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Abstract 

 

Automatic circle detection in digital images has received considerable attention over the last years in computer vision as 

several efforts have aimed for an optimal circle detector. This paper presents an algorithm for automatic detection of 

circular shapes that considers the overall process as an optimization problem. The approach is based on the Harmony 

Search Algorithm (HSA), a derivative free meta-heuristic optimization algorithm inspired by musicians while improvising 

new harmonies. The algorithm uses the encoding of three points as candidate circles (harmonies) over the edge-only 

image. An objective function evaluates (harmony quality) if such candidate circles are actually present in the edge image. 

Guided by the values of this objective function, the set of encoded candidate circles are evolved using the HSA so that 

they can fit to the actual circles on the edge map of the image (optimal harmony). Experimental results from several tests 

on synthetic and natural images with a varying complexity range have been included to validate the efficiency of the 

proposed technique regarding accuracy, speed and robustness. 

 

Keywords: Circle detection; Harmony Search Algorithm; Meta-heuristic Algorithms; intelligent image processing.  

 
1. Introduction 

 
The problem of detecting circular features arises inside many areas of image analysis, being particularly 

relevant for some industrial applications such as automatic inspection of manufactured products and 

components, aided vectorization of drawings and target detection among others [1]. Two sorts of techniques 

are commonly applied to solve the object location challenge: first hand deterministic techniques including the 

application of Hough transform based methods [2], geometric hashing and template or model matching 

techniques [3,4]. On the other hand, stochastic techniques including random sample consensus techniques [5], 

simulated annealing [6] and Genetic Algorithms (GA) [7] have been also used. 

 

Template and model matching techniques are the first approaches to be applied to shape detection yielding a 

considerable amount of publications [8]. Shape coding techniques and combination of shape properties have 

been commonly used to represent objects. Their main drawback is related to the contour extraction step from 

a real image which hardly deals with pose invariance, except for very simple objects.  

 

Circle detection in digital images is commonly performed by the Circular Hough Transform [9]. A typical 

Hough-based approach employs edge information obtained by means of an edge detector to infer locations 

and radius values. Peak detection is then performed by averaging, filtering and histo-gramming the 

transformed space. However, such an approach requires a large storage space given the required 3-D cells to 

cover all parameters (x, y, r) and a high computational complexity which yields a low processing speed. The 

accuracy of the extracted parameters for the detected circle is poor, particularly under the presence of noise 

[3]. For a digital image holding a significant width and height and a densely populated edge pixel map, the 

required processing time for Circular Hough Transform makes it prohibitive to be deployed in real time 

applications. In order to overcome this problem, some other researchers have proposed new approaches based 

on the Hough transform, for instance the probabilistic Hough transform [11], the randomized Hough 

transform (RHT) [12] and the fuzzy Hough transform [13]. Alternative transformations have also been 

presented in literature as the one proposed by Becker in [6]. Although those new approaches demonstrated 
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faster processing speeds in comparison to the original Hough Transform, they are still highly sensitive to 

noise. 

 

Researchers have started recently to investigate evolutionary algorithms as an alternative way to perform 

circle detection. Such approaches involve the use of Genetic Algorithms (GA) [15], the Bacterial Foraging 

Algorithm (BFAO) [16] or the Differential Evolution technique (DE) [17]. For such methods, few 

assumptions are made about the objective function or about the noise currently affecting the system. 

Commonly, circle detection performed by the Circular Hough Transform [29], which employs edge 

information to infer locations and radius values. Peak detection is then performed by averaging, filtering and 

histo-gramming the transformed space. The overall approach requires a large storage space given the required 

3-D cells to cover all parameters (x, y, r) and a high computational complexity which yields a low processing 

speed. The accuracy of the extracted parameters for the detected circle is poor, particularly under the presence 

of noise [3]. For a digital image holding a significant width and height and a densely populated edge pixel 

map, the required processing time for Circular Hough Transform makes it prohibitive to be deployed in real 

time applications.  

 

In order to overcome this problem, some other researchers have proposed new approaches based on the 

Hough Transform including the probabilistic Hough Transform [40], the randomized Hough Transform 

(RHT) [46] and the Fuzzy Hough Transform [15]. Alternative other transformations have also been presented 

in literature as the one proposed by Becker in [6].  

 

Recently, researchers have investigated evolutionary algorithms as an alternative way to perform circle 

detection. Such approaches involve the use of Genetic Algorithms (GA) [15], the Bacterial Foraging 

Algorithm Optimizer (BFAO) [16] and the Differential Evolution (DE) [17]. The advantage of these methods 

is that no assumptions are made about the objective function or the noise, yielding accurate solutions despite 

challenging and ambiguous environments. However, the improved accuracy often comes at a cost of an 

increased computational cost. 

 

On the other hand, the Harmony Search Algorithm (HSA) is a new meta-heuristic method developed by 

Geem et al. [18] which has been inspired by musical performances from a musician seeking for a better state 

of harmony. In HSA, the solution vector is analogous to the harmony in music as local and global search 

schemes are analogous to musician’s improvisations. In comparison to other meta-heuristics in the literature, 

HSA imposes fewer mathematical requirements as it can be easily adapted for solving several sorts of 

engineering optimization challenges [19,20]. Furthermore, numerical comparisons have demonstrated that the 

evolution for the HSA is faster than GA [19,21,22], capturing further attention as it has been successfully 

applied to solve a wide range of practical optimization problems, such as structural optimization, parameter 

estimation of the nonlinear Muskingum model, design optimization of water distribution networks, vehicle 

routing, combined heat and power economic dispatch, design of steel frames, bandwidth-delay-constrained 

least-cost multicast routing, transport energy modeling, among others [21–36]. 

 

This paper presents an algorithm for the automatic detection of circular shapes from complicated and noisy 

images with no consideration of the conventional Hough transform principles. The proposed algorithm is 

based on the novel HSA. The algorithm uses the encoding of three non-collinear edge points as candidate 

circles (Harmonies) in the edge-only image of the scene. An objective function evaluates (quality harmony) if 

such candidate circles are actually present in the edge image. Guided by the values of this objective function, 

the set of encoded candidate circles are evolved through the HSA so that they can fit into the actual circles 

within the edge map of the image (optimal harmony). The approach generates a sub-pixel circle detector 

which can effectively identify circles in real images despite circular objects exhibiting a significant occluded 

portion. Experimental evidence shows the effectiveness of such method for detecting circles under different 

conditions. Comparison to one state-of-the-art GA-based method [15], the BFAO detector [16] and the RHT 

algorithm [12] over multiple images demonstrates a better performance from the proposed method. 

 

This paper is organized as follows: Section 2 provides information about the HSA while Section 3 depicts the 

implementation of the proposed circle detector. The study analyses the multi-circle detection in Section 4 with 

some conclusions being discussed in Section 5. 
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2. Harmony search algorithm 

 

2.1. The Harmony Search Algorithm 

 

In the basic HSA algorithm, each solution is called a ‘‘harmony” and is represented by an n-dimension real 

vector. An initial population of harmony vectors are randomly generated and stored within a harmony 

memory (HM). A new candidate harmony is thus generated from all solutions in the HM by using a memory 

consideration rule, a pitch adjustment rule and a random re-initialization. The HM is updated by comparing 

the new candidate harmony and the worst harmony vector in the HM. The worst harmony vector is replaced 

by the new candidate vector showing the better performance within the HM. The above process is repeated 

until a certain termination criterion is met. The basic HSA algorithm consists of three basic phases: 

initialization, improvisation of a harmony vector and updating the HM. The following discussion addresses 

details about each stage. 

 

2.1.1. Initializing the problem and algorithm parameters 

 

In general, the global optimization problem can be summarized as follows: min f(x) : 

[ ]( ) ( ), ( ) , 1,2, , ,x j l j u j j n∈ = K  where f(x) is the objective function, x = (x(1), x(2), . . . , x(n)) is the set of 

design variables, n is the number of design variables, and l(j) and u(j) are the lower and upper bounds for the 

design variable x(j), respectively. The parameters for HSA are the harmony memory size, i.e. the number of 

solution vectors lying on the harmony memory (HMS), the harmony-memory consideration rate (HMCR), the 

pitch adjusting rate (PAR), the distance bandwidth (BW) and the number of improvisations (NI) which 

represents the total number of function evaluations. It is obvious that a smart selection for HSA parameters 

would enhance the algorithm’s ability to search for the global optimum under a high convergence rate. 

 

2.1.2. Initializing the harmony memory (HM) 

 

The HM consists of HMS harmony vectors. Let { }(1), (2), , ( )
i i i i

x x x n=x K  represent the ith randomly-

generated harmony vector: ( ) ( ) ( ( ) ( ))
i
x j l j u j l j r= + − ⋅  for j = 1, 2,. . . , n and i = 1,2,. . . , HMS, where r is a 

uniform random number between 0 and 1. Then, the HM matrix is filled with the HMS harmony vectors as 

follows: 

 

1

2

HMS

HM

 
 
 =
 
 
 

x

x

x

M
 

 

 

(1) 

 

2.1.3. Building a new harmony vector 

 

A new Harmony vector 
new
x is built by applying three rules: the memory consideration rule, the pitch 

adjustment and the random selection. First of all, a uniform random number 
1
r is generated within the range 

[0, 1]. If 
1
r is less than HMCR, the decision variable ( )

new
x j  is generated through memory consideration; 

otherwise, ( )
new
x j  is obtained from a random selection, i.e. random re-initialization between the search 

bounds. For memory consideration, ( )
new
x j  is selected from any harmony vector i in {1, 2, . . . ,HMS}. 

Second of all, each decision variable ( )
new
x j  will undergo a pitch adjustment under a probability of PAR if it 

is updated by memory consideration. The pitch adjustment rule is given as follows: 

 

( ) ( )
new new
x j x j r BW= ± ⋅  (2) 
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where r is a uniform random number between 0 and 1. 

 

2.1.4. Update harmony memory 

 

After a new harmony vector 
new
x  is generated, the harmony memory is updated by the survival of the fit 

competition between 
new
x  and the worst harmony vector 

w
x  in the HM. Therefore 

new
x  will replace 

w
x  and 

become a new member of the HM in case the fitness value of 
new
x  is better than the fitness value of 

w
x . 

 

2.1.5. Computational procedure 

 

The computational procedure of the basic HAS can be summarized as follows [1]: 

 

Step 1: Set the parameters HMS, HMCR, PAR, BW and NI. 

Step 2: Initialize the HM and calculate the objective function value of each harmony vector. 

Step 3: Improvise a new harmony 
new
x  as follows: 

for (j = 1 to n) do 

      if (
1
r < HMCR) then 

            ( )
new
x j  = ( )

a
x j  where ( )1,2, ,a HMS∈ K  

             if (
2
r < PAR) then 

                
3

( ) ( )
new new
x j x j r BW= ± ⋅  where 

1 2 3
, , (0,1)r r r ∈  

             end if 

      else 

           ( ) ( ) ( ( ) ( ),
new
x j l j r u j l j= + ⋅ −  where (0,1)r ∈  

      end if 

 end for 

Step 4: Update the HM as  if ( ) ( )
w new new w

f f= <x x x x  

Step 5: If NI is completed, return the best harmony vector 
b
x in the HM; otherwise go back to step 

3. 

 

 

3. Circle detection using HSA 

 

At this work, circles are represented by a well-known second degree equation (see Equation 3) that passes 

through three points in the edge map. Pre-processing includes a classical Canny edge detector which uses a 

single-pixel contour marker and stores the location for each edge point. Such points are the only potential 

candidates to define circles by considering triplets. All the edge points are thus stored within a vector array 

{ }1 2
, , ,

pE
P p p p= K  with 

p
E being the total number of edge pixels in the image. The algorithm saves the 

( , )
i i
x y  coordinates for each edge pixel 

i
p  within the edge vector. 

 

In order to construct each circle candidate, i.e. Harmonies within the HSA-framework, the indexes i, j and k of 

three non-collinear edge points must be combined, assuming that the circle’s contour goes through 

points
i
p ,

j
p ,

k
p . A number of candidate solutions are generated randomly for the initial set of the harmony 

memory (HM). Solutions will thus evolve through the application of the HSA upon harmonies until the 

optimal harmony (minimum) is reached, considering the best harmony of HM as the solution for the circle 

detection problem.  

 

An overview of the required steps to formulate the circle detection task under the HSA optimization is 

presented below. 
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3.1. Individual representation 

 

Each candidate solution C (harmony) uses three edge points. Under such representation, edge points are 

stored following a relative positional index within the edge array P. In turn, the procedure will encode a 

harmony as the circle that passes through three points
i
p ,

j
p and

k
p  ( { , , }

i j k
p p p=C ). Each circle C is thus 

represented by three parameters
0
x , 

0
y  and r, being 

0 0
( , )x y  the centre (x, y) coordinates for the circle and r 

its radius. The equation of the circle passing through the three edge points can thus be computed as follows: 

  
2 2 2

0 0
( ) ( )x x y y r− + − =  (3) 

 

considering 

 
2 2 2 2

2 2 2 2

( ) 2 ( )

( ) 2 ( )

j j i i j i

k k i i k i

x y x y y y

x y x y y y

 + − + ⋅ −
=  + − + ⋅ − 

A

2 2 2 2

2 2 2 2

2 ( ) ( )

2 ( ) ( )

j i j j i i

k i k k i i

x x x y x y

x x x y x y

 ⋅ − + − +
=  ⋅ − + − + 

B , (4) 

 

0

det( )

4(( )( ) ( )( ))
j i k i k i j i

x
x x y y x x y y

=
− − − − −

A
,

0

det( )

4(( )( ) ( )( ))
j i k i k i j i

y
x x y y x x y y

=
− − − − −

B
, (5) 

and 

 

2 2

0 0
( ) ( )

d d
r x x y y= − + − , (6) 

 

being det(.) the determinant and { }, ,d i j k∈ . Figure 1 illustrates the parameters defined by Equations 3 to 6. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Circle candidate (individual) built from the combination of points
ip , jp and

kp . 

 

Therefore the shape parameters for the circle, [
0
x ,

0
y , r] are represented as a transformation T with respect to 

edge vector indexes i, j  and k. 

 

[ ]0 0
, , ( , , )x y r T i j k=  (7) 

with T being the transformation calculated after the previous computations of 
0
x ,

0
y , and r. By considering 

each index as harmony parameter, it is feasible to apply the HAS seeking for appropriate circular parameters. 

The approach reduces the search space by eliminating unfeasible solutions. 

 

r  
i
p  

j
p  

k
p  

0 0
( , )x y  
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3.2 Objective function 

 

Optimization refers to the choosing of the best element from one set of available alternatives. In the simplest 

case, it means to minimize an objective function or error by systematically choosing variables values from 

valid ranges. In order to calculate the error produced by a candidate solution C, the circumference coordinates 

are calculated as a virtual shape which, in turn, must also be validated, i.e. if it really exists in the edge image. 

The test set is represented by
1 2

{ , , , }
sN

S s s s= K , where
s

N are the number of points over which the existence 

of an edge point, corresponding to C, should be tested. 

 

The set S is generated by the midpoint circle algorithm [37]. The Midpoint Circle Algorithm (MCA) is a 

searching method that seeks for minimal required points for drawing a circle. Any point (x, y) on the 

boundary of the circle with radius r satisfies the equation 2 2 2( , )
Circle
f x y x y r= + − . However, MCA avoids 

computing square-root calculations by comparing pixel separation distances. A method for direct distance 

comparison is to test the halfway position between two pixels (sub-pixel distance) to determine if this 

midpoint is inside or outside the circle boundary. If the point lies within the interior of the circle, the circle 

function is negative. Otherwise, if the point lies outside the circle, the circle function is positive. Therefore, 

the error involved in locating pixel positions using the midpoint test is limited to one-half of the pixel 

separation (sub-pixel precision).  To summarize, the relative position of any point (x, y) can be determined by 

checking the sign of the circle function: 

 

0 if ( , ) is inside the circle boundary  

( , ) 0 if ( , ) is on the circle boundary       

0 if ( , ) is outside the circle boundary

Circle

x y

f x y x y

x y

<
=
>

 
(8) 

 

The circle-function test in Eq. 8 is applied to mid-positions between pixels nearby the circle path at each 

sampling step. Figure 2a shows the midpoint between the two candidate pixels at sampling position kx . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                            (a)                                                                                (b) 
 

Fig. 2. Midpoint circle calculation: (a) Midpoint between candidate pixels at sampling position
kx along a 

circular path. (b) Symmetry of a circle: calculation of a circle point (x, y) for one octant yielding the circle 

points shown for other seven octants. 

 

In MCA the computation time is reduced by considering the symmetry of circles. Circular sections in adjacent 

octants within one quadrant are symmetric with respect to the 45° line dividing the two octants. These 

symmetry conditions are illustrated in Figure 2b, where a point at position (x, y) lying on a one-eighth circle 

sector is mapped into the seven circle points in the other octants of the xy plane. Taking advantage of the 

circle symmetry, it is possible to generate all pixel positions around a circle by calculating only the points 

within the sector from x = 0 to x = y. Thus, at this paper, the MCA is used to calculate the required S points 

o45  

( , )x y  

( , )y x  ( , )y x−  

( , )x y−  

( , )x y− −  

( , )y x− −  ( , )y x−  

( , )x y−  

1kx −  1kx +  2kx +  
kx  

1ky −  

2ky −  

3ky −  

ky  

1ky +  

2 2 2
0x y r+ − =  

(1 / 2)ky +  

(1 / 2)ky −  
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that represent the circle candidate C. The algorithm can be considered the quickest providing a sub-pixel 

precision [38]. However, in order to protect the MCA operation, it is important to assure that points lying 

outside the image plane must not be considered in S. 

 

The objective function J(C) represents the matching error produced between the pixels S of the circle 

candidate C (harmony) and the pixels that actually exist in the edge image, yielding: 

 

1

( , )

( ) 1

Ns

v v

v

E x y

J
Ns

== −
∑

C  

(9) 

 
where ( , )

i i
E x y is a function that verifies the pixel existence in ( , )

v v
x y , with ( , )

v v
x y S∈  and 

s
N  being the 

number of pixels lying on the perimeter corresponding to C currently under testing. Hence, function 

( , )
v v

E x y is defined as: 

 

1 if the pixel ( , ) is an edge point
( , )

0 otherwise

v v

v v

x y
E x y

= 


 (10) 

 

 

A value near to zero of J(C) implies a better response from the “circularity” operator. Figure 3 shows the 

procedure to evaluate a candidate solution C with its representation as a virtual shape S. In Figure 3b, the 

virtual shape is compared to the original image, point by point, in order to find coincidences between virtual 

and edge points. The virtual shape is built from points
i
p ,

j
p and

k
p  shown by Fig. 3a, gathering 56 points 

(Ns= 56) with only 18 of such points existing in both images (shown as blue points plus red points in Fig. 3c) 

yielding: 

1

( , ) 18

Ns

v v

v

E x y

=

=∑  and therefore ( ) 0.67J ≈C . 

 
                                 (a)                                                           (b)                                                          (c) 

 
Fig. 3. Evaluation of candidate solutions C: the image in (a) shows the original image while (b) presents the virtual shape 

generated including points
i
p ,

j
p and

k
p . The image in (c) shows coincidences between both images marked by blue or 

red pixels while the virtual shape is also depicted in green. 

 

 

3.3. Implementation of HSA for circle detection 

 

The implementation of HSA can be summarized into the following steps: 

 

Step 1: Setting the HSA parameters. Initializing the harmony memory with HMS individuals 

where each decision variable
i
p ,

j
p and

k
p  of the candidate circle 

a
C  is  set randomly 

ip

jp

kpip

j
p

kp
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within the interval [1,
p

E ]. All values must be integers. Considering (1,2, , )a HMS∈ K .  

Step 2: Evaluating the objective value J(
a

C ) for all HMS individuals, and determining the 

w
C showing the worst objective value. 

Step 3: Improvising a new harmony 
new

C such that: 

for (j = 1 to 3) do 

      if (
1
r < HMCR) then 

            ( )
new

C j  = ( )
a

C j  where ( )1,2, ,a HMS∈ K  

             if (
2
r < PAR) then 

                
3

( ) ( )
new new

C j C j r BW= ± ⋅  where 
1 2 3
, , (0,1)r r r ∈  

             end if 

      else 

           ( ) 1 round( ),
new p

C j r E= + ⋅  where (0,1)r ∈  

      end if 

 end for 

Step 4: Update the HM as  if ( ) ( )
w new new w

J J= <C C C C  

Step 5: If NI is completed then return the best harmony vector 
b

C  in the HM (a circle contained 

in the image); otherwise go back to step 2. 

 

Figure 4 shows the outcome of a given detection test. The input image (Fig. 4a) has a resolution of 256 x 256 

pixels and shows a hand-drawn circle. Figure 4b presents the detected circle through a blue overlay.  

  

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                                  (b) 

 

Fig. 4. HSA processing test: image in (a) shows a hand-drawn circular shape while (b) shows the approximated circular 

shape through a blue overlay. 

 

 

4. Experimental results 

 

In order to evaluate the performance of the circle detector proposed in this paper, several experimental tests 

have been developed. Table 1 presents the parameters of HSA used at this work which have been 

experimentally determined and kept for all test images through all experiments. 

 

HMS HMCR PAR BW NI 

100 0.7 0.3 2 200 

 
Table 1. Parameter setup for the HSA detector 
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All the experiments are performed on a Pentium IV 2.5 GHz computer under C language programming. All 

the images are preprocessed by the standard Canny edge-detector using the image-processing toolbox for 

MATLAB R2008a.   

 

4.1 Circle localization 

 

The experimental setup includes the use of 60 synthetic and natural images. In the synthetic case, the images 

have been generated drawing only a randomly located circle. The parameters under detection are the center of 

the circle (x, y) and its radius (r). The algorithm is set to 200 iterations for each test image. In all cases the 

algorithm is able to detect the required parameters. The detection is shown to be robust to translation and 

scale conserving a reasonably low elapsed time (typically under 1ms). Figure 5b shows the results of the 

circle detection for a synthetic image.  

 

 

 

 

 

 

 

 

 

 
 

 (a) (b) 

Fig. 5. Circle detection in synthetic images: (a) original circle image, (b) its corresponding detected circle.  

 

 

On the other hand, natural-life images rarely contain perfect circles forcing the detection algorithm to 

approximate the circle that better adapts to the imperfect circle within the image. Such circle corresponds to 

the smallest error obtained from the objective function J(C). Detection results have been statistically analyzed 

for comparison purposes. For instance, the detection algorithm is executed 50 times on the same image 

(Figure 6), yielding the same parameters
0

210x = , 
0

325y = , and r = 65, which indicates that the proposed 

HSA is able to converge to the minimum solution. The experiment has considered 200 cycles. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) (c) 

 
Fig. 6. A experiment on a real-life image: (a) shows the test image and (b) its corresponding edge map. The detected circle 

is shown in (c) through an overlay. 
 

The circle detection algorithm described in this paper is also useful to approximate circular shapes from arc 

segments, occluded circular shapes or imperfect circles. This functionality is quite relevant considering that 

such shapes are common to typical computer vision problems. The proposed algorithm is able to find circle 
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parameters that better approach the arc, occluded or imperfect circles. Figure 7 shows one example of this 

functionality considering a hand-drawn arc. Recalling that, at this paper, the detection process is approached 

as an optimization problem and that the objective function J(C) gathers the C points actually contained in the 

image, a smaller value of J(C) commonly refers to a circle while a greater value accounts for either an arc, an 

occluded circle or an imperfect circle. Such fact does not represent any trouble as circles would be detected 

first while other shapes would follow.  In general, the detection of all kinds of circular shapes would only 

differ according to smaller or greater values of J(C). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

 

Fig. 7. HSA approximating circular arc sections: image in (a) shows the hand-drawn arc and (b) the detected circle. 

 

4.2. Multiple circle detection 

 
The HSA circle detector is also capable of detecting several circles embedded into a single image. The 

procedure is applied in the same way until the first circle is detected. It represents the circle with the 

minimum objective function value J(C). Therefore, such shape is masked (i.e. eliminated) on the primary 

edge-only image as the HSA circle detector operates again over the modified image. The procedure is 

repeated until the J(C) value reaches a minimum predefined threshold 
th

M  (typically 0.1). Finally, a 

subsequent validation of all detected circles follows by analyzing continuity of the detected circumference 

segments as proposed in [39]. If none of the detected shapes satisfies the 
th

M  criterion, the system simply 

reply: “no circle detected”.  Figure 8a shows one natural image containing several circles. For this case, the 

algorithm searched for the best circular shapes (greater than
th

M ). The edge-only image after the Canny 

algorithm application is also shown by Figure 8b, with Figure 6(c) presenting the detected circles.  Likewise, 

Figure 9 shows the multi-circle detection performance of HSA, considering complex synthetic images.  

Figure 9(a) has been hand-drawn generated. The same image has been contaminated by adding noise as to 

increase the complexity in the detection process (see Figure 9c). Figures 9b and 9d show the detected circle 

after the application of HSA. 

 

 

 

 

 

 

 

 

 

 

 

 
                             (a)                                               (b)                                                                   (c) 
 
Fig. 8. Multiple circle detection over natural images: (a) the original image, (b) the edge image after applying the Canny 

algorithm and (c) the image portraying best detected circular shapes. 
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 (a) (b) 
 

 

 

 

 

 

 

 

 

 

 
 (c) (d) 
Fig. 9. Multiple circle detection on complex synthetic images: (a) the original image, (b) detected circular shapes, (c) the 

original noisy image and (d) detected circular shapes. 

 
 

4.3. Performance comparison 

 

In order to enhance the algorithm analysis, the HSA is compared to the BFAO and the GA circle detectors 

over an image set.   

 

The GA algorithm follows the proposal of Ayala-Ramirez et al., which considers the population size as 70, 

the crossover probability as 0.55, the mutation probability as 0.10 and the number of elite individuals as 2. 

The roulette wheel selection and the 1-point crossover operator are both applied. The parameter setup and the 

fitness function follow the configuration suggested in [15]. The BFAO algorithm follows the implementation 

from [16] considering the experimental parameters as: S=50, 100
c

N = , 4,
s

N =
ed

1,N =
ed

0.25P = , 

attract 0.1d = , attract 0.2w = , 
repellant

10w =
repellant

0.1h = , 400λ =  and 6ψ = . Such values are found to be the best 

configuration set according to [16]. 
 

Images rarely contain perfectly-shaped circles. Therefore, with the purpose of testing accuracy for a single-

circle, the detection is challenged by a ground-truth circle which is determined from the original edge map. 

The parameters ( , , )
true true true
x y r representing the testing circle are computed using the Equations 3 to 6 for 

three circumference points over the manually-drawn circle. Considering the centre and the radius of the 

detected circle are defined as ( , )
D D
x y and

D
r , the Error Score (Es) can be accordingly calculated as: 

 

( )= true D true D true DEs x x y y r rη µ⋅ − + − + ⋅ −  (11) 
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(a) (b) (c) 

Original images 

   
GA-based algorithm 

   
BFOA 

   
HSA 

   
 

Fig. 10. Synthetic images and their detected circles after applying the GA-based algorithm, the BFOA method and the 

proposed HSA. 

 

 

 

The central point difference ( )true D true Dx x y y− + −  represents the centre shift for the detected circle as it is 

compared to a benchmark circle. The radio mismatch ( )true Dr r−  accounts for the difference between their 

radii. η  and µ  represent two weighting parameters which are to be applied separately to the central point 

difference and to the radio mismatch for the final error Es. At this work, they have been chosen as 

0.05η = and 0.1µ = aiming to ensure that the radii difference would be strongly weighted in comparison to 

the difference of central circular positions between the manually detected and the machine-detected circles. In 

case the value of Es is less than 1, the algorithm gets a success; otherwise it has failed on detecting the edge-
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circle. Notice that for 0.05η =  and 0.1µ = , it yields Es<1 which accounts for a maximal tolerated difference 

on radius length of 10 pixels, whereas the maximum mismatch for the centre location can be up to 20 pixels. 

In general, the success rate (SR) can thus be defined as the percentage of reaching success after a certain 

number of trials. 
 

 

 

(a) (b) (c) 

Original images 

  

 

 

GA-based algorithm 

 
 

 

 

BFOA 

 
 

 

 

HAS 

  

 

 

 
Fig. 11. Real-life images and their detected circles for: GA-based algorithm, the BFOA method and the proposed HAS. 
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Figure 10 shows three synthetic images and the resulting images after applying the GA-based algorithm [15], 

the BFOA method [16] and the proposed approach. Figure 11 presents experimental results considering three 

natural images. The performance is analyzed by considering 35 different executions for each algorithm. Table 

2 shows the averaged execution time, the success rate in percentage and the averaged Error Score (Es), 

considering six test images (shown by Figures 10 and 11). The best entries are bold-cased in Table 2. Close 

inspection reveals that the proposed method is able to achieve the highest success rate keeping the smallest 

error yet requiring less computational time for the most cases. 

 

A non-parametric statistical significance-proof called Wilcoxon’s rank sum test for independent samples [40-

42] has been conducted at the 5% significance level on the Error Score (Es) data of Table 2. Table 3 reports 

the p-values produced by Wilcoxon’s test for the pair-wise comparison between the Error Score (Es) from 

two groups. One group corresponds to HSA vs. GA and the other corresponds to an HSA vs. BFOA, one at a 

time. As a null hypothesis, it is assumed that there is no significant difference between mean values of such 

two groups. The alternative hypothesis considers a significant difference between mean values of both groups. 

All p-values reported in the table are less than 0.05 (5% significance level) which is a strong evidence against 

the null hypothesis, indicating that the best HSA mean values for the performance are statistically significant. 

 
 

Image 
 

Averaged execution time ± Standard 

deviation (s) 

 

 
Success rate (SR) (%) 

 
Averaged Es ± Standard deviation 

  
GA 

 
BFOA 

 
HSA 

 
GA 

 
BFOA 

 
HSA 

 
GA 

 
BFOA 

 
HSA 

Synthetic images 

(a) 2.51±(0.31) 1.12±(0.45) 0.31±(0.12) 98 100 100 0.45±(0.022) 0.30±(0.033) 0.20±(0.021) 

(b) 3.56±(0.44) 3.02±(0.32) 0.33±(0.25) 98 98 100 0.61±(0.022) 0.41±(0.034) 0.19±(0.035) 
(c) 4.67±(0.34) 3.92±(0.21) 0.30±(0.21) 75 90 100 0.56±(0.029) 0.46±(0.051) 0.21±(0.012) 

Natural Images 

(a) 5.44±(0.21) 4.23±(0.34) 0.52±(0.36) 98 100 100 0.40±(0.072) 0.29±(0.041) 0.20±(0.025) 
(b) 6.11±(0.27) 5.07±(0.14) 0.51±(0.34) 80 96 100 0.64±(0.025) 0.58±(0.037) 0.27±(0.024) 
(c) 7.21±(0.36) 6.12±(0.31) 0.54±(0.25) 80 88 97 0.88±(0.043) 0.73±(0.037) 0.37±(0.012) 

 
Table 2. The averaged execution-time, success rate and the averaged error score for the GA-based algorithm, the BFOA 

method and the proposed HSA algorithm, considering six test images (shown by Figures 8 and 9). 

 
Image p-Value 

 HSA vs. GA HSA vs. BFOA 

Synthetic images   
(a) 1.9456e-004 1.9234e-004 
(b) 1.6341e-004 1.8892e-004 
(c) 1.4562e-004 1.8648e-004 
 

Natural Images 
  

(a) 1.8872e-004 1.8945e-004 
(b) 1.5124e-004 1.6725e-004 
(c) 1.3289e-004 1.4289e-004 

 
Table 3.  p-values produced by Wilcoxon’s test comparing HSA to GA and BFOA over an averaged Es from Table 2. 

 

Figure 12 demonstrates the relative performance of HSA in comparison to the RHT algorithm as it is 

described in [12]. Images from the test are complicated as they contain different noise conditions. Table 4 

reports the corresponding averaged execution time, the success rate (in %), and the averaged error score 

(calculated following Eq. 11) for HSA and RHT algorithms over three test images shown by Figure 12. Table 

4 also shows the performance loss as noise conditions vary. Yet the HSA algorithm holds its performance 

under the same circumstances. 
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Image 

 
Average time ± Standard deviation (s) 

 

 
Success rate 

(SR) (%) 

 
Average Es ± Standard deviation 

  

RHT 

 

HSA 

 

RHT 

 

HSA 

 

RHT 

 

HSA 

(I) 4.32±(0.51) 0.30±(0.34) 100 100 0.18±(0.030) 0.21±(0.026) 

(II) 7.34±(0.21) 0.33±(0.25) 85 100 0.76±(0.037) 0.24±(0.031) 

(III) 9.61±(0.33) 0.32±(0.21) 50 100 1.62±(0.044) 0.23±(0.043) 

 

Table 4. Average time, success rate and averaged error score for the HSA and the RHT, considering three test images 

 
 

 

 

 

 

I 

   
 

 

 

 

 

 

 

II 

 

 

 

 

 

 
 

 

 

 

 

 

 

II

I 

 

 

 

 

 

 
  

Original image 

 

RHT 

 

HSA 

 
Fig. 12. Comparative performance of the RHT and the HSA 

 

 

 

5. Conclusions 

 

This work has presented an algorithm for the automatic detection of circular shapes from complicated and 

noisy images with no consideration of the conventional Hough Transform principles. The proposed method is 

based on the novel Harmony Search Algorithm (HSA). To the best of our knowledge, the HSA has not been 

applied to any image processing task until date. The algorithm uses the encoding of three non-collinear edge 

points as circle candidates (harmonies) that have been taken from the edge-only image of the scene. An 

objective function (harmony quality) evaluates if a given circle candidate is actually present in the edge 

image. Guided by the values of the objective function, the set of encoded candidate circles is evolved using 
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the HSA so that they can fit into the actual circles in the edge map of the image (optimal harmony). As it can 

be observed from results shown in Figures 10-12, our approach detects a circle embedded into complex 

images with little visual distortion despite the presence of noisy background pixels.  

 

The paper approaches the circle detection as an optimization problem. Such view enables the algorithm to 

detect arcs, occluded circles and also matching imperfect circles. The HSA is capable of finding circle 

parameters according to J(C), clearly opposing to other methods which make a review of all circle candidates 

for detecting occluded or imperfect circles. 

 

In order to test the circle detection accuracy, a score function has been used (Eq. 11). It can objectively 

evaluate the mismatch between a manually detected circle and a machine-detected circle. We have 

demonstrated that the HSA method outperforms the GA (as described in [15]), the BFAO (as described in 

[16]) and the RHT (as described in [12]) within a statistically significant framework. 

 

Classical Hough Transform methods for circle detection use three edge points to cast a vote for potential 

circular shapes within the parameter space. However, they would require a huge amount of memory and 

longer computational times to obtain a sub-pixel resolution. Moreover, HT-based methods rarely find a 

precise parameter set for a circle in the image [43]. In our approach, the detected circles are directly obtained 

from Equations 6 to 9 still reaching sub-pixel accuracy. 

 

Although Figures 8 and 9 indicate that the HSA method can yield better results on complicated and noisy 

images in comparison to the GA, BFAO and the RHT methods, the aim of our paper is not intended to beat all 

the circle detector methods which have been proposed earlier, but to show that the Harmony Search Systems 

can effectively serve as an attractive evolutionary alternative to successfully extract circular shapes from 

images. 
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