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Abstract The study of behavioral and neurophysiological mechanisms involved in
rat spatial cognition provides a basis for the development of computational models
and robotic experimentation of goal-oriented learning tasks. These models and ro-
botics architectures offer neurobiologists and neuroethologists alternative platforms
to study, analyze and predict spatial cognition based behaviors. In this paper we
present a comparative analysis of spatial cognition in rats and robots by contrasting
similar goal-oriented tasks in a cyclical maze, where studies in rat spatial cognition
are used to develop computational system-level models of hippocampus and striatum
integrating kinesthetic and visual information to produce a cognitive map of the
environment and drive robot experimentation. During training, Hebbian learning
and reinforcement learning, in the form of Actor-Critic architecture, enable robots
to learn the optimal route leading to a goal from a designated fixed location in
the maze. During testing, robots exploit maximum expectations of reward stored
within the previously acquired cognitive map to reach the goal from different starting
positions. A detailed discussion of comparative experiments in rats and robots is
presented contrasting learning latency while characterizing behavioral procedures
during navigation such as errors associated with the selection of a non-optimal route,
body rotations, normalized length of the traveled path, and hesitations. Additionally,
we present results from evaluating neural activity in rats through detection of the
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immediate early gene Arc to verify the engagement of hippocampus and striatum in
information processing while solving the cyclical maze task, such as robots use our
corresponding models of those neural structures.

Keywords Hippocampus · Striatum · IEG Arc expression · Spatial learning ·
Cognitive map · Place recognition · Biorobotics

1 Introduction

Our research group is involved in the study of spatial memory and learning in rats
and its experimentation in robots by developing computational models addressing
aspects related to cognitive map generation, adaptation, and exploitation during
navigation. These cognitive maps code and store spatial information for successful
orientation and movement toward specific goals in space [1]. Spatial cognition mod-
els developed by our group relate learning and memory processes by (i) interaction
of different brain structures to demonstrate skills associated with global and relative
positioning in space, (ii) integration of traveled path, (iii) use of kinesthetic and visual
cues during orientation, (iv) generation of topological-metric spatial representation
of the environment, (iv) adaptation using Hebbian learning [2], (v) representation
of animat internal motivational states based on hunger and thirst drives, and (vi)
management of rewards implemented by reinforcement learning using an Actor-
Critic architecture [3]. This learning architecture is complemented by applying back-
ward reinforcement to successful routes followed by the animat during training thus
enabling learning of explored routes. After exploration, the model exploits maximum
reward expectations to guide the animat towards the goal from any given departure
location. Additionally, the model implements an on-line learning process to adapt
the cognitive map to changes in the physical configuration of the environment.

To evaluate the models we have developed both computer simulations and mobile
robot experimentations. Tasks previously evaluated include learning of classical
spatial reversal behaviors with normal and hippocampus-lesioned rats in a T-maze
and in an eight-arm radial maze as carried out by O’Keefe [4]. We describe cor-
responding results showing a behavioral similarity between robots and rats in [5].
We also experimented with robots designing a place recognition task inspired on
a classical goal-oriented navigation experiment devised by Morris [6], where we
employed multiple non-cyclical T-mazes surrounded by landmarks. We describe
corresponding experiments and results in [7] including modification to landmark
configurations after having trained the robot to find the goal. Our current work goes
beyond previously published work by developing new spatial tasks with robots and
rats using a cyclical maze having external landmarks and providing different possible
paths from one location to another one. This paper emphasizes place recognition
and goal-oriented navigation behaviors, contrasts learning results in both robots and
rats, and evaluates the engagement of rat hippocampus and striatum in information
processing while solving the maze by means of studying neural activity in rats through
detection of the immediate early gene Arc.

Our work contributes to the study of spatial cognition by developing a model
based on recent physiological and behavioral data, and our robotic experiments
also contribute to experimental neuroscience by providing a platform to test new
hypotheses that might extend our latest understanding of learning and memory in
rodents.
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The rest of this section introduces relevant research background and the main
distinctive aspects of our approach against other existing models. We then present
the spatial cognition model with emphasis on functional modules representing
hippocampus and striatum. A detailed explanation of spatial experiments with rats
and robots in the cyclical maze is provided in the following sections together with a
comparative analysis of the obtained results.

1.1 Research Background

Research cycles involving animal studies, modeling, and robotic experimentation,
have inspired for many years the understanding of the underlying neurophysiology
and neuromechanics of biological systems while also inspiring new robotic architec-
tures and applications [8–10]. For example, rat studies can serve as inspiration to the
control of autonomous mobile robotic systems [11]. In general, animal studies, in the
form of data gathering, feed brain models that generate predictions to be validated
by simulation and robotic experimentation, while inspiring new ideas and hypotheses
from technology back to models and animal studies, as depicted in Fig. 1.

1.1.1 Hippocampus—Place Cells

A decisive study in the understanding of brain mechanisms involved in the processing
of spatial information was undoubtedly the analysis that O’Keefe and Nadel [12]
conducted on the neurophysiological and neuropsychological properties of the hip-
pocampus. Their work discovered critical participation of the hippocampus in (i) the
development of high-level internal representations of allocentric spatial relations, i.e.
representations of the full context and not just of the current position of the animal,
and (ii) spatial learning allowing the animal to solve navigation problems that require
memory of such representations.

Fig. 1 Framework for the study of animal behavior through cycles of neuroscientific experimenta-
tion, theoretical modeling, and physical robotics experimentation. Data and hypotheses obtained
from neuroscientific experimentation are the basis for theoretical modeling. Resulting formal models are
tested under real robotic environments. The cycle provides a general methodology where new ideas
and hypotheses can be proposed in response to knowledge gaps impacting both robotics and biology
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The neural substrate of such internal spatial representations was the prior dis-
covery made by O’Keefe and Dostrovsky [13] from individual records of pyramidal
cells found in hippocampal substructures CA3 and CA1. Such neurons were called
place cells because they show high correlation between their firing rate and the
animal location in the environment. Specifically, each of these cells exhibits high rate
activation patterns of Gaussian type when the animal is in a continuous and compact
area defined as the place field of the cell [13]. The activity derived from place cell
population codifies the current location of the animal within a familiar environment.
The overall activity is stored in the internal spatial representation referred to as
cognitive map by Tolman [14].

Place cell activity appears to be dependent on the location of visual cues in the
environment, since rotation of such cues causes a corresponding rotation in place
fields [15]. However, place cells maintain their fields when some of the visual cues
are removed from the environment [16], and even continue to respond in the dark
[17]. Hence, it is assumed that the response of place cells is derived from combining
kinesthetic and visual cues information [18].

According to Poucet [19], the cognitive map is generated by the acquisition of
topological and metrical information from space. Topological information is related
to the knowledge of the spatial relationships between places or objects, whereas
metrical information is related to quantitative information about specific angular
directions and distances between locations or objects. Poucet suggests that initial
cognitive maps are basic topological maps that are refined as the animal explores
the environment with the acquisition of metrical information provided by cells in the
entorhinal cortex [20].

1.1.2 Motivation and Learning

The motivated behavior is usually oriented towards a goal that in animals may
be associated with a drive such as hunger or thirst. However, motivation not only
occurs in the presence of instinctive feelings, but can also be stimulated by external
incentives such as food smell.

The hypothalamus is regarded as the main area of the brain where information
about the internal state of the rat is combined with incentives [21]. Specifically, it
is assumed that food pursuit and intake are activities controlled by the lateral hy-
pothalamus [22], which determines the primary or immediate reward these activities
produce in animals. In addition to the hypothalamus, the striatum, belonging to the
basal ganglia, is also involved in the extraction of information related to rewards
from environmental stimuli, and in the use of such information in the generation of
goal-oriented behaviors [23, 24].

Reward information is processed in the basal ganglia by dopaminergic neurons
responding to primary and secondary rewards. These responses can reflect “errors”
in the prediction of rewards, thus constituting teaching signals for reinforcement
learning. On the other hand, neurons in the ventral striatum (nucleus accumbens)
are activated when animals predict rewards, and adapt expectation activity to new
reward situations [23]. Houk et al. [25] suggested the striatum implements an Actor-
Critic architecture [3], where an Adaptive Critic predicts expectations of reward
values and produces an error signal to adapt reward expectations associated to
different rat actions represented in this learning architecture by multiple Actor units.
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In goal-oriented behaviors, it is assumed that rats are able to learn spatial tasks
by associating rewards with locations in the environment (spatial learning), and
rewards with procedures (procedural learning). Rats exhibit route or procedural
learning strategies within environments with salient egocentric (local) cues but
poor or inexistent salient allocentric (global) cues [26]. When egocentric (local)
cues are poor or inexistent, rats manifest a spatial learning strategy integrating
egocentric information with the most salient and stable allocentric information in
the environment. Neurophysiological studies and other functional neuroanatomical
studies have shown that procedural learning relies on the striatal system, whereas
spatial learning employs the hippocampal system [27].

1.1.3 Immediate Early Gene Arc Expression

We can verify the engagement of different brain regions in information processing by
studying neuronal activity in the brain. This can be achieved with precise anatomical
resolution by detecting the expression of genes induced after physiological activity
in neurons [28]. Particularly, the detection of the immediate early gene Arc has been
used to study the patterns of neural activity in regions such as the hippocampus,
striatum and cortex [29–31]. Both, the detection of Arc mRNA and protein, can be
used to identify neurons that underwent behaviorally induced neuronal activity [30].
Arc protein expression can be detected 30 min after behavioral stimulation in the
same proportion of cells that present electrophysiological activity characteristic of
place cells [29, 30].

Arc detection allows mapping neuronal activity potentially in the whole brain,
thus it is possible to verify if the behavior of rats in our cyclical maze engages the hip-
pocampus and striatum in information processing such as robots use the functional
modules of the spatial cognition model representing those neural structures.

1.2 Related Work

Taking inspiration from spatial cognition in rats, several computer-simulated or
robot-tested navigation models have been proposed such as Burgess et al. [32],
Brown and Sharp [33], Redish and Touretzky [34], Guazelli et al. [35], Arleo and
Gerstner [36], Gaussier et al. [37], Filliat and Meyer [38], Arleo et al. [39], and
Milford and Wyeth [40]. Main aspects of our approach include: (i) generation of the
spatial map of the whole environment considering the ensemble place cell activity
as a code for the current location, and determining topological (where to go next)
and metrical (what motor actions perform to get there) relations between different
location codes registered during exploration of all places in the environment, (ii)
modeling of learning and extinction abilities in rats, defining extinction as the
suppression of a behavior based on a reward that is changed in amount, quality or
location [12], (iii) modeling of bidirectional interaction between brain functionalities
of place representation and learning to exploit expectations of future reward during
reinforced spatial tasks, (iv) map adaptation that permits on-line representations of
changes in the physical configuration of the environment, and (v) validation of our
robotic architecture beyond well-known spatial tasks performed with rats, but also
by designing and implementing experiments that produce new behavioral data to
be compared with similar experiments in robots. Refer to [5] for further detail on a
comparative analysis between our model and the abovementioned approaches.
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2 A Bio-inspired Robotic Model of Spatial Cognition

The spatial cognition model comprises distinct functional modules that capture some
properties of rat brain structures involved in learning and memory. These modules
are shown in Fig. 2 and described below in terms of an animat representing the

Fig. 2 The modules of the spatial cognition model and their interaction. Glossary: LH lateral hy-
pothalamus, RC retrosplenial cortex, EC entorhinal cortex, VTA ventral tegmental area, VS ventral
striatum, NA nucleus accumbens, PIFDL path integration feature detector layer, LFDL landmark
feature detector layer, LL landmarks layer. Inputs/outputs: r primary reinforcement, sr secondary re-
inforcement, r̂ effective reinforcement, DR dynamic remapping perceptual schema, WDR connection
weights between DR and PIFDL, LPS landmark perceptual schema, APS affordances perceptual
schema, PI kinesthetic information pattern, L1, Ln information pattern for landmark 1, landmark
n, LP landmarks information pattern, W1,Wn connection weights between L1, Ln and LL, PC place
information pattern, EX expectations of maximum reward and their corresponding directions (DX),
DIR next animat direction, ROT animat rotation, DIS next animat moving displacement
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modeled rat. A more detailed mathematical depiction of each module is presented
in Barrera & Weitzenfeld [5].

2.1 Motivation

Motivation module relates to the rat’s lateral hypothalamus (LH) controlling food
seeking and food intake. The module computes the value of hunger drive (D) and
produces the immediate or primary reward (r) the animat gets by the presence
of food, corresponding to the navigational goal in the experiments. The reward r
depends on the animat internal drive D experimented at any given time.

2.2 Kinesthetic Processing

Kinesthetic processing obtains information from two systems: (i) vestibular organs in
the semicircular canals of the inner ear, and (ii) feedback from muscles controlling
movement. Information derived from these systems is used by rats to carry out path
integration processes. The posterior parietal cortex (PPC), a sensory structure receiv-
ing multimodal information such as kinesthetic, visual, and relative to affordances,
has been suggested to mediate path integration [41] involving also the retrosplenial
cortex (RC) [42].

In our model, we attribute to PPC the representation of the updated animat
position in relation to its point of departure (anchor) by integrating past rotations
and translations through a dynamic remapping perceptual schema (DR), and to RC,
the generation of groups of neurons in the path integration feature detector layer
(PIFDL) of the model that respond to specific kinesthetic information patterns (PI)
due to the use of Hebbian learning [2]. PI is defined as a matrix of 1 × n activation
values registered by all n neurons in PIFDL at any given time t, as follows:

PI(t) = DR(t) WDR(t), (1)

where DR is a matrix of 1 × m (with m depending on the dimension of the modeled
environment) input signals to PIFDL, and WDR is a matrix of m × n connection
weights between neurons in DR and PIFDL.

2.3 Landmarks Processing

Landmark processing module computes landmark-related spatial positioning, i.e. dis-
tance and relative orientation of each landmark to the animat. According to Redish
& Touretzky [34], the entorhinal cortex (EC) is involved in landmarks processing
by receiving spatial information about landmarks from PPC. In our model, spatial
information about each landmark is encoded in a landmark perceptual schema
(LPS1, ..., LPSn) serving as input to a specific landmark feature detector layer
(LFDL1, ..., LFDLn) that produces a landmark information pattern (L1, ..., Ln).
Then, different LFDLs are combined into a single landmarks layer (LL). Hebbian
learning updates connection weights between layers LFDLs and LL producing
groups of neurons in LL that respond to specific landmark information patterns (LP)
derived from the integration of all landmarks presented in the animat’s environment.
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In this way, LP is defined as a matrix of 1 × n activation values of all n neurons in LL
representing an egocentric view from the animat at any given time t as follows:

LP(t) = L1(t) W1(t) + . . . + Ln(t) Wn(t), (2)

where L1, ..., Ln are matrices of 1 × n input signals from layers LFDL1, ..., LFDLn
to LL, and W1, ..., Wn are matrices of n×n connection weights between neurons in
LFDL1, ..., LFDLn and LL.

2.4 Affordances Processing

It has been suggested that preceding the rat’s motion, nearly half of the cells in PPC
exhibit movement-related activity discriminating among basic modes of locomotion:
left turns, right turns, and forward motion [43]. The affordances processing module
represents PPC cell discrimination among different possible orientations for naviga-
tion by use of an affordances perceptual schema (APS) encoding possible egocentric
(local) turns from −180◦ to +180◦ in 45◦ intervals at any given time from any given
animat location and orientation.

2.5 Place Representation

Place representation module corresponds to the rat’s hippocampus. As shown in
Fig. 3a, this module receives input from kinesthetic (PI), landmark (LP) and
affordances (APS) modules in addition to its interaction with the learning module.
Place representation module comprises a place cell layer (PCL) and a world graph
layer (WGL).

2.5.1 Place Cell Layer

Place cell layer (PCL) encompasses hippocampal regions CA3 and CA1, in addition
to dentate gyrus (DG). Overlapping place fields in the collection of neurons in PCL
are associated with a physical area in the environment that is identified directionally
by the ensemble place cell activity pattern (PC), and whose extension is determined
by affordances changes sensed by the animat during exploration. Specifically, neu-
rons in the path integration feature detector layer (PIFDL) and in the landmarks
layer (LL) of the model are connected to neurons in PCL. Synaptic efficacy between
layers is maintained by Hebbian learning producing groups of neurons in PCL that
respond to specific place cell information patterns (PC) derived from kinesthetic and
egocentric visual information sensed by the animat while being at certain location
and orientation. In this way, PC is defined as a matrix of 1 × n activation values
registered by the collection of n neurons in PCL at any given time t as follows:

PC(t) = PI(t) WPI(t) + LP(t) WLP(t), (3)

where PI and LP are matrices of 1 × n input signals from layers PIFDL and LL to
PCL, WPI and WLP are matrices of n×n connection weights between neurons in
PIFDL, LL and PCL.

2.5.2 World Graph Layer

Associations between overlapping place fields and physical areas are represented by
world graph layer (WGL) through a topological map enabling navigation between
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Fig. 3 a The place representation module of the spatial cognition model. Glossary: PCL place
cell layer, WGL world graph layer, PI kinesthetic information pattern, LP landmarks information
pattern, WPI connection weights between PIFDL and PCL, WLP connection weights between LL
and PCL, WNk connection weights between any given map node k and its corresponding Actor
units, PC place information pattern, APS affordances perceptual schema, r̂ effective reinforcement
signal, EX expectations of maximum reward and their corresponding directions (DX). b Allocentric
reference frame representing possible directions from 0◦ to 315◦ in 45◦ intervals to be adopted by
the animat. This reference frame is relative to the animat departure location (TD) in the exploration
process of a given maze

locations in the environment. Specifically, nodes in this map represent associations
between kinesthetic and visual information patterns and the place cell population
activity, whereas transitions between nodes are associated with metric information
derived from animat locomotion such as its moving direction and displacement.
Besides this mapping process, WGL also performs place recognition, and we assume
that its functionality could be corresponded to the prelimbic cortex that is involved
in the control of goal-directed behaviors [44].

Actor units in WGL store place cell activation patterns (PC) generated by PCL
when the animat is oriented to diverse directions. These directions vary from 0◦ to
315◦ in 45◦ intervals, according to an allocentric (global) reference frame that is
relative to the animat departure location in the exploration process as illustrated
by Fig. 3b. Hence, every node in the map (a place) connects to a maximum of eight
Actor units (eight possible orientations at each place). Every Actor connection is
associated with a weight (representing the expectation of reward when orienting to a
particular direction from the current location), and an eligibility trace (marking the
connection eligible to be reinforced later in time). In this way, Actor units compete
to select the next moving direction from the current location or node that allows the
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animat to get the greatest reward, thus WGL analyzes Actor weights to obtain the
biggest ones (EX) and their corresponding directions (DX).

2.5.2.1 Place Recognition—Node Creation and Activation To determine whether
or not the animat recognizes a place, WGL searches the current activity pattern
PC produced by PCL within all Actor units in the map. This search involves the
computation of the similarity degree SD between PC and every stored place cell
activity pattern. The model distinguishes among two cases:

1. If at least one SD exceeds certain threshold, the Actor unit storing the activation
pattern with the biggest SD is considered the winner.

2. If there is no winner, WGL creates a new Actor unit storing pattern PC
associated to the current animat orientation.

Then, WGL activates or creates a node in the map depending on the following
considerations:

(i) If affordances encoded by APS at time t are different from those at time
t − 1 and a new Actor unit was created, then a new node is created in WGL,
connected with that Actor unit, and set as the new active node in the map.

(ii) If affordances did not change and a new Actor unit was created, then WGL
averages the activation pattern stored in the new Actor unit and the pattern
stored in the Actor unit of the active map node that is associated to the current
animat orientation.

(iii) If there was an Actor unit winner, an arc from the active node to the node
connected to that Actor unit is created if necessary, and this node becomes the
new active one.

The flow diagram provided in Fig. 4 summarizes the node creation and activation
algorithm, whereas Fig. 5 illustrates the creation process by using a fragment of the
map for a cyclical maze, i.e. a maze that provides different possible paths from a given
location to another one. Figure 5a shows the trajectory followed by the animat during
maze exploration, whereas in Fig. 5b different locations belonging to that trajectory
are labeled using letters. Considering first the route from location A and back to A
(solid line in Fig. 5a), the animat starts at A oriented towards B corresponding to
allocentric direction 90◦ (see Fig. 3b). As the map is empty, the model creates an
Actor unit associated with direction 90◦ storing pattern PC derived from the current
perception of kinesthetic and visual information. Then, the model creates node 1
as illustrated in Fig. 5c, and links it to the new Actor unit 90◦ (not shown in the
figure). The animat chooses to move forward reaching location B, and creates node 2
with its corresponding Actor unit 90◦ since affordances encoded in the current APS
are different from those registered at location A. Affordances remain constant at
location C, thus pattern PC generated there is averaged with the pattern stored in the
Actor unit 90◦ of node 2. At location D, affordances change, hence the model creates
a new node 3 connected to a new Actor unit 90◦. Progressively, the exploration of
locations E, F and G in direction 90◦ leads to the creation of nodes 4 and 5. Then,
when the animat turns left at location G orienting itself to 180◦, a new Actor unit 180◦
is created to store the current PC and connected to node 5. Being oriented to 180◦,
the model creates nodes 6 and 7. At location J, the animat turns left orienting itself
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Fig. 4 Flow diagram representing the procedure of creation and activation of nodes within a
cognitive map. Glossary: PC current place information pattern, APScurr affordances perceptual
schema encoded at time t, APSant affordances perceptual schema encoded at time t−1. Refer to
the text for a complete description of the procedure and the corresponding glossary
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Fig. 5 The processes of creation and adaptation of a cognitive map. a The exploration trajectory
followed by the animat in a cyclical maze. The maze is surrounded by four landmarks (L1, L2, L3,
L4). b Within the maze, different visited locations are labeled with letters from A to O in order of
exploration. c Map creation while exploring the route indicated as solid line in (a). d Map adaptation
while exploring the route indicated as dotted line in (a). Map nodes are numbered in order of creation,
and arcs connecting nodes are labeled with the animat allocentric direction when it moved from one
node to the next one

to 270◦, thus a new Actor unit 270◦ is created to store the current PC and connected
to node 7. Nodes 8 and 9 are created while exploring the corridor in direction 270◦.
At location M, the animat turns left orienting itself to 0◦, thus a new Actor unit 0◦
is created to store the current PC and connected to node 9. Nodes 10 and 11 are
created while exploring the corridor in direction 0◦. Even though nodes 11 and 3 are
representing the same location D in the maze, the animat could not recognize node
3 when visiting D in direction 0◦ since it was previously explored only in direction
90◦ and node 3 is only linked to Actor unit 90◦. Being oriented to 0◦ at D, the animat
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turns right in direction 270◦ creating a new Actor unit 270◦ and linking to node 11.
Then, node 12 is created to represent locations C and B in direction 270◦. When the
animat reaches A being oriented to 270◦ does not recognize node 1 since it includes
only the Actor unit 90◦, thus the model creates node 13 connecting it to a new Actor
unit 270◦.

2.5.2.2 Map Adaptation During exploration, an existing topological map may be
adapted due to place recognition by the animat. Figure 5d illustrates the adaptation
process of the map previously introduced in Fig. 5c. Continuing with the maze
exploration process now from locations A to D (dotted line in Fig. 5a), the animat
oriented to 270◦ at A decides to turn left creating a new Actor unit 0◦ and linking
it to node 13. Then the animat chooses to turn left again orienting itself to 90◦.
At this time, the activity pattern stored in Actor unit 90◦ of node 1 presents a SD
value that exceeds the threshold, hence node 1 is activated. As a result, node 13 is
integrated to node 1 since they are representing the same place in the maze. This
integration involves connecting Actor units 270◦ and 0◦ of node 13 to node 1, linking
node 12 to node 1 through a new arc in direction 270◦, eliminating both the existing
arc from node 12 to node 13 and node 13, and activating node 1 as shown in Fig. 5d.
Then, the animat moves forward towards B visiting also C and D and recognizing
nodes 2 and 3. Being at D, the animat turns right pointing in direction 0◦. At this
time, the activity pattern stored in Actor unit 0◦ of node 11 presents a SD value that
exceeds the threshold, thus node 11 is activated. Consequently, existing nodes 3 and
11 are merged into a new one since they are representing the same place in the maze.
Therefore, a new node 13 is created integrating Actor units 0◦ and 270◦ of node 11
and Actor unit 90◦ of node 3, as well as all input/output arcs to/from nodes 11 and
3 (i.e., arc 0◦ from node 10, arc 90◦ from node 2, arc 270◦ to node 12, and arc 90◦ to
node 4). Merged nodes 11 and 3 are removed from the map, and the new node 13
becomes the active one (see Fig. 5d).

2.6 Learning

Learning module is related to dopaminergic neurons in the ventral tegmental area
and to ventral striatum, processing reward information by using an Actor-Critic
architecture. Prior use of this reinforcement learning method to solve goal-search
tasks has been documented. The work by Foster, Morris and Dayan [45], for instance,
implements an Actor-Critic architecture to enable a simulated rat to solve the
reference memory task in a water maze providing the rat with a reward at any given
time of the experiment.

In our model, as illustrated in Fig. 6, the Adaptive Critic (AC) includes a
Prediction Unit (PU) that estimates the future reward value of any particular place
or location at a given time. To do this, every neuron in PCL is connected to PU,
and these connections are associated with weights W and eligibility traces E. At each
time step t in a trial of an experiment, PU computes the future value P of the activity
pattern PC generated by PCL according to (4):

P(t) = PC(t) · WPCL(t), (4)

where PC is a matrix of 1 × n input signals from PCL to PU, and WPCL is a matrix of
1 × n connection weights between neurons in PCL and PU.
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Fig. 6 The learning module of
the spatial cognition model.
Glossary: PC current
activation pattern in the PCL
layer, WPCL connection
weights between PCL and
prediction unit, EPCL
connection eligibility traces
between PCL and prediction
unit, P(t) and P(t − 1)

correspond to predictions of
the future value of the activity
pattern PC at time t and t − 1
respectively; WNk connection
weights between any given
map node k and its
corresponding Actor units,
ENk connection eligibility
traces between any given map
node k and its corresponding
Actor units

AC uses predictions computed at times t and t − 1 to determine the secondary
reinforcement, discounting the current prediction at a rate γ to get its present value.
The addition of the secondary reinforcement with the primary reinforcement r com-
puted by the motivation module of the model constitutes the effective reinforcement
r̂ as described by (5):

r̂(t) = r(t) + γ P(t) − P(t − 1). (5)

The effective reinforcement is employed to update the connection weights between
PCL and PU in AC (i.e., the reward expectation associated to a place), and also
between Actor units and map nodes (i.e., reward expectations associated to different
orientations). In the first case we used

WPCL(t + 1) = WPCL(t) + β r̂(t)EPCL(t), (6)

where β is the learning rate, and EPCL is the matrix of 1 × n eligibility traces
corresponding to connections between PCL and PU in AC. In the second case we
used

WNk(t + 1) = WNk(t) + β r̂(t)ENk(t) ∀ map node k, (7)
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where WNk is the vector of connection weights between map node k and a maximum
of eight Actor units, and ENk is the vector of eligibility traces corresponding to a
maximum of eight Actor units.

As shown in (6) and (7), both learning rules depend on the eligibility of the
connections. At the beginning of any trial in a given experiment, eligibility traces in
AC and in Actor units are initialized to 0. At each time step t in a trial, eligibility
traces in AC are increased in the connections between PU and the most active
neurons within PCL when the action executed by the animat at time t − 1 allowed
it to perceive the goal, as shown in (8):

EPCL(t) = EPCL(t − 1) + χ PC(t), (8)

where χ is the increment parameter, and PC stores the activity pattern registered
by the collection of neurons in PCL. Also at time step t, the eligibility trace e of the
connection between the active node na in the map and the Actor unit corresponding
to the current animat orientation dir is increased by τ as described by (9):

edir
na (t) = edir

na (t − 1) + τ. (9)

Finally, after updating connection weights between PCL and AC, and between Actor
units and map nodes at any time step t in the trial, all eligibilities decay at certain rates
λ and σ respectively, as shown in (10):

EPCL(t) = λEPCL(t − 1)

ENk(t) = σ ENk(t − 1) ∀ map node k. (10)

Additionally, to enable goal-directed navigation, the learning module implements a
backward reinforcement method where eligibility traces of Actor units are updated
in the direction of the arcs connecting the nodes in the path followed by the animat.
The backward reinforcement process is carried out after having concluded every
successful training trial in the given experiment, and the strategy involved in this
method is based on the existence of a factor referred to as goal gradient by Hull
[46], according to which the reinforcement effect is the most at the goal location
and diminishes progressively as the animal moves backward through the maze.
Specifically, in case the animat finds the goal at the end of the path, each eligibility
trace is updated in a given amount of reinforcement divided by the amount of steps
the animat performed to move from one node to the next one in the path. The
reinforcement is initialized to a certain amount at the beginning of any training trial
in the experiment, and this amount decreases as the distance from a node to the goal
increases.

2.7 Action Selection

Action selection module computes the motor outputs of the model consisting on the
next animat direction (DIR), the required rotation to point to that direction (ROT),
and the moving displacement (DIS).

Motion is determined by considering (i) all possible affordances or rotations to
execute from current location and orientation (APS), (ii) selection of a random
rotation between possible affordances (RPS, internally computed), (iii) curiosity to
execute rotations not yet explored (CPS, internally computed), and (iv) expectation
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of maximum reward (EMR, internally computed by using EX and DX). These four
“signals” are computed by using one or more Gaussian functions whose values are
stored in linear arrays or vectors. Specific positions distributed throughout a vector
correspond to particular relative rotations between −180◦ and +180◦ in 45◦ intervals,
and the biggest value of a Gaussian function (the height of the curve’s peak) is stored
in one of these positions.

The influence of each signal in the final action selection depends on the biggest
possible value of the Gaussian functions representing it. Varying the parameter that
regulates the height of the curve’s peak, the model assigns the following priority to
signals: (i) EMR, (ii) APS, (iii) CPS, and (iv) RPS.

Vectors derived from the representation of those signals are added, and the
specific relative rotation associated with the position of the resultant vector storing
the biggest value is used to determine the next animat direction from 0◦ to 315◦ in
45◦ intervals.

In the course of an experiment, while the EMR signal is weak, the animat executes
a rotation not yet experimented at its current location or a random rotation in case
it had tried all possible rotations earlier. Regarding this last situation, it is feasible
for the animat to show a “hesitation” behavior, in the sense of performing two or
more body rotations at its current location before restarting navigation in the given
environment.

3 Animal Experimentation

We used a group of three male rats to carry out the behavioral experiment with
a 95×105 cm2 maze having six internal corridors as shown in Fig. 7. The maze
was placed in a room illuminated using a tenuous light, and surrounded by a white
curtain with four different colored geometrical figures representing salient and stable
allocentric cues or landmarks.

In order to motivate the animals to learn the spatial task, the consumption of water
was restricted during the previous week of the experiment, and absolutely prohibited
during the prior 24 h. The tip of a water dispenser was placed at the goal location
indicated in Fig. 7 to provide sweet water to rats when reaching this location at the
end of any training trial. The solution used as reward consisted of 5 gr. of sucrose
dissolved in 50 ml. of water, whereas the water dispenser was filled with 400 μl of the
solution before beginning each trial.

Fig. 7 Top view of the cyclical
maze employed in the
experiment with rats.
Landmarks L1, L2, L3 and L4
are illustrated, as well as
locations TD, D1, D2, D3, D4,
and the goal location
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During the experiment, rats pass through three phases: habituation, training, and
behavioral testing, as described in the following subsections.

3.1 Habituation Procedure

The task begins with a habituation session (pre-training), where the animal is placed
in the maze and allowed to explore it freely from location TD (see Fig. 7) being
oriented north (90◦ according to Fig. 3b) until reaching the water dispenser. Water is
not provided during the habituation session.

3.2 Training Procedure

During training, the water dispenser provides sweet water as reward to rats. At the
beginning of each training trial the rat is placed at location TD (Fig. 7) oriented
north (90◦). Each trial consists on freely exploring the maze until reaching the goal
location and drinking the sweet water. The rat is then removed from the maze and
placed in a cage for 60 s after which a new trial is performed. Each rat daily training

Fig. 8 Routes followed by three rats (502, 503, 504) in locating the water (Goal) during three training
sessions (1, 7 and 17) from a fixed departure location (TD) in the maze. Lines inside each maze il-
lustrate nine different routes. The average latency of arrival to the target is shown below every maze
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Fig. 9 a Average latency of arrival to the goal location per training session considering the
performance of each rat (502, 503, 504) during the spatial task. b Average latency of arrival to the goal
location per training session considering the average performance of the three rats and indicating the
corresponding variability

session included 9 trials, with each trial ending with the rat reaching the target for
a total of 17 sessions. Latencies and routes followed by the animals in locating
the water were registered by using the SMART system (San Diego Instruments).
Figure 8 illustrates routes followed by different rats during three training sessions,
with sessions selected from beginning (Session 1), middle (Session 7), and end
(Session 17) of the procedure. It is notorious how the latency of routes decreases
as training evolves until animals learn the shortest path to the goal.

Figure 9a shows the average latency of arrival per session for the three rats,
whereas Fig. 9b illustrates the average latency of arrival per session considering the
average performance of the three rats and indicating the corresponding variability.

3.3 Behavioral Testing Procedure

In order to evaluate rats’ ability to reach the target after having concluded the
training procedure, rats were separately tested during 12 trials starting three times
from four different locations in the maze, D1, D2, D3, and D4 (see Fig. 7), pointing
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in four different directions, north (90◦), north (90◦), east (0◦), and south (270◦),
respectively (see Fig. 3b).

During each testing trial, the rat is placed at the corresponding initial location
and orientation, and the trial consists on exploring the maze freely until reaching the
goal location and drinking the sweet water. The rat is then removed from the maze.
During tests, latencies and routes followed by the animals in locating the water were
also registered by using the SMART system as depicted by Fig. 10, where it can be

Fig. 10 Routes followed by rats (502, 503, 504) in locating the water (Goal) during tests departing
from locations D1 to north (90◦), D2 to north (90◦), D3 to east (0◦), and D4 to south (270◦) in the
maze. Lines inside each maze illustrate three different routes. The average latency of arrival to the
goal is shown below each maze
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observed that rats did not always show an optimal performance following the shortest
route.

3.4 Monitoring Neural Activity by Detecting the Expression of the Immediate Early
Gene Arc

After the animals were trained and tested in the cyclical maze task, a sacrifice session
was scheduled for five rats, three of which were the animals trained in the task and
the other two were cage control animals with the same age.

Fig. 11 Representative full coronal montage images obtained with the Mosaic X software in the
Apotome system using a 10×/0.45 objective. Nuclear Sytox counterstaining is shown in green, and
arc expressing cells are shown in red. The images were obtained from cage control animals (a and c),
and from animals previously trained and exposed to the cyclical maze (b and d). Top images (a and
b) correspond to an anteroposterior position around −4.0 mm from bregma where the hippocampus
is located, and bottom images (c and d) correspond to a position around 0.2 mm from bregma where
the striatum is located (dorsal, lateral, ventral and medial striatum). The white bar represents 1 mm
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Trained animals underwent a final behavioral session consisting in placing them
at the same release location used during training for a total of 7 trials. This was done
in order to complete 5 min of behavioral exploration, which is used to guarantee the
maximal amount of behaviorally activated neurons in the hippocampus using other
spatial learning tasks [29, 30].

Thirty minutes after the behavioral exposure, animals were sacrificed by decap-
itation and their brain was removed and processed for Arc immunohistochemistry
as described in [30]. It is important to mention that all animal brains were placed in
one single block and sliced together in 20 μm sections, thus each slide contained two
caged animals brain sections and three trained animals brain sections.

Immunostained sections (3 or 4) were imaged using a × 10/0.45 plan apochromat
objective and the Mosaic X imaging software on the Apotome system (Zeiss ®
Standort Göttingen-Vertrieb Deutschland) to obtain whole coronal section images
containing the dorsal hippocampus and the striatum as shown in Fig. 11.

Fig. 12 Zoom images from the
Mosaic X montage obtained
with a ×10/0.45 objective.
Nuclear Sytox counterstaining
is shown in green, and arc
expressing cells are shown in
red. Images a and c correspond
to the cage control animal,
whereas images b and d
correspond to one of the
animals previously trained and
exposed to the cyclical maze.
Images a and b show activated
cells in the hippocampus,
whereas c and d show
activated cells in the ventral
striatum. The white bar
represents 250 μm
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The imaging parameters were set using the staining signals observed in one
of the caged animals and maintained through the rest of the imaging procedure
for each slide. The collected images were used to measure the area occupied by
the Arc staining signal (in red) and corrected by the region determined by the
Sytox green (Invitrogen ® Carlsbad, California) counterstained signal (in green)
using the metamorph imaging software (Molecular Devices ® Downingtown, PA).
In brief, a region of interest (ROI) was drawn using the area occupied by the
counterstained signal that stains the cell nuclei of all cells and allows us to identify
the different anatomical regions of the hippocampus and striatum. Once the ROI
was drawn, a threshold was set in a cage animal image section, and once established,
those parameters were used for the remaining images from the other animals (one
more cage and the three exploration animals). This measure resulted in a gross
quantification of the amount of Arc staining present in each region of hippocampus
and striatum for the animals that executed the task and the corresponding cage
control subjects.

Results revealed a clear activation of hippocampus and striatum that can be ob-
served in the images shown in Fig. 12, as well as by the threshold quantification shown
in Fig. 13. Therefore, rats engaged both hippocampus and striatum in information
processing and used them to solve the task.

Fig. 13 The bar shows the
area in μm occupied by the arc
signal ±SEM. Black bars
correspond to the animals that
were exposed to the cyclical
maze task, whereas white bars
are from the animals that were
sacrificed directly from their
cages. *P < 0.05
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4 Robot Experimentation

The rat cognitive model was designed and implemented using the NSL system
[47]. The computational model interacts with a real robotic environment through
an external visual processing module that takes as input three non-overlapping
snapshots (0◦, +90◦, −90) taken by the robot at each step using its local camera,
and a motor control module that executes rotations and translations on the robot.
Refer to [5] for further detail on the robotic implementation of the model.

The AIBO robot experiment was done in a 180 × 210 cm2 maze having six internal
corridors as shown in Fig. 14. The maze is surrounded by four colored cylinders
representing salient and stable allocentric cues or landmarks. During the experiment,
similarly to rats, the robot passes through three phases: habituation, training, and
testing, as described in the following subsections.

4.1 Habituation Procedure

As with rats, the experiment begins with a habituation procedure where the robot
departs from location TD (Fig. 14) oriented north (90◦ according to Fig. 3b). The
robot explores the maze freely until reaching location HE corresponding to the goal.
No reinforcement is provided to the robot while exploring the maze, thus it does not
carry out any learning process of goal locations, and its actions are determined just by
curiosity and randomness. As a result of the habituation procedure, the robot builds
a cognitive map of the maze including nodes to represent the explored locations,
and Actor units associated with different directions in which they were explored.
Figure 15 illustrates spatial maps generated during habituation by four robots.

Fig. 14 Top view of the
cyclical maze used in the
experiment with AIBO robots.
Landmarks L1, L2, L3 and L4
are illustrated, as well as
locations TD, D1, D2, D3, D4,
and the goal location
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Fig. 15 Spatial maps generated by four robots during the habituation procedure of the spatial
task. Nodes are numbered in order of creation, and arcs between nodes are labeled with the robot
allocentric direction (see Fig. 3b) when it moved from one node to the next one

4.2 Training Procedure

After habituation, reinforcement is introduced at location HE of the maze, the robot
is placed at TD oriented north (90◦), and the training procedure begins from the
cognitive map previously generated.

The robot perceives the same visual and kinesthetic information sensed during
habituation since the environmental configuration remains constant. The robot
recognizes during training previously explored locations that were navigated in
similar directions. On the other hand, when the robot visits unexplored locations
or orientations, it adds new nodes and connections to the map. Additionally, when
experimenting with different orientations at any given location, the robot tries to
merge possible redundant nodes by creating new ones and reconstructing links as
necessary (as described above in ‘Section 2.5.2.2’). Figure 16 illustrates the spatial
maps presented in Fig. 15 including all modifications applied by robots during
training.

In a typical training trial, the robot explores the maze from TD until finding
the goal location. Exploration is interrupted if the robot spends more than 600 s
without reaching the goal. Depending on how exhaustively the robot explores the
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Fig. 16 Spatial maps adapted by four robots as a result of the training process in the spatial task.
White nodes were created during the habituation procedure, whereas black nodes were added by
robots during training. Nodes are numbered in order of creation, and arcs between nodes are labeled
with the robot allocentric direction (see Fig. 3b) when it moved from one node to the next one.
All missed numbers within the sequence of nodes in each map correspond to nodes that were
merged with others when robots identified them as duplicates representing one same place in the
environment

maze during habituation, its motor actions during training are more determined by
the random factor and less determined by the curiosity factor since it recognizes all
visited maze locations. While the robot’s reward expectations are not big enough to
exceed the randomness, it follows indirect routes to the goal (i.e., routes that involve
visiting places more than once), or direct but not optimal routes.

Training phase consisted of one session including 20 trials per robot. As with rats,
latencies and routes followed by robots to reach the goal were recorded. Figure 17
illustrates routes registered during three training trials selected from beginning (Trial
1), middle (Trial 8), and end (Trial 20) of the procedure. It can be observed how the
learning latency decreases until reaching the goal location by following the optimal
path.
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Fig. 17 Routes followed by four robots in locating the goal during three training trials from a fixed
departure location (TD) being oriented north (90◦) in the maze. Illustrated trials were taken from
beginning (Trial 1), middle (Trial 8), and end (Trial 20) of the learning process. The line inside each
maze represents the route followed by the robot. The small arrow placed at location TD indicates
the robot orientation, and all other small arrows over the line represent locations where the robot
hesitated while taking its next motor action. The average latency of arrival to the target in those three
training trials is shown below each maze

Figure 18a shows the average latency of arrival to the goal for each of the four
robots, whereas Fig. 18b depicts the average latency of arrival for the four robots
indicating the corresponding variability.
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Fig. 18 a Average latency of arrival to the goal per training trial considering the performance of each
of the four robots during the spatial task. b Average latency of arrival per training trial considering
the average performance of the four robots and indicating the corresponding variability

4.3 Testing Procedure

In order to evaluate robots’ ability to reach the target after finishing the training
procedure, we tested robot trajectories during 12 trials with robots liberated three
times from the same initial locations and orientations as used to test rats. Figure 14
illustrates locations D1, D2, D3 and D4, from where robots depart with orientation
north (90◦), north (90◦), east (0◦) and south (270◦), respectively.

During each testing trial, the robot is placed at the initial location and orientation,
and the trial consists on exploring the maze freely until reaching the goal location.
After reaching the goal, the robot is removed from the maze.

During tests, latencies and routes followed by robots to reach the target were
recorded as shown by Fig. 19. Each robot exploits the cognitive map built during
habituation and adapted during training to reach the target successfully. During some
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Fig. 19 Routes followed by four robots while locating the goal during tests departing from locations
D1 to north (90◦), D2 to north (90◦), D3 to east (0◦), and D4 to south (270◦) within the maze. Lines
inside each maze illustrate routes recorded from three trials. When the robot followed the same
route in those three trails, the corresponding maze shows only one line. Small arrows over the routes
represent hesitations executed by the robot in deciding its next motor action. The average latency of
arrival to the goal location in three trials per departure point is shown below each maze

of the testing trials, robots still modified their spatial maps by adding new nodes to
represent unexplored locations and/or merging existent nodes. Figure 20 illustrates
nodes recognized by robots within their spatial maps during tests, and new nodes
derived from additions or integrations.

5 Comparative Results

As a result of training, the latency of arrival to the target location decreases
progressively until stabilizing in both rats and robots as shown in Figs. 9 and 18.
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Fig. 20 Spatial maps adapted by four robots as a result of tests carried out in the cyclical maze task.
Black nodes indicate existing nodes recognized by robots, or new nodes created by them as a result of
visiting unexplored places or integrating duplicate nodes that correspond to same places. Information
related to maximum reward expectations stored in Actor units of recognized nodes was exploited by
robots to reach the goal location successfully regardless the point of departure within the maze. White
nodes are existing nodes not used by robots during tests. Nodes are numbered in order of creation,
and arcs between nodes are labeled with the robot allocentric direction (see Fig. 3b) when it moved
from one node to the next one

Hence, both subjects were able to learn the shortest route leading to the goal from
the initial fixed location. To confirm that the learning criterion was reached, we
obtained for both rats and robots the path length registered during each training trial,
normalized to the shortest path length possible in the maze from the starting point
to the goal location. Figure 21a presents the evolution of the rat average learning
through the training process in terms of the normalized route length. It is feasible
to observe a similar curve as the one related to the average latency of arrival to the
goal (Fig. 9b). Likewise, Fig. 21b depicts the evolution of the robot average learning
during training in terms of the normalized route length, where we can observe a very
similar curve as that for the latency of arrival to the goal (Fig. 18b). For both, rats and
robots, the normalized path length shows a decreasing tendency until it stops varying
as a result of having learnt the optimal route from the fixed initial location to the goal.
Specifically, in training session 1, rats traveled approximately 2.5 times the optimal
distance to the goal, whereas in training session 16, they traveled approximately 1
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Fig. 21 Average performance during training in the task measured through the distance traveled
normalized to the minimal distance to the goal; i.e., the average number of times that a rats and b
robots traveled the minimal distance possible from the initial fixed location to the goal. Both graphs
show the variability of the results

time the optimal distance to the goal. Likewise, robots traveled approximately 4.5
times the optimal distance to the goal in training trial 1, whereas in training trial 20,
they traveled 1 time the optimal distance as expected.

In Fig. 22 we include a comparison between number of hesitations, i.e., movement
stops followed by more than one head or body turn before restarting navigation,
monitored during training for rats and robots. It can be observed that both subjects
reported a decreasing number of hesitations. Rats showed less than one hesitation
during the last training session, whereas the robots’ average performance indicates
that they stop hesitating in their navigation decisions once they have learnt the
shortest path to the goal, i.e., around trial 13.

It is possible to characterize comparatively the performance of rats and robots
during tests by analyzing behavioral procedures such as errors associated with the
selection of a non-optimal route, body rotations, normalized length of the traveled
path, and hesitations during navigation. Figure 23 illustrates the comparison of these
behavioral procedures in a graphical manner.
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Fig. 22 Average number of hesitations (i.e., movement stops followed by more than one body turn
before restarting navigation) committed by a rats and b robots during training from the same fixed
location in the maze

Errors are calculated as the percentage of executed testing trials where the subject
did not follow the shortest route from the given departure location to the goal. As
depicted by Fig. 23a, robots, in contrast to rats, followed optimal routes to the goal
during all trials from locations D1 and D2. When starting from location D3, 50% of
the trials performed by robots correspond to non-optimal paths to the target, whereas
67% of the trials performed by the rats correspond to non-optimal paths, and when
departing from D4, 67% of the robot trials and 89% of the rat trials were incorrect.

Regarding tests with robots departing from D3 and D4, they reported some trials
performing direct routes (i.e., non-optimal paths that do not involve visiting places of
the maze more than once) or indirect routes (i.e., non-optimal paths that do involve
visiting places of the maze more than once), since those locations were unexplored or
barely explored during training as shown in the spatial maps of Fig. 16. In those cases,
robots navigated randomly until recognizing a place previously learned, typically
belonging to the shortest path to the goal, and followed the rest of that route.

On the other hand, as it was not informative to compare latencies of arrival to
the goal between rats and robots since robots spent around 8 s at each step in
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Fig. 23 Graphical comparison
between behavioral
procedures monitored from
rats and robots during tests
departing from locations D1,
D2, D3 and D4 in the maze.
a Average percentage of
incorrect testing trials where
the subject followed a
non-optimal path to the goal
location. b Average number of
body rotations during
navigation within the maze.
c Average performance in
terms of the number of times
the subject navigated the
minimal distance possible to
the goal location. d Average
number of hesitations
expressed by movement stops
followed by more than one
body turn before restarting
navigation
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taking pictures of the environment, deciding their next motor action and executing
it, we monitored instead the number of body rotations performed independently by
both subjects, and the path length registered during each testing trial normalized
to the shortest path length possible from the corresponding departure location to
the target (i.e., the number of times the optimal distance). As shown in Fig. 23b,
the average number of body rotations in rats when departing from any given test
location exceeds slightly the number of robot body rotations, partially indicating that
rats took longer to reach the target in contrast to robots. In fact, according to results
depicted in Fig. 23c, rats traveled distances from 0.5 to 1.7 times larger than the
minimal one possible from any given test departure location to the target; whereas
robots navigated the minimal distance departing from location D2, distances slightly
exceeding the minimal one possible from locations D1 and D3, and a 0.7 times larger
distance starting from D4.

Finally, even though rats and robots had few hesitations while deciding their motor
actions during tests, rats hesitated more than robots did during navigation to the goal
location from any point of departure according to the results presented in Fig. 23d.
Particularly, in contrast to rats, robots did not hesitate when departing from location
D2 since this place belongs to the optimal route learnt during training.

6 Conclusions and Discussion

According to [48], robots can be “biological models” in several different senses: (i)
they can be modeled on animals by using the biology as a source of ideas when
attempting to build a robot with some target capability; (ii) they can be models
for animals by employing robotic theory/technology as a source of explanatory
mechanisms in biology; or (iii) they can be models of animals by using robots as a
simulation technology to test biological hypotheses.

The work presented in this paper exemplifies this last kind of “biorobot”. Indeed,
our aim is to provide the robotic model of spatial cognition in rats to neurobi-
ologists/neuroethologists as a technological platform to test with robots biological
experiments whose results can predict rodents’ spatial behavior. In this way, ex-
perimentalists could test neuroscientific hypothesis in the robotic model and obtain
results in less than 2 h instead of spending several weeks experimenting directly with
animals.

Webb [48] describes a number of dimensions on which robotic models of bio-
logical systems can differ, such as (i) performance match; i.e. to what extent the
model behavior matches the target behavior; (ii) abstraction, i.e. the amount of detail
included in the model; and (iii) structural accuracy, i.e. how well the model represents
the actual mechanisms underlying the behavior.

Both, the demonstration that rats, as robots, used the hippocampal and striatal
modules during the execution of the cyclical maze task discussed throughout the
paper, and the results derived from the corresponding comparative behavioral
analysis, allow us to validate our robotic model in terms of performance match with
rats. Indeed, rats and robots reached successfully the learning criterion during the
training process of the spatial task. When rats were tested to find the goal location in
the relatively complex cyclical maze departing from different locations, they did not
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always show an optimal performance following the shortest route, and this behavior
was also exhibited by robots during tests.

Allocentric information derived from global cues or landmarks was used by robots
firstly to build the cognitive map and then to recognize within it maze locations
previously explored. This is the function of the hippocampus module of our model,
and biological studies had shown that the rat hippocampus performs such kind of
information processing task [18, 19], which is congruent with our observation of
hippocampal activity during the execution of the cyclical maze task. The striatum
module, on the other hand, allows robots to learn routes that lead to goals by
reinforcing motor actions executed at every place belonging to those routes, which
are represented by chains of nodes in the spatial map. In this regard, we observed that
during the execution of the task, rats increased the neuronal activity in the striatum
suggesting that they may also perform a similar computation.

In locating the goal from any given departure location, robots navigated randomly
until recognizing a place belonging to a route previously learnt, and exploited
properly the information stored in Actor units to reach the goal location by executing
rotations associated with maximum reward expectations. In this way, an efficient per-
formance during tests depends on how exhaustively robots explore the environment
during training visiting all possible direct routes from the fixed departure location to
the goal.

Even though we have demonstrated the behavioral performance match between
robots and rats during the execution of the cyclical maze task, we should acknowl-
edge the following obvious differences between both subjects: (i) robots learned
faster than rats; (ii) robots reported less incorrect trials during tests; (iii) robots
executed less number of body rotations during any testing trial; (iv) robots traveled
less number of times the minimal distance to the goal during any testing trial; and
(v) robots hesitated less than rats during any testing trial. Exploring what contributes
to this enhanced performance in robots may yield insights as to how learning can be
improved in rats.

As mentioned in the beginning of this paper, our research group on biology and
robotics has been studying the brain areas involved in spatial memory and learning
in rodents, especially the hippocampus and the striatum, and we have modeled the
underlying mechanisms of these structures through different functional modules
that incorporate neuroscientific hypotheses. Even though our robotic model has
reached a good level of abstraction and structural accuracy, it remains to demonstrate
that the hippocampal and striatal activation in the rat brain is related with the
same information processing modeled in the robot. Lesion or inactivation studies
in different behavioral conditions may show some light in this regard. Additionally,
the model needs to consider the following aspects:

• The function of head-direction cells [49] providing information on the rats’ rota-
tion magnitude and movement direction. Extending our affordances processing
module by modeling the function of these cells and supplying their activation
as input to the place representation module, will allow the robot to navigate
in different spatial contexts (i.e., mazes with corridors as well as open field
environments).

• The manner in which receptive fields of hippocampal place cells adapt their
distribution by increasing their density in the presence of relevant elements
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in a given navigational task (e.g., walls, corners, or doors), obstacles, and the
perception of goals.

• The functional differences between hippocampal substructures CA1, CA3 and
DG relative to their capabilities of pattern completion and pattern separation
[50–52] in conditions where environmental changes promote new navigational
behaviors.

We plan to extend the model in those directions to provide the robot with enhanced
adaptive capabilities, which will be demonstrate through the comparative implemen-
tation of several reinforced navigational tasks with rats and robots to evaluate (i)
adaptation to internal changes in the maze such as closing of existing corridors or
opening of new ones, as well as (ii) navigational routes and the latency of arrival to
the target location in an open field arena where an obstacle is introduced after the
training process.

Certainly, our “biorobot” model, as discussed by Webb [48], offers an alternative
experimental platform to address specific biological questions in an attempt to
provide a finer understanding about spatial memory and learning in rodents.
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