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Abstract Recent development showed that Micro Aerial Vehicles (MAVs) are
nowadays capable of autonomously take off at one point and land at another using
only one single camera as exteroceptive sensor. During the flight and landing phase
the MAV and user have, however, little knowledge about the whole terrain and
potential obstacles. In this paper we show a new solution for a real-time dense
3D terrain reconstruction. This can be used for efficient unmanned MAV terrain
exploration and yields a solid base for standard autonomous obstacle avoidance
algorithms and path planners. Our approach is based on a textured 3D mesh on
sparse 3D point features of the scene. We use the same feature points to localize and
control the vehicle in the 3D space as we do for building the 3D terrain reconstruction
mesh. This enables us to reconstruct the terrain without significant additional cost
and thus in real-time. Experiments show that the MAV is easily guided through an
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unknown, GPS denied environment. Obstacles are recognized in the iteratively built
3D terrain reconstruction and are thus well avoided.

Keywords MAV navigation · 3D map generation · Mesh map · Terrain exploration ·
Obstacle avoidance

Multimedia Material

Please note that this paper is accompanied by a video under the following link:
http://www.youtube.com/watch?v=EVpKPm_eeEc.
This video shows automatic mapping during a controlled flight over 100 m

long over a village near Zurich. The helicopter flies at more than 15 m height.
Concurrently to Visual SLAM, a 3D mesh is created out of the 3D points and texture
is projected onto the triangulated mesh. This 3D mesh mapping runs in real-time
during flight. Processing happens off-board. Images were streamed to a remote 2GHz
Dual-Core laptop. The algorithm run at 30 fps. Further videos within the sFly project
can be found at http://www.youtube.com/sFlyTeam.

1 Introduction

In the past years, micro aerial vehicles (MAVs) strongly gained in autonomy. This
was motivated through the very wide field of applications for these little platforms.
Commonly associated keywords are: search and rescue, exploration, surveillance,
agriculture and inspection. Research in the field of aerial vehicles evolved incredibly
fast. Today MAVs are able to autonomously take off, land, hover and follow a path
using one single camera as the only exteroceptive sensor [1].

Medium scale aerial vehicles usually have a lot of payload. They can carry
highly accurate and sophisticated sensors such as long range laser scanners, high
performance inertial sensors and a lot of computation power. In this paper, we focus
on low weight MAVs (around 500 g). This implies many restrictions on the sensor
suite one can mount on the vehicle. Also, computation power is so critical that until
today almost all solutions need a ground station for off-platform computing. These
two main restrictions—sensors and computation power—will stand in the center of
the future research of the community.

Our concern in this contribution lies in the exploitation of the on board sensors.
Our aim is to use only one exteroceptive low cost and low weight sensor for all
tasks: one omnidirectional camera. In our case, the camera is already used for the
localization and stabilization of the vehicle. We use a visual SLAM framework [2]
as a base for the visual navigation. Having the SLAM position estimate as controller
input we are able to autonomously take off, land and follow paths using only one
single camera [1].

Usually (visual) SLAM algorithms manage a map built out of point features. The
point cloud of such a map is neither for a human user nor for standard path planning
and obstacle avoidance algorithms of great use. It is thus highly desirable to have an
intuitive 3D map instead of an illegible point cloud. Also, this map shall be available
and updated while the SLAM is running (i.e. the MAV is flying) in real-time.

We use now the same camera we use for the visual SLAM framework to
also reconstruct in real-time a textured 3D mesh of the environment for efficient

http://www.youtube.com/watch?v=EVpKPm_eeEc
http://www.youtube.com/sFlyTeam
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exploration. In this textured mesh we can also recognize obstacles and avoid them
using standard obstacle avoidance routines and path planners in 3D. Moreover, the
texture on the mesh map may be used to facilitate interaction with human operators.
Thanks to the texture the operator has a good understanding of the environment.

Note that for localization and stabilization of the vehicles often a GPS sensor is
used for outdoor scenarios. Even though GPS sensors are lightweight and their data
easily is processable, we do not rely on this sensor type. We aim at a system able to
operate indoor and outdoor. Thus GPS is not an option. Also, GPS signals are highly
distorted in urban environments and yield thus false measurements.

The paper is organized as follows. In Section 2 we compare our work to the current
state of the art. In Section 3 we review shortly the framework we are using for the
feature extraction and matching. Section 4 is dedicated to the mesh reconstruction
and to the texturing of the mesh. Then, in Section 5, we show the results of the
framework we built for efficient unmanned terrain exploration. We also shed light
to how to use the mesh for (autonomous) obstacle avoidance. Finally we conclude
the paper in Section 6.

2 Related Work

Map generation in 3D is a well known problem and solutions vary over a large field.
The reason of this huge variation in representing and calculating a map lies in the
various different needs of every application. To our knowledge the real-time dense
3D map reconstruction presented here on low weight MAVs for unknown mid scale
GPS denied environments is the first of its kind.

Already in a very early work A. Elfes described the use of occupancy grids for
mobile robots [3]. The author characterized sonar sensors to build an occupancy grid
using a ground robot. The idea of occupancy grids is until today wide spread. Recent
results are published by Zask [4]. The authors use a 3D occupancy grid to accurately
model the environment including obstacles. The approach uses SIFT features and
ISO surfaces to obtain an outlier free and smooth surface. The authors claim that the
approach runs in real time and is applicable to any other features. However, they do
not discuss the influence of outliers. Moreover the grid has to be manually initialized
in order to fit the scene which shall be mapped during runtime. A general issue with
occupancy grids is the memory cost. The higher the resolution the more storage is
required. This becomes critical in outdoor scenarios and in 3D maps. To avoid this
problem, our approach uses only the point features generated by the visual SLAM
algorithm. This automatically ensures detailed structure on texture rich surfaces (i.e.
where the environment changes) and assumes larger planes on texture-less areas.
Thus, the reconstruction naturally adapts the degree of details to its environment.

A dense mapping approach is to use stereo vision. Nowadays hardware implemen-
tations are capable of building a disparity map in real time. Chen and Xu [5] used
stereo vision to build a 3D map in real time on an autonomous land vehicle. They
use again a 3D occupancy grid and GPS information to build a globally consistent
map. Early research of Lacroix [6] presents a method to build fine resolution digital
terrain maps on the basis of a set of low altitude aerial stereo vision images. They
match interest points between successive images to map a large outdoor scenario in
fine resolution. The map generation is done offline. Dense stereo vision has also been
used for pure obstacle detection in [7]. The authors did not imply the 3D mapping.
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A general issue with stereo vision is that the stereo effect vanishes the shorter
the base line gets with respect to the scene depth. Thus we rely on a monocular
solution in which the appropriate base line is provided by the keyframe based SLAM
framework.

Laser scanners are often used to acquire a very reliable measurement of the
environment to match afterwards the corresponding texture from images to the laser
scan point cloud. Biber [8] demonstrated this technique for a 3DTV application. Also
Triebel et al. showed in [9] how to solve the problem of underpassings and vertical
structures in large outdoor environments using multi level surface maps and a SICK
laser scanner on a ground robot (Fig. 1). Laser scanners are, however, not an option
for MAVs considering the weight and power budget. The same drawbacks also limit
developments using range image cameras [10]. The authors show detailed 3D maps
which make these sensors a valid option on high payload vehicles. In our case weight
and power consumption discard this branch of solutions.

The computer vision community proved the accuracy of 3D reconstruction by
only using one camera. They apply Structure from Motion (SfM) to merge different
camera views to one 3D scenario. However, computational cost is the limiting factor.
Paalanen et al. [11] select two image frames out of a monocular SLAM sequence to
build a dense stereo map. First tests showed encouraging results for this kind of dense
3D reconstruction. The algorithm needs, however, improvement in its accuracy and
is not yet running in real time (but close to it). To our knowledge, SfM needs still a
lot of research to use it in real time for MAV navigation and mapping. Simplified
approaches make use of a known model of the environment. Kemp uses in [12]
lines in the environment to control an MAV. For unknown terrain exploration the
knowledge of a model is, however, rarely given.

Our here presented approach is new in several aspects. We are able to reconstruct
a dense map in real-time purely based on a visual input from one single camera.
With a weight of only 12 g the camera is probably the lightest map building device
available. We ensure low computational cost by using the same features for building
the dense 3D map as for the visual navigation and control. The computational
expensive features are only computed once. Our mesh based approach can handle
very sparse features for a dense textured 3D mesh map.

Fig. 1 Multi level surface map: this technique handles well large data sets and vertical structures.
Here an underpassing is correctly modeled whereas a simple elevation map would have closed the
pass-through. (Courtesy of Triebel et al. [9])
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3 Framework

3.1 Description of the Visual SLAM Algorithm

The approach presented here uses the visual SLAM algorithm of Klein and Murray
[2] in order to localize the MAV and build a dense 3D map with a single camera (see
Fig. 2). Note that the authors of [2] state that the framework is only suitable for small-
scale environments. Our approach relies thus only on the local environment rather
than on the consistency of the global map. For visual based navigation, exploration
and obstacle avoidance it is indeed sufficient to have only locally a consistent map.
We will discuss this fact later in Section 5.

In summary, Klein and Murray split the simultaneous localization and mapping
task into two separately scheduled threads: the tracking thread and the mapping
thread. The tracking thread is first of all responsible for the tracking of salient
features in the camera image, i.e., it compares the extracted point features with the
stored map and thereby attempts to determine the position of the camera. This is
done with the following steps: first, a simple motion model is applied to predict the
new pose of the camera. Then the stored map points are projected into the camera
frame and corresponding features (FAST corners in this case) are searched. This is
also referred to as the data association procedure. When this is done, the algorithm
refines the orientation and position of the camera such that the total error between
the observed point features and the projection of the map points into the actual frame
is minimized. The Mapping thread uses a subset of all camera images—also called
keyframes—to build a 3D point map of the surroundings. The keyframes are selected
using some heuristic criteria. After adding a new keyframe, a batch optimization
is applied to the joint state of map points and keyframe poses. This attempts to
minimize the total error between projected map points and the corresponding obser-
vations in the keyframes. In the computer vision community, this procedure is also
referred to as bundle adjustment. It is alternately applied to the global or to a local
set of map points and keyframes. There are several important differences between
the SLAM algorithm considered here and the standard approach (for example by
Davison et al. [13]. First of all Kleins algorithm does not use any Extended Kalman
Filer based state estimation and does not consider any uncertainties, be it for the pose

Fig. 2 Screenshot of Klein’s visual SLAM algorithm. On the left, the tracking of the FAST corners
can be observed. This is used for the localization of the camera as well as for the reconstruction of the
3D mesh map. In the middle, the 3D point map that was built by the mapping thread is shown. The
3-axis coordinate frames represent the location where new keyframes where added. The right picture
shows our airborne vehicle (a Hummingbird from Ascending Technologies) in hovering state. The
down-looking camera is mounted on the vehicle’s bottom. All three images were taken at same time
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of the camera or for the location of the features. This saves a lot of computational
effort that would occur with the processing of the corresponding data. Considering
the uncertainty of the state could ease the data association process and enable larger
loop closing. The lack of modeling uncertainties, however, is compensated by using
a vast amount of features and the local and global batch optimization. Therefore,
despite using a fixed area for feature matches, the algorithm is still able to track
efficiently the point features and to close smaller loops. This makes the algorithm
fast and the map very accurate.

3.2 Analysis of the SLAM Algorithm

The main advantage of the thread splitting lies therein that both the mapping and
the tracking thread can run at different frequencies. Thus, the mapping thread is
able to apply a much more powerful and time-consuming algorithm to build its
map. Simultaneously, the tracking thread can estimate the camera pose at a higher
frequency. This does strongly improve the performance. Compared to frame-by-
frame SLAM, the algorithm of Klein et al. saves a lot of computational effort in
that it does not process every single image. Particularly when using a camera with a
wide field of view, consecutive images often contain a lot of redundant information.
In addition, for example, when the camera is moving very slowly or if it stays at the
same position, the mapping thread does rarely evaluate the images and requires thus
only very little power. This is the main reason why we chose this SLAM algorithm.
When moving the helicopter through a region, our camera is facing downwards. This
increases the overlapping image portion of neighboring keyframes, so that we can
even further loosen the heuristics for adding keyframes to the map. In addition,
once the MAV has explored a certain region, no more new keyframes will be added
within the region boundaries. The computation time remains thus constant. On the
other hand, when exploring new areas the global bundle adjustment can be very
expensive, limiting the number of keyframes to a few hundred on our platform
(around 50–100 m2, depending on the keyframe heuristics). Another strength of the
SLAM algorithm is its robustness against partial camera occlusion. If a sufficient part
(around 50%) of the point features can still be tracked the pose estimate is accurate
enough to sustain stable MAV control. In addition, the algorithm will avoid adding
any keyframes in such a situation so as not to corrupt the map. An intricate hurdle
when using a monocular camera is the lack of any depth information. Because of
that, the algorithm must initialize new points based on the observations from more
than one keyframe. This could motivate the use of a stereo camera. However, for
a stereo camera to bring any further advantage, the observed scene must be within
some range of the stereo camera, otherwise the setup will degenerate to the same
performance as a single camera. Closely linked to this problem is the unobservability
of the map scale, to tackle this we are forced to estimate the map scale by hand and
pass it manually to the controller. On-board real-time scale estimation is subject to
our current research.

3.3 Adaptations to the SLAM Algorithm

We adapt some parameters of Klein’s visual SLAM algorithm to increase its perfor-
mance within our framework. First, we use a more conservative keyframe selecting
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heuristic in order to decrease the number of keyframes added during map expansion.
Thereby, we are able to map much larger areas before reaching the computational
limit. Additionally, we reduce the number of points being tracked by the tracking
thread from 1,000 to 200. This again increases the maximal map size and the frame
rate, while keeping the accurate tracking quality and the robustness against occlu-
sion. This leads to a very sparse information for the 3D mesh map, however, our tests
show still very satisfying results underlining the strength of our approach for dense
textured 3D mesh maps. To increase the autonomy of the system we write a routine
that can store and load maps. With this, we are able to overcome the initialization of
the map during which no position estimate is available. It provides the possibility to
start the helicopter from a small known patch and to skip the initialization process.
Later the loaded map of the patch can be expanded by exploring the environment.

3.4 Implementation of a Visual SLAM Based Controller

In previous work [1] we implemented the above described SLAM framework in a
LQG/LTR controller for autonomous visual based navigation. We used the pose
estimation of the SLAM algorithm as input to the controller. This way, we are able
to take off, land and hover. Moving the hovering set point step by step also allows
set point following (i.e. trajectory following). Figure 3 shows a path flown by the
MAV completely autonomously in an indoor environment. We will implement our
real-time map generation in the same framework. Originally the framework only has
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Fig. 3 Path that the helicopter has flown. This does not represent ground truth, it is the pose
estimation of the SLAM algorithm. However the attitude of the helicopter can be observed while
successfully flying a rectangular loop and landing on the ground. The RMS value of the position
error is 9.95 cm in x, 7.48 cm in y and 4.23 cm in z. The path has a total length of a little bit more than
10 m in an area of 3.5 × 2 × 1m3
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the sparse 3D point features as a map. We will extent this in the present work to a
textured 3D mesh. This step makes efficient terrain exploration possible—such as it
is often desirable in disaster areas. By avoiding the MAV flying through the mesh we
have as well an efficient possibility of autonomous obstacle avoidance.

4 3D Map Generation

In Section 3 we described our framework from previous work which enables us
to fly an MAV autonomously in unknown terrain. In this section we focus on the
generation of the real-time 3D map. We will first describe the algorithms to build the
mesh for the 3D map. Then we highlight the texturing procedure and our technique
to always have the highest resolution texture available on any given mesh triangle.

4.1 3D Mesh Generation from a Point Cloud

Feature extraction and matching have a very high computational cost. Hence visual
SLAM algorithms typically use as few features as possible. On the contrary, this is
unsuitable for 3D reconstruction. In our approach we show that one can use the same
information for the SLAM task as for the 3D reconstruction of the map and thus one
can save significant processing time. This way the features have only to be extracted
and matched once for both tasks.

In Fig. 4 a sample scene is depicted. For simpler understanding we will refer
to this scene throughout this section. Note that it is a small scale scene, however,
due to our monocular approach, all techniques and algorithms applied to this scene
are perfectly scalable. That is, huge terrain captured from far away looks identical
to a small terrain captured from very close—i.e. the images and thus the map are
scale invariant. We will show our algorithms in Section 5 in a mid scale indoor
environment. Figure 4b shows the information available in a keyframe of the SLAM

(a) (b)

Fig. 4 a Sample image of the scene mapped for the following illustration of the algorithm in this
section. The sheets in front of the keyboard are flat and represent the main plane H whereas the
keyboard has a soft inclination in depth towards the upper part of the image. b Scene with 3D
point features. This represents the data available in a keyframe of the visual SLAM algorithm. Back
projecting a 3D triangle of the meshed map allows getting the texture for the triangle in question.
Note that this is the distorted image while for texturing the mesh we use the undistorted one
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algorithm. The 3D point features can be projected to the 2D image plane in order to
extract the desired texture.

The first step to generate the textured 3D map is to transform the point cloud
into a 3D mesh. Assume the point cloud {pi} with M 3D points pi representing the
initial map constructed by the visual SLAM algorithm in the start phase. Without any
restrictions to the terrain to explore later on we assume the start area to be relatively
flat and the aerial vehicle in hover mode. The main map plane H is found using a
least square method on {pi} or a RANSAC algorithm. In our case the latter one is
used to be more robust against outliers. This is done in the given SLAM framework.
All current and future map points are projected to this main plane to reduce the
dimensionality:

ri = P ∗ pi (1)

where pi is a three dimensional point of the current map and ri is its two dimensional
counterpart projected to the main map plane H using the 2 × 3 projection matrix P.
Note that H usually corresponds to a physical plane in the scene (i.e. table or floor).
Furthermore, as the camera is down looking on a helicopter this plane usually is only
slightly inclinated to the xy-plane in the camera frame. Thus the two dimensional
positions of the features ri are accurate while the third (eliminated by the projection)
is very noisy due to the depth triangulation of the visual SLAM algorithm.

Fig. 5 The 3D point cloud of the sample scene. A trained eye can spot the papers and the keyboard.
However, usually neither human users nor standard path planning and obstacle avoidance algorithms
understand the point cloud
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After the projection a Delaunay Triangulation is run in 2D space to generate a
2D mesh. We use a Sweep algorithm for the triangulation to keep calculation power
low. For the Sweep triangulation, calculation is in the order of O(n log n) compared
to the standard algorithm with O(n2).

The 3D point cloud of the scene is depicted in Fig. 5. One can note the difficulty
even a trained eye has to interpret the scene. Standard path planning and obstacle
avoidance algorithms cannot be used. In Fig. 6 the generated mesh is shown. After
the Delaunay Triangulation in 2D space we add again the third dimension. As Eq. 1
is not invertible (P is not a square matrix and we therefore have ambiguities in the
back projection) we only use the edge information of the Delaunay Triangulation.
That is if an edge in the 2D Delaunay Triangulation is defined by

d2d = rirj (2)

we map it to an edge in 3D space according to

d3d = pipj (3)

Fig. 6 Applying Delaunay triangulation to the point cloud reveals the real topology of the scene.
The ’hill’ represents the keyboard in the sample scene. Note that we applied a median filter to the
mesh vertices in order to eliminate outliers. Thus the 3D points may not always lie on the grid. This
grid is already sufficient for path planning and obstacle avoidance
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with rk = P ∗ pk and k ∈ map. This initial 3D mesh is then median filtered in the
third coordinate to remove outliers and noise. The median value is calculated using
all adjacent vertices to the center vertex. That is

pzk = median(pzi∀pzi ∈ d3d = pkpi) (4)

where pzi denotes the third coordinate of the 3D point pi previously eliminated for
the Delaunay Triangulation.

At this point standard path planning and obstacle avoidance algorithms could
be applied for enhanced autonomous navigation. The most simple rule for obstacle
avoidance is to not traverse the mesh. That is, if the airborne vehicle always stays on
the same side of the mesh it will not crash against an obstacle. Note that thanks to
the sparseness of the point features this rule is highly robust, however, may be too
restrictive in some particular cases. We will discuss this issue in Section 5.

4.2 Texturing the 3D Mesh Map

For the user it is important to further augment the map. Only with further map
information (i.e. texture) he can spot areas of interest. This is of great use in disaster
areas where the MAV autonomously explores the environment—using for example
our approach in [1]. A user can then send the MAV to an area of interest to gather
even more detailed information.

The projection of the texture to the mesh can be divided in to three steps. First we
augment each keyframe data with the undistorted image. Second we take the three
points of a 3D triangle of the mesh and project them onto the normalized image
plane of a specific keyframe. The texture of this projected triangle is taken and back-
projected to the 3D mesh triangle.

We constrain the size of the undistorted image to be defined in a square. Note
that undistorting a wide angle of view image will result in a star like shape with
undefined values along the bounding box edges. These undefined parts cause issues
if crossed by a connecting edge of two projected 3D points. Figure 7 illustrates the
issue. Constraining the image size has also the effect, that we limit calculation power

(a) (b)

Fig. 7 a Distorted image taken by a wide angle of view lens. b Undistorted counterpart. The values
in the black areas are not defined. We only store the part in the red square in the keyframe as the
texture triangle in green would cause issues in the back projection to the mesh. (Courtesy of Becker)
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to only the necessary pixels. Adapting the resolution of the image in the normalized
plane allows further control also on the memory budget.

More formally the texture patch of each keyframe is calculated using

q =
[

x
y

]
= K−1 ∗

[
u
v

]
(5)

where (x, y) are the normalized image coordinates in the z = 1 plane of the camera
frame satisfying the condition to be in the red square depicted in Fig. 7b. (u, v) are the
pixel coordinates in the distorted camera image and K is the intrinsic camera matrix
of the calibrated camera. We use the simple nearest neighbor for pixel interpolation
in the normalized image plane. For the projection of the 3D triangle vertices to
the normalized image plane and the back-projection of the texture triangle in the
undistorted image back to the 3D mesh, we use

q =
⎡
⎣ x

y
1

⎤
⎦ = Q ∗

⎡
⎣ X

Y
Z

⎤
⎦ (6)

where (x, y) are the normalized coordinates, (X,Y,Z) the 3D point coordinates and
Q the projection matrix obtained from the keyframe pose.

Since each keyframe has only stored one viewpoint we check for each triangle in
which keyframe all three vertices of the triangle in question are visible. We select the
keyframe in which the vertices are furthest apart of each other while still being in
the keyframe image (i.e. we select the keyframe closest to the selected triangle). This
allows maximal resolution for the texture projection and thus most information for
the user.

Figure 8 shows two versions of the final textured 3D mesh. In Fig. 8a we used
a low resolution undistorted image in order to save memory whereas in Fig. 8b we
doubled the resolution. Note that higher resolution only affects the memory as for

(a) (b)

Fig. 8 a Textured 3D mesh of the sample scene. The keyboard and papers in front of it are clearly
visible, even though not legible as the resolution of the undistorted image has been chosen low.
b Higher resolution was chosen here for the undistorted image in each key frame. Note that the keys
of the keyboard are clearly legible
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each key frame one has to store this undistorted image. It does barely affect speed
since undistorting and saving the image only takes place once a key frame is created.

To visualize better that the textured map is constructed out of several triangles we
varied the camera gain and forced the algorithm to take key frames which are closer
and further away to reconstruct adjacent triangles. Figure 9 shows a close-up of the
sample scene. Observe that adjacent triangles were taken from different keyframe
views with different gain and from different distances (thus the resolution is lower
or/and the texture is darker in some triangles). The texture, however, is still very
good aligned and shows thus the robustness of the algorithm.

Finally, Fig. 10 shows the depth profile achieved by our method. The keyboard is
accurately modeled with the 3D mesh and the texture gives the user immediately a
detailed understanding of the whole 3D scene. Note also that some outliers (here in
the flat part in front of the keyboard) persist despite the median filtering.

Outliers in the map give the user a wrong impression of the scene topology and—
more important—let path planners and obstacle avoidance fail. Keyframes are added
according to the distance to the objects and the map is updated and refined in real-
time. The closer the camera is to the object the smaller is the baseline between
(newly added) keyframes. This leads to a more precise map estimation for objects
close to the vehicle. That is, if the aerial vehicle approaches the mesh outliers will be
less probable and eventually vanish completely thanks to our median filtering. Path

Fig. 9 Close-up of the sample scene. Note the different gains and distances enforced on the key
frames taken for the reconstruction. It shows that even taken the adjacent source triangles from
different key frame views the texture is well aligned
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Fig. 10 Side view of the sample scene. Observe the accurate depth of the 3D textured mesh showing
in detail the profile of the keyboard

planners may thus not always find the shortest way to goals further away, however,
obstacle avoidance is always granted to work fine.

5 Results on Unmanned Exploration and Obstacle Avoidance

In the previous sections we described our approach to build an intuitive 3D textured
mesh map based on a point cloud from a monoSLAM framework. For illustration
purpose we used a hand held camera and a small sample scene. We can extend our
approach from the sample scene directly to a larger environment as a single camera is
not affected by scale. Note however that the algorithm is limited in size of the scene
wrt. the number of features as the visual SLAM framework is limited to a finite
number of point features and key frames. We use our visual controller framework to
guide an MAV in order to explore the scene while avoiding obstacles.

5.1 Indoor Scenario

Our indoor test arena is depicted in Fig. 11. Note that the newspapers provide both
features and a feedback of the texturing performance of the algorithm. Of course, a
visual approach without features will fail. We expanded our visual control framework
described in Section 3 so that we can set new waypoints at runtime (i.e. while the
MAV is flying). As an aerial vehicle we use the quadcopter Hummingbird from
Ascending Technologies mounted with a 150◦ fisheye lens on a uEye camera with
WVGA resolution and global shutter. As a test and demonstration sequence we
started the MAV on the table to explore the area on the floor to the right of the
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Fig. 11 Test arena for our MAV. As test sequence we stared on the table and flew to the right. As
soon as the textured 3D mesh map indicated us that it is safe to descend (i.e. that we do not hit the
table) we approached the floor to get a higher resolution of the floor for the map. After, we ascended
and returned to the starting position on the table always using the information of the intuitive 3D
map

table. The intuitive 3D mapping ensures that we never hit the border of the table
while descending to the floor and ascending to return to the starting position on the
table.

We performed the described sequence several times and succeeded to nearly
100%. Failures occurred very rarely and only on low batteries and communication
link losses or security cord entangling. In Fig. 12 we show a sample sequence of a test
sequence. The left part of the left images (i.e. camera view) is shown in the bottom
left part in the right images (i.e. textured 3D mesh map). In Fig. 12a the initial map
is shown. Note that the terrain is not yet accurate and the slope between table and
floor is not steep enough. This is due to lack of 3D points. As we explore the area in
Fig. 12b the map improves and the table-floor step gets more and more accurate. The
user can navigate the white ball in the map to set a new waypoint for the helicopter.
In Fig. 12c we safely navigated the MAV below the table level near to the floor.
Note that the map got more extended and more detailed thanks to our keyframe
texture selection procedure described in Section 4. Observe also the differences in
Fig. 12c and d. While returning, more keyframes were added and allowed thus a
better representation of the map. The small corrections can be seen in particular
around the edges of the newspapers on the floor. On the last Figure in the sequence
one can also see that the user placed the next waypoint just on the table which allows
a safe landing.

In these test sequences the user always sets one waypoint after the other on
runtime. It is easy to implement standard obstacle avoidance and path planning
algorithm since the only information needed is the mesh surface location with respect
to the vehicles location. Both information is available, the latter by the visual SLAM
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(a) Start of the terrain exploration

(b) First feedback of the step between table and floor

(c) Map is refined the more we move

(d) Landing on table (white ball) after successful exploration
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� Fig. 12 The images show a typical test run to explore an unknown environment. Left: camera view.
Right: online reconstructed textured 3D mesh map. One observes the refinement of the step between
table and floor the more we move and the more information we have about the surroundings. Note
that the transition from the table to the ground is imprecise in the first steps of the estimation.
However, it is always conservative such that the vehicle does not crash as long as not traversing
the mesh. Here, the waypoints are set manually at runtime. However, it is perfectly possible to use
any path planning and obstacle avoidance algorithm since all information about the mesh is available

framework and the former by our real time map generation algorithm. A valid path
for the MAV is thus one that does not traverse the mesh. This is, the MAV must stay
on the same side of the mesh as it started. Autonomous exploration will then consist
of flying towards the map borders close to the mesh surface for higher resolution of
the map.

5.2 Outdoor Scenario

For the outdoor scenario we flew the helicopter through a small village in wintertime.
This shows that even if for the human eye a (snowy) scene may look self-similar,
visual approaches rarely lack on features outdoors. Also note again the scalability of
our approach. We started at the desk scene, performed indoor tests of a few meters
and apply it now outdoors over more than 100 m. We used the same camera as
for the indoor sequences but changed the platform to the Ascending Technology’s
quadcopter Pelican. Figure 13 shows the flight path through the village. We flew and

Fig. 13 Outdoor flight path through the small village. Note the labeled positions for easier under-
standing of the following figures. The path length is over 100 m and the flight height varies between
5 and 10 m [Google Maps]
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Fig. 14 Start of the mapping sequence. Observe that for the human eye the scene appears fairly self
similar. However, due to the strength of (also faint) sunlight vision algorithms rarely have difficulties
finding salient features in outdoor scenarios. The camera trajectory is plotted in faint triangles in the
3D map view

mapped a path of over 100 m at a variable flight height between 5 and 10 m. We
will pay particular attention to the one house and the creek labeled in the Figure.
They show on one hand the high accuracy of the 3D map and on the other hand also
limitations of our texturing heuristics.

In Fig. 14 the start of the mapping sequence is shown. For the human eye the scene
may look self similar, however, the vision algorithm easily finds a sufficient amount
of stable salient features. The camera path is plotted as faint triangles on the right
side of the Figure in the 3D map view. Note also the house in the camera view, it is
the house labeled in Fig. 13.

In Fig. 15 an overview of the first half of the total path is shown. As seen in the
camera view in the Figure, the helicopter’s current position is just after the junction
near the bridge. Observe also the grid lines appearing along the creek, this indicates
that the creek’s height wrt. the rest of the surface is modeled correctly.

Fig. 15 Overview of the first half of the total path. Compare the labeled locations with the ones in
Fig. 13
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Fig. 16 Side view of the terrain to show the correctly modeled house elevation. Note that even
though the 3D model of the house is very accurate, the texturing indicates some failures. We discuss
this issue in Section 5.3. Nevertheless, for autonomous obstacle avoidance and path planning the
mesh model is sufficiently accurate

In Figs. 16 and 17 we examine the 3D modeling and texturing accuracy. On the
snow covered house in Fig. 16 there were not many features extracted for the map.
In particular the helicopter did not fly around the house but passed it at a high
altitude. We have thus most features on the white roof. This explains why the house is
modeled as a white hill rather than as a real house. This situation is explained in more
detail in Section 5.3 and Fig. 18. Nevertheless, width, length and height of the house
are meshed correctly in the conservative manner as described in earlier. The creek
shown in detail in Fig. 17 is less covered with snow and has a concave structure in the
non-neglected directions. That is, many features have been found and the structure is
not prone to texturing errors. Hence the 3D model of the Creek as well as the texture
reflect the reality with a very high accuracy.

Fig. 17 View along the creek. Due to the richness of features in this area the 3D mesh model is very
accurate. Moreover, thanks to the concave structure in xy-direction our texturing heuristics are prone
to errors. Hence, the 3D model as well as the texture represents the reality with high accuracy. The
lines crossing the creek are the reference lines of the z = 0 plane spanned by the vision algorithm
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Fig. 18 Selecting the keyframe
closest to the triangle in order
to get the highest resolution
for the mesh map texture is
not always the best solution.
Here, because of not taking
visibility into account, a wrong
texture from the real topology
(left) is mapped to the slope of
the mesh map topology (right).
The texture is taken from the
closer keyframe KF1 instead
of the better choice KF2. This
failure, however, does not
affect the map’s topology

5.3 Limitation

The above test sequence shows both the strengths and weaknesses of our approach.
The strength of our approach is that it works in real time and the map can thus be
adjusted while exploring the environment. Rough terrain estimations are adjusted
and improved gradually always keeping a conservative security boundary for the
flying vehicle. However, not all concave terrain situations can be recovered. Concave
terrain in the dimension which was neglected during the Delaunay Triangulation
cannot be estimated correctly. In the test sequence for example the empty space
between the table platform and the floor is filled with triangles. The texture is
corrupted as only a few pixels are mapped to that area. This issue can be tackled
by applying methods such as in [9], however, this has still to be proven to work in
real time for an MAV.

Our algorithm comes also to its limits on sudden terrain changes and occlusions as
no visibility constraints to the 3D point cloud are applied. Figure 18 demonstrates the
problem. A Feature F3 is seen by the keyframe KF2 far away. As the keyframe KF1
is closer to the features F2 and F3 the red texture seen by KF1 is taken for texturing
the according triangle. Taking into account that KF1 does not see the feature F3 an
optimized algorithm would take KF2’s texture. This failure, however, only affects
slightly the visual appearance of the map, not its topology (i.e. path planners or
obstacle avoidance are not influenced).

As we do not use GPS to eliminate drifts, the map will never be globally consistent.
Making loops while exploring new terrain minimizes drifts, but does not eliminate
them. Our approach, however, does not rely on a globally consistent map. The
3D mesh will locally be accurate enough to prevent the helicopter to crash against
obstacles and to provide the user with detailed information. This is because it uses
locally extracted point features. In a larger map, the total shape of the map may differ
from reality. But the user and the MAV still have all information needed to perform
path planning, obstacle avoidance and terrain exploration with respect to the map’s
coordinate frame. This leads to the conclusion that for our tasks a locally consistant
map is sufficient.

Last, it is clear that our vision based framework (the MAV controller and map
reconstruction) does reach its limitation on texture less scenes. Small texture free
areas can be well handled assuming they are flat. Note that in our test arena the floor
was texture free. However, flying at around 2 m height would have provided enough
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features from the surroundings to make our algorithms already work. Nevertheless,
we used texture rich newspapers in order to perform our maneuver—which was
approaching the floor. Also in outdoor scenarios usually there are plenty of features
even on cloudy days.

6 Conclusion

In this work we presented a method to reconstruct in real time an intuitive dense
textured 3D mesh map out of a sparse point cloud from any given visualSLAM
algorithm. Moreover, we showed successful removal of point feature outliers aid of
median filtering the mesh. The real time map construction allowed us to iteratively
refine, improve and extend the map. As the mesh represents a conservative boundary
to objects and to non traversable areas it can directly be used in standard obstacle
avoidance and path planning algorithms. This allows fully autonomous efficient
terrain exploration. It can be applied for autonomous rescue and surveillance tasks as
well as in desaster areas. We proved the feasibility of such an application by manually
set new waypoints to fly around obstacles and explore new terrain only having the
reconstructed mesh map as feedback to the user.
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