He proposed a Force Involving an Artificial Repulsion from the Surface (FIRAS,
in French) which should be non-negative, continuous, and differentiable. However,
the potential field introduced exhibits more local minima than the goal position of the
robot. To solve the preceding problem, Khosla and Volpe [14] developed new ellipti-
cal potential functions called “superquadric artificial potential functions”, which do not
generate local minima in the physical space. They have shown that superquadric poten-
tial fields can be constructed only for simple shapes as square or triangular figures. The
problem of local minima remains because the superquadric potential functions do not
generate local minima in the workspace but the local minima can occur in the C-space
of the robot. The contributions of Koditschek in [7][8][11] are worth to be mentioned
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because they introduce an analytical potential field in the C-space without local min-
ima. However, the topology of the application range is limited to obstacles which
have to be ball- or star-shaped, otherwise no solution can be found. The contributions
of Connolly [4] and Khosla and Kim [5] are the most successful methods concerning
robot motion planning with potential field. They used the harmonic functions to build a
potential field in the C-space without local minima. The harmonic functions attain their
extreme values at the boundary of the domain. Using a potential function to accomplish
a certain motion implies that the trajectory of the robot is not known or calculated in
advance, which means that the robot chooses autonomously the way to reach its goal.
The main problem of this method is the complication of the Panel Method used, that
means that the obstacles have to be very simple, such as rectangles.

The method of harmonic functions based on the Finite Difference Method has been
used for guiding robots by Connolly and Gruppen [3]. PresteseSilva et al. [9] [10] used
this method for exploration of unknown environments.

The method of harmonic functions is not very extended because, up to now, it has
been based on the Finite Difference Method, and for this reason it is not easy to imple-
ment. It is quite slow and has to be used in static environments and the environment
has to be very easy with obstacles and walls with parallel straight lines. The method
that we propose to solve the Harmonic equation using Finite Elements addresses sev-
eral issues, such as boundary conditions, complex shape of obstacles, and real-time
performance.

2 Harmonic Functions

Equilibrium problems in two-dimensional and higher space, give rise to elliptic
partial differential equations. A prototype is the famous Laplace’s equation:

∇
2φ = 0

This equation holds for the steady temperature in an isotropic medium, character-
izes gravitational or electrostatic potentials at points of empty space, and describes the
velocity potential of an irrotational, incompressible fluid flow. The two-dimensional
counterpart of this equation lies at the foundation of the theory of analytical functions
of a complex variable.

A harmonic function φ on a domain Ω ∈ R is a function which satisfies Laplace’s
equation:

∇
2φ =

n∑
i=1

∂2φ

∂x2

i

= 0

where xi is the i− th Cartesian coordinate and n is the dimension. In the case of robot
motion planning, the boundary ∂Ω of Ω is formed by all the walls, obstacles, and goal,
but not by the start point.

One important property of the harmonic functions for our task is the Maximum

Principle: A non-constant harmonic function φ(x) defined on Ω takes its Maximum
value M on the boundary and guarantees that there are no local minima in the interior
of Ω.
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2.1 Problems using Harmonic Functions

The use of harmonic functions as motion planning potentials is a powerful tech-
nique but it is not very extended because: first, the previous methods based on finite
differences need that all obstacles and walls of the region are composed by parallel
straight lines. Second, those methods are slow and difficult to implement in a dynamic
environment that changes with time. Third, some implementations of those methods
do not assure the existence of a trajectory. For example, when using Harmonic func-
tions as a potential field, it is not possible to add an attractive potential to the goal and
a repulsive potential from the obstacles because the domain is not the same. In the first
case, the goal is one of the borders because this is the only way of being the minimum
of the function. In the second case, the borders are the maximum and the goal cannot
be one of them because the resulting addition function does not have the minimum at
the goal. Because of that, the only way of doing a potential attractive to the goal and
repulsive from the obstacles is defining the obstacles borders value at the maximum
value, the goal border at the minimum value and to solve Laplace’s function with these
border values. Fourth, in case the obstacles are not fixed, it is necessary to recalculate
the harmonic function and path continuously, each time a movement is registered, in
order to obtain an adaptive version of the method.

3 Boundary Conditions

The different kinds of contour conditions imposed to Laplace’s equation have a
critical importance in the solution of the equation and the quality of the trajectory. The
direction field associated to the partial derivatives problem gives the path that the robot
has to track.

To achieve a good quality path to the goal, some convenient properties of the direc-
tion fields are:

1. The trajectories cannot be smooth and as short as possible.

2. The potential slope have not to be small.

3. The trajectories have to avoid the corners of walls and obstacles. Because of that,
the gradient has to be perpendicular or tangent to the borders of the work space.

The solution can be considered as the potential function and the trajectories asso-
ciated to the direction field of the potential, that is the path of the robot.

The contour conditions can be given in three ways: by the values of the potencial
function in the contour (Dirichlet), by the gradient values in the contour (Neumann),
or by a linear combination of the two of them (Robin or mixed).

Dirichlet

φ = c(x, y), in the contour.

Usually, it is taken as a constant function φ = K .
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Neumann

∇(φ) = c(x, y), in the contour.

Usually, it is taken as a constant function ∇(φ) = K.

Robin or Mixed

~n · a · ∇(φ) + b · φ = c(x, y) in the contour.

Usually, it is taken as a constant function ~n · a · ∇(φ) + b · φ = K.

If the solution of Laplace’s equation is the velocity potential of an irrotational,
incompressible fluid flow, then the Dirichlet conditions represent the different contour
levels, the Neumann conditions correspond to the entrance or exit of fluid flow, and the
Robin conditions correspond to the two of them at the same time.

Figure 1: Solutions of Laplace’s equation with Dirichlet’s, Neumann’s, and Robin’s
boundary conditions, respectively.

Subsection 2.1 treated some problems in the use of harmonic functions to solve
path planning and the reasons why this method is not very extended. Other problems
can come up because the way the boundary conditions are assigned.
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Dirichlet’s Conditions.

In Dirichlet’s conditions case, the boundary is maintained at a constant value higher
than the goal point. As the boundary value is fixed, the fluid flow has to be along
the normal to the boundary (see figure 2). Some authors [?] give a higher potential
value to the initial point than the walls values because in regions far from the objective
point the potential values are quite flat for Dirichlet’s conditions, see figure 1. In this
situation, the gradient is very small and computational errors can be produced (round
off, quantization,...). The absence of an appreciable gradient will prevent the efficient
tracing of a path because, if the magnitude of the gradient is not appreciable, i.e., the
difference level between successive points of the path has a comparable magnitude to
the algorithm error, the path will not have a good quality.

Figure 2: Robot’s trajectories obtained by solving Laplace’s equation with Dirichlet’s
boundary conditions.

This high potential value for the initial point is motivated for the logarithmic depen-
dency of the distance to the objective point (in two dimensions the field is proportional
to the logarithm of the distance and in three dimensions it is inverse proportional to the
square of the distance).

Due to this reason, points distant to the objective have a small gradient, which
makes difficult the numerical calculus of the trajectory.

An advantage of Dirichlet’s conditions is the completitude (the algorithm is capable
of finding a path between start and goal points, if it exists).

Proposition.- If the borders have a maximum potential value (=1) and the objective
point has a minimum value (=0) in a connected domain, then there exist a unique
trajectory from the initial point to the objective point.

This proposition shows the convenience of choosing Dirichlet’s or Robin’s contour
conditions because they give fixed values to the potential conditions in the contour, see
figure 3.

When Dirichlet’s contour conditions are used, the solution is quite flat for values
far from the objective point. For this reason, it is easy to have computational errors in
the trajectory computation. Apart from that, the trajectories are very smooth and they
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are not very close to the walls corners and obstacles.
Dirichlet’s conditions represent the union between an attractive and a repulsive

field (attractive to the goal point and repulsive from the walls and obstacles). Its only
disadvantage is the planitude of the gradient in regions far from the goal point.

Figure 3: Contour of Laplace’s equation with Dirichlet’s, Neumann’s, and Robin’s
boundary conditions, respectively.

Neumann’s Conditions.

Neumann’s conditions constrain the normal component of the gradient to be zero
at the boundaries. As there is no normal component of fluid flow, the condition forces
the flow to be tangential to the boundary. In Neumann’s conditions case, the descent is
smooth and continuous, with a slope not close to zero and, because of that, it is more
difficult to have computational errors in the trajectory calculation.

The problem with Neuman’s conditions is that the trajectories are so close to the
contour corners that it is impossible to continue the calculation of the trajectory, as can
be seen in figure 4.

This situation happens because the Maximum Principle says that the solution of
Laplace’s equation cannot have its maximum (and minimum) in an interior point, but
it says nothing about the border. The only way not to have the end point of a trajectory
in the walls is to give them the maximum value.

Neuman’s conditions represent only the attractive field to the goal point, reason
why there are problems to avoid obstacles and walls (especially corners).

Robin’s Conditions (or mixed).

In order to assure that the trajectories end at the objective point and the solution
gradient is not small, it is preferable to use Robin’s boundary conditions. It has the
advantages of using Dirichlet’s and Neumann’s conditions and none of their disadvan-
tages: the solution has a smooth slope, continuous and big enough, and at the same
time, the trajectories are not close to the corners. This let us an easy calculation of the
trajectories, see figure 5.

The correct way to be sure that all the trajectories end at the objective point is to
have only two values of the potential in the boundary conditions: the maximum value
in the walls and obstacles and the minimum value in the objective point. It is important
to note that the objective point, the obstacles, and the walls belong to the contour of
Laplace’s equation problem.
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Figure 4: Robot’s trajectories obtained to solved Laplace’s equation with Neumann’s
boundary conditions.

It is also possible to give the highest potential value to the initial point. But in this
case, the unicity of the trajectories is lost and a selection criteria will be necessary in
order to choose the initial direction.

Figure 5: Robot’s trajectories obtained by solving Laplace’s equation with Robin’s
boundary conditions.

3.1 Comparison between different boundary conditions

We have applied our method using three different parameters to compare the bound-
ary conditions. The following formula has been used in our algorithms:

~n · a · ∇(φ) + b · φ = K
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Table 1: Comparison among different parameter values of the boundary conditions

Type Parameters (a, b, K) d(%),I.P.=(0.5,0.8) d(%),I.P.=(0.2,0.8)
1 Neumann 1, 1, 0 23 9
2 Robin 1, 1, 1 32 23
3 Robin 1, 1, 2 41 41
4 Robin 1, 1, 3 45 50
5 Robin 1, 1, 10 82 64
6 Dirichlet 0, 1, 0 100 100
7 Robin 1, 1, 100 100 100
8 Robin 1, 1, 1000 100 100

The values of a, b, and K have been changed in order to obtain different boundary
conditions. The results of our experiments are in the previous table. Two initial points
have been selected. Note that case 6 corresponds to Dirichlet’s conditions (φ = K)
and case 1 to Neumann’s conditions (~n · ∇(φ) = K). These two examples and case 5
for an initial position of (0.5,0.8) can be seen in figure 6. It can be observed that in case
number 1 (represented in the top right image), the trajectory is too close to the corner.

To compare the results the variable d has been obtained:

d =
di

dD
∗ 100[%],

where di is the shortest distance between the trajectory calculated and the obstacle,
and dD is the shortest distance between the trajectory calculated and the obstacle with
Dirichlet’s conditions. The value of reference is dD because Dirichlet’s conditions
guarantee a safe trajectory far from the obstacles.

It can be concluded that the trajectories calculated with Robin’s conditions (con-
sidering the value of K) are smooth and safe, and the potential field is not flat far from
the objective.

4 Comparison between Finite Elements Method and

Finite Difference Method

There are many elegant analytical solutions to Laplace’s equation in special ge-
ometries, but nowadays real problems are usually solved numerically. The common
approach to finding a numerical solution of Laplace’s equation is the Finite Difference
Method (FDM). The Finite Elements Method (FEM), however, has a number of advan-
tages which justify the additional cost involved in its understanding and formulation.

The finite elements method (FEM) is particularly useful when a robust approxima-
tion is used to solve partial differential equations on an inhomogeneous mesh. Solid
mathematical foundations and a great deal of generality allow different implementa-
tions.
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Figure 6: Trajectories calculated with Dirichlet’s, Neumann’s, and Robin’s boundary
conditions, respectively.
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The most important difference between FEM and FDM is the treatment of the ge-
ometry of the domain. FDM uses rectangular meshes and FEM usually uses triangular
meshes.

J. Rosell, in [12], uses a hierarchical decomposition of the configuration space,
harmonic functions are computed over a non-regular rectangular mesh, but it can be
awkward to try to work finite differences over non-uniform meshes. Generally speak-
ing, FEM is more flexible with curved geometries (see figure 7).

Figure 7: Hierarchical Finite Differences and Finite Elements Method decomposition
of C-space

To illustrate the difference of computational time between Succesive Over-Relaxation
Method (SOR) and FEM, both methods have been applied to solve Laplace’s Equation
of the same workspace corresponding to figure 1, using a 1.6 Ghz laptop PC. The re-
sults are shown in table 2 (N is the number of grid points).

Table 2: Time comparison between SOR and FEM methods

N=10 N=20 N=50
SOR (in seconds) 1.3720 5.2670 128.8550
FEM (in seconds) 0.2210 0.9910 7.5010

Clearly, the details of FEM are more complex than those of FDM. The end-points
of both methods are essentially the same, namely a system of linear or non-linear alge-
braic equations. The finite element method, however, has a number of advantages:

• it is well suited to problems involving complex geometries.

• it can readily handle problems where the physical parameters vary with the po-
sition within the domain.
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• it can also be used for non-linear and/or time-varying problems.

• complex boundary conditions can be readily dealt with.

• general computer programs to perform finite element calculations can be, and
have been, developed using conventional numerical techniques.

In a few words, anything that can be done easily with Finite Differences can be
done well with finite elements, but not the other way round.

PresteseSilva and his group have been working with Finite Differences in Ex-
ploratory Navigation [9][10]. The trajectories calculated are smooth and safe and their
exploration method works very well in dense environments. However, it does not work
well in sparse environments, and harmonic functions are no longer a good choice.

5 Implementation of the Finite Elements Method

This paper proposes the use of the general FEM with mixed boundary conditions
to solve Laplace’s equation.

The method starts with approximating the computational domain with a union of
simple geometric objects, in the 2D case, triangles. The triangles form a mesh and
each vertex is called a node. The mesh design has to strike a balance between the ideal
rounded forms of the original sketch and the limitations of his simple building-blocks,
triangles or quadrilaterals. If the result is not close enough to the original objects, we
can always improve it using smaller blocks.

Now, using Laplace’s equation (expressed in Ω)

−∇
2u = 0

If uh is a piecewise linear approximation to u, it is not clear what the second deriva-
tive term means. Inside each triangle, ∇uh is a constant (because uh is flat) and thus,
the second-order term vanishes. At the edges of the triangles, ∇uh is in general dis-
continuous and a further derivative makes no sense.

This is the best approximation of u in the class of continuous piecewise polynomi-
als. Therefore we test the equation for uh against all possible functions v of that class.
Testing means formally to multiply the residual against any function and then integrate,
i.e., determine uh such that

∫
Ω
(∇uh)vdx = 0 for all possible v. The functions v are

usually called test functions.
Partial integration (Green’s formula) yields that uh should satisfy

∫
Ω

∇uh∇v −

∫
∂Ω

~n · (c∇uh)vds = 0

where ∂Ω is the boundary of Ω and ~n is the outward pointing normal on ∂Ω. Note that
the integrals of this formulation are well-defined even if uh and v are piecewise linear
functions.

Boundary conditions are included in the following way. If uh is known at some
boundary points (Dirichlet’s boundary conditions), we restrict the test functions to v =
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0 at those points, and require uh to attain the desired value at that point. For the rest of
points, Robin’s boundary conditions are used, i.e., (∇uh) · ~n+ quh = g.

The FEM formulation is: to find uh such that∫
Ω

∇uh∇v +

∫
∂Ω1

quhvds =

∫
∂Ω1

gvds ∀v

where ∂Ω1 is the part of the boundary with Robin’s conditions. The test functions v
must be zero on ∂Ω− ∂Ω1.

Any continuous piecewise linear uh is represented as a combination uh(x) =∑N
i=1

Uiφi(x), where φi are some special piecewise linear basis functions and Ui are
scalar coefficients. Choose φi like a tent, such that it has the "height" 1 at the node
i and the height 0 at all other nodes. For any fixed v, the FEM formulation yields an
algebraic equation in the unknowns Ui. To determine N unknowns, we need N differ-
ent instances of v. What better candidates than v = φj , j = 1, 2, ..., N?. We find
a linear system KU = F where the matrix K and the right side F contain integrals
in terms of the test functions φi, φj and the coefficients defining the problem: q and
g. The solution vector U contains the expansion coefficients of uh, which are also the
values of uh at each node xi, since uh(xi) = Ui.

If the exact solution u is smooth, then FEM computes uh with an error of the
same size as that of the linear interpolation. It is possible to estimate the error on each
triangle using only uh and the PDE coefficients (but not the exact solution u, which
in general is unknown). The FEM method provides functions that assemble K and F

automatically.
To summarize, the FEM approach is to approximate the PDE solution u by a piece-

wise linear function which is expanded in a basis test-functions φi, and the residual is
tested against all the basis functions. This procedure yields a linear system KU = F .
The components of U are the values of uh at the nodes. For x inside a triangle, uh(x)
is found by linear interpolation from the nodal values.

Extension of the method to 3D

Using the same techniques described in the previous sections, the method can be
applied to 3D environments as shown in figure 8. The only difference is the use of a 3D
grid in the Finite Elements Method. In the figure, the colour lines represent the paths
to the goal point from different initial points. The trajectories in 3D maintain the good
qualities of the 2D case.

6 Avoidance of stationary and moving obstacles

This technique can be used at a global level to plan a free obstacles trajectory
by considering the environment information contained in a priory map. Besides, this
technique can also be applied at a local level to consider sensor-based information
(see figure 9, in which the algorithm is used with raw sensor data). This situation is
required because, in spite of the fact that the robot has an initial global map of the
environment and makes an initial motion planning from the initial point to the goal,
unexpected obstacles can appear in the workspace. The map is not perfect and can
have errors such as obstacles that do not appear in the map. These obstacles can be
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Figure 8: Extension of the method to 3-D.

static or they can move. In order to avoid them, the robot requires to consider local
map information extracted from sensors. This local map is used in a reactive way to
find the path avoiding the obstacles.

Figure 9: Local Motion Planning using the trajectory from the solution of Laplace’s
equation calculated by Finite Element Method, with sensor data.

When there are static obstacles, the followed strategy consists of the steps shown in
figure 10. It starts with the calculation of the position of the obstacles that do not appear
in the map. Second, Laplace’s equation and the direction field given by the potential are
calculated. Then, the trajectory to the objective is calculated, and the robot is moved
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a small distance that depends on the distance to the next mobile object. Finally, if the
robot has not found the objective, the first step starts again. In figure 11 an example of
obstacle avoidance can be seen.

It is also possible to avoid dynamic obstacles, as can be seen in figure 12. In that
figure an obstacle is moving close to the robot. If the robot detects the obstacle, it
changes the trajectory previously calculated to avoid the collision.

The trajectory in the global map is done off-line and the trajectory in a local map of
dimensions 40x40 pixels, with a grid composed by 3200 triangles, lasts less than one
second in a 1.6 Ghz laptop PC. In this way, the computational efficiency of the proposed
motion planner makes it suitable for real-time implementation depending of the robot
speed and the dynamic obstacles speed. A normal size for a grid map representation is
10x10cm cell size, that is, a local map of dimensions 40x40 pixels represents a region
of 400x400cm. The time required to plan a trajectory by the proposed method in this
local map is less than one second.

This kind of algorithm is possible to be performed today because of the speed of
current computers. The flexibility of the resolution of Laplace’s equation with the
Finite Elements Method permits all kind of shapes in walls and obstacles.

An important detail to be considered is that the gradient modulus is proportional to
the objective distance (without obstacles). For this reason, it is better to use a constant
speed in order to avoid big differences in speed of the robot.

7 Motion planning with non-holonomic vehicles.

This method can also be used with non-holonomic vehicles. To do that, starting
from the initial position and orientation, the path is constructed step by step, according
to the following order:

• The front wheels are aligned with the vector field in the midpoint of the front
axis.

• The perpendicular lines to the front and rear wheels are considered and their
intersection is taken as center of the step movement.

• With the previously calculated center, the vehicle is moved a circumference arc
of length proportional to the vector modulus corresponding to that point.

The previous process is repeated from the new point until the destination point is
reached. The final point and orientation is always reached because the funnel potential
ends at this point and orientation.

The model of a non-holonomic vehicle and a typical trajectory can be observed in
figure 13.

8 Conclusions

In this paper, a technique to solve the robot motion planning problem based on the
resolution of Laplace’s equation is proposed. The harmonic potential function is used
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Figure 10: Flow chart of the algorithm.
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Figure 11: Avoidance of stationary obstacles.

Figure 12: Avoidance of moving obstacles.
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Figure 13: Motion planning with a non-holonomic vehicle.

to build potential fields for motion planning and moving obstacle avoidance. The use
of harmonic functions eliminates the local minima even in very complicated environ-
ments.

The solution of Laplace’s equation by means of the Finite Elements Method with
mixed boundary conditions provides robot trajectories with suitable characteristics for
the robot motion: smoothness and distance from the corners and walls to be placed in
the safest region. The effectiveness of the proposed strategy has been demonstrated us-
ing this Finite Elements Method for robot navigation in environments with unexpected
obstacles. The method is able to deal with all kind of shapes in walls and obstacles.

The computational efficiency of the proposed control scheme makes it suitable for
real-time implementation.

Nowadays, the current computer speed gives us the possibility to solve these kind
of problems that could not be confronted several years ago.
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