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Abstract—In this paper, we apply a hierarchical tracking strat-
egy of planar objects (or that can be assumed to be planar) that
is based on direct methods for vision-based applications on-board
UAVs. The use of this tracking strategy allows to achieve the tasks
at real-time frame rates and to overcome problems posed by the
challenging conditions of the tasks: e.g. constant vibrations, fast
3D changes, or limited capacity on-board. The vast majority of
approaches make use of feature-based methods to track objects.
Nonetheless, in this paper we show that although some of these
feature-based solutions are faster, direct methods can be more
robust under fast 3D motions (fast changes in position), some
changes in appearance, constant vibrations (without requiring
any specific hardware or software for video stabilization), and
situations in which part of the object to track is outside of the field
of view of the camera. The performance of the proposed tracking
strategy on-board UAVs is evaluated with images from real-
flight tests using manually-generated ground truth information,
accurate position estimation using a Vicon system, and also with
simulated data from a simulation environment. Results show
that the hierarchical tracking strategy performs better than well-
known feature-based algorithms and well-known configurations
of direct methods, and that its performance is robust enough for
vision-in-the-loop tasks, e.g. for vision-based landing tasks.

I. INTRODUCTION

Robust visual estimation at real-time frame rates is one of
the main problems when addressing the visual tracking task
on-board UAVs. If the difficulties to obtain it are overcome,
the recovered visual information can be used in a variety of
vision-based control tasks, allowing to expand the vehicle’s
capabilities (e.g. vision-based landing, visual inspection), or
to cope with vulnerabilities of other on-board sensors (e.g.
GPS fallouts, Inertial Navigation System -INS- drift).

In previous works [1], [2], [3], we have used features-based
methods [4] to track planar scenes on-board UAVs (Unmanned
Aerial Vehicles). We have seen that in the application of
tracking on-board UAVs (see Fig. 1), the adopted feature-
based strategies are very sensitive to strong motions (e.g.
vehicle vibrations and fast 3D changes), being it difficult to
find a compromise between achieving real-time and accurate
estimations (defining a specific number of good features to
track without increasing the processing time). Although multi-
resolution (MR) approaches (e.g. [5]) can help coping with

Fig. 1. Tracking on-board UAVs. Robust real-time tracking allows to expand
the vehicle’s capabilities by using the tracking algorithm in vision-based
control tasks, such as landing, visual inspection, etc.; or by using it to cope
with vulnerabilities of other on-board sensors, such as GPS drop-outs or INS
drift.

strong and large motion problems, constant vehicle vibrations,
a low computational capacity available on-board, and delays
in the communication (when images are processed on the
ground), are problems that make the MR strategies insufficient
to properly perform the tracking task. Additionally, it has also
been observed that when using feature-based methods under
strong motions, the accumulation of errors make the tracking
algorithm fail after just a few frames, affecting and making
on-line tests difficult.

In this paper, we present a hierarchical tracking strategy
based on direct methods [6] for tracking on-board UAVs.
Direct methods have the advantages of solving, without in-
termediate steps, the motion of the camera and the matching
of the pixels using the intensity information of all the pixels
of the object to track, without identifying a special set of fea-
tures. However, in most situations, feature-based methods are
preferable to direct methods. This is because direct methods
are based on some constraints [6] that are, in some cases,
very difficult to preserve, and their speed is dependent on the
number of pixels in the image template (the one that contains
the object to track), being it sometimes difficult to achieve



real-time frame rates.

Nonetheless, the tracking strategy used in this paper (based
on direct methods) is robust under long frame-to-frame mo-
tions, and under constant vibrations. This permits to obtain
a robust object tracking without compromising the real-time
operation required in on-line applications.

In the literature, different strategies have been presented
to solve the tracking problem in aerial images. Most of the
strategies are based on feature-based methods [7], [8], [3], [9],
[10], and just a few have explored the use of direct methods
(1], [11].

In this paper, a hierarchical strategy in terms of image reso-
lution and number of parameters estimated in each resolution
is used. This strategy permits to improve the tracking task in
situations where MR approaches are not enough to cope with
long frame-to-frame motions. In the literature, to the authors’
knowledge, this strategy has not been presented for solving the
on-line tracking problem on-board autonomous vehicles. For
this reason, the intention of this paper is also to expand the use
of direct methods in real-time applications (e.g. vision-based
landing).

Our strategy uses the efficient Inverse Compositional Image
Alignment Algorithm ICIA [12] in a Hierarchical Multi-
Parametric and Multi-Resolution framework (HMPMR-ICIA),
that makes use of two hierarchical structures: the multi-
resolution (MR) and the multi-parametric (MP) ones. We have
successfully applied this strategy to solve our tracking problem
on-board a UAV. We have found that if this strategy is adopted,
it is possible to obtain robust estimations at real-time frame
rates with complex motion models.

The paper is organized as follows: in Section II, we give
a general idea of the visual tracking task based on direct
methods. Section III describes the hierarchical strategy for
tracking. In this section, we describe the advantages of using at
the same time the MP and the MR structures. We also show the
different parameters that the HMPMR strategy requires, and
we present the HMPMR-ICIA algorithm used for tracking on-
board UAVs. The performance of the HMPMR-ICIA algorithm
is analyzed under different conditions in Section V. In this
section, the hierarchical tracking strategy is compared with
well-known feature-based methods: the KLT [5] (pyramidal
Lucas Kanade) and the SIFT [13] (Scale-Invariant Feature
Transform), and also with ground truth data generated both
manually and with a Vicon system (a vision-based motion cap-
ture system) [14]. Additionally, in this section, the HMPMR-
ICIA algorithm is used to track a helipad in order to conduct a
vision-based landing task. Finally, in Section VI, conclusions
and the direction of future work are presented.

II. VISUAL TRACKING BASED ON DIRECT IMAGE
REGISTRATION

The 2D visual tracking task consists in determining the
position of an object in the image plane in each frame of the
sequence, assuming that the 3D displacements of the object
can be modeled by a 2D transformation (e.g translation, affine,
homography [15]).

This tracking task can be formulated as an incremental
image registration task, as shown in Fig. 2. Therefore, using
direct methods (i.e. direct image registration), the 2D position
in the image plane can be found using the intensity values of
the pixels that belong to the object, assuming that an initial po-
sition of the object is known (found manually or automatically
by detection algorithms), that the motion between frames is
small, that the pixels that belong to the object move similarly,
and that the appearance of the object does not change over
time (the direct methods’ constraints [6]).
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Fig. 2. Tracking as an incremental image registration task.

In the case of image registration the inputs are the two
images to be registered: the template image T, and the current
image I. These images must overlapped; and the output is a
geometrical transformation, which transforms points in one
image to points in the other image. Nonetheless, in the case
of tracking based on image registration, the inputs are also
two images, with the slight difference that in this case the
reference image T is an image or a sub-region of an image
that contains the object we want to track, and the current
image corresponds to a frame of a sequence. Therefore, the
registration is conducted between the template image (fixed
image) and the current image of the sequence, using an initial
estimation of the motion model: the one that corresponds to
the location of the object to track in the previous frame, so
that the images are close enough to be registered. The output,
in the case of tracking, for every frame analyzed, is also a
transformation that relates the reference image and the image
of the sequence, but in this case that transformation is used to
identify the position of the template image in each frame of
the sequence.

As shown in Fig. 2, a reference image (the object to track)
is defined in the first frame (template T, Fig. 2, frame 0, upper
left image). This reference image corresponds to a sub-image
or ROI (Region of Interest), called image template ('T'), defined
in the first frame I (the subscript represents the number of
the frame), and is found either manually or automatically by



detection algorithms.

When a new frame is analyzed I, (Fig. 2, frame 1, upper
right image), the motion between the reference and the current
images W (Fig. 2, frame 1, green arrow) is found by an im-
age registration technique, assuming that an initial estimation
of the motion Wj,;; = Wy is known (Fig. 2, frame 1, yellow
arrow). When an initial estimation is not know, this initial
estimation can be assumed as the identity matrix, assuming
that the frame-to-frame motion is small.

Therefore, the image registration algorithm is in charge of
estimating the incremental motion model (AW) in every itera-
tion. Thus, the motion W1 is estimated, and as a consequence
of this, the position of the object to track is found in the current
frame.

Then, the estimation found between frame 0 and frame 1
(W) is propagated to the next frame, as an initial estimation
of the motion (Wj,;y = W7 yellow arrow, Fig. 2, frame 2,
button left image). The process is repeated with each frame
of the sequence: the image registration technique finds AW,
the motion between the reference and the current frames W
is also found (Fig. 2, green arrow, button left image), and the
estimated motion continues being propagated to the following
frames.

In the previously mentioned process, the motion model W
represents the trajectory of the object in the image plane while
it moves around the scene. It is a 3 X3 matrix (1) parameterized
by the vector of parameters p = (py,...p,)T in such a way
that W is the identity matrix when the parameters are equal
to zero.

x'=W x =W(x;p)

1+p P2 D3 (D
W = D4 1+ps e
D7 P8 1

As shown in (1), W is the motion model that transforms
the 2D pixel coordinates x (where x = (x,y,1)T) in image
T into the 2D coordinates x’ = (ka’, ky’, k)" in image L

‘W can model different 2D transformations with different
numbers of parameters [15], e.g. translation (2 parameters),
rotation + translation (3 parameters), similarity (4 parameters),
affine (6 parameters), and homography (8 parameters). If W
represents the homography, then k = xp;+yps+1. Otherwise,
k=1

In our application, the assumption of 2D motion models is
enough, considering that the tracking algorithm will be used
for tracking planar surfaces (building inspection, helipad for
landing) or non planar surfaces that can be assumed planar
when flying at high altitudes, as shown in [16].

III. THE HIERARCHICAL TRACKING STRATEGY

The tracking strategy used on-board UAVs, based on di-
rect methods, is a hierarchical multi-parametric and multi-
resolution strategy (HMPMR). It makes use of two hierarchical
structures: the multi-resolution (MR) and the multi-parametric
(MP) ones, as shown in Fig. 3. The MR structure is created

by downsampling the images [17], [18]. The MP estimation
takes place inside this pyramidal structure in resolution.

For each level of the pyramid, as shown in Fig. 3, a
specific motion model is recovered (different motion models
are estimated in each level). The idea is that the number
of estimated parameters increases (i.e. the complexity of the
motion model increases) with the resolution of the image, as
shown in Fig. 3.

There are different advantages of integrating the MP and
the MR strategies. As pointed out in [19], the MR strategy has
been focused on computational efficiency and accuracy, sug-
gesting the idea that at low resolutions, the vector of motion is
smaller and long displacements can be better approximated by
improving the estimation using higher resolution information.

In a strategy using only a MR approach, the same motion
model is estimated in each level of the pyramid. The higher
the frame-to-frame motion is, the bigger the number of levels
the MR structure requires to be able to cope with the large
displacement. Nonetheless, if many levels are required, it
may be possible that due to the subsampling of the image,
the information at low resolutions could be insufficient (de-
pending on the quality and size of the images) to find a
robust estimation of a motion model with a high number of
parameters, presenting an unstable behavior when estimating
motion models with a high number of parameters.

If, on the contrary, less pyramid levels are considered in
order to avoid the loss of information due to the low resolution,
then this reduction of levels will cause a reduction in the range
of motion the algorithm can tolerate. For these reasons, for
our application, sometimes MR approaches fail to solve the
tracking problem. Nevertheless, by integrating the MR and the
MP structures, the HMPMR approach will allow to continue
taking advantage of the low resolution information to find a
large range of motion even when motion models with a high
number of parameters are estimated.

The HMPMR strategy requires the definition of different
parameters, such as the number of levels (pL) of the MR
structure and the motion models in the MP structure.

The different levels in the MR pyramid (pL) are defined as
a function of the size of the template image T, so that in the
lowest resolution level, i.e. the jax level (where j represents
the level), an image with not less than a defined number of
pixels (minPizels) will be used. Therefore, pL is defined as
follows, taking into account that the images are downsampled
by a factor of 2:

oL lowS

2= minPizels @
Where lowS represents the lowest size between the width
and height values of image T (the ROI that contains the object
of interest), and minPixels is defined as the minimum size
the template must have in the lowest resolution image (e.g. 5
pixels). Thus, with (2), the different levels of the MR structure
can be defined automatically, depending on the size of the

image template.
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Fig. 3. Hierarchical Tracking Strategy. A multi-parametric (MP) structure inside a multi-resolution (MR) scheme is used to improve the tracking problem

on-board UAVs, especially when the range of motion between frames is large. The MR structure is created by downsampling the images. Inside this pyramidal
structure in resolution, the MP estimation takes place. Different motion models with different numbers of parameters are estimated in each level. The motion
model found in the lowest level of the pyramid (level 0) permits to find the position of the template image in the current image. Additionally, this motion

model is propagated as initial guess to the next frame.

On the other hand, the MP structure is defined according
to the motion model selected at the lowest level of the
pyramid W% —the highest resolution level— (the superscript
represents the level). In this level, ‘WY must be chosen as the
best transformation that represents the motion of the object or
the motion of the camera in the image plane.

Additionally, in order to ensure the detection of large frame-
to-frame motion, the translation motion model is chosen for
the highest level of the pyramid W/max (the level that has
the lowest resolution image), while for the other levels the
motion models are selected, so that a smooth transition of the
number of parameters from the highest to the lowest level of
the pyramid is achieved.

If a camera is moving in the 3D space, then a possible
combination of motion models can be 8-4-3-2 in a pyramidal
structure with four levels. The first number corresponds to the
motion model that will be estimated in the lowest pyramid
level —highest resolution image— W0, in this case the ho-
mography. The last number corresponds to the motion model
that will be estimated in the highest pyramid level —lowest
resolution image— Wimax_in this case the translation; and the
other numbers correspond to the motion models estimated in
the intermediate levels, in this case the similarity (4 parame-
ters) and the translation+rotation motion model (3 parameters).

A. HMPMR-ICIA Algorithm

The image registration process consists in aligning two
images, a reference image or image template (T) and the
current image (I), by finding the transformation (W) that

best aligns them. This transformation or motion model (W) is
normally found iteratively, by minimizing the sum of squared
differences (SSD) between the reference image and the current
image [20].

Different minimization algorithms have been used in dif-
ferent fields: pose estimation [21], tracking [22], motion
segmentation [23], and mosaics [24]. However, the gradient
descent optimization (based on a first order Taylor series
approximation of the SSD) is one of the most used approaches
because of its efficiency [25], [26], [27]. In [25], gradient
descent approaches were classified according to the update rule
of the parameters of the motion model as: forwards additive
[26], forwards compositional [24], inverse additive [27], and
inverse compositional [12].

The image registration algorithm we use for tracking is
the Inverse Compositional Image Alignment algorithm (ICIA)
proposed in [12]. It is considered an efficient algorithm for
image registration (or image alignment) that permits an effi-
cient estimation of the parameters that define the motion of
the object W.

The goal of the ICIA consists in finding the vector of
parameters p of the motion model (1) by minimizing:

> [T(W(x; Ap)) — I(W(x; p))]?

X

3)

The increment of the parameters (Ap) is found after a first-
order Taylor series expansion of (3). Then, the motion model
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Fig. 4. HMPMR-ICIA. Images I and T are downsampled to create the MR structure. In each level, the x coordinates in T are transformed by W7, and
the errors between the intensity values in I/ (W (x; p)) and in T are calculated. Then, Ap is calculated, and the parameters are updated. The minimization
is conducted with respect to the parameters defined in each level. When the stopping conditions have been reached, the parameters are propagated to the
next level. At level j = 0, the most complex motion model is estimated. This final estimation W corresponds to the transformation that allows to find the

template image T in image I.

is updated, as follows:

W(x;p) « W(x;p) o W(x; Ap) ™ ©)

The increment in the parameters Ap of the motion model
(1) is estimated iteratively until stopping criteria are reached,
denoting the best local alignment solution. In our imple-
mentation we have defined three criteria: the minimum is
reached if the increment of the parameters is below a threshold
||Ap|| < 1075, if the MAE (mean absolute error) between T
and I does not decrease after a defined number of iterations
(10 iterations), or if the maximum number of iterations have
been reached (100 iterations).

The efficiency of the ICIA algorithm comes from the change
of roles of images I and T in (3), and the way the motion
model is updated (4). This change of roles makes the Hessian
matrix be constant, calculated at the beginning of the tracking
task, and so a fast alignment is achieved.

Nonetheless, this iterative algorithm relies on the assump-
tion that a previous estimation of the parameters of the motion
model is known, and that after a linearization of the cost
function (3), the algorithm iteratively solves the increment of
the parameters. Nevertheless, this linearization is valid only
when the range of motion is small.

In our application (tracking on-board UAVs) as well as in
other ones, this constraint can not be always ensured (limited
capacity on-board, and so low processing units on-board; fast
3D motions; etc), and although MR approaches were proposed
to help dealing with this problem, the use of a HMPMR
strategy instead of only a MR will help increasing the range
of motion that the algorithm can tolerate.

Therefore, by using the ICIA algorithm, an efficient track-
ing algorithm can be achieved using direct methods; and
by integrating it with the HMPMR structure, robust motion
estimations are achieved, allowing to track objects during long
periods of time at real-time frame rates.



Fig. 4 shows the diagram of the HMPMR structure for
tracking using the ICIA algorithm, and Algorithm 1 describes
the different steps in more detail.

As input, the algorithm requires the information of Iy (the
first frame), and the coordinates (x) in I of the object to
track. These coordinates can be found manually or automati-
cally using detection algorithms, e.g using template matching
approaches [28]. Additionally, the algorithm requires the defi-
nition of the levels of the MR structure (pL) defined using (2),
and the definition of the different motion models in the MP
structure W7, The definition of the motion models depends
on different criteria: the complexity of the task, the application
(building inspection, landing), and the configuration of the
camera in the UAV (forwards-looking or downwards looking).
As explained previously, according to these criteria W°, must
be defined as the best transformation that represents the motion
of the object or the motion of the camera.

Once this information is known, I, is downsampled ac-
cording to the different levels (pL) of the MR structure, thus
creating the template image T/ for each level, as shown in
Fig. 4 (initialization stage, right column). Additionally, in this
initialization stage, for each level of the pyramid, the Hessian
matrix and its inverse are calculated, as shown in more detail
in Algorithm 1, steps 1-6. These steps are carried out only
once, at the beginning of the tracking task.

When a new frame I is analyzed, it is first downsampled
to create the MR structure, as shown in Fig. 4 (tracking
stage, left column). The motion model at the highest level
(lowest resolution) (WJm=) is initialized. Because this is the
first frame, WJmx is the identity matrix.

For each level of the pyramid, as illustrated in Fig. 4, the
HMPMR-ICIA algorithm is applied as follows:

1) The coordinates x in T are warped using W7; and Vx,
the error between T'(x) and I/ (W7 (x; p)), is calculated
(steps 9-11, Algorithm 1).

2) The increment of the parameters is found using step 12,
Algorithm 1.

3) The motion model is updated using (4), step 3, Algo-
rithm 1.

4) In each level of the pyramid, the minimization is done
only with respect to parameters of the motion model
defined for that level. When the stopping conditions have
been reached, the parameters are propagated to the next
level of the pyramid as follows, taking into account that
the images have been scaled by a factor of two:

plt=p  for i={1,2,4,5}

pit=2p for i={3,6} 5)
P

pit =2 for  i={7,8}

2

being,

,0} ={pL—1,pL—2,...,0}

j = {jmaxajmax - 1a ..

Where the subscript ¢ represents the parameters defined
in (1), and j represents the level of the pyramid. j is
initialized as j = jmax, Where jumax = pL — 1, where
pL is the number of levels the pyramid has, as defined
in (2).

At the lowest level of the pyramid (i.e the one that has the
image with the highest resolution), the motion model W° will
contain the parameters that minimize the differences between
the template and the current images. This motion model is the
best approximation to the motion of the object in the image
plane. With this information, the position of T (i.e. the object
to track) in the current image I can be determined (steps 15-
16, Algorithm 1).

The motion model found in this frame is propagated as
initial guess to the highest level of the pyramid, jyax, of the
next frame, as follows:

i =0 for i={1,2,4,5}

. 2
pimes = ?Z for i={3,6} (6)
plme = spd  for i=1{7,8}

Where s = 27max (step 8, Algorithm 1).

This propagation of the parameters from the lowest level of
the pyramid in the previous frame to the highest level of the
pyramid in the new frame permits to validate the linearization
of (3) done by the image registration algorithm, so that when
a new frame is analyzed, by using the estimation of W in
the previous frame, images T and I are close enough to each
other to find a minimum.

The pseudocode of the HMPMR-ICIA algorithm is pre-
sented in Algorithm 1.

IV. 3D POSITION ESTIMATION

In this section a pose estimation algorithm, widely used in
the literature [29] [30] [2], is used to estimate the 3D position
of the object to track. The method is based on the “world
homography”, which transforms points on the world plane to
points in the image plane [29].

Assuming that the visual tracking algorithm is capable
of obtaining the ROI where the object to track is located,
the position estimation algorithm uses that ROI in order
to calculate the “world homography”, and then from this
homography to extract the position between the world and
the camera coordinate systems.

Therefore, the 2D position in the image plane of the
object to track (see Fig. 5) obtained by the visual tracking
algorithm are transformed into 3D positions assuming that
the dimensions of the object to track are known, that the 3D
points of the object to track lie on a plane, and that the camera
calibration parameters [31] are also known.

Using the pinhole camera model [15], 3D coordinates can
be related to the 2D image coordinates, as follows:

xr = AK[R | t]xy (7)



input : Iy, pL, I, x, configuration of Wi

output: WY, transformation that finds the position of T
in I

Pre-compute

1. Downsample Iy according to pL and create T7

2. Initialize jpax = pL — 1

for j < jmax to 0 do

3. Evaluate the gradient VTV = (%—?, ag;j , 1)
4. Evaluate the Jacobian J7 = aa—vf at (x,0)

5. Compute the steepest descent images SDI

SDI(x) = VT (x)’ 25

6. Compute the Hessian matrix and its inverse
Hi =Y [SDI(X)T SDI(X)}, and O

end
Iterate
foreach new frame I do
7. Downsample I according to pL to create I7
8. Initialize W/max according to (6). If it is the
first frame, WJmax ig the identity matrix
for j < jmax to 0 do
repeat
foreach x in T do
9. Warp WY (x;p) to find
I(W/(x; p))
10. Compute
B = [IP(Wi(x; p)) — 7 (x)]
11. Compute b? = b’ + SDI(x)
end
12. Compute Ap=H’'bJ
13. Update the warp
Wi (x; p) = W (x; p) o WY (x; Ap) !
until ||Ap|| < e
14. Propagate the parameters in W7 (x;p)
to the next level using (5)

EJ

end
15. Use WY to find the position of T in I
16. Draw results

end
Algorithm 1: HMPMR-ICIA tracking algorithm

Where x¢ = (xr,yr, 1) are the 2D image coordinates of a
point; Xy = (Zyw, Yw, 2w, 1) are the 3D world coordinates of
the same point; A is a scale factor; R and t are, respectively,
the orientation and position of the world reference frame in
the camera coordinate system; and K is the camera calibration
matrix found by an off-line calibration process [31] using the
camera calibration toolbox for Matlab [32].

As shown in Fig. 5, the known dimensions of the object to
track can be used to define four 3D points (x!,) that lie on the
ground plane where the world coordinate system is located.
Additionally, assuming that the tracking algorithm robustly
estimates the location of the ROI of the object to track in each
frame; then with the four 3D points and the four 2D points

Fig. 5. Position estimation strategy. The 2D positions of the object to track in
the image plane are transformed into 3D positions assuming that dimensions
of the object are known, that the known 3D points lie on a plane, and that
the camera calibration parameters are known.

of the ROI that defines the object to track in the image plane,
expression (7) is simplified for the planar case (z{, = 0), as
follows:

& Ty
Y3 — 3
ylf = AK]r; ra | t] yi,V )
xi = Hx!,

where x? contains the coordinates of one of the four points
that lie on the ground plane, the index 7 represents each
corner of the ROI that inscribes the object in the image and
in the world planes (i = {1,2,3,4}), and H is the planar
homography (a 3 x 3 matrix) that transforms points in the
world plane into points in the image plane, as shown in Fig. 5.

Therefore, with the point-to-point (2D-3D) correspondence
of the four corners of the object, and reorganizing (8), a system
of equations of the form Ah = b can be created in order to
estimate H, where h corresponds to the components of H
stacked into a vector.

Once H is estimated, the translation vector t is estimated
using the method described in [33], assuming that the camera
parameters are known. Thus, t is found based on (8), and
taking into account that ||rq|| = ||r2|| = 1, as follows:

H= [h]_ hz hg] = /\K[I‘l Iro t]

A=K~ hy || = [K~'hy| ©)
1
t=-K 'h
)\ 3

Using (9), the 3D position of the object to track with respect
to the camera coordinate system is found.



V. RESULTS

Tests are conducted using different types of images under
different conditions, in which the most complex of the 2D
transformation (the homography) is estimated.

In the first test, a comparison of different configurations of
the ICIA algorithm is conducted: the ICIA without hierarchies,
the MR-ICIA, and the HMPMR-ICIA (all of them based on
direct methods). In this test, we analyze the advantages of
using, simultaneously, the MP and MR hierarchies during the
tracking task on-board UAVs.

A second test is conducted in order to compare the per-
formance of the HMPMR-ICIA with feature-based tracking
algorithms when tracking objects on-board UAVs. In this test,
the HMPMR-ICIA tracking strategy based on direct methods
is compared with well-known feature-based methods: the SIFT
[13] and the pyramidal Lucas Kanade [5] (KLT) algorithms.

Finally, in a third test, the information that is recovered by
the HMPMR strategy is used to estimate vision-based position
information of the state of the UAV, which can be used later
for autonomous landing and take-off tasks. We present results
comparing the vision-based position estimations with the esti-
mation recovered by a Vicon system [14] in a laboratory test
where the movements and visual conditions of a landing and
take-off tasks are simulated. Additionally, we present results
of using the 2D and the 3D positions of the object to track to
conduct a vision-based landing task.

Different criteria, explained in each experiment, are used
to evaluate the performance of the different tested algorithms.
The evaluation is based on a visual examination of the tracking
results, based on a comparison with ground truth data, and also
based on a comparison of the speed reached by the algorithms.

Videos of the tests can be seen in [34].

+ Experimental setup

The data used in tests 1 and 2 correspond to different flights
conducted with the Rotomotion SR20 electric helicopter (the
Colibri III system [35]), shown in Fig. 1. The images used
in test 3 correspond: to a laboratory test conducted using
the Vicon system (a vision-based motion capture system) and
a FireWire camera; and to simulation tests conducted using
a virtual environment that uses the ROS (Robot Operating
System) framework [36], the 3D simulator Gazebo [37], and
the Starmac aircraft model [38].

The HMPMR-ICIA and the MR-ICIA algorithms were
developed in C+ + and the OpenCV libraries [28] were used
for managing image data.

On the other hand, the KLT feature-based algorithm used
in the second test is based on the version of the algorithm im-
plemented in the OpenCV libraries. The maximum number of
features was defined as 100, a window size of 5 was used, and
four pyramid levels were used in the multi-resolution structure
of the algorithm. The SIFT algorithm used in test 2 is the
implementation developed by Rob Hess [39], [40]. The values
of the different parameters the algorithm requires correspond
to the standard values that come with the implementation of
the algorithm that was used.

A. Test 1: comparison with direct methods

In this test, we evaluate the performance of the HMPMR
strategy tracking part of a structure affected by the 3D motion
of the UAV. We compare the proposed HMPMR-ICIA algo-
rithm with other configurations of the ICIA algorithm: with the
ICIA without hierarchies, and also with a MR-ICIA. In this
test, we analyze the advantages of using, at the same time, the
MR and MP hierarchies during the tracking task when large
frame-to-frame motions are presented.

The object to track in the image sequence used in this test
corresponds to a flat section of a 3D structure. The UAV is
flying around the structure during the task. The size of the
images is 640 x 480 pixels, and the size of the template is
84 x 170 pixels; so according to (2) pL = 4, considering that
the minimum size the template should have is minPixels =
5. The camera on-board the UAV is in a forwards-looking
configuration, and the homography (8 parameters) is chosen
as the transformation that best describes the changes of the
scene due to the UAV movements.

Therefore, the ICIA recovers 8 parameters (the homogra-
phy), i.e. no hierarchical structure is used. The MR-ICIA re-
covers the same number of parameters in the different levels of
the pyramid. Thus, the combination of motion models used is
in the form 8-8-8-8, and the HMPMR-ICIA recovers different
motion models in its structure 8-4-3-2: the homography in
the lowest level of the pyramid (8 parameters), the translation
in the highest level (2 parameters), and the similarity (4
parameters) and rotation+translation (3 parameters) in the
intermediate levels.

The selected image sequence contains jumps of the visual
information, so that long frame-to-frame motions affect the
object to track (sometimes 5 and 10 pixels from frame-to-
frame). This characteristic makes this sequence challenging
from the visual tracking point of view.

In this first test, the evaluation of the results obtained with
the different algorithms is based on a visual examination of the
tracking results (if the green/light box is covering the tracked
area during the sequence).

Fig. 6 presents the result of the tracking task using the ICIA
algorithm without any hierarchy, recovering 8 parameters (the
homography). The green/light box indicates the result of the
tracking task.

As can be seen in Fig. 6, the ICIA was not able to continue
tracking the template after frame 360. The large frame-to-
frame motion in some parts of the sequence violates one of
the main constraints of direct methods (small motion), and so
the ICIA is not able to track the template in this sequence.

Fig. 7 presents a collection of images that shows the perfor-
mance of the MR-ICIA during the tracking task (8 parameters
are found in the four levels of the hierarchical structure). A
green/light box indicates the results in each frame.

Analyzing Fig. 7, we can see that the MR-ICIA §8-8-8-8
configuration fails after frame 20. The MR-ICIA is not able
to track the template in the image sequence. As mentioned in
Section III, a multi-resolution hierarchy is not always enough



Frame 1 Frame 98
Frame 188 Frame 296
Frame 342 Frame 369
Fig. 6. Visual examination of the tracking results: ICIA. The green/light

box indicates the result of the tracking task. Without using any hierarchy, the
ICIA is not able to track the template when there are large motions in the
sequence (> 20 pixels).

Frame 1 Frame 12

Frame 20 Frame 23

Fig. 7. Visual examination of the tracking results: MR-ICIA. The green/light
box indicates the result of the tracking task. As can be seen, the MR-ICIA
strategy can not track the template in all the sequence.

in our application to solve the tracking problem when large
frame-to-frame motions are presented.

Additionally, as it was also mentioned in Section III, one of
the problems with MR approaches is that at low resolutions
the quality and quantity of the available information is not
good enough to find a good estimation of motion models with
a high number of parameters. For this reason, it can be seen
that the MR-ICIA fails earlier than the ICIA algorithm without
hierarchies.

Frame 1 Frame 26
Frame 98 Frame 296
Frame 342 Frame 516
Fig. 8.  Visual examination of the tracking results: HMPMR-ICIA. The

green/light box indicates the result of the tracking task. The HMPMR-ICIA
tracks the template throughout the sequence.

Finally, the proposed HMPMR strategy using the ICIA
algorithm is tested. Fig. 8 presents a collection of images
illustrating the performance of the tracking task using the
HMPMR-ICIA algorithm. As can be seen, the HMPMR strat-
egy is able to track the template in all the frames in spite
of the jumps the sequence has and of the 3D changes of the
sequence.

As a result of the different algorithms tested, we can
conclude that the MR approach is not enough to overcome
frame-to-frame motions that are > 5 pixels, whereas a well-
configured HMPMR strategy can deal with large frame-to-
frame motions > 5 pixels. Additionally, we could see that
the HMPMR is more robust than the MR approach recovering
motion models with high numbers of parameters.

B. Test 2: comparison with feature-based methods

In the previous test, it was shown that by configuring the
direct method with MR and MP hierarchies, the results of
the tracking task present a more robust behavior than when
using only MR hierarchy or none of the hierarchies. As
a consequence, using the ICIA algorithm with a HMPMR
strategy is more robust than using only a MR approach in
our application.

This second test compares the performance of the HMPMR-
ICIA algorithm with two feature-based algorithms: the SIFT
and the KLT (pyramidal Lucas Kanade). The comparison is
also performed in the most difficult situation: when tracking
planar objects that are affected by perspective effects due to



the 3D movements of the UAV.

In this test, a UAV is flying around a “house” with
a forwards-looking camera configuration. The front of the
“house” is used as template image T. The size of the images
is 320 x 240 pixels, and the size of the template is 213 x 123
pixels. Therefore, pL = 4 (4 pyramid levels).

The selected sequence was chosen due to some particular
features found in it that help testing the performance of
the algorithms. First, the images contain constant changes in
positions because of the UAV’s vibrations. Additionally, the
sequence includes: changes in the appearance of the object to
track (due to 3D movements), low texture information, and
loss of information when the object goes out of the field of
view (FOV) of the camera.

Taking into account the different changes in perspective
throughout the sequence, the homography (8 parameters) is
chosen as the transformation that best describes the changes
of the scene due to the UAV movements. Therefore, the
combination of motion models used in the HMPMR-ICIA
algorithm is 8-4-3-2: the homography in the lowest level of
the pyramid (8 parameters), the translation in the highest
level (2 parameters), and the similarity (4 parameters) and
rotation+translation (3 parameters) in the intermediate levels.

The evaluation of the results is based on a visual exam-
ination of the tracking results, based on the analysis of the
transformation recovered by the tracking algorithms using
ground truth data, and also based on the frame rate reached
by the algorithms.

Four GT points are selected in each image
to calculate a GT homography
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Fig. 9. Ground Truth Data. Four points (right images) of the possible 10

points (left image) are selected to calculate a ground truth homography that
relates points in the first frame to points in each frame of the sequence

Ground truth data is used to analyzed the homography
recovered by the algorithms. Fig. 9 shows the ground truth
data. As can be seen in the image located on the left, 10
different ground truth points (GT) can be used. Nonetheless,
taking into account that due to the movements of the UAV
the front of the “house” goes out of the FOV of the camera,
only 4 GT points (Fig. 9, right images) well distributed over
the template are manually selected in each frame in order to
calculate a ground truth homography, as follows:

i Pl
x,, = Hx}

This GT homography (H) relates points in the first frame
(template image) to points in each frame of the sequence.

Feature-based methods Direct method
SIFT KLT HMPMR-ICIA

Frame 0

Frame 236

Frame 426

Frame 513

Frame 669

Frame 883

Frame 1000

Fig. 10. Visual examination of the tracking results: SIFT, KLT, and HMPMR.
The red polygons indicate the template estimated by the feature-based methods
(SIFT, first column, and KLT, second column).The green polygon indicates
the position of the template estimated by the direct method HMPMR-ICIA.
As can be seen, the latter is the only one that tracks the template in all the
sequence.

Fig. 10 shows a collection of images illustrating the perfor-
mance of the tracking task and comparing the results obtained
by the three algorithms: two feature-based methods (SIFT and
KLT), and one based on direct methods the HMPMR-ICIA.

In this figure, it can be seen that the feature-based algo-
rithms (Fig. 10, first and second columns) failed tracking
the template almost at the same time. The multi-resolution
structure of the KLT tracker is not enough to help the
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Homography comparison with ground truth data. The parameters of the homography (p3, p4, and pg, shown in (1)) estimated by each algorithm

(HMPMR-ICIA, blue/dark solid line; KLT, red/dark dashed line; and SIFT, cyan/light dashed line) when tracking the front of the “house” are compared with
the parameters of the ground truth homography (green/light solid line). Each graphic shows the comparison of each parameter shown in (1). The HMPMR-ICIA
(blue/dark dark line) is the only algorithm in which the parameters show behavior and values that are similar to the ones of the ground truth homography

(green/light solid line)

algorithm track this sequence. Nonetheless, in Fig. 10, third
column, it can be seen that the HMPMR-ICIA with the 8-4-3-2
configuration tracked the template in all the frames of the
sequence (third column).

Additionally, when comparing the parameters estimated by
each algorithm with the ones of the GT homography, the same
results are found. Fig. 11 shows the comparison among some
parameters of the homographies found by the HMPMR-ICIA
(blue/dark solid line), the KLT (red/dark dashed line), the SIFT
(cyan/light dashed line), and the GT homography (green/light
solid line).

In Fig. 11, it can be seen that the SIFT algorithm (cyan/light
dashed line) fails earlier than the KLT algorithm (red/dark
dashed line). However, in the figure, it can be seen that the
KLT also fails in the first frames of the sequence. None
of the parameters of the homographies recovered by the
tested feature-based algorithms show a behavior similar to the
parameters of the ground truth homography (green/light solid
line).

On the other hand, comparing the parameters of the homog-
raphy estimated by the HMPMR-ICIA (blue/dark solid line)
with the ones of the ground truth homography (green/light
solid line) in Fig. 11, it can be seen that the values of the
parameters estimated by the HMPMR-ICIA (blue/dark solid
line) have behavior and values that are similar to the ones of
the ground truth data (green/light solid line).

The comparison of the parameters of the homography
recovered by each algorithm shows that after a few frames
the feature based algorithms failed detecting a correct trans-
formation in spite of the different features that were found
(an average of 80 features in the KLT, and 30 in the SIFT).
Nonetheless, the low texture information of the object to track
(the template), and the previously mentioned characteristics of
this sequence, made the trackers fail.

Finally, Fig. 12 shows the average speed of the three
algorithms, expressed in FPS (frames per second). As ex-
pected, the KLT feature-based algorithm (red box) tracks the
template faster (average speed 27 FPS matching ~ 85 features
per frame) than all the other methods. This algorithm is
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Fig. 12. Speed comparison. The average fame rate of the different tested

algorithms is plotted. The SIFT (cyan box), 3 FPS; the KLT (red box), 27
FPS; and the HMPMR-ICIA (blue box),16 FPS.

widely used in different applications because of its efficiency,
although we have shown that its performance is not robust
enough in our application to track the template appropriately.
The SIFT algorithm (Fig. 12, cyan box) has an average speed
of 3 FPS, obtaining the slowest speed of the different tested
algorithms (this is due to the high computational overheads in
the different steps of the algorithm: e.g the calculation of the
descriptor for each point, matching of points, etc ).

On the other hand, we can see that in this test the direct
method HMPMR-ICIA algorithm (Fig. 12, blue box) reaches
an average speed of 16 FPS. This speed is fast enough to use
the visual information for a vision-in-the-loop application.

It is also important to consider that the direct method
analyzes each pixel of the template in each level of the
pyramid (around 26000 pixels must be analyzed only in the
highest resolution level). Despite the amount of information
the algorithm analyzes, we can see that by using the MP and
MR strategies at the same time a robust real-time tracking
algorithm is obtained.

C. Test 3: visual estimation for take-off and landing maneu-
vers

The previous tests have shown that the proposed tracking
strategy HMPMR-ICIA has been able to track objects from a
UAYV, recovering complex motion models with a performance



that is better than the one obtained with feature-based methods,
and is able to track the object in the sequences that were used.

Another test is conducted: with it, we want to analyze
the performance of the HMPMR-ICIA algorithm tracking a
template for landing and take-off. We analyze its behavior
under the visual conditions present in these applications: e.g.
large frame-to-frame motions and rapid changes in scale.

Two experiments are conducted. In the first one, the vision-
based position estimation explained in Section IV is tested
experimentally in a laboratory facility using a Vicon system.
In the second experiment, the information recovered by the
HMPMR-ICIA algorithm is used for a vision-in-the-loop task,
a landing task, based simultaneously on image-based and
position-based visual servoing strategies.

1) Position estimation

As can be seen in Fig. 13, a scaled helipad is used as
template (the object to track) for the experiment. A FireWire
camera moves forwards and backwards simulating the take-off
and landing processes (from the image point of view). This
camera captures the image data used in the test. It captures
images of size 1024 x 740 pixels at a frame rate of 7.5 FPS
in order to generate image data with a large frame-to-frame
motion.

Vicon infrared
camera

FireWire
camera

Vicon
landmarks
Coordinate Systems

Vicon

Coordinate Z jeon
System Z.
X,
Yieon
¢ Camera
Coordinate System Template
Fig. 13. Experimental setup. A FireWire camera that is moved manually

simulates the UAV during take-off and landing tasks. This camera captures
images of a scaled helipad. Ground truth data is generated using a Vicon
system that tracks infrared landmarks located on the FireWire camera and the
helipad.

The Vicon system [14], composed of five infrared cameras,
is in charge of detecting the position and orientation of the
template image (the helipad) and the FireWire camera, by
detecting and tracking infrared landmarks (see Fig. 13). The
system provides accurate 3D position information (with sub-
milimeter and sub-degree precision) of the helipad and the
FireWire camera with respect to the Vicon coordinate system
shown in Fig. 13, at real-time frame rates (100 Hz). This
information is used as ground truth data in order to analyze
the visual estimation obtained with the position estimation
algorithm described in Section IV.

Frame 0 Frame 27
Frame 52 Frame 81
Frame 95 Frame 120
Frame 125 Frame 168
Fig. 14. Visual examination of the tracking results: HMPMR-ICIA. The

green/light box indicates the estimated 2D position and extent of the helipad.

Fig. 14 presents a collection of images illustrating the
performance of the tracking task. The green/light box indicates
the results of the HMPMR-ICIA algorithm. The helipad was
tracked during the entire task, in spite of the different changes
in scale (e.g. see Fig. 14, frames: 0, 95, 168), the quality
of the images (dark images), vibrations (the camera was
moved manually), and the large frame-to-frame motion of the
sequences (images were acquired at 7.5 FPS)

In order to compare the data, the 3D position of the
FireWire camera is estimated using the method presented in
Section IV, assuming that the camera is calibrated and that the
dimension of the helipad is known. The vision-based positions
are obtained with respect to the camera coordinate system,
and then transformed to the Vicon coordinate system shown
in Fig. 13.

Fig. 15 (upper left and right plots, and bottom left plot)
shows the comparison of the position estimation obtained by
the Vicon system (green/light line) with the position estimated
using the homography recovered by the HMPMR-ICIA algo-
rithm (red/dark line). As can be seen, the position estimated by
the HMPMR-ICIA algorithm (red/dark line) shows a behavior
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Fig. 15. Comparison with Ground Truth Data. The position of the FireWire camera estimated by the Vicon system (green/light line) is used as ground truth

data and is compared with the position estimated using the homography recovered by the HMPMR-ICIA algorithm (red/dark line). The bottom-right plot
shows the errors obtained in each axis. Both data are expressed with respect to the Vicon coordinate system.

that is similar to the position estimated by the Vicon system
(green/light line). The RMSE (Root Mean Squared Errors)
obtained in the three axes are < 6 cm.

The bottom-right plot of Fig. 15 shows the errors in each
axis. We can see that during the whole sequence, the errors
were always below 10 cm, and only in one point an error of
25 cm was obtained in the Y axis (the one that corresponds
to the UAV height estimation). Nonetheless, these errors are
low considering that errors in GPS-based position estimations
are around 1 m under good conditions.

Thumbnail images in Fig. 15 show the correlation of the
visual data with the estimated data. These images have been
manually enhanced (compared with the real ones shown in
Fig. 14) to allow a clear distinction of the template image and
the result of the tracking algorithm.

From this test, we can see that the information obtained by
the HMPMR-ICIA algorithm can be used for obtaining robust
important information (position information) for vision-in-the-
loop tasks.

2) Vision-based landing

In this second experiment, the 2D position in the image
plane of the object to track obtained with the HMPMR-ICIA
algorithm and the altitude of the UAV obtained with the
position estimation algorithm presented in Section IV are used
to send vision-based control commands to the UAV in order
to perform a vision-based landing task.

The test is conducted using a virtual environment that uses

the ROS (Robot Operating System) framework. In the test, an
helipad is located on the ground of the simulation environment,
a camera located on-board a quadrotor is used to capture
images of the helipad, and the HMPMR-ICIA algorithm is
used to find the 2D position of the helipad in the image plane
(i.e. is used to track the helipad). The control task of this test
consists, first, in placing the quadrotor over the helipad at a
fixed altitude (10 m). In this first stage, we use image-based
control commands in order to locate the helipad in the center
of the image plane, i.e. in the coordinate (320,240), taking
into account that the image is 640 x 480 pixels size.

When the helipad is close to the center, we use the vision-
based altitude of the quadrotor, estimated using the method
described in Section IV to send altitude commands to the flight
controller in order to make the quadrotor descend to a defined
position (1 m from the ground). In this last stage, both the
control in the image plane and the altitude control operate
simultaneously.

In Fig. 16, it is possible to see the trajectory of the quadrotor
during the task. The blue line corresponds to the position data
obtained by the Starmac-ros package [38]. In the figure, the
positions to which the quadrotor was commanded to move
to can be seen. It can be seen that first the quadrotor moves
towards the helipad in order to locate the helipad in the center
of the image plane (Setpoints: Sp Xy = 320 pixels and Sp
Yy = 240 pixels), and then starts to decend until reaching
the altitude setpoint (Sp Z = 1 m). When the quadrotor is



decending, it continues maintaining the helipad centered with
respect to the image plane.

= JAV trajectory

Y (m)

Fig. 16. 3D trajectory of the UAV during the positioning and landing tasks.

Fig. 17 shows the first stage of the landing approach. As
mentioned previously, this stage is conducted based on the
information recovered by the HMPMR-ICIA algorithm. In the
graphic, it can be seen that the helipad is centered in the
Xt and Yy axes (i.e. in the center of the image plane) and
remained centered during the task, i.e. the red/dark solid line
reached the Sp X; = 320 pixels, and the magenta/light solid
line reached the Sp Y¢ = 240 pixels (green/light dashed lines).
The blue/dark dashed line is a control flag that indicates when
the visual control in the Xy and Y¢ axes (i.e. in the image
plane) is operating. It can be seen that the image-based control
was also operative during the descent process.

In the thumbnail images of Fig. 17, it can be seen how the
helipad is centered in the first part of the task (frames 300-
4871) and then remained centered when the quadrotor was
descending (frames 4872-7338).

On the other hand, Fig. 18 shows the results of the position-
based visual control task. When the helipad is centered (after
frame 4871), a control flag is activated (blue/dark dashed line)
and position-based control commands, based on the vision-
based altitude estimation, are sent to the flight controller
in order to make the quadrotor descent over the helipad
(frames 4872-7338). In Fig. 18, it can be seen that the vision-
based altitude estimations (red/dark solid line) have values
and behavior that are similar to the altitude estimated by
the flight controller of the quadrotor (cyan/light solid line).
The thumbnail images show that the HMPMR-ICIA algorithm
tracked the template throughout the task, and that when the
quadrotor is descending the helipad remains centered in the
image plane.

This test reveals that the visual information recovered by
the HMPMR-ICIA algorithm can be used for an image-based
and/or a position-based landing task.
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Fig. 17. Image-based control for landing. When the control flag is active
(blue/dark dashed line), the 2D position of the helipad in the image plane
(red/dark solid line and the magenta/light solid line) is used to send control
commands to the quadrotor in order to center the helipad in the image plane
(the green/light dashed lines represent the setpoints).
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Fig. 18. Position-based control for landing. When the quadrotor is over the

helipad, a control flag is activated (blue/dark dashed line), and the vision-based
height estimations (red/dark solid line) are used to command the quadrotor
to an altitude of 1 m (green/light dashed line) with respect to to the ground.
The cyan/light solid line corresponds to the altitude estimated by the state
estimator of the quadrotor.

VI. CONCLUSIONS AND FUTURE WORK

Our goal was to present a tracking strategy for tracking
planar structures (or structures that can be assumed to be
planar) on-board UAVs, that can deal with large frame-to-
frame motions, that can recover complex motion models (e.g.



the homography), that can obtain real-time frame rates, and
that recovers information that can be used for different vision-
based applications on-board UAVs (e.g. building inspection,
landing, take-off).

In this paper, we have presented a hierarchical tracking
algorithm HMPMR-ICIA for tracking on-board UAVs using
direct methods, thus extending the use of direct methods for
real-time applications. Previous works in this area have often
been based on feature methods. Nonetheless, we have shown
that our tracking strategy performs better than well-known
feature-based algorithms (SIFT and KLT) and well-known
configurations of direct methods (MR-ICIA), in the presence
of strong changes in position, fast changes in appearance, in
situations where part of the template is out the FOV of the
camera, and under constant vibrations. Concerning the latter
aspect, this is accomplished without requiring any specific
hardware or software for video stabilization.

Different evaluation mechanisms were used to analyze the
performance of the HMPMR-ICIA algorithm: images from
real-flights, manually generated ground truth data, accurate
position estimation using the Vicon system, and a simulation
environment for a vision-based landing task were used.

The results show a good performance of the algorithm
tracking planar structures affected by perspective effects, and
also show a good correlation of position data estimated using
the information obtained by the visual tracking algorithm,
that validates the proposed strategy and makes it useful to
provide valid vision-based data for UAV applications, as was
demonstrated in the landing test.

Due to the amount of information that direct methods have
to evaluate, these kinds of methods are not commonly used
for real-time applications. Nonetheless, we have shown that
by using the proposed strategy and without optimizing the
code in any way, direct methods can be employed for real-
time tracking, and are able to achieve frequencies of 16 fps
when estimating 8 parameters. It is important to notice that
the speed is highly dependent on the number of parameters
estimated (faster responses -30 and 50 fps- are achieved when
estimating motion models with a lower number of parameters).
Additionally, the speed of the algorithm is dependent on the
size of the template and the parameters estimated in each level
of the pyramid.

Taking this into account, future work will focus on creating
criteria to control the performance of the alignment task
inside the MR structure, in order to create a dynamic strategy
that decides which levels of the MR and MP structure are
evaluated. This dynamic strategy can help speeding up the
algorithm.

Finally, considering the inherent appearance changes in our
application when conducting outdoors operations (illumination
changes), and taking into account the UAV 3D movements,
future work will focus on establishing criteria in aspects as
the the update of the template and outliers rejection in order
to deal with possible drift problems that may emerge due to the
propagation of the parameters throughout the image sequence,
especially when the template’s appearance notoriously changes

in the sequence.
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