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Abstract Biologically inspired homing methods, such
as the Average Landmark Vector, are an interesting
solution for local navigation due to its simplicity. How-
ever, usually they require a modification of the environ-
ment by placing artificial landmarks in order to work re-
liably. In this paper we combine the Average Landmark
Vector with invariant feature points automatically de-
tected in panoramic images to overcome this limitation.
The proposed approach has been evaluated first in sim-
ulation and, as promising results are found, also in two
data sets of panoramas from real world environments.

1 Introduction

There is significant research in robotic navigation us-
ing methods based on animal navigation techniques.
For instance, Carwright and Collet (1983) studied how
the honeybees learned and used landmarks to navigate.
From this research they created the snapshot model.
The idea of this model is to calculate the home vector,
which is the vector pointing to the home position. A
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panoramic image of the target location is created and
stored by the animal. Then, when the insect wants to go
back to the stored position it uses a matching mecha-
nism to compare the current retinal image to the stored
panorama. Another example is the work on robotic nav-
igation of Lambrinos et al (1998, 2000), that took inspi-
ration from the different navigation techniques of the
ant species Cataglyphis described by Wehner (1987).
These techniques have the advantage of being compu-
tationally cheap.

Lambrinos et al (1998, 2000) suggest the Average
Landmark Vector (ALV) as a way to model these navi-
gation techniques. This model assumes that the animal
stores an average landmark vector instead of a snap-
shot. Landmarks can be (simple) features like edges.
The direction to the destination is the difference of the
ALV at the destination and the ALV at the current
location. The advantages of this model are that it is
simple to calculate and that only the orientation and
the ALV at the home location have to be stored instead
of a whole image. A third advantage is that no matching
of the landmarks has to be done.

In robot homing research, artificial landmarks are
often used. This is a strong limitation as it requires
setting up the environment beforehand. Instead, in our
work the goal is to create a simple homing method that
can be used without having to rely on artificial land-
marks. For this we propose the combination of the ALV
homing technique with visual invariant feature detec-
tors, like the ones described by Mikolajczyk et al (2005),
in panoramic images.

More concretely, we propose to use the invariant
feature based ALV in conjunction with a global local-
ization method proposed by one of the authors (Ramisa
2006). The ALV will serve as a costless navigation tech-
nique to make the robot go from a starting position to a
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destination position navigating through a path of place
signatures. Another advantage of ALV is that the same
visual information as the global localization method of
Ramisa (2006) is used, so no additional image process-
ing time is required.

Local homing could also improve the method pro-
posed by Ramisa (2006) in case of ambiguity in the
global localization by trying to go to the position in the
room where the panorama was made. The most likely
hypothesis panorama can be used as a reference for the
homing method.

Another contribution of this work is an evaluation of
the ALV homing method using feature points extracted
from panoramic images of unmodified indoor environ-
ments. This is a necessary step towards combining it
with the global localization technique of Ramisa (2006),
that would complement the localization method by giv-
ing it a computationally efficient method to travel from
one node to another of the global map.

Experiments with the ALV homing method were
first done in simulation (Goldhoorn et al 2007a,b) and
because the results were promising, experiments were
also done with real robots (Goldhoorn 2008) in an of-
fice environment. Additionally, experiments with artifi-
cial landmarks were also done for comparison purposes.

This paper is divided in the following sections: first,
some background of the methods used is provided, this
includes the panorama acquisition techniques, the lo-
cal features, the global localization method of Ramisa
(2006) and the Average Landmark Vector homing method;
next, the proposed method is explained; then the exper-
iments performed to evaluate the method are presented
followed by a discussion of the results and finally the
conclusions and future work are described.

2 Background

In this section we describe the different concepts and
techniques that have been used in this work.

2.1 Panorama

One way to acquire panoramas consists in stitching
images taken with a camera rotating around a fixed
point of view until the full 360◦ have been covered. The
next step is to stitch those images together to complete
the panorama. The images should be projected onto a
smooth surface such as a cylinder to avoid discontinu-
ities or inhomogeneous sampling. A cylindrical repre-
sentation offers some advantages. In the first place it
can be created relatively easily, and also, in opposition
to other plenoptic representations such as a sphere, can

be unrolled and stored in an efficient way as a conven-
tional rectangular image (McMillan and Bishop 1995).
It is important to have a fixed optical center, other-
wise motion parallax would be introduced. However the
small translations can be tolerated when the objects are
far enough from the camera. In this work we used the
method from Ramisa (2006) to construct the panora-
mas. Follows a brief explanation.

First the coordinates have to be transformed from
the Cartesian system of the images to the cylindrical
coordinate system:

θ = tan−1

(
x

f

)
, v =

y√
x2 + f2

(1)

Where (x,y) is the pixel position in the image, f the
focal distance (in pixels), θ the angular position and v

the height on the cylinder. The radius of the cylinder
is equal to the focal length of the camera to optimise
the aspect ratio of the image (Shum and Szeliski 1997).
The next step is to stitch the images, but for this the

Fig. 1 The projection from the image sequence to a cylinder.

displacement vectors ∆t = (tx, ty) have to be calculated
for each succeeding image pair. In theory tx can be
deduced from the panning angle and ty = 0, however
in reality this is not true due to camera twist and not
perfect panning.

Local features (see section 2.2) can be used to esti-
mate the translation between two images. The advan-
tage of using local features instead of the more conven-
tional iterative maximization of the normalized corre-
lation (McMillan and Bishop 1995; Szeliski and Shum
1997) is its lower computational complexity (provided
that the local features will have to be computed any-
way) and higher robustness to several image transfor-
mations such as illumination changes, noise and zoom.
However, in the case of few texture in the image it is
not possible to use the feature-based approach and the
iterative method is used. When the translations have
been calculated, the images can be stitched to produce
the whole panorama.

An example of such a panorama created by stitching
is shown in Figure 2. As can be seen there are still small
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Fig. 2 Part of a panorama image created by stitching several images together. The image is made in the robot laboratory.

distortions due to not perfect shifting of the images.
The difference in intensity is because of the automatic
camera gain. To avoid artifacts created in the stitching
process, the features from the original images are used.
Features from overlapping regions are only added to the
constellation once. Another way to acquire panoramas
is by using an omnidirectional camera. There are two
approaches to do this, first by using a fish-eye lens;
and secondly by using a conventional camera pointed
to a hyperbolic mirror above it. These methods have
some clear advantages such as the speed of creation
and that no images have to be stitched, and therefore
no artifacts will be introduced. A disadvantage is the
lower resolution.

Finally, another alternative to acquire panoramas
is using a camera ring. This is a ring of synchronized
cameras and offers a high speed of acquisition without
sacrificing the high resolution. A disadvantage of this
method is the high price of the whole system.

2.2 Local Visual Features

Local visual features can be points or regions of an im-
age which correspond to a local extrema function over
it. The main interest of these features is that are de-
tectable under several transformations and illumination
changes. This robustness makes these features very suit-
able for the purpose of matching and recognition. More-
over, representations made with such local features are
robust to partial occlusions and background clutter. Ex-
tracting features from an image reduces the dimension-
ality of the information and adds robustness against
noise, aliasing and acquisition conditions.

The feature region detectors Maximally Stable Ex-
tremal Regions (MSER) and Differences of Gaussians
(DoG) are used in this work to test the homing method
because they are fast to compute and yet robust. These
detectors, among others, were also used in (Ramisa
2006) and we briefly describe them below.

2.2.1 Differences of Gaussians

The Scale-Invariant Feature Transform (SIFT) algo-
rithm proposed in (Lowe 1999, 2004) is based on a bio-
logically inspired model of complex neurons in the pri-

Fig. 3 At the left the initial image is incrementally convolved

with Gaussians. The adjacent image scales are subtracted to pro-

duce the DoGs, which are shown at the right. After each octave,
the Gaussian image is down-sampled by a factor of 2, and the

process repeated. (Taken from Lowe (2004)).

mary visual cortex proposed by Edelman et al (1997).
These neurons are activated by a gradient in a partic-
ular orientation if it appears within a small range of
positions in the retina.

Although the SIFT algorithm includes both an in-
terest region detector and a descriptor, we are only in-
terested in the detector part for this work: the extrema
of the differences of Gaussians. The standalone version
of this detector is known in the computer vision litera-
ture as Differences of Gaussians or simply DoG.

Differences of Gaussians D are produced subtract-
ing every two neighbour levels of the scale-space of the
image, separated by a factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (2)

where G(x, y, σ) is a Gaussian kernel with sigma σ and
I(x, y) is the input image. Figure 3 shows an efficient
approach to construct D. To avoid detecting multiple
times the same feature at different scales, they are only
detected at their characteristic scale (Lindeberg and
G̊arding 1997). Local extrema of D are detected by
comparing each sample point to its eight neighbours in
the current image and the nine neighbours in the above
and below scales of the DoG. The point is selected only
if it is the maximum or minimum in its neighbourhood.
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Finally unstable feature points are rejected. These cor-
respond, for example, to feature points localised along
an edge or feature points with low contrast.

2.2.2 MSER

The Maximally Stable Extremal Regions (MSER) pro-
posed by Matas et al (2002) can be defined informally as
image regions in which the pixels have an intensity value
much higher or lower than neighboring pixels. Although
apparently very simple, MSER feature points are very
stable to change of viewpoint (they are perspective-
invariant) and to affine illumination changes.

Furthermore, the algorithm proposed by Matas et al
(2002) to compute the MSER feature points has a near
linear complexity. The algorithm works as follows: First
the pixels are sorted by intensity, then the pixels are
placed in the image (in decreasing or increasing order)
and the list of connected components and their areas
are maintained using an efficient union find algorithm.
Each connected component is stored as a function of in-
tensity. By doing intensity thresholds we find the parts
of the function where no changes in the area of con-
nected components occur, i.e. they are not merged with
others. These parts are the maximally stable extremal
regions. Murphy-Chutorian and Trivedi (2006) propose
an even more efficient version of the algorithm to com-
pute MSER feature points using N-Tree Disjoint-Set
Forests structure.

The MSER detector was tested by Mikolajczyk et al
(2005) and found to be one of the best in their re-
peatability experiments. A notable advantage of this
method over DoG is that the regions found are much
more robust and faster to compute. On the negative
side, MSER feature points are usually sparse, which
makes this type of feature points unsuitable (at least
when used without complementary features) for certain
applications such as object localization and recognition
(Vinyals et al 2007).

2.3 Global Localization Method

The ALV homing technique is used in this work to
complement the global localization method described in
(Ramisa 2006) and (Ramisa et al 2008). This previous
work is similar to the one of Tapus and Siegwart (2005),
where the authors defined a fingerprint of a room as
a character sequence where each character describes a
certain type of feature in the relative position of the
panorama and a 2D range laser scan. However, Ramisa
(2006) and Ramisa et al (2008) used only vision sen-
sors, and the fingerprint consisted of a constellation of
feature regions extracted from a panoramic image of

Fig. 4 Overview of the Ramisa (2006) global localization algo-
rithm.

the room. Such representation is convenient for many
reasons. In the first place, using local feature points
yields a signature robust to a certain degree of change
in the scene, that can handle occlusions, change in the
point of view or variations in the objects present in the
room. To find the current location of the robot in a
map, first a panoramic image must be acquired, and
local feature regions have to be extracted from the im-
age and described with a local region descriptor such
as SIFT (Lowe 2004). Once the new signature has been
computed, it is compared to each signature of the map
by matching feature region descriptors and then com-
puting the essential matrix with the eight point algo-
rithm and RANSAC to filter the outliers. If the robot
is moving in a flat environment, that is usually the case
in indoor environments, the four points algorithm with
flat-world assumption can be used to obtain a more ro-
bust estimate of the essential matrix as done by Valgren
and Lilienthal (2008). An overview of the method can
be seen in Figure 4.

2.4 Average Landmark Vector (ALV)

In this section we describe the biologically inspired hom-
ing technique Average Landmark Vector by Lambrinos
et al (1998, 2000). The ALV is defined as the average
of the landmark (or feature) position vectors:

ALV(F,−→x ) =
1
n

n∑
i=0

−→
fi (3)

Where F = {−→f1,
−→
f2, . . . ,

−→
fn} is the collection of features

that define the signature taken at the current position
−→x and fi are the coordinates of the ith landmark po-
sition vector. In this equation F contains the global
feature positions to explain and proof the homing tech-
nique. This is the robot centred version, but it is made
world centred by subtracting the current position −→x to
easily proof that the homing technique works :

ALV(F,−→x ) =
1
n

i=n∑
i=0

−→
fi −−→x (4)

To differentiate between the world coordinate system
and the (self centred) coordinate system of the robot,
the home vector is defined as follows:

homing(F,−→x ,−→d ) = ALV(F,−→x )−ALV(F,−→d ) (5)



5

Fig. 5 The calculation of the home vector. Both ALVs (A1 and

A2) point to the average feature position, which is drawn as a

gray block. The home vector (H) is calculated by subtracting
the ALV at the destination location (A2) from the ALV at the

current location (A1). This subtraction is shown, by the addition

of the reverse vector, A′2, to A1. The robots are aligned in this
example.

Where −→x is the current location of the robot and −→d the
destination. When the ALV functions are substituted
by Eqn. 4 then −→d − −→x remains, which is exactly the
home vector. Figure 5 shows an example of the calcu-
lation of the home vector. To simplify the image only
the average landmark (the gray square) is shown. In
this example it is also assumed that the depth of the
landmarks is known. The ALVs are calculated for the
current (C) and the Home position, these are A1 and
A2 respectively. The home vector (H) is calculated by
subtracting the ALV at the destination position (A2)
from the ALV at the current position (A1). This results
in the home vector H which points to the destination
location.

One important prerequisite of the ALV is that it is
necessary to have the panoramic images aligned to an
external compass reference before computing the hom-
ing direction. The Sahara ant Cataglyphis, for example,
uses the polarization patterns of the blue sky to obtain
the compass direction (Wehner 1994).

ALV homing does not work when the ALV at the
current location and at the goal location are the same
(after correction for orientation differences), because
this results in a zero vector. An exceptional theoreti-
cal case in which this could happen is when the ALV
point, the current location and the goal location are
aligned, in practice however this is very unlikely. To let
the robot move anyway in such situations a random vec-
tor could be used to move the robot a small distance,
and then continue the homing procedure.

In this work we propose to use the ALV method with
natural feature points automatically extracted form im-
ages acquired with the mobile robot camera, without
the need of artificial landmarks in the environment.

The feature points evaluated are the Differences of
Gaussians from Lowe (2004) and the Maximally Stable
Extremal Regions from Matas et al (2002). Only the
x and z coordinates of the feature points are used to
compute the ALV because of the flat world assumption.
These local feature points possess qualities which make
them interesting for the ALV. In the first place they
are fast to compute (and even faster hardware-based
approaches are being built), the second is that many
higher-level processes are based on information from
these interesting regions. Examples could be global lo-
calization (Ramisa et al 2008; Valgren and Lilienthal
2008) or object recognition (Lowe 2004; Csurka et al
2004). Therefore there is no overhead in reusing them
for the ALV. As a way to solve the constant orienta-
tion prerequisite, in our work all test panoramic images
have been acquired with the robot facing a constant di-
rection as is common practice in similar works (Möller
et al 2001; Hafner and Moller 2001). In order to apply
the ALV method in a navigation experiment a mag-
netic compass, or another system to acquire the global
orientation, is required to align the panoramas.

3 Related Work

To the best of our knowledge no other work has ad-
dressed the combination of the ALV homing method
with invariant feature points such as the MSER or the
DoG.

So far, in most works that studied the ALV homing
method, artificial landmarks have been used. For ex-
ample Lambrinos et al (2000) used as landmarks four
black vertical cylinders, and in (Möller 2000) experi-
ments were done inside of a white box with several wide
black vertical stripes on the walls. Möller et al (2001)
did extensive experiments in a desert type outdoor sce-
nario with four black cylinders as landmarks. In this
same work an experiment was attempted in an indoor
scenario. Natural landmarks where found by vertically
averaging a certain area of the image and finding edges
(i.e. intensity jumps) in the unidimensional graylevel
profile.

Hafner and Moller (2001) investigated if a Multi-
Layer Perceptron with backpropagation and a Percep-
tron with Delta Rule were able to learn a homing strat-
egy both in simulation and in real world experiments.
For the real-world experiments panoramic images ac-
quired by the robot camera were reduced to a single
line by vertically averaging (similarly to what Möller
et al (2001) did), thus the input of the neural networks
is a unidimensional image. Both neural networks suc-
cessfully learned a homing strategy with the same char-
acteristics as ALV.
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Usher et al (2003) used a version of ALV augmented
with depth information to guide a car-like vehicle in
an outdoor experiment. Landmarks were salient color
blobs and the depth information was acquired directly
from the distance of the landmark to the center of the
omnidirectional image (no unwrapping is performed)
using a flat-world assumption. The authors performed
real-world experiments using red traffic cones (witch
hat model) as landmarks.

Vardy (2005) did an extensive study for a variety
of biologically plausible visual homing methods in his
PhD thesis, both for local and associative methods, in a
real office environment. Among the methods evaluated
in his work, there is the one proposed in Hafner and
Moller (2001), referred to as Center of Mass ALV. In
the experiments it performed similarly to other local
homing methods, although it was found that an extra
learning phase was necessary to determine which area
of the panoramic image should be used to generate the
unidimensional image in certain environments.

4 Experiments Performed and Results
Obtained

4.1 Simulation

To evaluate how well the ALV homing method works
with our type of visual features, a series of simulation
experiments were performed first. Here we report the
most important findings of these experiments. A more
detailed explanation and discussion of the simulation
experiments can be found in (Goldhoorn et al 2007b;
Goldhoorn 2008).

The experiments were done in a simulated environ-
ment (see Fig. 6) with different distributions of feature
points. The environment is a room composed of a flat
floor, in which the robot moves, and four walls. We
have done experiments in this room changing the num-
ber of visible walls. The simulated robot was said to be
successful if it found the destination point within the
following three limitations:

1. The robot is not allowed to use more than 2000 steps
(iterations)

2. The projection of the world should not be empty
more than five times in a row (in that case either
the previous home vector or a vector with random
orientation and length was used)

3. The robot should travel at most a distance ten times
the Euclidean distance between the start and desti-
nation position.

Fig. 6 a) The simulated environment with uniformly randomly

spread feature points. b) Panoramic projection of the world used

as input for the robot homing system.

Although the feature points used are robust to most
image variations, there are almost always changes due
to noise in the localization or occlusions.

Adding Gaussian noise to the positions of the fea-
ture points with a standard deviation of 0.001 m or less
resulted in a 90% successful runs. However a standard
deviation of 0.05 m or more resulted in only 5% or less
of successful runs.

Occlusions were simulated by removing randomly
chosen feature points before every projection. Remov-
ing 50% of the feature points resulted in a mean success
rate of 85%. The method also was robust to adding ran-
domly placed feature points, which can be thought of
as reappearing previously occluded objects.

Having more reliable feature points present in the
world increases the performance of the robot (higher
success rate, less iterations and a smaller difference with
the ideal distance). For the simulation the range for
the number of feature points is between 500 and 1000
for a success rate of 100%. Although having only 20
feature points in the world still resulted in 50% to 80%
successful runs. However it has to be taken into account
that these runs were without any noise and without any
other disturbances.

Because no depth is used, the ALV method implies
an equal distance assumption of the landmarks. Franz
et al (1998) also mentions the isotropic feature distri-
bution, which can explain why results in a world with
only one wall were worse than in the other configura-
tions. The robot used more iterations when more fea-
ture points were removed, but this was expected since
the ALV every time has a different error.

From these experiments can be concluded that using
the ALV for visual homing with visual feature points is



7

a robust method. Therefore the next step was to try
this method on a real robot.

4.2 IIIA Panoramas Database

This section first explains the experimental setup and
robot used, then the results are presented and discussed.

4.2.1 Experimental Setup

In these experiments several panorama were acquired
at a grid of known points in the rooms. The orientation
of the robot was kept constant for each panorama so no
alignment step is necessary between the panoramas.

Three types of landmarks/feature points were used:
1) DoG feature points; 2) MSER feature points; and,
only in the robot laboratory, 3) artificial landmarks.
The experiments were done in three rooms of different
sizes: the robot laboratory , the square room and the
corridor. A scaled map of the rooms can be seen in
Figures 8, 10 and 11.

The locations where the panoramas were created
are marked as circles with its identifying number and a
line starting at the center of the circle and pointing to
the direction of the estimated home vector. The home
location is shown as a red circle without line and is also
indicated in the figures captions. The biggest objects in
the rooms, such as desks, are also shown in the maps
to give a rough idea of the environment. Finally, the
squares in Figure 8 show the landmarks positions and
its ID number.

Like in the simulation, only the direction of a feature
is known and not its distance, therefore the home vector
will not contain distance information either. The home
angle calculated by the homing method is compared
to the ground truth home angle which is calculated by
geometry.

θdiff(hh, hc) = min (|hc − hh|; 360− |hc − hh|) (6)

All angles are in degrees and counter-clockwise; hc is
the correct homing direction calculated by using the
positions (geometry), and hh is computed by the hom-
ing method. To find out how well the method works for
each room and each type of feature, all the panorama
positions per data set are used. For each data set (the
square room, the robot laboratory and the corridor) all
the locations where a panorama was created are used
to calculate the home vector to each of the other loca-
tions. From the error calculated with Eqn. 6 for each
possible panorama pairings in one room, the mean, me-
dian, standard deviation and a score are calculated. The

(a) (b)

Fig. 7 (a) The Pioneer 2AT robot as used in the experiments.
A pan tilt unit is mounted on the robot with a camera on top.

(b) An example of a landmark in the robotics laboratory.

score is calculated by using the proportion of the maxi-
mum error and ranges between 0 and 1 where 1 is best.
Namely:

s = 1−
∑n

i=1

∑n
j=1;i 6=j θdiff(hh(Pi, Pj), hc(Pi, Pj))

180n(n− 1)
(7)

where n is the number of panoramas in the set and
P the set of panoramas. The numerator is the sum of
the difference of the home angle calculated by the ALV
homing method and by geometry. This difference, i.e.
error, is calculated for each panorama pair, which in
total are n(n−1) pairs. The sum of errors is divided by
that factor to get an average and, to normalise the score
between 0 and 1, it is also divided by the maximum
possible error, which is 180◦.

4.2.2 Robot

A Pioneer 2AT robot (Figure 7.a) is used with a pan
tilt unit (Directed Perception PTU 46-70) mounted on
it and on top of this PTU a camera (Sony DFW-VL500;
with a resolution of 640 × 480 pixels). The robot is
controlled from a laptop (Acer Travelmate C110 with
an Intel Pentium M 1000MHz, 799 MHz, 760 MB RAM)
placed on top of the robot. The programs, written in
C++, are run under Microsoft Windows XP.

The experiments were done in three mentioned dif-
ferent areas in the IIIA-CSIC research center. The room
in which most experiments were done is the robotics
laboratory. The panorama in Fig. 2 shows this room as
seen from the robot and in Figure 8 a map can be seen.
As can be observed in the figure, artificial landmarks
are present in the room. These landmarks were used in
a set of experiments for comparison purposes with the
local feature based approach.
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DoG MSER Landmarks

Mean error 35.60◦ 27.84◦ 14.88◦

Median error 22.85◦ 16.03◦ 10.17◦

Standard deviation 36.67◦ 35.51◦ 14.86◦

Score (s) 0.8022 0.8454 0.9173

Best home 117 117 110

Table 1 The homing error using the panoramas from the

robotics laboratory. The best home field shows the number of the
panorama (see Figure 8 for the numbers in the robotics labora-

tory), which when chosen as home, resulted in the lowest average

error.

4.2.3 Landmarks

In order to compare our proposed approach to an arti-
ficial landmark based one, extra experiments were done
using six artificial landmarks in the robotics laboratory
(see Figure 7.b) available from previous experiments
(Busquets 2003; Busquets et al 2003).

The landmarks contain a bar code from which an
ID number can be extracted. Since the size of the bars
is known, the distance to the landmark can be calcu-
lated. In order to make the artificial landmark approach
comparable to the feature based one, neither the land-
mark number (for matching) nor the distance informa-
tion was used in our experiments.

4.2.4 Results

When calculating the home vector between two points,
for example a and b, the home vector from a to b will ob-
viously always point in opposite direction of the home
vector from b to a. This means that these are depen-
dent values and therefore only one of them was used in
the analysis. Next we discuss the results for the three
different areas.

Robotics laboratory: Most panoramas, 38 in total, were
acquired in the robotics laboratory, a room of 10.5 m ×
11.2 m. Only the half of the room is really used for this
experiment because the other part is filled with working
places and the robot soccer field as can be seen in Figure
8.

The home vectors have an error equal to or lower
than 90◦ in 89.3% of the cases when the DoG detec-
tor was used, 92.6% for the MSER detector and 99.6%
when the landmarks were used. An error of 10◦ or less
was obtained in 22.6% of the cases for the DoG de-
tector, 32.7% for the MSER detector and 64.3% for
landmarks. Table 1 shows the results for each type of
detector used. The homing errors for the three methods
are all significantly different (p < 0.001) according to
the rank sum test, and the t-test after bootstrapping

(a)

(b)

(c)

Fig. 8 Homing to panorama 110 in the robotics laboratory us-
ing DoG feature points (a), MSER feature points (b) and the

landmarks (c). All measures are in cm.
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(a)

(b)

Fig. 10 Homing to panorama 137 in the square room (a) using

DoG points and (b) MSER points. All measures are in cm.

(n = 1000). From this can be concluded that the hom-
ing method worked best with the artificial landmarks,
as expected, and worst with the DoG detector.

Square room: The square room is 4.0 m × 3.4 m big.
Figure 9 shows a panorama made in this room. Figure
10 shows the map of the room and the home vectors
to panorama 137. Table 2 shows the statistics of the
homing method using both feature types. MSER fea-
ture points achieved lower error rates than DoG feature
points, but this is not significant (confirmed by the rank
sum test and the t-test) and it must be noted that only
three panoramas were created in this room.

Corridor: Although the simulation showed that the ALV
homing method works better in square rooms, we wanted
to find out what the impact of a very long and very
narrow room in a real environment would have on the

DoG MSER

Mean error 13.78◦ 9.65◦

Median error 12.00◦ 12.03◦

Standard deviation 11.31◦ 7.84◦

Score (s) 0.9234 0.9464

Best home 138 138

Table 2 The error of the homing method using the panoramas

which were made in the square room.

Fig. 11 Homing to panorama 203 in the corridor using (a) DoG
feature points and (b) MSER feature points. All measures are in

cm.

DoG MSER

Mean error 56.26◦ 52.67◦

Median error 44.58◦ 35.71◦

Standard deviation 43.64◦ 44.90◦

Score (s) 0.6874 0.7074

Best home 203 200

Table 3 The average error of the homing method in the corridor

for the different feature types.

method. A corridor was chosen for that reason as last
experiment room. The part of the corridor in which the
robot moved is 2.2 m wide and about 22.5 m long. In
Figure 11 the map of the corridor can be seen. Addi-
tionally, Figure 12 shows the panoramas acquired in the
corridor.

In Figure 11 the home vectors to panorama 203 are
shown. An error of 90◦ or less was obtained in 73.3% of
the cases for both feature types, an error of 10◦ or less
was only obtained in one case (6.7%). Table 3 shows the
average error of this data set; the differences between
the results with DoG and MSER are not statistically
significant.

From the results at the different rooms, it can be seen
that the ALV homing method worked better in both
the square room and the robotics laboratory than in the
corridor. This difference might be explained by the pre-
viously found conclusion, in the simulated experiment
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Fig. 9 Panorama 137 from the square room.

Fig. 12 All the panoramas made in the corridor. The dots are
MSER feature points.

(Section 4.1), that the method works better in approx-
imately square rooms. This is due to the equal distance
assumption. In what follows we provide additional de-
tails regarding the analysis of the results.

Corridor results: The panoramas acquired in the cor-
ridor (Figure 12) show that there are several disturbing
factors on which numerous MSER feature points were
found. Panorama 198 is the only panorama taken at
a corridor intersection, and therefore the MSER detec-
tor finds considerable more feature points than in the
other panoramas. In panoramas 200 and 201 a door
with blinds is visible, and the MSER detector also found
a great amount of feature points on these blinds; in
panoramas 199 and 200 the robotics laboratory is visi-
ble through an open door which again has many feature
points. Figures 11.a and 11.b confirm this, because here
the home direction from panoramas 199, 200 and 202
to 203 were good, but from panoramas 198 and 201 re-
ally bad. The reason for this is that in panoramas 198
and 201 the most MSER feature points are located on
one side only (as commented earlier in this paragraph),
while in the other panoramas (199, 200, 202 and the
home panorama 203) the feature points are more or
less equally distributed. Although only the MSER de-
tector was mentioned here, the DoG detector generated
even more feature points, but with a more or less similar
distribution.

In Table 4 (see Appendix) can be seen that the best
corridor of the IIIA data sets is at rank 25, but this

is below the best of the data sets robot lab and square
room.

Upper and lower part: In an attempt to improve the
results, the view of the image was limited to only the
lower half of the panorama. This part contains objects
which are closer to the robot and therefore decrease the
size of the visible world, for this reason a room may look
more square.

In the robotics laboratory using only the lower half
of the panorama resulted in a lower error than using
all feature points of the panorama (p < 0.001 with the
t-test and the rank sum test for both DoG and MSER).
For the other rooms there was no significant difference
in performance. Also here the best results were when
the MSER detector was used (p < 0.005 for the robotics
laboratory and corridor) except for the square room
where DoG was the best detector (p < 0.001, rank sum
test).

Also the use of only the upper half part of the pa-
norama was tested, but these results were significantly
worse than using the whole panorama for the robotics
laboratory (p < 0.001, t-test and rank sum test). There
was again no significant difference in the square room
and corridor.

Depth: When only the position of the feature points
on the panorama are used then only the direction of
the home vector can be found. However, when the dis-
tance to the feature points is available, a more precise
estimation of the distance to home can be calculated.

4.3 Vardy’s Panorama Database

As an additional test, we used the image database of
Vardy (2005)1 which he discussed and used to test sev-
eral homing techniques in his thesis.

Vardy’s image database consists of panoramic im-
ages acquired over a grid of equally separated feature
points from the hall and the robotics laboratory of
Bielefeld University. He created six data sets of the lab-
oratory and two of the hall, all under slightly different

1 Vardy’s Panoramic Image Database is available at
http://www.ti.uni-bielefeld.de/html/research/avardy/

index.html.
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Fig. 13 A panorama from Vardy’s image database. The outer

red circle shows the border of the parabolic mirror, the two inner
yellow circles show the 20◦ line above and below the horizon. The

points show the location of the MSER feature points; the filtered
feature points are the ones between the yellow circles (best viewed

in color).

conditions, such as the amount of light and added ob-
jects. In the robotic laboratory the data set consisted
of a 10 × 17 image grid with 30 cm separation be-
tween each image (horizontally and vertically); in the
hall 10 × 21 images in a grid were created per data
set with 50 cm separation between images. In contrast
to the IIIA database, Vardy’s database was acquired
with an ImagingSource DFK 4303 camera pointing to-
wards an hyperbolic mirror. This system directly ac-
quires omnidirectional images, and therefore spares the
panorama creation step. However it suffers from a much
lower resolution. Figure 13 shows a panorama from the
hall1 data set. In our experiments, first all the feature
points are extracted from the images. As can be seen in
Figure 13, the image also contains non relevant parts
which lay outside the mirror. To focus on the informa-
tive area of the image, the field of view is reduced to
a limited number of degrees above and below the hori-
zon, which is the line between the centre of the spherical
mirror and the outer circle of the mirror. Only feature
points which fall in this area are used for the homing
method.

The vector of a feature has its origin in the image
centre (shown as the red dot in Figure 13) and points to
the feature point. These vectors have to be normalised
to 1 before calculating the ALV, because the length of
the vectors only shows the distance in pixels on the
image. After this, the ALVs and the home vector can
be calculated as described in section 2.4. Table 4 (see
Appendix) shows the results with all data sets sorted
by score.

4.3.1 Results

As can be seen from Table 4 (see Appendix), the scores
for Vardy data set vary from 0.85 to 0.3 and the home
angle error from 28.2◦±27.6 to 126.0◦±43.3. The results
are worse than the results with the previously discussed
data sets, but it must be noticed that Vardy’s data sets
contain more samples.

It can be seen that a wider vertical view angle gives
better results. When MSER feature points were used, a
view angle of 15◦ (above and below the horizon) worked
significantly better than a lower angle (p < 0.001, t-test
and rank sum test). For all data sets except for doorlit
and hall1 the best view angle was 20◦. This is also the
case when DoG feature points were used, except for the
data sets day, hall2 and screen. In the data set day the
difference was not significant enough; using a view angle
of 5◦ had the best results in the sets hall2 (p < 0.001,
rank sum test) and screen (p < 0.05, rank sum test)
when DoG feature points were used.

It is also clear from Table 4 (see Appendix) that the
performance is better when using the MSER detector
than the DoG detector. This difference is significant for
all data sets with a view of more than 5◦ above and
below the horizon (using the t-test and rank sum test;
p < 0.001). It also can be seen from the table that
the best of the IIIA sets are all above the data sets of
Vardy, however this is only significant for the robotics
laboratory. Comparing the results of Vardy’s data set
with the results of the IIIA data set is difficult because
of several reasons. First of all there are two big differ-
ences between them: the environments and the way the
panoramas are made. The rooms could be assumed to
be quite similar since they both are flat ”office like”
with several desks, chairs and computers, but the land-
marks present in the robotics laboratory are not present
in Vardy’s rooms for example.

4.4 Overall Discussion of Experimental Results

As has been seen, with the real robot experiments the
ALV homing method gave very positive results. The
best results were obtained with the panoramas from
the square room. The results from the corridor were
worst, as expected. In the simulation already was found
that the performance of the homing method is better
in square rooms than in rooms with big differences in
width and length. The problem with long rooms such as
a corridor is that the projections of the feature points
onto a panorama are closer to each other the further
away they are from the robot (see Figure 14).

Looking at the difference in performance using DoG
and MSER feature points it can be concluded that the
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Fig. 14 The position where points are projected in different

panoramas varies less (and therefore are less informative) if the
points are far away. This is a problem for narrow and long corri-

dors with most texture at the extremes.

use of MSER feature points significantly outperforms
the use of DoG feature points. The artificial landmarks
in the robotics laboratory were used to find out how
well the method worked in comparison with invariant
feature points. The results with the artificial landmarks
were significantly better than using invariant feature
points, the error was about 7◦ less than using MSER
feature points (with only the lower half of the pano-
rama).

Normally one should expect the homing method to
work worse when the distance between the current lo-
cation and the home is lower, but this relation could
not be found. This might be because the room is too
small or because objects occlude a big part of the field.
Further work would be needed to find out if there is
any relation between the distance and error.

An attempt to improve the results was done by
trying to make the rooms, such as the corridor, more
square by only using the lower half of the panorama,
because then the closer objects are more prominent.
This however had no significant improvement in the
corridor, and neither in the square room. Only in the
robotics laboratory there was a significant lower error
(p < 0.001).

The images of Vardy (2005) data sets were also used
to test the ALV homing method. Although the differ-
ent panorama acquisition system, in practice the per-
formance of these sets was not much worse than the
results of the IIIA ones. From these images also SIFT
and MSER feature points were extracted and used to
calculate the ALV. It was found that using almost the
whole image (20◦ above and below the horizon) resulted
in the best performance.

The scores (with 1 being best and 0 begin worst) of
the IIIA data sets varied from 0.67 to 0.96, whereas the
results of Vardy’s data sets varied from 0.30 to 0.85 (see
Table 4 in Appendix). Looking at the best parameters
however, such as using the lower half of the panorama
for the IIIA data sets and using a view angle of 20◦

above and below the horizon of Vardy’s data, the scores
of the IIIA data sets vary from 0.73 to 0.96 and the
scores of Vardy’s data sets from 0.67 to 0.85. This shows
that the method performs almost as well in the different
rooms and with the different types of panoramas, and
thereby confirms the robustness of the method.

Finally some comparison to other work can be made,
however in most works other error measurements are
used such as the distance at which it stops from home.
In this work however no such experiments have been
done yet. Hafner (2001) also did experiments in an of-
fice environment in a grid. After off-line learning the
average error was smaller than 90◦ in 92% of the cases
and smaller than 45◦ in more than 69%. This is com-
parable to the results in the robotics laboratory for the
DoG feature points, and our results for using MSER
feature points were even better.

The experiments by Franz et al (1998) were done
in a 118 cm × 110 cm environment but the catchment
area was relatively smaller than the catchment area of
the IIIA data sets. Their algorithm performed robustly
up to an average distance of 15 cm. They also mention
experiments done in an office environment in which the
algorithm performed robustly until about 2 m.

5 Conclusion and Future Work

In this work a method to complement the global lo-
calization system of Ramisa et al (2008) is proposed,
where feature regions computed in a panoramic image
were used to characterise a room. The purpose of that
method was directing the robot from one of the map
nodes to the next with the minimal cost (i.e. no matches
have to be established between visual feature points of
the images). The method does not rely in any form of
artificial landmarks contrarily to previous works, and
uses only natural landmarks extracted from the pano-
ramic images acquired with the robot visual system,
therefore it can be applied in unprepared environments.

Also, when the robot has several likely hypotheses
about its current location (i.e. room) then homing can
be used to return to the position where the most likely
panorama from the database was made. If the hypoth-
esis with the highest probability was correct, then the
panorama at that location should be more similar to
the panorama from the database, making it the signif-
icantly best hypothesis. In the case where an incorrect
panorama was chosen from the database, then the same
steps should be taken as before in order to find out in
which room the robot actually is.

Although there are several methods to do homing,
such as the 1D method of Hong et al (1991), warping
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(Franz et al 1998) or snapshots (Lambrinos et al 2000),
the ALV homing method (Lambrinos et al 1998, 2000)
has been used mainly because of its simplicity and low
computational complexity.

In order to evaluate the proposed method, initial
experiments using a simulated environment were con-
ducted and later it was tested in a real world scenario.
The real world experiments were done with panoramas
acquired in three different rooms at the IIIA research
center.

The locations at which the robot acquired the panora-
mas were measured manually and used to calculate the
ground truth homing directions, which were then used
to verify the homing method results. The panoramas
were created with the camera on a pan tilt unit which
rotates around a fixed point to get images from all dif-
ferent directions. Next, these images were combined to
create the panorama. Feature points from these images
were extracted to be used by the homing method. Two
types of invariant feature detectors were tested: the Dif-
ference of Gaussians extrema (DoG) of Lowe (2004)
and the Maximally Stable Extremal Regions (MSER)
of Matas et al (2002). Only the horizontal location of
the feature points was used, i.e. the cylindrical angle,
and not height, nor depth.

The ALV homing was found to be a good working
method, however the method performed worse in rooms
where the width and length differ greatly. This has been
explained by the way the feature points are projected
on the panorama and by the equal distance assumption
(Franz et al 1998).

Vardy (2005) discusses biologically based homing
methods in his thesis and also did experiments with
several of them. In his work he used panoramas that
were made with a camera pointed to a parabolic mir-
ror. The advantage of creating a panorama like this is
the speed of creation. Whereas with our method first
images from several angles had to be retrieved and then
stitched to create a high resolution panorama. In order
to compare both methods of panorama acquisition ad-
ditional experiments using Vardy’s data sets were per-
formed using the SIFT and MSER feature points.

When comparing the results of IIIA data sets and
Vardy’s data sets we can see that the ALV homing
method performs slightly better on the IIIA data sets,
but the difference is not significant. There might be
several reasons to explain this, such as the difference
in resolution, the camera or the environment. For these
reasons it cannot be concluded that having a panorama
with a higher resolution made by rotating a camera or a
camera ring is much better for ALV homing than using
a camera and a parabolic mirror. On the other hand,
the faster creation of the parabolic panoramas might be

more important than the slightly better performance.

Regarding the feature types, in our experiments MSER
significantly outperformed SIFT. Also Mikolajczyk et al
(2005) confirmed that MSER is one of the most ro-
bust feature detectors. The artificial landmarks in the
robotics laboratory were used to compare the local fea-
ture approach with the more traditional artificial land-
marks. As expected, the results with the artificial land-
marks were significantly better than with the invariant
feature points since they are less affected by occlusions
and viewpoint changes. The error with the artificial
landmarks was about 7◦ less than using the MSER de-
tector (in only the lower half of the panorama). However
this difference seems low enough to justify the applica-
bility of the presented homing method, because does
not require setting up the environment by placing arti-
ficial landmarks.

5.1 Future work

Clearly, the next step is the evaluation of the method in
complex navigation experiments combined with Ramisa
et al (2008) global localization system.

Hafner (2001) mentioned that a magnetic compass
does not work very well inside buildings, therefore she
used camera information to compensate for that. Ex-
tra experiments should be done to verify the stabil-
ity of the compass orientation (required for the ALV
method). Other options to recover orientation from the
visual sensors include that of Lambrinos et al (2000),
who used a polarised-light compass which worked good,
but needed sunlight from all directions above it and
glass windows depolarise the light, therefore it cannot
be used inside buildings. Vardy (2005) proposed to use
the coherence of flow fields as an indicator of correct ori-
entation, and finally Zeil et al (2003) suggested to use
the difference between images to align them by using
one-dimensional gradient descent.

For the homing method to work in real-time the
panoramas should be created faster and therefore the
use of a camera and parabolic mirror is a good option.
This however should also be tested with the used global
localization method of Ramisa et al (2008).

Another possible improvement could be using a ma-
chine learning method to discard spurious feature points,
for example by tracking feature points in a training se-
quence and modeling those that do not survive long.
These feature points are a source of noise for the hom-
ing method, and discarding them could improve signif-
icantly the results.
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Appendix

# dataset type detector mean median std.dev. score best home n
1 square room upper half MSER 6,83 4,10 5,33 0,9621 138 3
2 square room not filtered MSER 9,65 12,03 7,84 0,9464 138 3
3 square room not filtered DoG 13,78 12,00 11,31 0,9234 138 3
4 robot lab not filtered Landmarks 14,88 10,16 14,86 0,9173 110 38
5 square room lower half DoG 14,94 14,52 10,75 0,9170 138 3
6 square room lower half MSER 20,62 25,27 8,49 0,8855 138 3
7 square room upper half DoG 20,91 18,96 6,64 0,8838 138 3
8 robot lab lower half MSER 21,96 11,09 30,05 0,8780 117 38
9 day 20 MSER 26,18 18,73 27,62 0,8545 17 170
10 robot lab lower half DoG 26,90 13,05 34,74 0,8506 117 38
11 robot lab not filtered MSER 27,84 16,03 35,51 0,8454 117 38
12 screen 20 MSER 28,64 18,42 31,04 0,8409 95 170
13 doorlit 15 MSER 30,69 19,35 33,38 0,8295 15 170
14 arboreal 20 MSER 34,89 23,39 35,49 0,8061 50 170
15 doorlit 20 MSER 35,41 21,27 38,52 0,8033 50 170
16 robot lab not filtered DoG 35,60 22,85 38,67 0,8022 117 38
17 arboreal 15 MSER 37,83 25,31 37,20 0,7898 17 170
18 day 15 MSER 39,78 29,30 36,49 0,7790 17 170
19 hall1 15 MSER 42,61 31,55 38,32 0,7633 159 200
20 original 20 MSER 43,18 32,23 38,49 0,7601 50 170
21 screen 15 MSER 45,71 33,75 40,43 0,7461 0 170
22 hall1 10 MSER 45,81 35,12 39,05 0,7455 41 200
23 twilight 20 MSER 46,21 34,90 39,72 0,7433 50 170
24 doorlit 10 MSER 48,45 33,95 43,90 0,7308 14 170
25 hall lower half MSER 48,83 39,02 41,63 0,7287 203 6
26 arboreal 10 MSER 49,97 35,14 44,80 0,7224 153 170
27 robot lab upper half MSER 50,62 39,33 42,47 0,7188 117 38
28 winlit 20 MSER 52,39 39,58 44,07 0,7089 50 170
29 corridor not filtered MSER 52,66 35,71 44,89 0,7074 200 6
30 robot lab upper half DoG 56,14 45,77 43,84 0,6881 117 38
31 corridor not filtered DoG 56,26 44,58 43,64 0,6874 203 6
32 corridor lower half DoG 56,45 49,69 42,39 0,6864 203 6
33 corridor upper half DoG 57,08 38,19 45,65 0,6829 203 6
34 twilight 15 MSER 57,63 44,59 46,70 0,6798 153 170
35 hall1 20 MSER 58,49 48,71 44,53 0,6751 99 200
36 original 15 MSER 58,53 45,11 47,56 0,6748 17 170
37 chairs 20 MSER 58,92 45,23 47,55 0,6726 84 170
38 corridor upper half MSER 59,15 42,56 46,02 0,6714 199 6
39 hall2 20 MSER 59,51 49,20 43,09 0,6694 18 200
40 hall2 15 MSER 61,00 50,90 45,30 0,6611 18 200
41 day 10 MSER 62,50 51,30 47,17 0,6528 17 170
42 hall1 5 MSER 62,69 53,82 44,78 0,6517 39 200
43 screen 10 MSER 63,43 54,30 45,02 0,6476 153 170
44 screen 5 MSER 66,71 52,61 50,03 0,6294 102 170
45 hall2 5 MSER 68,57 57,22 49,19 0,6190 19 200
46 original 10 MSER 72,09 62,67 50,85 0,5995 14 170
47 winlit 15 MSER 72,39 63,58 50,84 0,5978 50 170
48 day 5 MSER 72,67 62,94 50,31 0,5963 169 170
49 hall2 10 MSER 72,72 62,01 50,68 0,5960 19 200
50 twilight 10 MSER 73,55 65,58 51,23 0,5914 18 170
51 hall1 20 DoG 77,16 71,90 45,43 0,5713 0 200
52 winlit 10 MSER 78,69 72,12 51,96 0,5628 16 170
53 chairs 15 MSER 79,61 72,79 51,91 0,5577 16 170
54 doorlit 5 DoG 80,15 75,59 52,15 0,5547 169 170
55 doorlit 20 DoG 83,07 80,38 49,17 0,5385 151 170
56 doorlit 10 DoG 83,79 81,13 50,27 0,5345 169 170
57 chairs 10 MSER 84,42 82,22 50,74 0,5310 14 170
58 doorlit 15 DoG 84,44 81,34 49,75 0,5309 152 170
59 chairs 20 DoG 86,15 82,29 49,48 0,5214 3 170

Continued
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# dataset type detector mean median std.dev. score best home n
60 screen 5 DoG 86,87 85,63 51,82 0,5174 135 170
61 screen 15 DoG 88,42 85,67 51,75 0,5088 135 170
62 screen 10 DoG 88,76 88,36 52,02 0,5069 135 170
63 screen 20 DoG 89,25 86,89 51,88 0,5041 3 170
64 hall1 15 DoG 89,27 85,64 45,78 0,5041 0 200
65 chairs 15 DoG 90,33 87,09 51,16 0,4981 4 170
66 arboreal 20 DoG 90,33 88,88 50,27 0,4981 4 170
67 original 20 DoG 91,36 88,78 49,70 0,4924 3 170
68 twilight 20 DoG 91,66 89,34 49,59 0,4908 5 170
69 day 10 DoG 92,99 94,81 51,31 0,4834 152 170
70 day 15 DoG 93,00 94,20 50,95 0,4833 135 170
71 day 20 DoG 93,05 93,13 50,42 0,4830 135 170
72 day 5 DoG 93,10 94,15 51,72 0,4828 152 170
73 chairs 10 DoG 93,46 92,24 51,88 0,4808 4 170
74 chairs 5 DoG 93,51 92,00 50,99 0,4805 5 170
75 arboreal 15 DoG 95,20 95,05 51,65 0,4711 4 170
76 twilight 15 DoG 96,44 96,35 50,29 0,4642 5 170
77 winlit 5 MSER 97,11 103,58 54,36 0,4605 136 170
78 original 15 DoG 97,93 97,66 49,81 0,4559 4 170
79 winlit 20 DoG 98,86 99,65 44,11 0,4508 0 170
80 arboreal 10 DoG 99,07 101,86 51,64 0,4496 135 170
81 arboreal 5 DoG 100,55 104,77 51,59 0,4414 135 170
82 twilight 10 DoG 101,25 102,97 50,17 0,4375 6 170
83 hall1 10 DoG 101,86 99,59 44,55 0,4341 40 200
84 original 10 DoG 101,98 105,32 50,19 0,4335 4 170
85 twilight 5 DoG 102,16 105,37 49,95 0,4324 6 170
86 doorlit 5 MSER 102,79 110,41 51,90 0,4290 14 170
87 winlit 5 DoG 103,01 109,13 46,78 0,4277 134 170
88 original 5 DoG 103,19 108,47 50,36 0,4267 50 170
89 winlit 15 DoG 103,28 105,54 45,33 0,4262 34 170
90 winlit 10 DoG 104,93 109,14 46,08 0,4171 135 170
91 hall1 5 DoG 108,85 109,20 46,09 0,3953 80 200
92 arboreal 5 MSER 112,73 122,76 48,51 0,3737 14 170
93 chairs 5 MSER 116,47 126,06 46,16 0,3529 14 170
94 hall2 5 DoG 116,47 130,14 49,96 0,3529 198 200
95 original 5 MSER 118,50 128,27 44,93 0,3416 153 170
96 hall2 20 DoG 122,09 132,21 44,38 0,3217 20 200
97 twilight 5 MSER 122,21 133,26 44,17 0,3211 136 170
98 hall2 10 DoG 124,42 137,90 45,31 0,3088 199 200
99 hall2 15 DoG 125,99 137,57 43,33 0,3000 61 200

Table 4 This table shows the results of all real world experiments (IIIA in white and Vardy in light gray) sorted by score. For the
IIIA data set, the type column shows which part of the panorama has been used: all feature points (not filtered), only the feature
points at the lower half of the panorama or only at the upper half (see Section 4.2.4). For Vardy data set, the type column shows the
number of degrees above and below the horizon of the image which were used. The detector column shows which feature detector has
been used to perform homing: DoG, MSER or artificial landmarks which were only available in the robot laboratory. The next three
columns: mean, median and std. dev. (standard deviation) show information about the direction error of the home vector in degrees.
The calculation of the score is shown in Eqn. 7; 1 being best and 0 being worst. The best home column shows the ID of the location
of the home where to the mean error is smallest. Finally the n column shows the number of samples, i.e. different panoramas, for the
data set.


