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Abstract

This paper addresses object perception applied to mobile robotics.
Being able to perceive semantically meaningful objects in unstructured
environments is a key capability in order to make robots suitable to per-
form high-level tasks in home environments. However, finding a solution
for this task is daunting: it requires the ability to handle the variability
in image formation in a moving camera with tight time constraints. The
paper brings to attention some of the issues with applying three state
of the art object recognition and detection methods in a mobile robotics
scenario, and proposes methods to deal with windowing/segmentation.
Thus, this work aims at evaluating the state-of-the-art in object percep-
tion in an attempt to develop a lightweight solution for mobile robotics
use/research in typical indoor settings.
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1 Introduction

Currently there is a big push towards semantics and higher level cognitive capa-
bilities in robotics research. One central requirement towards these capabilities
is to be able to identify higher level features like objects, doors, etc.

Although impressive results are obtained by modern object recognition and
classification methods, still a lightweight object perception method is lacking.
Furthermore, the system should be able to learn new objects in an easy, and
preferably automatic, way.

For example, in [1], the authors investigate underlying representations of
spatial cognition for autonomous robots. Although not specifically addressed in
that work, object perception is an essential component that the authors reported
to be the most limiting factor.

Although different modalities of perception (e.g. laser range-finder, color
camera, haptics) can be used, in this work we focus on passive vision, as it is
interesting for several reasons, like an affordable cost, compatibility with human
environments or richness of perceived information.

Another example of it can be found looking at the poor results achieved in
the detection test of the Pascal 2007 chall. Recently several methods have been
quite successful in particular instances of the problem, such as detecting frontal
faces or cars, or in datasets that concentrate on a particular issue (e.g. classifi-
cation in the Caltech-101 [2] dataset). However in more challenging datasets like
the detection competition of the Pascal VOC 2007 [3] the methods presented
achieved a lower average precision. This low performance is not surprising,
since object recognition in real scenes is one of the most challenging problems
in computer vision [4]. The visual appearance of objects can change enormously
due to different viewpoints, occlusions, illumination variations or sensor noise.
Furthermore, objects are not presented alone to the vision system, but they are
immersed in an environment with other elements, which clutter the scene and
make recognition more complicated.

In a mobile robotics scenario a new challenge is added to the list: compu-
tational complexity. In a dynamic world, information about the objects in the
scene can become obsolete even before it is ready to be used if the recognition
algorithm is not fast enough.

In the present work our intent is to survey some well established object recog-
nition systems, comment on its applicability to robotics and evaluate them on a
mobile robotics scenario. The selected methods are the SIFT object recognition
algorithm[11], the Bag of Features[14], and the Viola and Jones boosted cascade
of classifiers[17], and they were chosen taking into consideration issues relevant
to our objective, for example its ability to detect at the same time they recog-
nize, its speed or scalability and the difficulty of training the system. From the
obtained results we extract our conclusions and propose several modifications
to improve the performance of the methods. Namely, we propose improvements
to increase the precision of the SIFT object recognition method, and a segmen-
tation approach to make the Bag of Features method suitable for detection in
interactive time. We also benchmark the proposed methods against the typi-
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cally used Viola and Jones classifier. Finally, we perform extensive tests with the
selected methods in our publicly available dataset1 to assess their performance
in a mobile robotics setting.

The three methods are fundamentally different in that they address recogni-
tion, classification and detection (three core problems of visual perception), but
still can be tailored to the other objectives too. We compare and benchmark
these three successful vision approaches towards use in real mobile robotics ex-
periments, providing an useful guide for roboticists who need to enable their
robots with object recognition capabilities. The selected algorithms are evalu-
ated under different issues, namely:

• Detection: Having the ability to detect where in the image is located
the object. In most situations, large portions of the image are occupied
by background objects that introduce unwanted information which may
confuse the object recognition method.

• Classification: A highly desirable capability for an object detection
method is to be able to generalize and recognize previously unseen in-
stances of a particular class.

• Occlusions: Usually a clear shot of the object to recognize will not be
available to the robot. An object recognition method must be able to deal
with only partial information of the object.

• Texture: Objects with a rich texture are typically easier to recognize
than those only defined by its shape and color. We want to evaluate the
behavior of each method with both types of objects.

• Repetitive patterns: Some objects, such as a chessboard, present repet-
itive patterns that cause problems in methods that have a data association
stage.

• Training set resolution: Large images generate more features at dif-
ferent scales (specially for smaller ones) that are undoubtedly useful for
object recognition. However, if training images have a resolution much
higher than test images, descriptors may become too different.

• Training set size: Most methods can benefit from a larger and better
annotated training set. However, building such a dataset is time consum-
ing. We want to assess which is the least amount of training information
that each method requires to obtain its best results.

• Run-Time: One of the most important limitations of the scenario we are
considering is the computation time. We want to measure the frame-rate
at which comparable implementations of each method can work.

1Available for download at http://www.iiia.csic.es/~aramisa/iiia30.html

3

http://www.iiia.csic.es/~aramisa/iiia30.html


• Detection accuracy: Computing accurately the location of the object
can significantly benefit other tasks such as grasping or navigation. We
are interested in quantifying the precision of the object detection in the
object recognition algorithm according to the ground truth.

Although different parts of object recognition methods (e.g. feature detectors
and descriptors, machine learning methods) have been extensively compared in
the literature, to our knowledge there is no work that compares the performance
of complete object recognition methods in a practically hard application like
mobile robotics.

Probably the work most related with ours is the one of [5], where four meth-
ods (SIFT and KPCA+SVM with texture and color features) were combined
in an object recognition/classification task for human-robot interaction. The
appropriate method for each class of object was chosen automatically from the
nine combinations of task/method/features available, and models of the learned
objects were improved during interaction with the user (pictured as a handi-
capped person in the paper). This work was, however, more focused on building
a working object classification method suitable for the particular task of human-
robot interaction with feedback from the human user, and not in evaluating each
particular method in a standardized way. Furthermore, no quantitative results
were reported for the experiments with the robot.

Mikolajczyk et al. [6, 7] do a comprehensive comparison of interest region
detectors and descriptors in the context of keypoint matching. Although this
works are undoubtedly related with the one presented here, the objectives of
the comparison are notably different: while Mikolajczyk et al. measured the
repeatability of the region detectors and the matching precision of the region
descriptors, here we focus on the performance of three well-known object recog-
nition methods in the very specific setting of mobile robotics.

The rest of the paper is divided as follows: First, Table 1 shows the conclu-
sions reached in this work regarding the applicability of the evaluated methods
in the mobile robot vision domain. Next, in Section 2 comes an overview of the
datasets used in our experimentation. In Sections 3 to 5 the different object
recognition algorithms are briefly described and the experiments done to arrive
to the conclusions for each presented. Finally, in Section 6, the conclusions of
the work are presented and continuation lines proposed.
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SIFT Vocabulary Tree Cascade of Simple
Classifiers

Detection Can detect objects
under in-plane rota-
tion, scale changes
and small out-of-plane
rotations

Must be complemented
with a sliding windows
approach, a segmenta-
tion algorithm or an
interest operator

Is able to determine
the most probable
bounding box of the
object

Pose Estimation Up to an affine trans-
formation

presence/absence only presence/absence only

Classification
(intra-class
variation and
generalization)

No Yes Yes

Occlusions Tolerates it as long as
at least 3 points can be
reliably matched (de-
pends on ammount of
texture)

Showed good tolerance
to occlusions

Low tolerance to occlu-
sions

Repetitive pat-
terns

No Yes Yes

Minimum train-
ing set size

One image Tens of images Hundreds or thousands
of images

Training set res-
olution

VGA resolution is suf-
ficient

Benefits from higher
resolution of training
data

VGA resolution is suf-
ficient

Run-Time Less than a second per
image

two seconds per image
with a segmentation
algorithm included

Less than a second per
image

Table 1: Qualitative summary of results found in our experiments.
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2 Datasets and Performance Metrics

In order to evaluate the methods in a realistic mobile robots setting, we have
created the IIIA30 dataset2, that consists of three sequences of different length
acquired by our mobile robot while navigating at approximately 50 cm/s in a
laboratory type environment and approximately twenty good quality images for
training taken with a standard digital camera. The camera mounted in the
robot is a Sony DFW-VL500 and the image size is 640x480 pixels. In Figure 1
the robotic platform used can be seen. The environment has not been modified
in any way and the object instances in the test images are affected by lightning
changes, blur caused by the motion of the robot, occlusion and large viewpoint
and scale changes.

Figure 1: Robotic platform used in the experiments.

We have considered a total of 30 categories (29 objects and background) that
appear in the sequences. The objects have been selected to cover a wide range
of characteristics: some are textured and flat, like the posters, while others are
textureless and only defined by its shape. Figure 2.a shows the training images
for all the object categories, and 2.b shows some cropped object instances from
the test images. Each occurrence of an object in the video sequences has been
manually annotated in each frame to construct the ground truth, along with its
particular image characteristics (e.g. blurred, occluded...).

In order to evaluate the performance of the different methods we used several
standard metrics that are briefly explained in the following lines. Precision is
defined as the ratio of true positives among all the positively labeled examples,

2http://www.iiia.csic.es/~aramisa/iiia30.html
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and reflects how accurate our classifier is.

Pre =
TruePositives

FalsePositives+ TruePositives
(1)

Recall measures the percentage of true positives that our classifier has been able
to label as such. Namely,

Rec =
TruePositives

FalseNegatives+ TruePositives
(2)

Since it is equally important to perform well in both metrics, we also considered
the F-Measure metric:

f −measure =
2 · Precision ·Recall
Precision+Recall

(3)

This measure assigns a single score to an operating point of our classifier weight-
ing equally precision and recall, and is also known as f1−measure or balanced
f − score. If the costs of a false positive and a false negative are asymetric, the
general f-measure can be used by adjusting the β parameter:

fg −measure =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(4)

In the object detection experiments, we have used the Pascal VOC object
detection criterion [3] to determine if a given detection is a false or a true
positive. In brief, to consider an object as a true positive, the bounding boxes
of the ground truth and the detected instance must have a ratio of overlap equal
or greater than 50% according to the following equation:

BBgt ∩BBdetected
BBgt ∪BBdetected

≥ 0.5 (5)

where BBgt and BBdetected stand for the ground truth and detected object
bounding box respectively. For objects marked as occluded only the visible part
has been annotated in the ground truth, but the SIFT object recognition method
will still try to adjust the detection bounding box for the whole object based
only in the visible part. Since the type of annotation is not compatible with the
output of the SIFT algorithm, for the case of objects marked as occluded, we
have modified the above formula in the following way:

BBgt ∩BBdetected
BBgt

≥ 0.5 (6)

As can be seen in the previous equation, it is only required that the detected
object bounding box overlaps 50% of the ground truth bounding box.

Apart from the IIIA30 dataset, in order to test and adjust the parameters of
the Vocabulary Tree object recognition method, we have used two pre-segmented
image databases:
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• ASL: The ASL recognition dataset3 consists of nine household objects
from the Autonomous Systems Lab of the ETHZ [8]. It consists of around
20 training images per object from several viewpoints and 36 unsegmented
test images with several instances of the objects, some of them with illumi-
nation changes or partial occlusions. The training images have been taken
with a standard digital camera at a resolution of 2 megapixels, while the
test images have been acquired with a STHMDCS2VAR/C stereo head
by Videre design at the maximum possible resolution (1.2 megapixels). A
segmented version of the training object instances has also been used in
some experiments, and is referred as segmented ASL. Some images of the
segmented version can be seen in Figure 2.

• Caltech10: This is a subset of the Caltech 101 dataset [9] , widely used
in computer vision literature. We have taken 100 random images of the
ten most populated object categories, namely: planes (lateral), bonsais,
chandeliers, faces (frontal), pianos, tortoises, sails, leopards, motorbikes
and clocks as seen in Figure 4. Training and testing subsets are determined
randomly in each test. Experiments with this dataset have been done
following the setup of [10]: 30 random training images and the rest for
testing.

3http://www.iiia.csic.es/~aramisa/iiia30.html
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(a)

(b)

Figure 2: (a) Training images for the IIIA30 dataset. (b) Cropped instances of
objects from the test images.
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(a)

(b)

Figure 3: Segmented ASL dataset images. (a) Training. (b) Testing.

Figure 4: Images from Caltech10 dataset.
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3 Lowe’s SIFT

Matching Method
- Exact Nearest Neighbors
-Approximate Nearest N.
Min Distance Ratio

Training Images
Local Descriptor

Database

Local region
detection and

description

For every valid hypothesis

General
Hough

Transform

Hypothesis
Filtering
Stage

Final 
hypothesis

Detector Type:
- Harris Laplace/Affine
- Hessian Laplace/Affine
- SURF
- DoG
•- MSER
Desciptor type
- SIFT
•- Shape Context

- RANSAC
- IRLS
- Heuristic Rules

 Test Image

Descriptor
Matching

Non-Maxima Suppression
Min Number of Votes

Training set
•Image Resolution

Figure 5: Diagram of the Lowe’s SIFT method with all the tests performed
shown as purple boxes, Orange ones refer to steps of the method and green to
input/output of the algorithm.

Lowe’s SIFT object recognition approach is a view-centered object detection
and recognition system with some interesting characteristics for mobile robots,
most significant of which is the ability to detect and recognize objects in an
unsegmented image. Another interesting feature is the Best-Bin-First algorithm
used for approximated fast matching, which reduces the search time by two
orders of magnitude for a database of 100,000 keypoints for a 5% loss in the
number of correct matches [11]. Follows a brief outline of the algorithm.

The first stage of the approach consists on matching individually the SIFT
descriptors of the features detected in a test image to the ones stored in the
object database using the Euclidean distance. As a way to reject false corre-
spondences, only those query descriptors for which the best match is isolated
from the second best and the rest of database descriptors are retained. In Figure
6, the matching features between a test and model images can be seen. The
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presence of some outliers (incorrect pairings of query and database features) can
also be observed.

Once a set of matches is found, the Generalized Hough Transform is used to
cluster each match of every database image depending on its particular transfor-
mation (translation, rotation and scale change). Although imprecise, this step
generates a number of initial coherent hypotheses and removes a notable portion
of the outliers that could potentially confuse more precise but also more sensi-
tive methods. All clusters with at least three matches for a particular training
object are accepted, and fed to the next stage: the Least Squares method, used
to improve the estimation of the affine transformation between the model and
the test images.

Figure 6: Matching stage in the SIFT object recognition method.

This approach has been modified in several ways in our experiments: The
least squares method has a 0% breakdown point (i.e. any false correspondence
will make the model fitting method fail or give sub-optimal results), which is a
rather unfeasible restriction since we have found it is normal to still have some
false matches in a given hypothesis after the Hough Transform.

To alleviate this limitation, instead of the least squares, we have used the It-
eratively Reweighted Least Squares (IRLS), which we have found to perform well
in practice at a reasonable speed. Furthermore we have evaluated the RANdom
SAmple Consensus (RANSAC), another well-known model fitting algorithm, to
substitute or complement the IRLS. The RANSAC algorithm iteratively tests
the support of models estimated using minimal subsets of points randomly sam-
pled from the input data. Finally, we have incorporated some domain knowl-
edge by defining several heuristic rules on the parameters of the estimated affine
transformation to reject those clearly beyond plausibility. Namely:

• Hypotheses with object centers that are too close.

• Hypotheses that have a ratio between the x and y scales below a threshold.

Figure 5 shows an overview of our implementation of the SIFT object recognition
algorithm steps.
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For evaluating the method, one image per category from the training image
set is used. As there are several parameters to adjust in this method, we used
the first sequence of the IIIA30 dataset (IIIA30-1) as test data to perform an
extensive cross-validation over detector and descriptor type, training image size,
matching method, distance ratio to the second nearest neighbor for rejecting
matches, non-maxima suppression and minimum number of votes in the Hough
Transform and hypothesis verification and refinement methods.

Since this study is too extensive to be included here, details are provided
online for the interested reader4. Follows a brief summary of the most relevant
results obtained with the corss-validation.

In this section the results of cross-validation tests conducted using sequence
1 of the IIIA30 dataset (IIIA30-1) with the different parameter combinations
considered are described. Taking into account all combinations, the best recall
obtained has been 0.45 with the Hessian Laplace detector and the less restrictive
settings possible. However this configuration suffered from a really low precision,
just 0.03.

The best precision score has been 0.94, and has been obtained also with the
Hessian Laplace detector, with a restrictive distance ratio to accept matches:
0.5. The recall of this combination was 0.14. The same precision value but with
lower recall has been obtained with the SURF and Hessian Affine detectors.

Looking at the combinations that had a best balance between recall and
precision (best f—measure), the top performing ones obtained 0.39 also with the
Hessian Laplace detector (0.29 recall and 0.63 precision). However, even though
approximate nearest neighbors is used, each image takes around 2 seconds to
be processed.

Given the objectives of this work, the most relevant way to analyze the
results consists in prioritizing the time component and select the fastest pa-
rameter settings. As a runtime greater than one second is not acceptable for
our purposes, the combinations that improved the f—measure with respect to
faster combinations for those close to one second for image have been selected
as interesting. Table 2 shows the parameters of the chosen combinations. For
more information on the experiments conducted please refer to the technical
report3.

Once the parameter combinations that best suited our purposes were found,
we evaluated them in all the test sequences.

3.1 Evaluation of Selected Configurations

This section presents the results obtained applying the parameter combinations
previously selected to all the sequences in the dataset. In general all possible
combinations of parameters performed better in well textured and flat objects,
like the books or posters. For example the Hartley book or the calendar had
an average recall across the six configurations (see Table 2 for the configuration
parameters) of 0.78 and 0.54 respectively. This is not surprising as the SIFT de-

4http://www.iiia.csic.es/~aramisa/datasets/iiia30.html
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Config 1 0.8 SURF 5 NMS No Yes Yes No 0.37 0.15 0.51 0.23
Config 2 0.8 SURF 3 NMS Yes Yes Yes Yes 0.42 0.14 0.87 0.24
Config 3 0.8 DoG 10 NMS No Yes Yes No 0.52 0.17 0.47 0.25
Config 4 0.8 DoG 10 NMS Yes Yes Yes Yes 0.55 0.17 0.9 0.28
Config 5 0.8 DoG 5 NMS Yes Yes Yes Yes 0.60 0.19 0.87 0.31
Config 6 0.8 HesLap 10 NMS Yes Yes Yes Yes 2.03 0.28 0.64 0.39

Table 2: Detailed configuration parameters and results for the six representative
configurations in increasing time order. They have been chosen for providing
the best results in a sufficiently short time.

Object Config 1 Config 2 Config 3 Config 4 Config 5 Config 6
Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre

Grey bat-
tery

0 0 0 0 0 0 0 0 0 0 0 0

Bicycle 0.54 0.52 0.52 1.00 0.33 0.52 0.36 0.89 0.38 0.90 0.33 0.62
Hartley
book

0.58 0.93 0.58 0.93 0.86 0.77 0.88 0.88 0.95 0.85 0.81 0.73

Calendar 0.44 0.65 0.35 0.86 0.56 0.66 0.56 0.79 0.56 0.79 0.79 0.71
Chair 1 0.03 0.08 0.02 0.33 0 0 0 0 0.01 1.00 0.54 1.00
Charger 0.03 0.20 0.03 0.50 0 0 0 0 0 0 0.18 0.14
Cube 2 0.62 0.28 0.67 0.67 0.71 0.11 0.76 0.59 0.76 0.55 0.52 0.38
Monitor 3 0 0 0 0 0 0 0 0 0 0 0.02 0.33
Poster
spices

0.38 0.77 0.42 0.94 0.54 0.79 0.53 0.87 0.58 0.87 0.56 0.92

Rack 0.26 0.59 0.26 1.00 0.10 0.80 0.10 1.00 0.23 1.00 0.77 0.79

Table 3: Object-wise recall and precision for all combinations.

scriptor assumes local planarity, and depth discontinuities can severely degrade
descriptor similarity. On average, textured objects achieved a recall of 0.53 and
a precision 0.79 across all sequences. Objects only defined by shape and color
were in general harder or even impossible to detect, as can be seen5 in Table 3.
Recall for this type of objects was only 0.05 on average. Configuration 6, that
used the Hessian Laplace detector, exhibited a notably better performance for
some objects of this type thanks to its higher number of detected regions. For
example the chair obtained a recall of 0.54, or the rack that obtained a 0.77
recall using this feature detector. Finally, and somewhat surprisingly, objects
with a repetitive texture such as the landmark cubes (see Figure 2) had a quite
good recall of 0.46 on average. Furthermore, the result becomes even better
if we take into consideration that besides the self-similarity, all three landmark
cubes were also similar to one another.

Regarding the image quality parameters (see Table 4), all combinations be-
haved in a similar manner: the best recall, as expected, was obtained by images
not affected by blur, occlusions or strong illumination changes. From the differ-

5For space reasons, only part of the Table was included. The full Table can be found in
http://www.iiia.csic.es/~aramisa/datasets/iiia30_results/results.html
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ent disturbances, what was tolerated best was occlusion, followed by blur and
then by illumination. Combinations of problems also had a demolishing effect
in the method performance as seen in the last three rows of Table 4, being the
worst case the combination of blur and illumination that had 0 recall. Object
instance size (for objects with a bounding box defining an area bigger than 5000
pixels) did not seem to have such an impact in performance as image quality
has. The performance with objects of smaller area has not yet been rigorously
analyzed and is left for future work. As can be seen in the results, RANSAC
and the heuristics significantly improved precision without affecting recall.

Object Config 1 Config 2 Config 3 Config 4 Config 5 Config 6
Normal 0.26 0.25 0.26 0.28 0.3 0.33
Blur 0.1 0.1 0.16 0.15 0.18 0.25
Occluded 0.16 0.14 0.14 0.12 0.14 0.34
Illumination 0 0 0.06 0.06 0.06 0.06
Blur+Occl 0.06 0.04 0.08 0.06 0.09 0.14
Occl+Illum 0.08 0.08 0.08 0.08 0.08 0.06
Blur+Illum 0 0 0 0 0 0

Table 4: Recall depending on image characteristics. Normal stands for object
instances with good image quality and blur for blurred images due to motion,
illumination indicates that the object instance is in a highlight or shadow and
therefore has low contrast. Finally the last three rows indicate that the object
instance suffers from two different problems at the same time.

Finally, we have validated the detection accuracy by the ratio of overlap
between the ground truth bounding box and the detected object instance as
calculated in Equation 5. As can be seen in Figure 7, on average 70% of true
positives have a ratio of overlap greater than to 80%, regardless of the parameter
combination. Furthermore, we found no appreciable advantage on detection
accuracy for any object type or viewing conditions, although a more in-depth
analysis of this should be addressed in future work.

As a means to provide a context to the results obtained with the six selected
configurations (i.e. how good are they with respect to what can be obtained
without taking into account the execution time), we compare them to the best
overall recall and precision values obtained with the SIFT object recognition
method. Table 5 displays the averaged precision and recall values of the four
configurations that obtained the overall best recall and the four that obtained
the overall best precision, as well as the six selected configurations. As can be
seen in the table, the attained recall in the selected configurations was 20% lower
than the maximum possible, independently of the type of objects. Precision is
more affected by the amount of texture, and differences with respect to the top
performing configurations ranged from 17% to 38%.

3.2 Discussion

Experiments show that, using the SIFT object recognition approach with the
proposed modifications, it is possible to precisely detect, considering all image
degradations, around 60% of well-textured object instances with a precision
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Figure 7: Accumulated frequencies for ratio of overlap between the ground truth
bounding box and the detected bounding box for correctly found objects (true
positives). An object is considered correctly detected if the ratio of overlap
between the bounding boxes computed with equation 5 is 50% or more.

close to 0.9 in our challenging dataset at approximately one frame per second
in 640 × 480 pixel images with our not fully optimized implementation. Even
detectors known to sacrifice repeatability (probability of finding the same fea-
ture region in slightly different viewing conditions) for speed such as the SURF
obtain reasonable results. Performance degrades for objects with repetitive tex-
tures or no texture at all. Regarding image disturbances, the approach resisted
occlusions well, since the SIFT object recognition method is able to estimate
a reliable transformation (as long as a minimum number of correct matches is
found, three by default), but not so well blur due to motion or deficient illumi-
nation.

The step of the algorithm that takes most of the processing time is the de-
scriptor matching, as it has a complexity of O(N ·M ·D) comparisons, where
N is the number of features in the new test image, M is the number of fea-
tures in the training dataset and D is the dimension of the descriptor vector.
Approximate matching strategies, such as the one by [12] used in this work,
make the SIFT object recognition method suitable for robotic application by
largely reducing its computational cost. In our experiments we experienced only
a 0.01 loss in the f—measure for an up to 35 times speed-up. Furthermore, an
implementation tailored to performance should be able to achieve even faster
rates. A drawback of the SIFT object recognition method is that it is not ro-
bust to viewpoint change. It would be interesting to evaluate how enhancing
the method with 3D view clustering as described in [13] affects the results, as
it should introduce robustness to this type of transformation.
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Best Recall Best Precision Selected Config.
mean std mean std mean std

Repetitively textured objects
Recall 0.65 0.09 0.16 0.01 0.46 0.05
Precision 0.02 0.01 0.75 0.15 0.43 0.24

Textured objects
Recall 0.70 0.03 0.28 0.03 0.53 0.10
Precision 0.05 0.02 0.96 0.02 0.79 0.09

Not textured objects
Recall 0.21 0.01 0.01 0.01 0.05 0.04
Precision 0.03 0.01 0.62 0.32 0.24 0.21

Table 5: Average recall and precision of the configurations that where selected
for having the best values according to these two measures in the last section.
Also average results among the six selected configurations are shown for compar-
ison. Standard deviation is provided to illustrate scatter between the selected
configurations. Objects are grouped in the three “level of texture” categories in
the following way: the three cubes form the repetitively textured category, the
two books, the calendar and the three posters form the textured category, and
the rest fall into the non textured category.
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4 Vocabulary Tree Method

- Intensity Segmentation
(floodcanny)
- Depth Segmentation
- Sliding Window

Local Descriptor
Database

Local region
detection and

description
Hierarchical

K-Means

Vocabulary
Tree

F
or

 e
ac

h 
re

gi
on

Visual word
counts

Weighting and
normalization K-NN classifier

Final 
hypothesis

Global
descriptor
database

- Branch Factor
- Depth

Detector Type:
- Harris Laplace/Affine
- Hessian Laplace/Affine
- SURF
- DoG
- MSER

- L1 and L2 norm
- Single and double
precision

- Number of voting neighbors
- Distance ratio between 
first and second class

 Test Image

segmentation

Figure 8: Diagram of the Vocabulary Tree method. Modifications to the origi-
nal algorithm have yellow background and tests performed are shown as purple
boxes. As before, orange boxes refer to steps of the method and green to in-
put/output of the algorithm.

The Vocabulary Tree approach [14] to object classification is based on the
bag of words document retrieval methods, that represent the subject of a docu-
ment by the frequency in which certain words appear in the text. This technique
has been adapted to visual object classification substituting the words with local
descriptors such as SIFT computed on image features [15, 16].

Although recently many approaches have been proposed following the bag of
words model, we have selected this particular one because scalability to large
numbers of objects in a computationally efficient way is addressed, which is
a key feature in mobile robotics. Figure 8 shows the main steps of the [14]
algorithm. First the local feature descriptors are extracted from a test image,
and a visual vocabulary is used to quantize those features into visual words.

A hierarchical vocabulary tree is used instead of a linear dictionary, as it
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allows to code a larger number of visual features and simultaneously reduce the
look-up time to logarithmic in the number of leaves. The vocabulary tree is
built using hierarchical k-means clustering, where the parameter k defines the
branch factor of the tree instead of the final number of clusters like in the flat
(standard) k-means. On the negative side, using such hierarchical dictionaries
causes aliasing in cluster space that can reduce the performance of the approach.

Then, the visual words are weighted in accordance to its discriminative power
with the Term Frequency-Inverse Document Frequency (TF-IDF) scheme to im-
prove retrieval performance. Let ni be the number of descriptors corresponding
to the codeword i found in the query image and mi the number of descrip-
tors corresponding to the same codeword for a given training image, and let q
and d be the histogram signatures of the query and database images, then the
histogram bins qi and di can be defined as:

qi = niωi

di = miωi
(7)

where ωi is the weight assigned to node i. A measure based in entropy is used
to define the weights:

ωi = ln(
N

Ni
), (8)

where N is the number of images in the database, and Ni is the number of
images in the database with at least one descriptor vector path through node i.
Since signatures will be normalized before comparison, the resulting schema is
the term frequency-inverse document frequency.

To compare a new query image with a database image, the following score
function is used:

s(q, d) = ‖ q

‖q‖
− d

‖d‖
‖ (9)

The normalization can be in any desired norm, but the L1-norm (also known
as the “Manhattan” distance) was found to perform better both by [14] and in
our experiments. The class of the object in the query image is determined as
the dominant one in the k nearest neighbors from the database images.

The second speed-up proposed by Nister and Stewenius consists on using
inverted files to organize the database of training images. In an inverted files
structure each leaf node contains the ID number of the images whose signature
value for this particular leaf is not zero. To take advantage of this representation,
and assuming that the signatures have been previously normalized, the previous
equation can be simplified making the distance computation only dependent on
the nonzero elements both in the query and database vectors. With this distance
formulation one can use the inverted files and, for each node, accumulate to the
sum only for the training signatures that have non-zero value. If signatures
are normalized using the L2 norm (i.e. the Euclidean distance), the distance
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computation can be simplified further to:

||q − d||22 = 2− 2
∑

i|qi 6=0,di 6=0

qidi (10)

and since we are primarily interested in the ranking of the distances, we can
simply accumulate the products and sort the results of the different images in
descending order.

The main drawback of the Vocabulary Tree method is that it needs at least
a rough segmentation of the object to be recognized. The most straightforward
solution to overcome this limitation is to divide the input image using a grid of
fixed overlapping regions and process each region independently. Alternatively,
we propose a fast segmentation algorithm to generate a set of meaningful regions
that can later be recognized with the vocabulary tree method.

The first option has the advantage of simplicity and universality: Results
do not depend on a particular method or set of segmentation parameters, but
just on the positions and shapes of the windows evaluated. However a square
or rectangular window usually does not fit correctly the shape of the object
we want to detect and, in consequence, background information is introduced.
Furthermore, if we want to exhaustively search the image, in the order of O(n4)
overlapping windows will have to be defined, where n is the number of pixels of
the image. This will be extremely time-consuming, and also fusing the classifica-
tion output of the different windows into meaningful hypotheses is a non-trivial
task. One way that could theoretically speed-up the sliding window process is
using integral images [17]. This strategy consists on first computing an integral
image (i.e. accumulated frequencies of visual word occurrences starting from
an image corner, usually top-left) for every visual word in the vocabulary tree.
Having the integral image pre-computed for all visual words, the histogram of
visual word counts for an arbitrary sub-window can be computed with four
operations instead of having to test if every detected feature falls inside the
boundaries of the sub-window. Let Ii be the integral image of a query image
for node i of the vocabulary tree, then the histogram H of visual words counts
for a given sub-window W can be computed in the following way:

Hi = Ii(Wbr) + Ii(Wtl)− Ii(Wtr)− Ii(Wbl) (11)

for all i, where Wbr, Wtl, Wtr and Wbl are respectively the bottom right, top
left, top right and bottom left coordinates of W .

The computational complexity of determining the visual word counts for an
arbitrary sub-window is therefore O(4 · ϕ) operations, where ϕ is the size of
the vocabulary. Doing the same without integral images has a complexity of
O(5 · η), where η is the number of visual words found in the test image. From
this, it is clear that integral images are a speed-up as long as ϕ is significantly
smaller than η (e.g. in case of dense feature extraction from the image with a
small vocabulary).
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The second alternative is using a segmentation method to divide the image
into a set of regions that must be recognized. Various options exist for this task
which can be broadly classified as intensity based and, if stereo pairs of images
are available, depth based. In this work we have evaluated one method of each
type. Namely, an intensity based method similar to the watershed algorithm,
and a depth based one.

4.1 Intensity-based Segmentation

The intensity based method we propose, that we called floodcanny, consists
on first applying the Canny edge detector to the image, and use the resulting
edges as hard boundaries in a flood filling segmentation process. In contrast
with conventional watershed methods, in our method seed points are not local
minima of the image, but are arbitrarily chosen from the set of unlabeled points;
and a limit in brightness difference is imposed both for lower as well as for higher
intensity values with respect to the seed point. For each candidate region of an

Figure 9: Results of the segmentation process using the floodcanny method.
The first column shows the original images and the second column the seg-
mented regions. Each color represents a different region, and Canny edges are
superimposed for clarity.
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acceptable size (in our experiments, having an area bigger than 900 pixels),
a set of five sub-windows of different size centered in the segmented area are
defined and evaluated. In general, it is intuitive to think that, the more accurate
the segmentation of the image passed to the classifier is, the better will be the
results of the object recognition method. More specifically, methods that can
overcome highlights, shadows or weak reflections as the one proposed by [18]
have a potential to provide more meaningful regions for the classifier, and the
combination of such type of methods with appearance-based classifiers is an area
of great interest, that we would address in future work. For the present work
however, we have used only our proposed floodcanny method, which, despite of
its simplicity, achieved good segmentation results as can be seen in Figure 9.
Furthermore, it is fast to apply (less than 30 milliseconds for a 640×480 image),
which is very convenient given our objectives.

4.2 Depth-based Segmentation

The second segmentation alternative proposed consisted of directly matching
features between the left and right image to detect areas of constant depth.
Since the geometry of the stereo cameras is known a priori, epipolar geometry
constraints can be used together with the scale and orientation of a given feature
to reduce the set of possible matches. To determine the possible location of
the objects in the environment, a grid of 3D cells of different sizes is used.
Reprojected features cast a vote for a cell of a grid if it lies within the 3D cell
coordinates. Cells that have a minimum number of votes are reprojected to
the image and added as a candidate window. It seems tempting to directly
use the matched features to construct the histogram of feature word counts,
as it would reduce the amount of background introduced in the visual word
counts histogram. However, there is no guarantee that all features of the object
have been detected in both images and matched, and the effects of missing
important object features are potentially worse than introducing a small amount
of background. Therefore we considered it more adequate to accept all visual
words close to a set of valid matches.

4.3 Experimental Results

As in Section 3, an extensive cross-validation study has been conducted to
evaluate the range of parameters of the method. For brevity here we only
include the most relevant results and refer the interested reader to a technical
report available online with all the experimental details6. This more detailed
report includes experiments that address:

1. Floating point precision (single/double)

2. Histogram normalization method

3. Effect in computational time of inverted files

6http://www.iiia.csic.es/~aramisa/datasets/iiia30.html
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4. Quality and number of training images

5. Different segmentation methods (i.e. sliding windows, intensity-based and
depth-based segmetnation)

6. The effect of different widths and depths of the vocabulary tree

7. Number of nearest neighbors in the kNN classifier

8. Different types of feature detectors

9. Additional tests with manually pre-segmented image datasets.
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Figure 10: Results of applying Intensity Segmentation (the floodcanny algo-
rithm), Stereo Segmentation and Sliding Windows to generate the sub-windows
to evaluate at the first sequence of the IIIA30 dataset. For the three experi-
ments the DoG detector and a tree with branch factor 10 and depth 4 have been
used.

Detection with Segmentation: We have evaluated the proposed floodcanny
intensity based segmentation algorithm and the depth based segmentation ap-
proach described earlier.

We applied the floodcanny to the first sequence of the IIIA30 dataset with
good results. For each region sufficiently large, a set of five windows of different
sizes, centered at the detected region is defined. Besides increasing recall, as can
be seen in Figure 10, the number of false positives has decreased from thousands
to only tens.
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Despite this result, the proposed segmentation scheme is not optimal, as it
usually works better for large and textureless objects, that can be segmented
as a big single region. Contrarily, small and textured objects pose a problem to
the floodcanny method, as no single large enough region can be found.

Regarding the depth segmentation, Figure 10 also shows the results for this
experiment. Although the maximum attained recall is slightly lower than that of
sliding windows, it must be noted that, at a similar level of recall, false positives
are much lower.

4.4 Evaluation of Selected Configuration

In this Section we summarize the results obtained with the parameter configu-
rations selected in the cross-validation study on all the test sequences.

Except for recall, which is better for the Vocabulary Tree method, the SIFT
object recognition has better results in all other aspects related to robotics.

As can be seen in Table 6, with the segmentation schema adopted in this
final experiment, we have obtained a recall better than with the SIFT method
for untextured objects7. Unfortunately small and textured objects are harder to
detect with the current segmentation , as they usually do not generate a large
enough uniform region. However this is not a weakness of the Vocabulary Tree
method but of the segmentation approach.

Objects 10nn 10nn with fil-
tering δ =
0.8

5nn 1nn 10nn with re-
laxed overlap

Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec
Grey bat-
tery

0.36 0.01 0.32 0.02 0.32 0.01 0.36 0.01 0.60 0.02

Bicycle 0.67 0 0.59 0 0.58 0.01 0.49 0.01 0.70 0
Hartley
book

0.21 0 0.21 0 0.19 0 0.21 0 0.81 0.01

Calendar 0.18 0 0.09 0 0.15 0 0.12 0 0.53 0.01
Chair 1 0.70 0.05 0.69 0.06 0.72 0.05 0.78 0.06 0.71 0.06
Charger 0.11 0 0 0 0 0 0 0 0.11 0
Cube 2 0.11 0 0.11 0 0.11 0 0.17 0 0.28 0.01
Monitor 3 0.77 0.16 0.77 0.17 0.66 0.14 0.71 0.09 0.93 0.21
Poster
spices

0.46 0.02 0.46 0.02 0.35 0.02 0.46 0.03 0.59 0.03

Rack 0.60 0.06 0.58 0.07 0.60 0.07 0.58 0.06 0.82 0.09

Table 6: Precision and recall for some interesting objects of the IIIA30 dataset
in the final Vocabulary Tree experiment (i.e. tree with branch factor 9 and
depth 4, and features found with the Hessian Affine detector). Different choices
of parameters for the classifier are displayed. Also, the last column, shows the
results obtained using Equation 6 instead of Equation 5 to measure overlap.

Objects like the computer monitors, the chairs or the umbrella had a recall
comparable to that of textured objects. As can be seen in Table 7, a similar
recall was obtained for the objects of types textured and not textured. A slightly

7For space reasons, only part of the Table was included. The full Table can be found in
http://www.iiia.csic.es/~aramisa/datasets/iiia30_results
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worse recall was obtained for the repetitively textured objects, but we believe
it is mostly because of the segmentation method.

10nn 10nn-0.8 5nn 1nn 10nn-
relaxed

Repetitively textured objects
Recall 0.18 0.18 0.21 0.23 0.29
Prec 0 0 0 0 0.01

Textured objects
Recall 0.29 0.27 0.26 0.28 0.53
Prec 0.02 0.02 0.02 0.02 0.02

Not textured objects
Recall 0.29 0.26 0.27 0.29 0.39
Prec 0.03 0.03 0.03 0.03 0.04

Table 7: Precision and recall depending on texture level of the objects in the
final experiment with the [14] Vocabulary Tree. The objects are grouped in the
same way as in Table 5. The title 10nn-0.8 stands for 10 nearest neighbors
with filtering δ = 0.8, and 10nn-relaxed for 10 nearest neighbors with relaxed
overlap.

Regarding the image quality parameters (see Table 8), the occluded objects
obtained a higher recall level, but this was because, as mentioned in the pre-
vious discussion, the sliding windows approach taken in this experiment does
not enforce a precise detection and, therefore, Equation 5 discards hypotheses
correctly detecting object instances. When Equation 6 was used for all objects,
instead of restricting it only to the occluded ones, recall for objects with normal
and blurred viewing conditions is increased. The percentage of detected objects
with a degree of overlap from 90% to 100% between the found and the ground
truth bounding box was increased by 14%, showing that, although not precisely,
the considered windows did overlap almost the whole object region.

10nn 10nn-0.8 5nn 1nn 10nn-
relaxed

Normal 0.24 0.23 0.24 0.25 0.45
Blur 0.29 0.28 0.28 0.3 0.46
Occluded 0.64 0.61 0.62 0.62 0.64
Illumination 0.06 0.06 0.06 0.11 0.11
Blur+Occl 0.43 0.41 0.43 0.46 0.43
Occl+Illum 0.11 0.11 0.08 0.08 0.11
Blur+Illum 0.14 0 0 0 0.14

Table 8: Recall depending on image characteristics. Normal stands for object
instances with good image quality and blur for blurred images due to motion,
illumination indicates that the object instance is in a highlight or shadow and
therefore has low contrast. Finally the last three rows indicate that the object
instance suffers from two different problems at the same time.

4.5 Discussion

With the selected configurations we obtained an average recall of 30%. More
importantly, this approach has been able to detect objects that the SIFT could
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not find because of its restrictive matching stage. However, also 60 false posi-
tives per image on average were detected with the selected configuration, which
represents a precision of 2% on average.

In the light of the performed experiments, it seems clear that the Vocabulary
Tree method cannot be directly applied to a mobile robotics scenario, but some
strategy to reduce the number of false positives is necessary. In addition to
reducing false positives to acceptable levels, it is necessary to accelerate the
detection step in order to process images coming from the robot cameras at an
acceptable rate. Improving the segmentation strategy, or using a technique such
as the one presented in [19] will surely help improve the accuracy.

Nevertheless, we found that the Vocabulary Tree method was able to detect
objects that were inevitably missed by the SIFT Object Recognition method.
Furthermore, new and promising bag of features type approaches are currently
being proposed, such as the aforementioned [20] approach, the one by [21] and
specially the one by [22]. In future work we plan to evaluate some of these
methods.

Regarding the depth segmentation, Figure 10 also shows the results for this
experiment. Although the maximum attained recall is slightly lower than that of
sliding windows, it must be noted that, at a similar level of recall, false positives
are much lower.
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5 Viola-Jones Boosting
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Figure 11: Diagram of the Viola and Jones Cascade of Weak Classifiers method,
with tests shown as purple boxes. Orange boxes refer to steps of the method
and green to input/output of the algorithm.

A third commonly used object recognition method is the cascade of weak
classifiers proposed by Viola and Jones [17]. This method constructs a cascade
of simple classifiers (i.e. simple Haar-like features in a certain position inside
a bounding box) using a learning algorithm based on AdaBoost. Speed was
of primary importance to the authors of [17], and therefore every step of the
algorithm was designed with efficiency in mind. The method uses rectangular
Haar-like features as input from the image, computed using Integral Images,
which makes it a constant time operation regardless of the scale or type of
feature. Then, a learning process that selects the most discriminative features
constructs a cascade where each node is a filter that evaluates the presence of a
single Haar-like feature with a given scale at a certain position in the selected
region. The most discriminative filters are selected to be in the first stages of
the cascade to discard windows not having the object of interest as soon as
possible. At classification time, the image is explored using sliding windows.
However, thanks to the cascade structure of the classifier it’s only at interesting
areas where processor time is really spent.

Notwithstanding its well known advantages, this approach suffers from sig-
nificant limitations. The most important one being the amount of data required
to train a competent classifier for a given class. Usually hundreds of positive
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and negative examples are required (e.g. in [23] 5000 positive examples, derived
using random transformations from 1000 original training images, and 3000
negative examples where used for the task of frontal face recognition). Another
known drawback is that a fixed aspect ratio of the objects is assumed with this
method, that may not be constant for certain classes of objects (e.g. cars). An-
other drawback is the difficulty of generalizing the approach above 10 objects at
a time[24]. Finally, the tolerance of the method to changes in the point of view
is limited to about 20◦. In spite of these limitations, the Viola and Jones object
detector has had remarkable success and is widely used, especially for the tasks
of car and frontal face detection.

Since the publication of the original work by Viola and Jones, many im-
provements to the method have appeared, for example to address the case of
multi-view object recognition [25, 26].

5.1 Experimental Results

In this work the original method has been evaluated using a publicly available
implementation8

Training Set Size and Image Quality As previously mentioned, one of the
most important limitations of the Viola and Jones object recognition method
is the size of the training set. In this work we have evaluated three different
training sets. The first one consists of images extracted from the ground truth
bounding boxes from test sequences IIIA30-2 and IIIA30-3. The second one
consists of the same training set used for the Vocabulary Tree experiments (20
good quality training images per object type) and additional synthetic views
generated from these images. Finally, the third training set is a mix between
good quality images extracted from videos recorded with a digital camera (for
21 objects, between 700 and 1200 manually segmented images per object), and
a single training image plus 1000 new synthetic views (for 8 objects).

The dataset used for the first test only had a few images for each type of
object: 50 to 70 images per class. In Table 9 the results obtained for sequences
IIIA30-1 and IIIA30-2 are shown. With so few training data, the Viola and
Jones classifier is able to find only some instances for objects of 11 out of the 29
categories. This performance is expected due to the limited amount of training
data.

Table 10 shows the results obtained with the twenty training images used in
the Vocabulary Tree experiments, but further enhancing the set by synthetically
generating a hundred extra images for each training sample. As it can be seen,
the usage of high quality images and the synthetic views significantly improved
the results.

Finally, Table 11 shows the results obtained using the third training set,
which consisted of hundreds of good quality images extracted from video record-

8We have used the implementation that comes with the OpenCV 1.0 library: http://

sourceforge.net/projects/opencvlibrary/
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Object Recall Prec Object Recall Prec
Grey battery 0.0 0.0 Monitor 2 0.14 0.14
Red battery 0.28 0.02 Monitor 3 0.03 0.01

Bicycle 0.46 0.07 Orbit box 0.03 0.01
Ponce book 0.0 0.0 Dentifrice 0.0 0.0

Hartley book 0.03 0.01 Poster CMPI 0.17 0.15
Calendar 0.19 0.01 Phone 0.0 0.0

Chair 1 0.11 0.22 Poster Mystrands 0.36 0.27
Chair 2 0.71 0.05 Poster spices 0.46 0.06
Chair 3 0.0 0.0 Rack 0.0 0.0
Charger 0.0 0.0 Red cup 0.0 0.0
Cube 1 0.0 0.0 Stapler 0.03 0.01
Cube 2 0.0 0.0 Umbrella 0.03 0.02
Cube 3 0.0 0.0 Window 0.36 0.2

Extinguisher 0.0 0.0 Wine bottle 0.0 0.0
Monitor 1 0.0 0.0

Table 9: Recall and precision values obtained training the Viola & Jones object
detector using images extracted from the IIIA30-3 sequence and evaluating in
sequences IIIA30-1 and IIIA30-2.

Object Recall Prec Object Recall Prec
Grey battery 0.01 0.02 Monitor 2 0.41 0.20
Red battery 0.08 0.04 Monitor 3 0.40 0.18

Bicycle 0.01 0.10 Orbit box 0.10 0.16
Ponce book 0.08 0.31 Dentifrice 0.01 0.03

Hartley book 0.04 0.08 Poster CMPI 0.10 0.05
Calendar 0.11 0.27 Phone 0.07 0.08

Chair 1 0.02 0.30 Poster Mystrands 0.71 0.12
Chair 2 0.01 0.34 Poster spices 0.05 0.05
Chair 3 0.02 0.05 Rack 0.06 0.55
Charger 0.0 0.08 Red cup 0.01 0.05
Cube 1 0.06 0.21 Stapler 0.02 0.20
Cube 2 0.0 0.56 Umbrella 0.05 0.58
Cube 3 0.03 0.24 Window 0.10 0.08

Extinguisher 0.09 0.13 Wine bottle 0.03 0.32
Monitor 1 0.02 0.01

Table 10: Recall and precision values for each object category for the Viola
& Jones object detector when using the same training set as with the bag of
features with synthetically generated images.

ings done with a conventional camera. A conclusion that can be quickly inferred
from the table is the decrease in performance caused by occlusions. Even objects
that achieve a good recall and precision with good viewing conditions, fail in
the case of occlusions. In contrast, blurring and illumination variations did not
affect performance significantly. Regarding the object types, (textured, untex-
tured and repetitively textured) textured objects obtained an overall recall of
26% and precision of 33%, similar to that of repetitively textured objects (24%
recall and 36% precision). Finally, untextured objects obtained 14% of recall
and 19% precision. With this dataset, the average f-measure obtained is higher
than the one obtained with the bag of features object detection method.

The performance on the posters is surprisingly low in comparison to the
other two methods. The explanation could be the large changes in point of
view that the posters suffer through the video sequences. The time necessary

29



All Non-Occluded Occluded
Object Recall Prec Recall Prec Recall Prec

Grey battery 0.36 0.24 0.41 0.24 0.0 0.0
Red battery 0.37 0.82 0.44 0.82 0.0 0.0

Bicicle 0.0 0.0 0.0 0.0 0.0 0.0
Ponce book 0.81 0.88 0.86 0.86 0.25 0.02

Hartley book 0.66 0.94 0.70 0.94 0.0 0.0
Calendar* 0.33 0.08 0.38 0.08 0.0 0.0

Chair 1 0.0 0.0 0.0 0.0 0.0 0.0
Chair 2* 0.0 0.0 0.0 0.0 0.0 0.0
Chair 3 0.0 0.0 0.0 0.0 0.0 0.0
Charger 0.12 0.08 0.12 0.08 0.0 0.0
Cube 1 0.22 0.43 0.23 0.29 0.2 0.15
Cube 2 0.23 0.11 0.20 0.09 0.34 0.03
Cube 3 0.28 0.53 0.37 0.48 0.09 0.06

Extinguisher 0.0 0.0 0.0 0.0 0.0 0.0
Monitor 1* 0.0 0.0 0.0 0.0 0.0 0.0
Monitor 2* 0.23 0.57 0.39 0.57 0.0 0.0
Monitor 3* 0.04 0.13 0.05 0.13 0.0 0.0
Orbit box* 0.15 0.03 0.17 0.03 0.0 0.0
Dentifrice 0.0 0.0 0.0 0.0 0.0 0.0

Poster CMPI 0.11 0.34 0.19 0.34 0.0 0.0
Phone 0.05 0.09 0.0 0.0 0.3 0.09

Poster Mystrands 0.0 0.0 0.0 0.0 0.0 0.0
Poster spices 0.04 0.38 0.12 0.38 0.0 0.0

Rack 0.0 0.0 0.0 0.0 0.0 0.0
Red cup 0.89 0.89 0.89 0.89 0.0 0.0
Stapler 0.24 0.21 0.24 0.21 0.0 0.0

Umbrella 0.0 0.0 0.0 0.0 0.0 0.0
Window 0.03 0.40 0.10 0.40 0.0 0.0

Wine bottle* 0.10 0.06 0.10 0.06 0.0 0.0

Table 11: Recall and precision values for each object category using the Viola
& Jones object detector. When we decompose the precision-recall values for oc-
cluded and non-occluded objects, results shows a performance drop for occluded
objects. The asterisk mark denotes objects trained from synthetic images.
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to apply the classifiers for all the classes to one test image is 728 ms on average.

5.1.1 Discussion

Despite the use of very simple image features, the Viola and Jones Cascade of
classifiers attains a good level of precision and recall for most of the objects in
a very low runtime. Its main drawbacks are the large, in comparison with the
other evaluated techniques, training dataset required to obtain a good level of
performance, and the limited robustness to changes in the point of view and
occlusions of the method. Furthermore, some theoretically “easy” objects, such
as the posters, proved to be troublesome to the Viola and Jones method. This is
probably due to overfitting to some particular view, or to too much variability of
the very rich Haar feature distribution when changing the point of view, where
the method was unable to find any recognizable regular pattern.

Nevertheless, the idea of a boosted cascade of weak classifiers is not limited
to the very fast but simple Haar features, but any kind of classifier can be used
for that matter. A very interesting alternative is using linear SVMs as weak
classifiers, since it allows to add a non-linear layer to an already efficient linear
classifier. Such idea has been already successfully applied in a few cases [27, 28],
and we believe it is a very interesting line to investigate.

31



6 Conclusions

Object perception capabilities are a key element in building robots able to de-
velop useful tasks in generic, unprepared, human environments. Unfortunately,
state of the art papers in computer vision do not evaluate the algorithms with
the problems faced in mobile robotics. In this work we have contributed an
evaluation of three object recognition algorithms in the difficult problem of ob-
ject recognition in a mobile robot: the SIFT object recognition method, the
Vocabulary Tree and a boosted cascade of weak classifiers. In contrast with the
case of high-quality static Flickr photos, images acquired by a moving robot are
likely to be low resolution, unfocused and affected by problems like bad fram-
ing, motion blur or inadecuate illumination, due to the short dynamic range of
the camera. The three methods have been thoroughly evaluated in a dataset
obtained by our mobile robot while navigating in an unprepared indoor envi-
ronment. Finally, in order to improve the performance of the methods, we have
also proposed several improvements to the methods.

This work aims to be a practical help for roboticists that want to enable
their mobile robots with visual object recognition capabilities, highlighting the
advantages and drawbacks of each method and commenting on its applicability
in practical scenarios. Furthermore, relevant enhancements for the methods ex-
istent in the literature (i.e. support for 3D models in the SIFT object recognition
method) are reported.

We have created a challenging dataset of video sequences with our mobile
robot while moving in an office type environment. These sequences have been
acquired at a resolution of 640× 480 pixels with the robot cameras, and are full
of blurred images due to motion, large viewpoint and scale changes and object
occlusions.

The first evaluated method is the SIFT object recognition method, proposed
by [11]. Many issues including:

• training image quality

• approximate local descriptor matching

• false hypotheses filtering methods

are evaluated in a subset of the proposed dataset. Furthermore, we propose and
evaluate several modifications to the original schema to increase the detected
objects and reduce the computational time.

The parameter settings that attained best overall results are subsequently
tested in the rest of the dataset and carefully evaluated to have a clear picture of
the response that can be expected from the method with respect to untextured
objects or image degradations. Next, a similar evaluation is carried on for the
second method, the Vocabulary Tree proposed by [14]. For the case of the Viola
and Jones cascade of weak classifiers the used implementation directly offers a
thoroughly evaluated selection of parameters, and the main variable we have
evaluated is the training set size.
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From the results obtained, it can be seen that with the present implemen-
tation of the methods, the SIFT object recognition method adapts better to
the performance requirements of a robotics application. Furthermore, it is easy
to train, since a single good quality image sufficed to attain good recall and
precision levels. However, although this method is resistant to occlusion and
reasonable levels of motion blur, its usage is mostly restricted to flat well tex-
tured objects. Also, classification (generalizing to unseen object instances of the
same class) is not possible with this approach.

On the other hand, the Vocabulary Tree method has obtained good recogni-
tion rates both for textured and untextured objects, but too many false positives
per image were found. Finally, the Viola and Jones method offers both a good
recall (specially for low-textured objects) and execution speed, but is very sen-
sitive to occlusions and the simple features used seem to be unable to cope with
the most richly textured objects in case of strong changes in point of view.

Although we have evaluated the proposed object recognition methods in a
wide range of dimensions, one that is lacking is a more in-depth study of how the
composition and size of the training set affects the overall results. For example,
having similar objects, as the different monitors or chairs in the IIIA30 dataset,
can cause confusion to the methods. Therefore future work will address the
evaluation of different sub-sets of target objects.

The main limitation of the SIFT object recognition method is that only the
first nearest neighbor of each test image feature is considered in the subsequent
stages. This restriction makes the SIFT method very fast, but at the same time
makes it unable to detect objects with repetitive textures. Other approaches
with direct matching, like that of [29], overcome this by allowing every feature
to vote for all feasible object hypotheses given the feature position and ori-
entation. Evaluating this type of methods, or modifying the SIFT to accept
several hypotheses for each test image feature, would be an interesting line of
continuation of this work.

The sliding windows approach could be improved by allowing windows with a
good probability of a correct detection to inhibit neighboring and/or overlapping
windows, or simply keeping the best window for a given object would clearly
reduce the number of false positives.

Regarding the segmentation schema, we believe that results can be improved
by adopting more reliable techniques, able to resist highlights and shadows.
Besides, textured areas pose a problem to the segmentation algorithm as, with
the current technique, no windows will be cast in scattered areas. It would
be interesting to test if a Monte Carlo approach to fuse neighboring regions
can help alleviate the problem without significantly affecting the computational
time. Also a voting mechanism to detect areas with a high number of small
regions can be attempted.

The Viola and Jones approach was the fastest of the three in execution time
and, as mentioned earlier, it obtained a reasonable level of precision and recall
–especially for the low-textured objects–, but at the cost of a significantly larger
training effort –both in computational cost and labeled data– than the other
two methods. In addition, objects instances with occlusions had a performance
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notably lower in comparison.
More powerful features, like the ones used for the other two methods, or

the popular HOGs [30], could also be used in the Viola and Jones cascade of
classifiers. However that would increase the computational cost of the method.
In order to handle the viewpoint changes extensions have been proposed to
the method [25, 31], specially using Error-Correcting Output Codes (ECOC)
[32]. It would be interesting to evaluate the impact on the performance of these
extensions.

In summary: Three fundamentally different methods, each one a represen-
tative of a very successful established paradigm for visual object perception,
have been evaluated for feasibility for the particular task of object detection in
a mobile robot platform. Furthermore, a number of variations or improvements
to the selected methods are being actively produced and evaluated.
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