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Abstract - The development of an intelligent wheelchair (IW) platform that may be easily adapted 

to any commercial electric powered wheelchair and aid any person with special mobility needs is 

the main objective of the IntelllWheels project. To be able to achieve this main objective, three 

distinct control methods were implemented in the IW: manual, shared and automatic. Several 

algorithms were developed for each of these control methods. This paper presents three of the 

most significant of those algorithms with emphasis on the shared control method. Experiments 

were performed by users suffering from cerebral palsy, using a realistic simulator, in order to 

validate the approach. The experiments revealed the importance of using shared (aided) controls 

for users with severe disabilities. The patients still felt having complete control over the 

wheelchair movement when using a shared control at a 50% level and thus this control type was 

very well accepted. Thus it may be used in intelligent wheelchairs since it is able to correct the 

direction in case of involuntary movements of the user but still gives him a sense of complete 

control over the IW movement. 

Keywords - Intelligent Robotics, Intelligent Systems, Intelligent Wheelchair, 

Shared Control, Cerebral Palsy 

1. Introduction 

Scientific research allowed the evolution and development of many technologies 

that are nowadays used in everyday life. In particular, innovations in the field of 

assistive technologies enabled increased autonomy and independence for human 

beings that, for some reason, have some kind of disability. Intelligent wheelchairs 

are an obvious application of the scientific work developed in the last decades on 

this area. Moreover, these assistive technologies still are object of research and the 

interaction between them and the user is still an open research problem. The 

interaction between the Human and the IW is an important component to take in 



 

2 

consideration. The users’ opinions should also be integrated in the development 

process of the instruments which are to serve and fulfill a human necessity. 

The electric wheelchairs are assistive technologies and are typically driven by two 

individually powered wheels which rotate around a horizontal axis, and another 

two non-powered caster wheels, which, besides rotating around a horizontal axis, 

also have the ability to rotate around a vertical axis [1]. IW manual control is, in 

general, performed through the use of a joystick. The mapping of joystick 

positions to individual wheel speeds can be performed in many ways and it is this 

mapping that will determine the manual control behavior. For that reason, several 

of these mappings were implemented and tested with real users in a simulated 

environment and based on the users’ feedback some interesting conclusions about 

mappings were achieved [1]. Nevertheless, an IW can also be controlled in a high 

level manner, for example an action such as “going to the bedroom” can be 

performed autonomously by the IW. In shared control, the navigation process is 

divided between patient and machine. In this case, it is the machine which takes 

control when the navigation of the patient endangers its own safety, in situations 

such as potential collisions with objects [2] and aids the patient in his IW 

navigation by recognizing his intentions and filtering his involuntary inputs. 

This paper is organized in 5 sections. The first section is composed by this 

introduction. The second section reports the related work about Intelligent 

Wheelchairs including a brief description about the IntellWheels project. The 

implementations of the proposed methods for manual, shared and automatic 

control are described in the third section. Next, the experimental work and results 

are presented. Finally some conclusions and directions for future work conclude 

the paper. 

2. Intelligent Wheelchairs 

In the last years several prototypes of IW have been developed and many 

scientific works have been published [3-5] in this area. Next, the state of art 

related to intelligent wheelchairs with special attention to the work developed in 

the IntellWheels project is presented. 
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2.1. Intelligent Wheelchairs’ Developments 

Nowadays, science allows having intelligent wheelchairs very similar in shape to 

traditional wheelchairs, with high maneuverability and navigational intelligence, 

with units that can be attached and/or removed and with more power autonomy 

[5]. A simple definition of Intelligent Wheelchair is a locomotion device used to 

assist a user having some kind of physical disability, where an artificial control 

system augments or replaces the user control [6-7]. The main objective is to 

reduce or eliminate the user's task of having to drive a motorized wheelchair.  

Table 1. Intelligent Wheelchairs’ projects 

Madarasz 

 

Autonomous wheelchair 

presented in 1986, with a 

micro-computer, a 

digital camera and an 

ultra-sound scanner. 

Omnidireccional IW 

 

Hoyer and Holper [9] 

presented in 1993 an 

omnidirectional IW. 

Two legs’ IW 

 

In 1994 Wellman [10] 

presented a hybrid 

wheelchair which was 

equipped with two extra 

legs. 

NavChair 

 

The NavChair [11] was 

presented in 1996. It is 

equipped with 12 

ultrasonic sensors and an 

on-board computer. 

Tin Man I 

 

Tin Man I [12] in 1995 

presented three operation 

modes: individual 

conducting a wheelchair 

with automatic obstacles 

deviation; moving 

throughout a track; 

moving to a point 

Tin Man II 

 

Tin Man II [13] in 1998 

has presented more 

advanced characteristics: 

store travel information; 

return to the starting 

point; follow walls; 

through doors; recharge 

battery. 

FRIEND’s Project 

 

Robot presented in 1999 

which consists of a 

motorized wheelchair 

and a MANUS 

manipulator [14]. 

LURCH 

 

In 2007 started the 

LURCH (Let Unleashed 

Robots Crawl the 

House) project [15] 

which aims at 

developing an 

autonomous wheelchair. 

RoboChair 

 

In 2009 Robochair [16] 

aimed to be an open 

framework for future 

assistive applications.  

It was modularly 

designed and based in 

open standards for easy 

extension and low cost. 

VAHM 

 

In 2010 the VAHM 

project [17] presented a 

new prototype of an 

intelligent wheelchair 

with a deictic interface. 

ARTY 

 

In 2012 was published 

and presented the 

Assistive Robot 

Transport for Youngsters 

(ARTY) [18]. This is an 

intelligent paediatric 

wheelchair. 

Smart Driving Assist. 

 

In 2012 were presented 

the results of the smart 

driving assistance from 

the University of 

Bremen [19]. 
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Usually, an IW is controlled by a computer, has a set of sensors and applies 

techniques derived from mobile robotics research in order to process the sensor 

information and generate the motors commands in an automatic way or with a 

shared control. The interface may consist of a conventional wheelchair joystick, 

voice based control, facial expressions or even gaze control, among others. The 

developments since 1986 when the Madarasz project [8] was first proposed, 

evolved all over the world. Several new projects were presented. Table 1 presents 

a list of some IW prototypes and describes some of their characteristics. 

It is possible to observe several solutions with complex ergonomics, however 

there are also some projects that try to considerer the users’ opinions about the 

modifications to their wheelchairs. The project presented in the next section tries 

to follow the principle of introducing in a conventional wheelchair a simple 

platform that can transform it into an intelligent wheelchair. 

2.2. IntellWheels Project 

The IntellWheels project aims to develop an intelligent wheelchair platform that 

may be easily adapted to any commercial wheelchair and assist any person with 

special mobility needs [20]. The project main focus is the research and design of a 

multi-agent platform, enabling easy integration of different sensors, actuators, 

devices for extended interaction with the user, navigation methods and planning 

techniques and methodologies for intelligent cooperation to solve problems 

associated with intelligent wheelchairs [21]. 

A real prototype (Figure 1) was created by adapting a typical electric wheelchair. 

Two side bars with a total of 16 sonars, a laser range finder and two encoders 

were incorporated. 
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Figure 1. Real prototype of the IW 

In the scope of the IntellWheels project, an IW simulator, called IntellSim, was 

developed. The objective of this simulator is essentially to support the test of 

algorithms, analyze and test the modules of the platform and safely train users of 

the IW in a simulated environment [5] [22]. In Figure 1 (right side) it is possible 

to observe the modeled virtual wheelchair. 

A multimodal interface was also developed that allows driving the wheelchair 

with several inputs such as joystick, gamepad, head movements or more high 

level commands such as voice commands and facial expressions recognized by a 

brain computer interface or even with a combination of these input methods. For 

example it is possible to blink an eye and say “go” for the wheelchair to follow a 

right wall [23-25]. Therefore it is possible to drive the IW in a completely 

automatic way, with a shared control or using the usual manual control. 

3. Manual, Automatic and Shared Controls 

One of the main objectives of the IntellWheels project was to be able to control 

the wheelchair using three distinct methods: manual, shared and automatic [26]. 

During the course of the project several manual and shared algorithms have been 

developed, but their comparative evaluation had never been performed. In the 

course of this work several experiments were performed in order to compare the 

algorithms developed. These experiments provided the best manual, shared or 

automatic control adapted to the patients. 



 

6 

3.1. System Architecture 

The system is composed by eight main modules and enables a therapist to make 

experiments with users using distinct types of control methods (Figure 2). 

 

Figure 2. System architecture 

The core of the system is composed by the Intelwheels multimodal interface and 

Intellwheels control module. The multimodal interface enables the patient to fully 

control real and simulated Intelligent Wheelchairs, using multimodal inputs, 

including pre-defined input sequences that may be freely associated with any of 

the available outputs (wheelchair actions).  

The interface is connected to the control module that is able to receive high-level 

or medium level commands from the multimodal interface and control a real or 

simulated wheelchair making it perform the actions corresponding to those 

commands (such as go ahead, turn right, follow the right wall, stop, among many 

others). The control module is also responsible for providing the manual, shared 

and automatic control modes. The last two modes enable users with disabilities to 

control the wheelchair using intentions without the need of performing fine-tuned 

movements/inputs. 

The control module may control the real IW prototype but also, in exactly the 

same way, the simulated intelligent wheelchair in the context of the simulator. 

This simulator was built using Unreal Tournament 2004 and USARSim 3.1.3 

together with a realistic scenario developed with Unreal 2004 Editor. This 3D 

scenario is a very realistic model of the cerebral palsy institution facilities, thus 

enabling the development of experiments, in a simulated mode, in a scenario very 

similar to the one the patients were used to. 
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In order to be able to develop and conduct meaningful experiments, a serious 

game for intelligent wheelchair teaching and testing was built. The game permits 

the definition of circuits and the placement of markers (balls and stars) that must 

be collected by the user in order to gain points. It also enables gathering other 

performance measures such as the trajectory of the users performing the circuit. 

In order to be able to extract user profiles and adapt the user interface to the users’ 

profiles several other applications were developed. The first one consists on a 

complete data gathering system that is able to gather the data available on: 

multimodal interface; control module; simulated wheelchair; real wheelchair and 

serious game, and then synchronize all of this data and freely select the values to 

record in appropriate files in order to be further analyzed by the data analysis 

applications. A user profiling application integrated in the multimodal interface 

was also created in this context, in order to be able to conduct controlled 

experiments with each user and to analyze their capabilities of performing each 

type of possible input in each of the available input devices. 

Based on the user profiling and associated data gathering system, a data analysis 

system was developed enabling the analysis of users capabilities when performing 

each type of input and when driving the IW with different input combinations and 

using distinct control modes (normal and shared with distinct levels of handicap). 

This module is able to advise, in a simple manner, the best control mode for each 

user. 

A manager module was also developed in order to be able to perform a large set 

of experiments using the developed user profile extraction methodology and the 

set of implemented applications. This manager allows to launch all the 

applications, perform user profiling tests, define the scenario to be used, the 

circuit to be performed, the control modes to be tested and the data to be gathered 

and analyzed. 

3.2. Manual Control 

The mapping of joystick positions to individual wheel speeds can be done in an 

infinite number of combinations, and it is this mapping that will determine the 

behavior of the wheelchair in response to manual control. 

Considering that the joystick handle position is represented in a Cartesian 

coordinate system, with two axis, x and y, which vary between -1 and 1. These (x, 
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y) coordinates can be used to determine the distance of the handle to the central 

(resting) position of the joystick (0, 0) and an angle relating to a reference vector 

(which is usually (0, 1)). The desired speed of the left wheel (L) or the right wheel 

(R) is represented by normalized values (between -1 and 1). With positive values 

the wheels rotate forward and with negative values the wheels rotate backward.  

An intuitive mapping was implemented and the equations for R and L are: 









nxyL

nxyR
     (1) 

the value nx follows Equation (2): 
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

       

      )(

      )(
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point2pointpoint1

cxcifxu

cxifucxcu

cxifucxcu

nx  (2) 

where  1,0point c  ;  1,01 u   and  1,02 u  . The tested values were cpoint = 0.2; u1 

= 0.5 and u2 = 0.25.The first slope u1 allows a fast curve and the next slope u2 

after the cut point (cpoint) should allow a slower curve. 

3.3. Automatic Control 

The developed automatic control has as main objective following a predefined 

circuit by passing waypoints without the need of user intervention. The automatic 

control assumes full control over the navigation of the wheelchair and executes 

the navigating task following the circuit points without any user’s intervention. A 

predefined circuit can be specified by defining the relevant circuit points and the 

wheelchair can autonomously drive to the specified points.  

The main reason to create an automatic control was concerned with the 

methodology used to achieve a shared driving algorithm for the intelligent 

wheelchair. The users in the study performed predetermined tasks such as 

collecting objects along a circuit. This automatic control assumes the self-

localization problem solved and hence the IW always knows its position in the 

environment. Before this work, the IntellWheels IW was already capable of some 

forms of automatic control that did not rely on localization, such as “follow wall” 

or other high level actions like “go forward” [23]. However, it still missed an 
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automatic driving algorithm based on the current position and orientation and the 

desired position and orientation. 

Figure 3 shows the idea of the implemented algorithm. If the IW would move 

directly from target to target, it would have to stop and turn on the spot at each 

target. This is a very unnatural way of driving the IW. In order to have a smoother 

path, The IW should consider not only the following target, but also the target that 

follows. The position of the wheelchair in the world referential (x, y) combined 

along with the position of the target (T) and the next target (NT) in order to 

determine a corrected target (CT) of the trajectory. 

 
TNT

TNT
dTCT TCT

 

 
,      (3) 

With the introduction of the corrected target it is possible to have a smoother 

trajectory of the wheelchair. 

 

Figure 3. Automatic action of following circuit 

The corrected target is calculated using a ramp function as shown in Fig. 3 and 

has the same direction as the target (T) to the next target (NT). 
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A maximum distance d[CT,T] (dmax) could be chosen, considering for example the 

surrounding obstacles. Figure 4 displays the values empirically adjusted and used 

for the experiments after the first tests with the algorithm.  

 

Figure 4. Variation of the distance of the corrected target 

In this figure dmax has a value of 0.5 units, a has the value 0.5 and b has the value 

1.5. 

The distance of the target to the corrected target is determined by the value of the 

ramp function using the distance of the wheelchair to the target (dT) as input. 

Knowing this distance, the position of the corrected target may be determined by 

projecting the point along the next target to target line at this distance from the 

target. Using this information and the difference between wheelchair direction 

(WDir) and the angle to the correct target it is possible to calculate the correct 

target relative direction (CTDir), and using this value it is possible to calculate the 

difference between the joystick position direction and the CTDir direction. This 

difference is afterwards used for the shared control algorithm. 

3.4. Shared Control 

The concept behind the implemented shared control is to understand the intention 

of the user while providing an easier and safer navigation. This means that, for 

example, if a user has a high level of difficulty in driving the IW but his intentions 

can be recognized, the shared control helps the navigation of the wheelchair. 

Additionally the wheelchair takes control when the navigation of the patient 

endangers its own safety, in situations such as potential collisions with objects. 

The computer momentarily takes control and acts on the wheelchair, taking into 

account the information from sensors and the commands from the user.  

A more concrete example is given in Figure 5. If the position of the joystick is at a 

higher distance than a given threshold from the automatic control command then 
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it uses the user command otherwise it uses a weighted average of the automatic 

control and manual control.  

 

Figure 5. Aided control relatively to the user and to the automatic control 

The weights used in the weighted average determine the aid level that is provided 

to the user. Algorithm 1 presents the shared control implementation. 

 

 

 

 

Algorithm 1: SharedControl(JoyP, WP, WDir, T, NT, AidLevel), JoyShared 
 

1. inputs: 

2.     JoyP = Vector(JoyX, JoyY) – Joystick Position X and Y [-1..1] 

3.     WP = Vector(WX, WY) – Wheelchair Absolute Position 

4.     WDir – Wheelchair Global Orientation 

5.     T = Vector(TX, TY) – Target Absolute Position (inside track) 

6.     NT = Vector(NTX, NTY) – Next Target Absolute Position  

7.     AidLevel – Aid Level for the Shared Control [0..1] 

8. outputs: 

9.     JoyShared = Vector(JoySharedX, JoySharedY) – Joystick Final Pos using Aid Level 

10. begin 

11.     JoyDir ← atan2(JoyY, JoyX) 

12.     JoyNorm ← sqrt(JoyX
2
+ JoyY

2
) 

13.     dT ← distance(WP, T) 

14.     dCTT ← calculate_dCorr(dT, a, b, dMax) 

15.     CTVec ← T + dCTT * (NT - T) / mod(NT - T) 

16.     CTDir ← NormalizeAngle((CT – WP).direction() – WDir) 

17.     AngleDif ← fabs(NormalizeAngle(JoyDir – CTDir)) 

18.     if AngleDif >= Threshold(AidLevel) then 

19.          JoySharedDir ← JoyDir 

20.     else  

21.          JoySharedDir ← weightedDir(AidLevel, JoyDir, CTDir) 

22.     endif 

23.     JoySharedNorm ← weightedNorm(AidLevel, JoyNorm) 

24.     JoyShared ← JoySharedNorm.rotate(JoySharedDir) 

25.     return JoyShared 

26. end 
 
 

The algorithm receives the joystick position (representing the user intended 

action), the wheelchair global position (WP) and orientation (WDir), the target 

and next target points and the aid level considered- It then calculates the Joystick 

shared control position using this information.  
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The shared control algorithm starts by calculation the joystick position direction 

and norm. Then, it calculates the distance between the wheelchair current position 

and its target point (dT). Using this distance and the parameter values for a, b and 

dMax, dCTT is calculated and then equation 3 is applied in order to calculate the 

corrected target.  

The angle difference between the wheelchair heading and the corrected target is 

then calculated and the normalized absolute difference between this angle and the 

joystick direction is used to estimate the difference between tha automatic control 

suggestion and the user intention. If the angle difference is above a given 

threshold that depends on the aid level the user action is used as the final action. 

Otherwise a weighted direction is calculated based on the aid level, user joystick 

direction and corrected target direction. For example, for a very high aid level, 

this function considers that the joystick shared direction will be exactly the 

corrected target direction, enabling users with imprecise control of the joystick to 

do very precise driving of the wheelchair. The last step of the algorithm is to 

weight the joystick shared vector using the user joystick position in order to 

enable the user to keep some control over the wheelchair velocity even with very 

high aid levels. 

The final joystick corrected position using the shared control is then used as input 

for the control module that is able to used distinct joystick position to adjust 

wheels velocities. The implementation of the shared control also considered the 

obstacle avoidance procedure with the information of the sensors present in the 

IW. With this tool a more confident way of driving the IW is executed by the 

users with severe disabilities. 

3.5. Wheelchair Control Advisor 

The idea of having an aided control, for each patient, emerged from the 

experiments with real people with physical constraints. In fact, there were several 

patients that had some kind of movement ability, however not precise enough for 

driving a wheelchair in a safe manner. The aided control was implemented in a 

simple but effective manner and the adaptation for each user was performed using 

a profile module [23]. The profile module is available in the multimodal interface 

(Figure 6) and using it several simple tasks test the patient ability in moving the 
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joystick and performing head movements in several directions such as “North”, 

“South”, “East” and “West”. 

 

  

Figure 6. Profile module incorporated in the multimodal interface 

 

The wheelchair control advisor provides several alternatives considering the 

different accuracy levels achieved by the specific user: 

 Shared control with an aid level of 100% (with obstacle avoidance) – if the 

overall accuracy is included in [0, x[; 

 Shared control with an aid level of 50% (with obstacle avoidance) – if the 

overall accuracy is included in [x, y[ where 0 < x < y <1; 

 Manual control (with obstacle avoidance) – if the overall accuracy is in the 

interval [y, 1[. 

Obstacle avoidance is always advised using shared control, since it increases the 

safety of the user. In particular, if the accuracy has the value between 30% (x) and 

70% (y) then the aided control advised is at a level 50%. If the user selects an 

input device with very low accuracy, and that was not one of the advised input 

devices, then the wheelchair control informs that the best choice is to use the 

aided control at a 100% level. These parameters were obtained using supervised 

classification helped by the occupational therapists. 

4. Experiments and Results 

The experiments using the simulator IntellSim and the profile module allowed 

testing the users’ ability in driving the wheelchair with several input devices. 

After that it was possible to verify if an extra help should be provided to the user. 

It is possible to provide the users with the shared control with distinct aided levels 

as explained in Section 3.4. The automatic control could be used, for example, by 
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the patient’s escort such as a relative or medical personal in order to avoid them 

from the need to manually push the wheelchair to the intended target. 

The experiments with the shared control aimed at testing how the users with 

cerebral palsy would react when having a control that helps them in the task of 

driving wheelchair. The usability level was determined based on users’ feedback 

after testing the different shared controls without previously knowing the control 

characteristics: aided control at a 100%, aided control at a 50% and manual with 

obstacle avoidance. The experiments were conducted using the IntellSim and the 

order of tests with the shared controls was set randomly. A circuit was defined 

and several objects to be collected (passing near them) were put along the way. 

These objects (27 blue balls and a star in Figure 7) determine the path that the 

wheelchair should follow. 

 

Figure 7. Circuit for testing the shared controls 

The patients tested the shared controls using the joystick as input device and using 

head movements detected by a wiimote (Figure 8). 

  

Figure 8. Simulator users’ trials 
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After each round the patients answered a questionnaire composed of four parts: 

user identification; experience with videogames and joysticks; questions adapted 

from the Computer System Usability Questionnaire (CSUQ) [27] for each tested 

option and a final question about the preference order of the tested options. 

The sample was a group of 8 cerebral palsy patients with the level IV and V of the 

Gross Motor Function Measure [28]. This sample is characterized by having six 

males and two females, with a mean of age of 31 years old. All had experience 

with the joystick of their electric wheelchair although the experience with video 

games was low, except in one case that answered always play videogames. 

Table 2 shows the summary of statistics measures about the final score for all the 

mapping options. The obtained results from the final score of the CSUQ show a 

tendency to consider the aided control at a 50% the best way to drive the 

wheelchair with the joystick and the wiimote. In general, the opinions considered 

all options very useful except in the case of the head movements with obstacle 

avoidance which had the worst result. Nevertheless it is possible to affirm that the 

cerebral palsy patients would react favorably when having a control that helps the 

driving of the wheelchair. 

Table 2. Summary of statistical measures of the adapted CSUQ score 

Adapted CSUQ – Final Score 

 Joystick Wiimote 

Statistics 
Aid Cont. 

100% 

Aid Cont.  

50% 

Obs. 

Avoid. 

Aid Cont. 

100% 

Aid Cont. 

50% 

Obs. 

Avoid. 

Mean 82.7 87.1 84.1 76.0 76.4 50.6 

Median 88.9 99.2 88.9 84.9 91.3 41.3 

Std. Dev. 21.0 22.3 19.4 24.7 33.1 30.8 

Min 39.68 36.5 44.4 31.8 15.9 14.3 

Max 100 100 100 100 100 96.83 

In order to confirm the differences between the shared controls using joystick and 

wiimote, the Friedman test (related samples Friedman’s test two way analysis of 

variance by ranks) was applied to the final scores. The p values were 0.484 and 

0.004, and for that reason there are no statistical evidences to affirm that the 

distributions of the scores are significantly different for the joystick shared 

controls and there are statistical evidences to affirm that the distributions of the 

scores are significantly different for the head movements shared control at a level 

of 0.05.  

Table 3 shows the p values of the multiple comparisons, using the Fisher's least 

significant difference (LSD) in the case of the head movements shared controls. 
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Table 3. Multiple comparisons of the head movements shared controls 

Multiple Comparisons LSD Head movements shared controls(p values) 

 Aid. Control 100% Aid. Control 50% 

Aided control 50% 1 -- 

Obstacle Avoidance 0.001 0.001 

 

The results of the CSUQ score also confirm the tendency to the order of 

preference as can be observed in Table 4. 

Table 4. Summary statistics about the order of preference of the shared controls 

Adapted CSUQ – Final Score 

 Joystick Wiimote 

Statistics 
Aid Cont. 

100% 

Aid Cont.  

50% 

Obs. 

Avoid. 

Aid Cont. 

100% 

Aid Cont. 

50% 

Obs. 

Avoid. 

Median 2 2 3 1 2 3 

Min 1 1 1 1 2 1 

Max 2 3 3 2 3 3 

The aided control was chosen as the best way of driving the wheelchair in the case 

of using the joystick and the wiimote for the head movements. It was interesting 

to verify that all the patients found the experience of the aided control very 

pleasant.  

In terms of performance, all objects were collected using the joystick in the three 

controls modalities. Using the head movements, all the objects were collected 

using the aided controls at 100% and 50%, against a mean value of 25.75 objects 

(a minimum of 18 objects and the maximum of 28 objects) when using the manual 

control with obstacle avoidance. 

Table 5 shows three users’ circuits tracking performed using joystick and head 

movements with the three available shared controls.  

Table 5. Circuits tracking using joystick and head movements with three shared controls 

Circuits with Joystick Circuits with Head Movements 

  



 

17 

  

  

Observing the circuits it is clear the higher error in following the trajectory using 

the manual control with obstacle avoidance. Although the manual control with 

obstacle avoidance and using head movements had the worst preference and 

usability, there are users, such as the second user in Table 5, that have a behavior 

more accurate using head movements than using the joystick movements. This 

also revealed the importance of giving different choices and a multimodal 

interface for driving the intelligent wheelchair. 

A careful observation of the experiments executed by the patients was also 

performed by the occupational therapists and some interesting notes are important 

to register. All the users think that they had control of the wheelchair even when 

they were using the aided control at a level of 100%, except one case in which the 

user had obvious involuntary movements. He found it very strange that the 

wheelchair had such as smooth behavior and stopped a few times to check if the 

wheelchair corresponded to his action. Another situation was a case of a patient 

that had cognitive deficits; the level of motivation was very high when using the 

shared control at a level 100% and this could be identified by his non-verbal 

language. 

5. Conclusions and Future Work 

The shared control experiments revealed the importance of using aided controls 

for users with severe disabilities. The patients still felt having complete control 

over the wheelchair movement when using a shared control at a 50% level. Thus, 
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this control type was very well accepted and may be used as the main control 

method for the IW prototype. Overall the responses were very positive to this kind 

of control in terms of usability and preference. It was concluded that it is 

preferable a more intuitive reaction of the wheelchair to the position of the 

joystick and head positions. Moreover, the shared control should be used to have a 

higher safety when a user with physical limitations is driving the intelligent 

wheelchair. The shared control with adequate aid level for driving the wheelchair 

can be a usable solution to help the daily life chores of users.  

The input control advisor can also help in the initial decision to select an interface 

and the aided control level for handicapped people. This can help the user and the 

occupational therapist that normally follows the wheelchairs’ users. 

In this study, the shared control was only used in the simulated environment. 

However, the future evolution of the project will enable to have the localization 

issues of the real wheelchair solved in order to allow the aided control also in the 

real environment. 

Future work will be concerned with conducting a deeper study of the control 

methods by testing different configuration parameters for each control type and by 

testing the control methods with a broader sample of wheelchair users. Another 

experiment will be concerned with the use of machine learning algorithms to 

create user driving models and using them to create automatic control methods 

based on real user behavior. Finally it will be interesting to test the behavior with 

more complex paths and without any predefined paths. Also it may be interesting 

to conduct experiments using only the final target and how the system can help 

the user, on this situation, with different shared controls. 
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