

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007/s10846-011-9550-z

http://hdl.handle.net/10251/37920

Springer Verlag (Germany)

González, A.; Mata, W.; Villaseñor, L.; Aquino, R.; Simó Ten, JE.; Chávez, M.; Crespo
Lorente, A. (2011). uDDS: A Middleware for Real-time Wireless Embedded Systems.
Journal of Intelligent and Robotic Systems. 64(3-4):489-503. doi:10.1007/s10846-011-
9550-z.

µDDS: A Middleware for Real-time Wireless
Embedded Systems

Apolinar González · W. Mata · L. Villaseñor ·
R. Aquino · Jose Simo · M. Chávez · A. Crespo

Abstract A Real-Time Wireless Distributed Embedded System (RTWDES) is
formed by a large quantity of small devices with certain computing power, wireless
communication and sensing/actuators capabilities. These types of networks have
become popular as they have been developed for applications which can carry out
a vast quantity of tasks, including home and building monitoring, object tracking,
precision agriculture, military applications, disaster recovery, industry applications,
among others. For this type of applications a middleware is used in software systems
to bridge the gap between the application and the underlying operating system
and networks. As a result, a middleware system can facilitate the development of
applications and is designed to provide common services to the applications. The
development of a middleware for sensor networks presents several challenges due
to the limited computational resources and energy of the different nodes. This
work is related with the design, implementation and test of a micro middleware
for RTWDES; the proposal incorporates characteristics of a message oriented
middleware thus allowing the applications to communicate by employing the pub-
lish/subscribe model. Experimental evaluation shows that the proposed middleware

A. González (B) · W. Mata · M. Chávez
Faculty of Mechanical and Electrical Enigineering,
University of Colima, Colima, Mexico
e-mail: apogon@ucol.mx

L. Villaseñor
CICESE Research Center. Ensenada, B.C. Mexico

R. Aquino
Faculty of Telematics, University of Colima, Colima, Mexico

J. Simo · A. Crespo
Polytechnic University of Valencia, Valencia, Spain

1

provides a stable and timely service to support different Quality of Service (QoS)
levels.

Keywords Real-time middleware · Real-time distributed systems ·
Embedded systems

2

1 Introduction

Miniature computing devices are being embedded in an increasing range of objects
around us including home appliances, cars, transport infrastructures, buildings,
people, etc. Furthermore, the networking of such embedded environments is en-
abling advanced scenarios in which devices leverage off each other and exhibit
autonomous and coordinated behavior. An RTWDES is formed by a large quantity
of small devices with certain computational power, wireless communication and
sensing/actuators capabilities [2]. The sensor/actuator nodes are generally dissem-
inated on the region of study, where each sensor/actuator node is responsible for
extracting data of the phenomenon of interest, such as, humidity, temperature,
pressure, brightness, etc and in some cases it can carry out control actions. The
sensor/actuator nodes are capable of processing and sending the collected data to
one or more sinks, which are in charge of transmitting the data to the end user
application.

The RTWDES have become popular as they have been developed for applications
which can carry out a vast quantity of tasks, including home and building monitoring,
object tracking, precision agriculture, military applications, and disasters recovery
[1, 2, 5, 8, 23]. The paradigm of these nets differs from the habitual ones which are
based on the information management in that RTWDESs have knowledge over what
is happening in the environment where they are deployed, thus the decision making
process depends on the analysis of the sensed variable along the area of interest.

With respect to the development of applications for RTWDESs, a middleware
can be used to bridge the gap between the application and the underlying operating
systems and networks [9, 14]. One of the basic purposes of any middleware is to
satisfy the application requirements; in this work the middleware takes into account
the specific features of an RTWDES like the restrictions in energy, communication
and computing power [7]; consequently the design and development of the sensor
networks is highly related to specific resources like battery, memory and processor
capabilities, as well as, the communication models and the application requirements.

Programming language interoperability is the ability of micro Data Distribution
Service (µDDS) to interoperate applications written in different programming lan-
guages. µDDS implements a subset of standard DDS APIs in C using gcc compiler
for Linux and PaRTiKle [21] operating systems and Real-Time Java implementation,
specifically jRate [6], which is an implementation of real-time java over Linux and
our previous work a porting of jRate over PaRTiKle OS was realized [15]. Data
Distribution Service (DDS) provides a platform independent model that is aimed to
real-time distributed systems. DDS is based on publish-subscribe communications
paradigm in which the components connect information by publishers and sub-
scribers. One of the important features of our approach is the complete development
platform which as you can see, the use of C language and a POSIX-Compliant

3

OS, make it easier to learn to develop RTWDES applications. The small footprint
and low overhead obtained in the standalone application, are an important features
because is in the order of the kilobytes and that is what it need it in the embedded
applications by their limited resources. Most Middlewares do not implement some
QoS Policies in their implementations, we establish the basis for implementing
subsequently QoS requirements as they are needed.

This paper describes the design, implementation and performance of micro
Data Distribution Service (µDDS). It discusses the layered architecture of µDDS,
followed by a detailed description of each layer; it also presents a description of
the application development process with C and Real-Time Java for the linux
and PaRTiKle OS. This paper also evaluates the performance of µDDS by means
of throughput and latency tests while considering a wireless network layer and
some QoS policies such as TIME_BASED_FILTER and DEADLINE. µDDS is
lightweight and efficient, and simplifies the development of a publish/subscribe ap-
proach for embedded real-time wireless networks applications. Furthermore, µDDS
provides programming language interoperability which is the ability of µDDS to
interoperate with applications written in different programming languages. µDDS
implements a set of standard DDS APIs in C which makes use of the gcc compiler
for Linux and PaRTiKle [21] operating systems and Real-Time Java implementation.
specifically jRate [6], which is an implementation of real-time java for Linux. One of
our previous works considered the porting of jRate for the PaRTiKle OS [15].

The remainder of the paper is organized as follows. Section 2 presents a de-
scription of the middleware proposals presented in the literature. Section 3 presents
an overview of the Data Distribution Service for real-time applications. Section 4
details the components of µDDS for real-time wireless embedded systems and the
architecture over Linux and PaRTiKle OS. Section 5 presents the design aspects on
C and real-time Java. Section 6 presents an analysis of the performance advantages
with communications and QoS tests. Finally, Section 7 summarizes the major aspects
of this work and outlines future research directions.

2 Related Works

There are several middleware proposals in the literature, some of the most repre-
sentative are described in this section. Cougar [3] implements a model based on
consults, where the sensed data is considered to be in a virtual relational database.
Mate [11] is a small virtual machine communication centered approach executed on
TinyOS [10] and the developers, by means of the use of this architecture, can change
in a simple way the set of instructions, the execution of events and the subsystems
of the virtual machines. Impala [12] is a middleware for the ZebraNet project, it is
composed of two layers: the upper layer that contains all the application protocols as
well as the programs for ZebraNet, while the lower layer contains three middleware
agents: the Application Adapter, the Application Updater, and the Event Filter.
Garnet [25] presents an architectural framework that provides a data stream centric
abstraction. In a fixed network the data is gathered by the applications which use
the typical mechanisms of advertising, discovery, registration, authentication and
publish/subscribe to identify, subscribe and receive the data streams of interest. It
has some components which are receivers, sensors/actuator, filtering and dispatching

4

services, consumer processes and services, the Super coordinator, etc. MiLAN [16]
sits on top of multiple physical networks, and has an abstraction layer that allows
network-specific plugins to convert the MiLAN commands to protocols-specific
commands which are transmitted through the usual network protocol stack, these
plugins are important as they help to determine which sets of nodes satisfy the
QoS requirements of the application.These middlewares have been developed for
small systems in Wireless Sensor Networks (WSN) applications and do not support
real-time characteristics. Real-time capability means that a timely response to time-
critical events is assured, so it can use for control applications in industrial environ-
ments which require reliable and secure communications.

Publish/subscribe (or pub/sub) is an asynchronous messaging paradigm where
senders (publishers) of messages are not programmed to send their messages to
specific receivers (subscribers). Rather, published messages are characterized into
classes, without knowledge of what (if any) subscribers there may be. Subscribers
express interest in one or more classes, and only receive messages that are of interest,
without knowledge of which (if any) publishers may be available. This decoupling
of publishers and subscribers provides an increased scalability and the support of a
greater dynamic network topology.

Mires [24] presents a publish/subscribe model, and incorporates two additional
services: routing component and additional services. The communication between
the nodes is given in three phases. First, the nodes in the network announce their
available topics, such as, temperature or humidity which are collected from local sen-
sors. Second, the advertised messages are routed to the sink node using a multi-hop
routing algorithm and the user application can connect to these nodes to monitor the
desired topics. Finally, the subscribe messages are broadcasted down to the network
nodes. Mires is located on top of the OS, encapsulating its interfaces and providing
higher-level services to the node application. TinyDDS [4] is a publish/subscribe
middleware for event detection and dissemination applications in WSNs. With
its self-configuring event routing protocol, TinyDDS adaptively performs event
publication according to dynamic network conditions and autonomously balances
its performance among conflicting operational objectives. TinyDDS has the ability
to interoperate with applications written in different programming languages. This
middleware implements a set of standard DDS APIs in nesC and Java Micro Edition.
TinyDDS and Mires do not implement features for real-time distributed embedded
systems, its runtime support and programming languages do not include benefits
for developing safety critical or real-time applications. On the other hand, our
middleware developed using a subset of the OMG DDS specification, on top of real-
time operating system with small footprint and low overhead, allows easily develop
RTWDES applications, with the advantage of the C programming language and
standard specifications, it can also allow migration to other hardware architectures.

This article describes the design, implementation and performance evaluation
based on experiments of µDDS, which is a middleware based and compliant with a
subset of the DDS implementation included in the PaRTiKLe OS; µDDS also imple-
ments a set of standard DDS APIs in C and real-time Java. The C implementation of
µDDS operates directly on the POSIX Kernel PaRTiKle platform, whereas the Java
implementation operates on the GCJ runtime, which is the GCC Java compiler with
the javax.realtime classes and the native methods over POSIX Kernel PaRTiKle.

5

3 An Overview of Data Distribution Service For Real-time Systems

The OMG Data Distribution Service (DDS) specification [17] standardizes the soft-
ware application programming interface (API), where a distributed application can
use the publish/subscribe communication mechanism which is centered in the data.
It is based on Model Driven Architecture (MDA) [18–20], which defines a Platform
Independent Model (PIM) that is a view of a system from the platform independent
viewpoint, as a result the middleware developers can derive any Platform Specific
Model (PSM) which can be adjusted to the application requirements; thus allow-
ing the construction of different DDS implementations dedicated to very specific
needs [17].

3.1 DDS Conceptual Model

DDS introduces two levels of interfaces, which are:

– DCPS (Data-Centric Publish/Subscribe), a low-level mandatory API that pro-
vides the functionality required for an application to publish and subscribe the
values of data objects. This layer provides support for 21 QoS policies as we will
see later;;

– DLRL (Data Local Reconstruction Layer), an optional high-level API that
allows a simple integration of the Service into the application layer.

According to [20] the advantages of this infrastructure can be listed as:

– It is based on a simple publish/subscribe communication paradigm;
– it has a flexible and adaptive architecture that supports auto-discovery of new

stale endpoint applications;
– the low overhead can be used with high-performance systems;
– it has a deterministic data delivery;
– it is dynamically scalable;
– it provides an efficient use of transport bandwidth
– it supports one to one, one to many, many to one and many to many communi-

cations;
– and it has a large number of configuration parameters that provide to the

developers a complete control of each message in the system.

The information flows with the aid of the constructors as it is shown in Fig. 1.
The Publisher and DataWriter are on the sending side while the Subscriber and
DataReader are on the receiving side. The Topics are used to provide the basic
connection between Publishers and Subscribers. The Topic of a given Publisher on
one node must match the Topic of an associated Subscriber on any other node. If the
Topic does not match, then the communication will not take place. The Publisher
is responsible for the distribution of the different data types, and the DataWriter is
used to communicate to a Publisher the existence and value of the data. Meanwhile
the Subscriber is responsible for receiving the published data and making it available
to the receiving application and the DataReader is used to access the received
data [17].

6

Fig. 1 DDS Entities

3.2 Quality of Service in DDS

One of the important aspects to consider is the Quality of Service (QoS), which is
a concept used to specify certain behavior of a service. QoS provides the ability to
control and limit the use of resources like network bandwidth, memory, reliability,
timeliness, and persistence, among others. The DDS QoS model implements a set
of classes which are derived from QoSPolicy. DDS provides USER_DATA QoS
policy, TOPIC_DATA QoS policy, DURABILITY QoS policy, DEADLINE QoS
policy and other policies. Further details regarding these policies can be studied
in [17].

4 Architectural Overview of a Middleware for Real-time Wireless
Embedded Systems

The proposed architecture is shown in Fig. 2 , where the PaRTiKle real-time OS is
executed directly on an ARM or x86 hardware; nodes can communicate with other
devices using a ZigBee communication module; The DDS middleware sits between
the node and user applications, and the PaRTiKle OS.

4.1 PaRTiKle OS Architecture

PaRTiKle [13, 15, 21, 22] is a recent embedded real-time operating system designed
to be compatible with the POSIX 5.1 standard. PaRTiKle has been designed bearing
the following ideas in mind:

– it must be as portable, configurable and maintainable as possible.
– it must support multiple execution environments, thus allowing to execute the

same application code (without any modification) under different environments,
such as, in a bare machine, a Linux regular process and as a hypervisor domain.

– it must support multiple programming languages; currently PaRTiKle supports
Ada, C, C++ and Java

7

Fig. 2 Global architecture

PaRTiKle has been designed to support applications with real-time requirements,
providing features such as full preemptability, minimal interrupt latencies, and all
the necessary synchronization primitives, scheduling policies, and interrupt handling
mechanisms needed for this type of applications. Figure 3 shows the PaRTiKle ar-
chitecture that has been designed as a real-time kernel with a clean and well defined
separation between kernel and application execution spaces. All kernel services are
provided via a single entry point, which improves the robustness and also greatly
simplifies the work to port PaRTiKle to other architectures and environments.

Fig. 3 PaRTiKle architecture

8

Fig. 4 Communication and advanced node architecture

4.2 µDDS: A Middleware for Real-time Wireless Embedded Systems

µDDS is a publish/subscribe middleware for real-time wireless embedded systems
based on DDS specification and implements a subset of standard interfaces for event
subscriptions and publication to be used by applications. Applications implemented
on top of µDDS can disseminate and collect data through a publish/subscribe
interface provided by the middleware. Different routing protocols can be used to im-
plement the overlay network; the middleware is currently implemented on 802.15.4
standard devices which can support star, tree and mesh topologies. The nodes can
communicate with other devices using a ZigBee communication module. Figure 4
show how different kinds of nodes with ARM and x86 hardware architectures and
zigbee communication module.

5 Building Process with a µDDS Application

The programmer can automatically generate a template for the end application, by
means of the autogen tool, which was designed to create program files that contain
repetitive text with varied substitutions. The generated codemakes use of a definition
file which is completely separate from the template file, the use of this definition file
increases the flexibility of the template implementation and the respective generated
code. There are three main elements of the development model, DDS Middleware
and DDS library, user application and PaRTiKle Kernel. Figure 5 illustrates the
development process of a µDDS application running on PaRTiKle which makes use
of a bash script named mkkernel. As part of the building process the following steps
must be performed: first, the application (i.e. the application previously generated
with autogen and modified by the developer with the changes needed for the end user
application) must be linked with the µDDS middleware; next, the resulting object is
linked with the kernel object to create an executable file (*.prtk) containing all the
components.

9

Fig. 5 Building process of a µDDS application

The mkkernel script requires the following parameters:

$ mkkernel -f <output> <file1.o> [<file2.o> . . .]
where <output> is the name of the target executable once the process of building
the application has concluded, and <file1.o>, <file2.o>, etc., are the object files
obtained when the application is compiled using GCC with the option -c. The steps
performed by this script are:

1. It links the application against the user C library and the suitable run-time
(the run-time is selected depending on the language used to implement the
application).

2. It turns every applications symbol into a local symbol, except user entry point.
3. Eventually, the script links the resulting object file together with the kernel

object file to create the executable (*.prtk).

For example, consider the source file example.c; this files is compiled, using GCC
with the -c flag.

$ gcc -c example.c -I <headers>

Where <headers> is the path to the PaRTiKle C user header files (ulibc/include).
The result of this compilation is a file called example.o. After that, we invoke the
mkkernel script as follows:

$ mkkernel -o example example.o

The result is a binary file named example.prtk, which is ready to be executed in the
selected execution environment.

10

Fig. 6 Java application
build process

For a development model in Real-Time Java, a compiled application must include
the GCJ runtime with the javax.realtime classes and the native methods as shown
in Fig. 6. GCJ, which is the GCC Java compiler, links with the libgcj by default,
which includes a complete java runtime on the order of some megabytes with a
set of characteristics that are not necessary for small platforms. The idea is to
remove any functionality which is not necessary for safety critical systems and also
not necessary for real-time systems with hard timing restrictions. We started from
scratch, copying the source code necessary to the directories where we had installed
GCJ on PaRTiKle. The code was compiled generating a new, reduced, version of
libgcj. The size obtained is in the range of hundreds of kilobytes for the complete
application, which is composed of the application code (code developed by the end
user), DDS Middleware and the PaRTiKle operating system. The reduced version
of libgcj is a subset of the runtime support and the CLASSPATH. Finally, this
version of libgcj has all of the support to execute applications using the porting
and adaption of jRate on the PaRTiKle OS, a subset of java.lang and java.io,
support for thread execution, and OS interfaces. The garbage collector, support
for graphical interfaces, runtime classloading, bytecode interpretation, reflection,
finalization, serialization, file and network I/O, and many parts of java.lang, java.util,
and java.io, that were not considered essential, have been removed, for real-time and
safety critical applications.

6 Implementation and Evaluation

To study the performance of publish/subscribe systems we implement the µDDS as
our middleware base for wireless embedded applications and have been compared
to the performances of DDS implemented by the company Real-Time Innovations
(RTI), which is one of the most complete and representative implementations of
DDS. The purpose of our experiment is to run latency and throughput perfor-
mance tests with different message size and number of subscribers in a practical

1 1

environment. In our middleware we implement a Publisher which is responsible for
the dissemination of topics with its respective DataWriter that allows an application
to offer samples of a specific topic to the subscribers. Once the topic has assigned
values to each field it is necessary to serialize the data which is later sent to
the network, to support this functionality we implement a serialize method which
packages all the data which is later sent to other nodes through the established
network.On the Subscriber side a deserialize method is employed to assemble the
topic for its use at the user application. The test was performed using eight devices
based on an ATOM N270 processor running at 1.60 GHz, with 1MByte RAM
and 802.11 b/g 54 Mbps for the wireless communication, Linux operating systems
(Ubuntu 9.10) with kernel version 2.6.31 and gcc 4.1.3 compiler.

6.1 Throughput Test

Throughput is defined as the total number of bytes received per unit time in different
1-to-n (i.e., 1-to-4, 1-to-8, and 1-to-12) publisher/subscriber configurations. In this
test, the publisher sends data where the size varies from 16 bytes to 4 Kb and is
sent to one or more subscriber applications (1-to-8). The throughput is the total
number of messages received per second by all the subscribers in the system divided
by message fanout. The test code contains two applications: one for the publishing
node and the other for the subscribing node(s). The publisher applications are started
first followed by the subscriber applications, then the publication application sends
a burst of data and repeats the cycle for a specified duration. The phases of the
algorithm is as follows:

1. The publisher signals the subscriber applications that it will commence, and then
starts its own clock.

2. The subscriber starts to count the number of messages received.
3. After the desired duration is over, the publisher signals the subscribers that

one experiment is over. The subscriber will then divide the number of samples
received by the elapsed time to report the throughput observed at the receiver.

Figure 7 shows the performance results were obtained in the throughput tests
between µDDS and DDS implemented by RTI. This graph shows sustainable one-
to-one (point-to-point) publish/subscribe throughput in terms of network bandwidth
(megabits per second). Accounting for Ethernet, UDP overhead, the maximum
bandwidth available for message data (and metadata) is slightly over 800 megabits
for µDDS and 700 megabit for RTI DDS implementation. Maximum throughput is
achieved when the publisher sends as fast as the subscribers can handle messages
without dropping a packet. That is, the maximum throughput is obtained somewhere
between the publisher sending too slowly and the publisher swamping the subscriber.
In general, throughput for Data Distribution Service (DDS) is higher than most other
messaging and integration middleware

6.2 Latency Test

Latency is defined as the roundtrip time between the sending of a message and
reception of an acknowledgment from the subscriber. In our test, the roundtrip
latency is calculated as the average value of 10,000 round trip measurements.

12

Fig. 7 Throughput test

Similarly to the throughput test, the publisher sends data with varying size from
16 bytes to 4 Kb to one or more subscriber applications in which the latency is
estimated as a half of the roundtrip time of a message. The test code contains two
applications: one for the publishing node, and one for the subscribing node(s). The
publisher application is started first, followed by each subscriber, then the publisher
starts publishing data. The test ends when all the messages have been sent and
the same number of replies has been received by the publisher. Figure 8 shows
the average one-way latency in microseconds for publish/subscribe messaging for
µDDS and RTI DDS implementation (DD1). This data shows that, at small message
sizes, latency remains consistently low. At larger messages sizes, which are network-
limited, latency is proportional to message size. The main reason for the result in
Fig. 8, standard DDS has fewer layers than other standard pub/sub platforms, so it
incurs lower latency. Both graphs show the same trend, however, µDDS has a much
lower latency because it implements a subset unlike the implementation done for
RTI, which implements the full DDS specification. From this point of view, µDDS
has a lower overhead, additionally it can be easily ported to other architectures,
mainly to support real-time applications and safety critical systems.

6.3 QoS Test

For the QoS policy, µDDS implement some of the QoS model of DDS, such as
deadline and time based filter. The Deadline QoS indicates the minimum rate at

Fig. 8 Latency test

1 3

Fig. 9 Time_Based_Filter test

which a DataWriter will send data. The Time-Based Filter provides a way to set a
minimum separation period, which is used to specify that a DataReader wants new
messages no more often than this time period; according to the specification, if the
value of this QoS policie is 0, it means that the DataReader wants all values.

Figure 9 shows the performance of dealing with notifications per second with
different Topics and TIME_BASED_FILTER (TBF) settings. The result shows that
DDS achieves maximal processing capacity for notifications per second when the
Topic Number grows up to 600 and TIME_BASED_FILTER = 1.

Figure 10 shows the Deadline Missed Ratio as a function of the number of Topics
while considering different DEADLINE periods. The result show that Deadline
increases slowly when Topic Number is bigger than 160 for Deadline = 2 and 200
for Deadline = 4. These results have been obtained with a service that just runs with
a topic number ranging from 10 to 500, which was observed 20 times in order to
obtain the average value.

Fig. 10 Deadline test

14

7 Conclusions

In this paper, a new DDS compatible real-time middleware has been presented;
µDDS is a publish/subscribe middleware that allows real-time wireless embedded
applications to interoperate with each other, and is capable of supporting different
QoS levels for various applications. The combination of a compact Java environment,
the µDDS middleware and the PaRTiKle OS, has resulted in a very small footprint,
low latency, and highly reliable platform for time critical Java applications. In order
to validate and evaluate the performance of our implementation, several tests have
been designed and performed. All the testing realized in this work, shows that the
performance of this implementation is very efficient, achieving very good results in
terms of throghput, latency and QoS. Evaluations results demonstrate that µDDS
is lightweight and efficient, and the use of the µDDS middleware simplifies the
development process of real-time wireless embedded publish/subscribe applications.
In the future we will implement the proposed software architecture in other hardware
architectures such as XScale and PPC, and we will make use of the TLSF memory
model which is supported by the PaRTiKle operating system, this will require us
to integrate the adaptation and implementation of RTSJ which we have already
developed for the PaRTiKle OS.

Acknowledgement This work was developed as a part of the D2ARS Project supported by
CYTED. UNESCO code 120325;330417;120314;120305.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE
Commun. Mag. 40, 102–114 (2002)

2. Aquino, R., González, A., Rangel, V., García, M. Villaseñor, L.A., Edwards-Block, A.: Wireless
communication protocol based on EDF for wireless body sensor networks, k. Journal of Applied
Sciences and Technology 6(2), 104–114 (2008)

3. Bonnet, P., Gehrke, J.E., Seshadri, P.: Querying the physical world. IEEE Pers. Commun. 7(5),
10–15 (2000)

4. Boonma, P., Suzuki, J.: TinyDDS: an interoperable and configurable publish/subscribe middle-
ware for wireless sensor networks. In: Hinze, A., Buchmann, A. (eds.) Handbook of Research
on Advanced Distributed Event-based Systems. Publish/Subscribe and Message Filtering Tech-
nologies, IGI Global (2009)

5. Cerpa, A., Elson, J., Hamilton, M., Zhao, J.: Habitat monitoring: application driver for wireless
communications technology. ACM SIGCOMM Workshop on Data Communications in Latin
America and the Caribbean, Costa Rica (2002)

6. Corsaro, A., Schmidt, D.C.: The design and performace of real-time java middleware. IEEE
Trans. Parallel Distrib. Syst. 14(11), issn 1045–9219, 1155–1167 (2003)

7. Culler, D.E., Hong, W.: Wireless sensor networks introduction. Commun. ACM 47(6), 30–33
(2004)

8. Estrin, D., Govindan, R., Heidemann, J.S., Kumar, S.: Next century challenges: scalable coordi-
nation in sensor networks. In: Mobile Computing and Networking, pp. 263–270 (1999)

9. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S.: Middleware to support sensor network appli-
cations. IEEE Netw. 18, 6–14 (2004)

10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions
for networked sensors. ACM SIGOPS Oper. Syst. Rev. 34(5), 93–104 (2000)

11. Levis, P., Culler, D.: Mate: a tiny virtual machine for sensor networks. In: Proceedings of the 10th
International Conference on Achitectural Support for Programming Languages and Operating
Systems. San Jose, CA (2002)

1 5

12. Liu, T., Martonosi, M.: Impala: a middleware system for managing autonomic, parallel sensor
systems. In: Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. San Diego, CA (2003)

13. Mata, W., González, A., Aquino, R., Crespo, A., Ripoll, I., Capel, M.: A wireless networked
embedded sistem with a new real-time Kernel PaRTiKle. Electronics, Robotics and Automotive
Mechanics Conference, CERMA 2007. ISBN 0-7695-2974-7. Cuernavaca, México (2007)

14. Mata, W., González, A., Crespo, A.: A proposal for real-time middleware for wireless sensor net-
works. Workshop on Sensor Networks and Applications (WseNA’08). Gramado, Brasil (2008)

15. Mata, W., González, A., Fuentes, G., Fuentes, R., Crespo, A., Carr, D.: Porting jRate(RT-Java)
to a POSIX real-time Linux Kernel. Tenth Real-Time Linux Workshop. Colotlán, Jalisco México
(2008)

16. MiLAN Project: Available: http://www.futurehealth.rochester.edu/milan (2008)
17. OMG, Data Distribution Service for Real-Time Systems Version 1.2. OMG Technical Document

(2007)
18. OMG, Model Driven Architecture (MDA), Document Number ormsc/2001-07-01. Technical

report, OMG (2001)
19. OMG, Overview and guide to OMGs architecture, OMG Technical Document formal/03-06-01

(2003)
20. Pardo-Castellote, G., Farabaugh, B., Warren, R.: An Introduction to DDS and Data-centric

Communications. Available: http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf (2005)
21. Peiro, S., Masmano, M., Ripoll, I., Crespo, A.: PaRTiKle OS, a replacement of the core of

RTLinux. In: 9th Real-Time Linux Workshop (2007)
22. Peiro, S., Masmano, M., Ripoll, I., Crespo, A.: PaRTiKle LPC, port to the LPC2000. Tehth Real-

Time Linux Workshop. Colotlán, Jalisco M’exico (2008)
23. Pottie, G.J., Kaiser, W.J.: Wireless integrated networks sensors. Commun. ACM 43(5), 52–58

(2000)
24. Souto, E., Guimaraes, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., Kelner, J.: Mires: a

publish/subscribe middleware for sensor networks. Pers Ubiquit Comput 10(1), 37–44 (2006)
25. St Ville, L., Dickman, P.: Garnet: a middleware architecture for distributing data streams orig-

inating in wireless sensor networks. In: Proceedings. 23rd International Conference on Distrib-
uted Computing Systems Workshops (2003)

http://www.futurehealth.rochester.edu/milan
http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf

