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Abstract— This paper presents a novel solution for
micro aerial vehicles (MAVs) to autonomously search
for and land on an arbitrary landing site using real-
time monocular vision. The autonomous MAV is provided
with only one single reference image of the landing site
with an unknown size before initiating this task. We
extend a well-known monocular visual SLAM algorithm
that enables autonomous navigation of the MAV in
unknown environments, in order to search for such
landing sites. Furthermore, a multi-scale ORB feature
based method is implemented and integrated into the
SLAM framework for landing site detection. We use a
RANSAC-based method to locate the landing site within
the map of the SLAM system, taking advantage of those
map points associated with the detected landing site. We
demonstrate the efficiency of the presented vision system
in autonomous flights, both indoor and in challenging
outdoor environment.

I. INTRODUCTION

The growing research area of Micro Aerial
Vehicles (MAVs) has attracted much attention in
the robotics community in recent years. One inter-
esting focus has been on using onboard sensors
such as cameras and laser scanners, which do
not rely on any external signal, to facilitate their
autonomous navigation. These onboard sensors are
important replacements for GPS sensors in envi-
ronments where GPS is unavailable or not reliable,
such as indoors or in outdoor urban areas.

2D laser scanners have been successfully used
for autonomous navigation of MAVs indoor [12],
[28]. However, they are difficult to be extended
to object recognition tasks. Compared with other
sensors, cameras are passive, and have a superior
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Fig. 1: Our MAV navigating autonomously to
search for a textured landing site.

potential for environment perception, while still
being lightweight, relatively low cost and energy
efficient. Moreover, unlike stereo cameras with
small baselines, a monocular camera does not lose
its functionality even for large working distances,
when metric scale is properly tracked. Those ad-
vantages make monocular vision very attractive
for research on autonomous navigation of MAVs,
which in general have very limited payload, both
in weight and in computational capability.
Autonomous landing is a basic but also chal-
lenging phase for autonomous navigation of
MAVs. When the exact position of a desired
landing site is unknown, the MAVs should be
able to search for and locate it autonomously,
and then land on it to finish autonomous flights.
Monocular visual simultaneous localization and
mapping (SLAM) has brought more flexibility
to autonomous navigation of MAVs in unknown
environments [1]. In fact, it is especially well-
suited for the autonomous landing task of an MAV:
The problem of slow scale drift, which is inherent
to every purely visual monocular SLAM system
caused by the unobservability of the scale factor,



can hardly cause much effect in such relatively
small areas where the MAV is expected to land.

In this paper we show that the rich infor-
mation provided by a visual SLAM system can
also benefit both the real time detection of a
known landing site and its localization. Consider-
ing the limited computational power that is typ-
ically available onboard MAVs, those processes
are normally difficult to be performed in parallel
to autonomous navigation using onboard visual
systems. We achieve autonomous navigation of our
MAV by implementing a constant-time monocular
visual SLAM framework, while simultaneously
detecting an arbitrarily textured landing site using
ORB features [21], and estimating its global pose.
The resulted monocular vision system enables the
MAV to autonomously search for the landing site
in unknown environments (as depicted in Fig. [I)),
and then land on it once it is found.

II. ReELATED WORK

Autonomous navigation of Unmanned Aerial
Vehicles (UAVs) relying on pose estimation from
GPS sensors has been well studied in early re-
search. Those works are usually aided by fusing
inertial navigation system (INS) data. UAVs with
such navigation systems work well for high alti-
tude and long range tasks, but are not suitable in
GPS-denied environments. In recent years, more
effort has been focused on using computer vision
to enable autonomous flight of UAVs. Computer
vision methods do not depend on external signals.
Moreover, they fit especially well to cases in which
precise position control relative to other objects is
required, e.g. for the landing tasks of UAVs. Thus,
they are highly appreciated for research towards
full autonomy of UAVs.

In [24], the landing task of a helicopter is solved
by using image moments for object recognition,
while the estimation of the relative position with
respect to the landing pad still relies on precise
height information provided by differential GPS.
Garcia-Pardo et al. [11] present a strategy to find
a safe landing area by searching the image for a
circular area in which all the pixels have a level
of contrast below a given threshold. The vision
system developed in [8] allows a remote user
to define target areas as waypoints or a landing

area for a UAV from a high resolution aerial or
satellite image. In this work, a Scale Invariant
Feature Transform (SIFT) based image-matching
algorithm is implemented to find the natural land-
marks, and an optical-flow-based method is used
for the detection of a safe landing area.

Recently, more vision solutions for autonomous
navigation and landing have been presented, due
to the fast growing interest in MAVs, and espe-
cially quadrotors. Mahony et al. [17] provide a
tutorial introduction to modelling, pose estimation
and control of such multi-rotor MAVs. Meier et
al. [19] present a new self-developed quadrotor
system capable of autonomous flight with onboard
pose estimation from vision and an Inertial Mea-
surement Unit (IMU), while relying on artificial
visual markers. Previous work in [30] features an
onboard monocular vision solution for autonomous
takeoff, hovering and landing of an MAV based
on a circular landing pad. Those works, achieving
autonomous flight of MAVs, still depend on pose
estimates from artificial landmarks, and are thus
not flexible enough for long-term autonomy.

One way to be independent of artificial land-
marks is to implement visual odometry or visual
SLAM systems on MAVs. Fraundorfer et al. [10]
extended the system in [19] with autonomous
mapping and exploration, based on stereo cam-
eras. In [2], [29], Parallel Tracking and Mapping
(PTAM) [13] is implemented as a monocular visual
SLAM framework for autonomous navigation of
MAVs in unknown and GPS-denied environments.
Achtelik [1] also use PTAM to provide position
estimates for an MAV, while fusing data from an
air pressure sensor and accelerometers to estimate
the unknown metric scale factor of the monocular
vision system. In [27], a modified PTAM, which
integrates depth information as presented in [26],
is used for position control of an MAV based on
stereo vision.

Concerning SLAM and object recognition, an-
other related work done by Castle et al. [4], [5]
can be found in the field of augmented reality
(AR). In [4], monoSLAM [9] and SIFT feature
[16] are used to recognize and localize objects
within a 3D map built by a wearable camera. Those
objects were located from a single view using
their known sizes and the location fed back to the



EKF. In [5], a multiple map and multiple camera
extension to the PTAM algorithm is used to replace
monoSLAM. Here, the location of an object is
determined by triangulation from the locations of
SIFT features matched across different keyframes,
and it no longer needs to define the size of objects
[5].

In our work, we also implement our visual
SLAM framework based on PTAM, to enable
autonomous navigation of an MAYV, because of its
robustness and its ability to generate an accurate
map with a large number of map points from the
environment. To land an MAV on an arbitrary
landing site, we implement an ORB-feature-based
method for landing site detection, running in par-
allel with the visual SLAM. Furthermore, based on
the existing map points, we show that it is possible
to robustly estimate the 3D pose of the detected
landing site even if the size of it is unknown,
and without re-triangulation from the landing site
features as did in [5]. It is also different from
those methods that only consider the relative pose
estimation of an MAV with respect to a landing
site, based on observations from the landing site
itself. An example of such methods is the work in
[18], which estimates the 3D pose of a camera for
the control of UAVs by tracking a planar object
with a known size. Since our pose estimation for
MAV position control is provided by a SLAM
system, high frequency landing site tracking and
pose estimation become unnecessary, while still
maintaining the final landing performance.

This paper is an improved and extended version
of the work previously presented in a conference
[31]. We extend the presentation and demonstrate
the robustness of our method when working in
outdoor environments by outdoor experiments in
a challenging scenario. Moreover, besides using
the setpoint method for trajectory control in au-
tonomous navigations, we implemented a more ef-
ficient trajectory-following method, which benefits
the navigation of MAVs in long trajectories. We
further compare the performance of these two typ-
ical trajectory control methods in our autonomous
navigation scheme.

III. VisuaL SLAM ror AuTONOMOUS NAVIGATION

The visual SLAM framework we use for au-
tonomous navigation of our MAV is based on

PTAM. In order to overcome the lack of a scale
factor, we implemented an automatic initialization
method for PTAM, which can cope with cluttered
environments and provide a high accuracy. Addi-
tionally, we modify the mapping thread of PTAM
to achieve a nearly constant processing time during
navigation.

A. Basic Functionality of PTAM

The original PTAM implementation can produce
detailed environmental maps with a large number
of landmarks, which can be used for accurately
tracking the pose of a monocular camera at a high
frequency. In order to achieve real-time operation,
a main idea proposed in PTAM is to split tracking
and mapping into two separate threads, which can
be processed in parallel on a dual-core computer.
One thread is responsible for tracking the camera
motion relative to the current map. The other
thread extends this map, which consists of 3D
point features that are organized in keyframes, and
refines it using bundle adjustment.

In the thread responsible for tracking the camera
pose, the FAST corner detector [23] is applied
to each image at four pyramid levels, and all
map points are projected to the current image
coordinate frame, based on a prior pose estimate.
The map points located inside the image after
this projection are then used for tracking: To
locate those points in the current camera image,
a fixed-range image search around their predicted
positions is performed. During this search, only the
FAST corner locations are evaluated for finding the
best matches. In our work, those FAST corners will
further be used for feature-based object detection,
without increasing the computation time in this
thread.

The mapping thread integrates new keyframes
into the map when requested by the tracking
thread, and creates new map points by triangu-
lating FAST corner matches between the new
keyframe and its closest neighbours. Local bun-
dle adjustment and global bundle adjustment are
continuously performed to refine the map for the
rest of the time. Since the map points are actually
landmarks of the real-world scene, we will take
advantage of their known 3D position for our
landing site pose estimation.
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Fig. 2: A scene when PTAM is initialized. Top left,
original image. Top right, detected circular pattern,
labelled with a orange cross. Bottom left, vision
features in different levels. Bottom right, chosen
map points.

B. Automatic Initialization of PTAM

Since there exists a common scale ambiguity
inherent to monocular camera systems, PTAM
naturally requires additional metric scale infor-
mation. Since PTAM was originally intended for
augmented reality applications [13], an accurate
metric scale was not necessary, thus only a coarse
scale estimate is applied to the triangulation of the
initialization phase. We deal with this initialization
issue by implementing the monocular solution
presented in [30], which can robustly estimate the
camera pose based on the image projection of a
helicopter landing pad pattern, which also works in
cluttered environments. Using this method, we can
achieve accurate automatic initialization of PTAM
during the takeoff phase of our MAYV, without
requiring any additional sensors. Fig. [2| shows an
example scene and related results of PTAM, when
initialized with this method.

1) Pose Estimation from a Circular Pattern:
In [30], we estimated the 6DOF camera pose
based on the perspective projection of a typical
helicopter landing pad, which consists of a letter
“H” surrounded by a circle with a known diameter.

This pad is detected with a method similar to the
one presented in [25]. Using adaptive thresholding,
we obtain a binarized image that is used to find
connected components with a run-based two-scan

labelling algorithm. The components are then clas-
sified using an artificial neural network. Finally a
geometric constraint is applied, enforcing that the
letter “H” must be surrounded by a circle. This
allows us to detect the pad robustly in real-time
with a high frequency.

After applying a Canny edge detector to the
image pattern associated with the above pad, we
can retrieve the ellipse that corresponds to the
projection of the circle in the pad. At this point, we
can obtain a SDOF pose of the camera coordinate
frame C with respect to the world coordinate frame
‘W, which is defined by the pad and obtained by
using a computational geometry method based on
the known quadratic equation of the projected el-
lipse. During this step, we also integrate IMU data
to eliminate the remaining geometric ambiguity.
Finally, fitting an ellipse to the projected contour
of the letter “H” provides us with the last DOF of
the camera pose, i.e. its yaw angle.

2) Initializing PTAM during Takeoff: Once we
obtain an estimate of the camera pose with a height
larger than a threshold 4;, then this pose estimate
and the image associated with it are sent to PTAM
for initialization. If more than a minimum number
of FAST features with non-maximum suppression
are detected on all four pyramid levels of this
image, then we use them to initialize the map
of PTAM. We obtain the 3D position of those
feature points by assuming that they all lie on
the ground plane and by projecting them from
their image coordinates to the z = 0 plane in the
world coordinate frame ‘W. In this way, the world

coordinate frame defined in PTAM coincides with
wW.

C. Using PTAM with Constant Computation Time

Bundle adjustment, which is used for map re-
finement, is the most computationally intensive
task in PTAM. To enable PTAM to achieve a nearly
constant computation time, we only retain its local
bundle adjustment and abandon the global bundle
adjustment, since it is rather computationally inten-
sive and may stop the mapping thread from adding
enough keyframes to facilitate successful tracking.
However, we still keep the complete map during
exploration.



IV. LaNDING SiTE DETECTION AND POSE ESTIMATION

To search for an arbitrary landing site during au-
tonomous navigation of our MAV, we implemented
a feature-based object detection scheme. Using one
pre-set reference image of the designated landing
site, a set of feature matches between the reference
image and the currently visible scene can be estab-
lished. Then the landing site is detected by using
a robust RANSAC-based method to estimate the
corresponding homography. Because some of the
map points produced by PTAM can be associated
with the matched features, we can use the 3D
position estimates of those map points to estimate
the global 3D pose of the landing site, even though
there exists no absolute scale information for the
landing site. The above process is integrated in the
mapping thread of PTAM, as shown in Fig. [3

A. Brief Overview of ORB

Rublee et al. [21] proposed the ORB (Oriented
FAST and Rotated BRIEF) feature based on the
FAST keypoint detector and the BRIEF descriptor
[7], both of which are known for their high compu-
tational efficiency. BRIEF uses a binary string con-
structed from a set of binary intensity tests as an
efficient point feature descriptor. Because BRIEF
was not designed to be aware of the orientation
of a feature point, it is notably lacking rotation
invariance [21], which is, however, important for
feature-matching-based object detection.

To cope with this issue, Rublee et al. pro-
posed to compute an orientation component for
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Fig. 3: Landing site detection and pose estimation
integrated in the PTAM framework.

each FAST interest point (0FAST) by using the
so-called intensity centroid, which is computed
from image moments. BRIEF descriptors for those
points are then efficiently rotated according to the
orientation component, and thus form the steered
BRIEF descriptor. Furthermore, a learning method
is developed for choosing a good subset of binary
tests, in order to increase the feature variance and
reduce correlation among the binary tests, both of
which are important for a discriminative feature.
The resulting descriptor is named rBRIEF.

B. Applying Multi-Scale ORB to the PTAM Frame-
work

We chose ORB as the feature descriptor for
our landing site detection because of its low time
cost and high discrimination capability for feature
matching. ORB achieves scale invariance by apply-
ing the FAST detector to a scale-space pyramid of
the original image. Since in the tracking thread
of PTAM, FAST points have been detected in
four-level pyramid images of the current scene, it
is straightforward for us to use those points for
further feature description. We chose such a multi-
scale method in order to avoid the computation of
further pyramid levels, as a compromise between
matching performance and time cost. In the map-
ping thread, we compute orientation components
of the FAST points to obtain oFAST features, and
use rBRIEF for feature description. We perform
both of these operations individually at pyramid
level 0 and 1, resulting in two sets of descriptors
{Dfl i =0,1}, each with a size n;. We discard higher
pyramid levels, since at higher levels, a landing
site appears too small for us to obtain useful
features for matching. For the reference image of
the landing site, the number of pyramid levels and
the scale factor for producing the pyramid images
can vary according to the requirements of scale
invariance and available computation time. In this
paper we apply a three level pyramid with a scale
factor of 1.2 to the reference image, obtaining
the reference descriptor sets {Df | i=0,1,2}. A
Gaussian blur is applied to each pyramid level
before feature detection.

C. Landing Site Detection by Feature Matching

1) Feature Matching: We use a standard feature
matching scheme to obtain a set of good feature



Fig. 4: Examples of homography estimation results
shown in one pyramid level. After eliminating false
estimates, only the one in (d) will be regarded as
a correct homography estimate.

matches from {D;l i=0,1,2} to {Dfl i=0,1},
for estimating the homography H,. between the
reference image of the landing site and the current
image frame. For finding all possible matches,
we employ a brute-force matcher without cross
checking, implemented in OpenCV [6]. It finds the
k descriptors with the closest normalized Hamming
distances in {Df| i = 0,1} for each descriptor in
{D!] i=0,1,2}. Similar to [14], [16], we consider
a match between a reference descriptor and the
corresponding descriptor with the closest distance
to be valid, if the ratio of the closest to the second
closest distance is smaller than a threshold T,.

2) Homography Estimation: As the ORB fea-
ture is applied at different individual pyramid lev-
els of the current camera image, we project all
matched feature points to the source pyramid level
to calculate the homography. The homography H,.
is estimated by using RANSAC, and then further
refined by using the Levenberg-Marquardt method
to minimize the image projection error. We can
limit the iterations in RANSAC to a relatively
small number, in order to make this process more
efficient. Since our consecutive landing site pose
estimation can cope well with a lower true positive
detection rate, we opt for a higher processing
performance.

3) Eliminating False Estimates: The reference
image forms a quadrilateral O, when transformed
with H,. to the current image frame. Some ex-
amples of the homography estimates we received
can be seen in Fig. 4| False Homography estimates
may occur due to false matches or too few correct
matches of features. We dramatically eliminate
those false ones by evaluating some basic prop-
erties of this quadrilateral: First, it is required to
be a convex polygon. Second, all four vertexes of
it should have a reasonable relative distances to
their centroid and to each other. This will eliminate
estimates like the ones shown in Fig. [Ab] and
Fig.{cl Although the reference image can be found
in the current image frame, we reject this frame
since we will not achieve a correct pose estimate
of the landing site according to this homography
estimate. Third, the number of matched features
that are inside of this quadrilateral should be
larger than a threshold n,. We determine whether a
point is located inside a polygon using a crossing-
number-based method.

D. Locating the Landing Site within the Map

After the landing site has been detected in the
current camera image by using the above method,
we locate its 3D pose in the world coordinate
frame. For this task we take advantage of the
environment map produced by PTAM, which can
consist of a large number of map points. Doing
this provides us with much more tolerance to false
negative detections: Even if the landing site is
not tracked at camera frame rate, its final pose
estimate will be hardly affected, as the landing
site should retain a static position in respect to
the environment map. Thus, our method is very
flexible in respect to the time intervals at which
the mapping thread decides to add a new frame for
landing site detection. Furthermore, using the map
points ensures that only discriminative features are
used for locating the landing site.

We first project all map points to a rectified
image frame based on their 3D positions and
the calibrated camera model [3]. Again, we use
a crossing number method to check whether a
projected map points is located within the quadri-
lateral Q, (see Sect. [V-C.3). Those points inside
form the map points subset {p;}.



If the size of {p;} is larger than a threshold
Nimin, @ RANSAC-based method is applied to the
points in {p;} to estimate the dominant plane P,
of the landing site. We perform this step in a
similar fashion as in [13]: Many sets of three
points are randomly selected to form a plane
hypothesis, while the remaining points are tested
for consensus. The winning hypothesis is further
refined by using the consensus set, resulting in the
detected plane normal n,. Together with the mean
3D coordinate value of all consensus set points X,
this normal defines the plane P;. Once an esti-
mate for P; is achieved, we use its corresponding
measurements n, and X, as the initial guess for
the RANSAC procedure when evaluating the next
image frame. Thus, a much smaller threshold for
the number of RANSAC iterations can be applied,
which further reduce time costs.

The pose of the landing site can be calculated by
projecting the quadrilateral Q, to the plane P;. We
define xf ,1=0,1,2,3, as the four vertices of Q,,
which are the image projections of the four corners
P; of the landing site, with the corresponding
world coordinate positions x. After projecting Xf
to a normalized image frame with rectified lens
distortions, we obtain the normalized coordinates
xl’.’ = (x;l, y;l, DT, In the camera coordinate frame,
we then have x7 = s-(x;?,y?,l)T, with s being
an undetermined scale factor. Thus, in the world
coordinate frame we have

X?):S'ch'x?‘ktwa (D

with {R,,,t,,} being the camera pose in the world
coordinate frame, obtained by the tracking thread.
Since P; is located on the plane P;, we have

n,-(x'—x,)=0. )
From (]) and (2), we can calculate x!". The landing

3
site pose is then obtained as x; = }l > XIYV, where k
i=0
is the current image frame index.
We further refine the landing site pose by in-

tegrating m successful estimates of x;. Estimates
m—1

with a large difference to xz, = o, ; X; are as-

sumed to be outliers. The mean value of the

remaining inlier is then assumed to be the final

landing site pose estimate Xj.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Quadrotor Platform: Our MAV is based on
the open source and open hardware quadrotor
platform developed by the PIXHAWK project from
ETH Ziirich described in [19], which is depicted
in Fig. [1l The onboard computer is a Kontron mi-
croETXexpress computer-on-module (COM) fea-
turing an Intel Core 2 Duo 1.86GHz CPU, 2
GB DDR3 RAM and a 32Gb SSD. The pxIMU
inertial measurement unit and autopilot board that
we use mainly consists of a MicroController Unit
(MCU), and sensors including a tri-axis accelerom-
eter and a tri-axis gyroscope. The MCU is a 60
MHz ARM?7 microcontroller for sensor readout
and fusion, as well as position and attitude control.
A PointGrey Firefly MV monochrome camera of
only 37 g weight is mounted on the MAV in a
downward-facing pose. This camera has an image
resolution of 640x480, a maximum frame rate of
60 fps, and is equipped with a lens featuring a 90
degrees viewing angle.

2) External Tracking System: To measure
ground truth data of the 6 DOF quadrotor pose and
landing site poses, we use an external Optitrack
tracking system manufactured by Naturalpoint E],
which comprises 9 infrared cameras in our case.
After attaching several highly reflective markers
to the quadrotor, the tracking system can provide
6 DOF pose estimates of the quadrotor with a
frequency of up to 100 Hz. According to our tests,
the deviation of the position estimates for a static
quadrotor is in the order of only few millimeters.

3) Coordinate Systems: The coordinate systems
are defined as right-hand systems and calibrated
in the same way as we did in [30]. The world
coordinates are indicated as the RGB axes (corre-
sponding to x—y—z axes) lie on the ground grids
in Fig. [/} Its origin is attached to the center of the
circular pattern from which our SLAM system is
initialized as described in Sect.

4) Software: We implemented our software sys-
tem in several modules using the open source
Robot Operating System (ROS) [22] on Ubuntu
Linux 12.04, as it provides the infrastructure for

Uhttp://www.naturalpoint.com/optitrack/products/tracking-tools-
bundles



efficient communication among different modules
and for logging all interested onboard data.

B. Navigation and Flight Control Algorithm

1) Nested PID Pose Control: Mellinger et al.
[20] describe a nested PID controller that consists
of a separate attitude and a position controller.
Using a dynamic model of a quadrotor and an
accurate 6 DoF pose estimate from an external
tracking system, it can achieve precise hovering
control of a quadrotor MAV. To evaluate our vision
system, we control the pose of our quadrotor using
a very similar controller, which is implemented
in the original pxXIMU code from the PIXHAWK
project. In our case, we set the desired yaw angle
to be a constant value of €% = 0. The 3D position
estimates from the onboard vision system are used
as feedback to the position controller, and a basic
Kalman Filter is applied to smooth pose estimation
for low level control. The attitude controller runs
at a frequency of 200 Hz, using the roll and pitch
estimates by the IMU, and only the yaw angle is
provided by the onboard vision system.

2) Setpoint Method for Trajectory Control: In
order to search for the landing site, we imple-
mented a setpoint-based method to autonomously
navigate our MAV. Thus the MAV can follow a
predefined searching path. We assume that the
MAV has reached a setpoint, if its distance to
this point is smaller than a threshold d; and the
yaw angle difference is smaller than ¥, for a
period of time f;. In this case, we advance to
the next set point on the searching path. Once an
initial pose of the landing site X;,; is estimated,
we change the setpoint to be above this area,
keeping our searching height h,. After the final
refined pose of the landing site x; = (x;,y;,z7)7 is
determined, we define the end of the searching
path to be (x;,y;,hs)T. Finally, the desired height of
the setpoint is decreased until the MAV reaches a
predefined landing height /#; where it can steadily
shut down its motors to finish the landing process.

3) More Efficient Trajectory-following Method:
We implemented a trajectory-following method to
enable the MAV to follow the predefined searching
path more efficiently. It is based on the path
following controller presented in [20]. We simplify
it by dropping the feed-forward term of the desired
acceleration, and set a constant forward speed, vy,

Multiple View
Geometry

(e

Fig. 5: (a) A scene from the MAV, (b), (¢), (d) and
(e) are the reference images of the poster landing
pad (size 500 x 500, height 4.5), the book (size
246 x 175, height 33), the mail package (size 380 %
335, height 140) and the computer package (size
650 %x 435, height 235), respectively. All size and
height are measured in mm.

along the tangent direction of the searching path.
The reason for this simplification is that we do
not expect our MAV to fly in an aggressive way,
and a constant expected speed is sufficient for our
searching task.

The general idea of this method is to only
consider position errors in the normal direction of
the predefined path, while ignoring the errors in the
tangent direction, which makes a constant expected
forward speed possible. Then the final commanded
acceleration is calculated by a PD controller. For
more details we refer to [20].

C. Landing Site Pose Estimation Results

We evaluate the landing site detection and pose
estimation results by processing a video logfile
from a manual flight of our MAV above different
objects with planar surfaces, which are used to rep-
resent different landing sites: a poster pad, a book,
a mail package, and a computer package. Each of
them has different texture features. Moreover, they
are different in size and height. We control the
MAV to take off from another pad nearby those
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Fig. 6: (a), (d) Position estimates for the book, on x—y and x—z plane respectively, and (b), (e) for
the PC package. (c) Trajectory of the MAYV, and (f) the corresponding yaw angle estimates (a cross is
marked if the landing site is detected at the corresponding time).

objects, such that our SLAM algorithm can be
initialized by this pad as described in Sect.
Fig. [5a shows a scene during this flight. Reference
images of those landing sites are captured by
manually holding the MAV above them in different
illumination conditions, as shown in Fig. [5 Note
that to confirm that our object detection method is
invariant to the rotation of a reference image, they
are rotated by 180 degrees for this experiment.

We process the same recorded video sequence
four times, selecting a different reference image
for landing site detection each time. The identical
MAV trajectory estimated by the visual SLAM
algorithm is shown in Fig. [6c| and [6ff The poster
pad provides a total number of 481 ORB features
on all three levels, the book 69, the mail package
153 and the computer package 97 features. De-
spite their differences we mentioned above, they
can be correctly detected and located. The Root
Mean Square Errors (RMSEs) of their 3D position
estimation are listed in Tab. [l

Since pose distributions of the detected landing
sites are similar, we only present the results for the
book and the computer package, which have the
overall smallest and largest RMSEs. Fig. [6a and [6d]
show the distribution of the pose estimation results
for the book, and [6b] and [6€] show that of the com-
puter package. The pose estimates are projected to
the x—y and x—z planes of the world coordinates.
The few estimates with relatively large errors do
not affect the autonomous navigation since they
can be excluded after a pose refine process as
described in Sect. In Fig. we mark
the height of the detected poster pad with black
crosses, if it is detected at the corresponding time.
Similarly, in Fig. [6f, we mark the MAV yaw angle
estimates when the pad is detected. They show that
the poster pad is detected when the MAV is at
different positions and yaw angles.

D. Autonomous Navigation and Landing Results



Fig. 7: The built map and MAV trajectory during a searching and landing task.

TABLE I: RMSEs (mm) of position estimates for
different landing sites during a manual flight.

RMSE poster book mail Pack. PC Pack.

X-y 22 15 34 43
z 1 8 6 2
3D 22 17 35 43

1) Using the setpoint method: In this experi-
ment, we use the poster pad shown in Fig. [5b] as
the target landing site. Our MAV autonomously
navigates using the setpoint method to search
for the landing site and finally lands on it. The
trajectory of this searching and landing task, as
estimated by our onboard SLAM system, is shown
in Fig. /| The map points built by the SLAM sys-
tem are triangulated and refined if new keyframes
are added. The pose of each keyframe has been
depicted as small RGB axes in Fig.

The searching path should depend on the ex-
pected complexity of the landing area. Here, a

simple rectangular searching path is defined. We
choose four setpoints evenly distributed on each
edge of the rectangle. The MAV navigates along
this searching path after takeoff and initializa-
tion of the visual SLAM system. At each cor-
ner of the rectangle, the MAV is commanded
to hover for 3 seconds to maintain better sta-
bility. The parameters described in Sect.
are chosen as shown in Table [l The land-
ing site is detected when the MAV is at the
position Py = (2.001,-1.556,1.197)T (m), relative
to the starting position. When it is at P, =
(2.337,-1.616,1.201)7 (m), landing site detection
stops with the computation of the refined landing
site pose, which is visualized as a bold colored
quadrilateral in Fig. [7] Fig. [§]is the resulting tra-
jectory on different axes of the world coordinates.
It shows that the MAV needs to hover for a certain
period of time to satisfy the constraint of each
setpoint, and then moves to the next one.

Figure 8| also shows that the above MAV tra-
jectory fits well with the ground truth data, which
proves the accuracy of both the SLAM algorithm



TABLE II: Parameter setup for the trajectory con-
trol using the setpoint method.

Parameter hy hy dy /8 Is
1.2m 03m 02m 15deg 0.2s

Value

TABLE III: MAV pose estimation RMSEs of the
whole trajectory, with position errors in mm and
attitude errors in degrees

X Yy z 3D roll pitch yaw
RMSE 8.6 13.6 143 21.6 1.04 0.85 1.49

and its initialization module. Table lists the
RMSE of the on-board MAV-pose estimation when
compared to the ground truth data. Position Py is
marked with a blue cross in Fig. @] , P> with a
green cross. The initial position estimate of the
landing site on the x —y plane is marked with a
blue square, and the final refined estimate with
a green circle. Both position estimates are close
to the ground truth data, which is marked with
a black square. The blue and green crosses in
Fig. show the initial and final height estimate,
comparing to the ground truth height marked with
squares. With the landing site size being 500 x 500
(mm), the initial and final position estimation error
is (=19,-26,-6)T (mm) and (-11,-27,-5)T (mm),
respectively.

2) Using trajectory-following method: In this
experiment, we compare the efficiency of the
trajectory-following method and the setpoint
method in autonomous navigation of our MAV.
The poster pad is again used.

The trajectories of the MAV when using the two
methods are shown in Fig. 0] The PID parame-
ters of low level position and attitude controllers
are the same in both cases. Trajectory controller
parameters different from those in Sect.
are shown in Table Only when we use the
method of trajectory following, we can explicitly
set the MAV forward speed. However, we should
note that it does not directly control the MAV
speed. Instead, the forward speed will be fed to
the position controller of the MAV.

When we calculate the RMSEs of the actual
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Fig. 8: (a) MAV position estimates from our vision
system on x,y,z axis. (b) MAV trajectory projected
to x—y plane. The initial and final position esti-
mates of the landing site and the associated MAV
poses are also marked.

flight trajectory with respect to the predefined
searching path on x—y plane, position errors along
the tangent direction of the searching path are
ignored. The resulted RMSEs during the period
of searching for the landing pad are listed in
Table [Vl It shows the two methods result in similar
precision for trajectory control under the parame-
ter setup in Table with the setpoint method
performing a bit better. However, the trajectory-
following method performs extremely well on yaw
angle control. More importantly, this method is
much more efficient regarding the spent flight time,
which spends 32 seconds to obtain the initial pose
of the landing pad. On the contrary, the setpoint
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Fig. 9: MAV trajectories projected to x—y plane,
when using two different methods for navigation.

TABLE IV: Parameter setup for trajectory control
using the two different methods.

Parameter hy ts Vg
Value 0.4m 0.1s 0.35m/s

method spends 52.8 seconds to achieve this, even
though we have set ¢, smaller than that in Sect. [V
[D.1] to speed up the searching process. To improve
the trajectory control precision, which will result in
less efficiency in forward speed on the other hand,
we suggest to distribute more setpoints along the
predefined path and a relatively larger #; in the
setpoint method, while setting a smaller forward
speed in the trajectory-following method.

When using the setpoint method, the detected
landing pad positions and the corresponding MAV
positions are marked in Fig. 0] in the same way as
in Fig. [8b] For the result of using the trajectory-
following method, the initially and finally detected
landing pad positions are marked in red square and
cyan circle, and the corresponding MAV positions
are marked in red and cyan crosses, respectively.

E. Outdoor Experiment

In this experiment, we want to examine the
robustness and extensibility of our vision system
when working in outdoor environments. The ex-
periment was carried out on a sunny midday with
moderate wind, and the scenario is challenging in
three aspects: Our MAV flies above a meadow, as

TABLE V: MAV trajectory control RMSEs, with
RMSET! for the setpoint method, and RMSE?2 for
the trajectory-following method.

xX=y z yaw
RMSEI 134.8mm 18.3mm 3.6deg
RMSE2 163.5mm 15.3mm 0.03deg

Fig. 10: The scenario for the outdoor experiment.

shown in Fig.[T0] Thus, the first challenging aspect
is that the environment is filled with visual features
from grass with high self-similarity, which will be
discussed in Sect. [VIl The second one is that there
was wind strong enough to bring disturbance to the
pose controller of our MAV, which makes it a good
scenario to test the robustness of the controller.
The last one is introduced by the grass and other
plants below the MAV: When the MAV flies above
them in low altitude, their physical structure will
be obviously changed by the wind produced by
MAV propellers. This introduces more noise to our
visual SLAM system.

Fig. 11: The reference image of the landing site in
outdoor environment.



TABLE VI: MAV trajectory control RMSEs for
the outdoor flight.

xX—y z
192.0mm 62.4mm

yaw
0.04deg

RMSE

The landing site we defined is a piece of package
paper with a size of 0.95m x 0.95m. Its reference
image as shown in Fig. [I1] was taken on another
day by the same camera on our MAYV, which
provides a total number of 59 ORB features on
the three pyramid levels. The trajectory-following
method is used for trajectory control. Parameters
for trajectory control are set in the same way as in
Sect. except that we define d; mentioned
in Sect. [V-B.2] to be 0.3m. However, we define a
longer searching path as 5mx 5m with a height of
3.5m.

Fig.[12]and Fig.[13|show the built map and MAV
trajectory of an outdoor flight. Table. [VI| shows the
RMSE:s of the actual flight trajectory with respect
to the predefined searching path. We can find that
the flight performance is not much worse than
in the indoor experiments despite the challenges
we mentioned earlier. One reason for such results
is that the MAV now flies much higher than in
the indoor experiments, which leads to much less
ground effect on the MAV.

Fig. [[4] shows a scene when the SLAM system
is initialized in this experiment. Although this time
the assumption of all features lying on the same
plane is no longer strictly true, it will not bring
obvious effect to the pose tracking process, and
those inaccurate map points will be later adjusted
by local bundle adjustment.

VI. DiscussioNs AND FUTURE WORK

We mentioned three challenging issues in
Sect. [V-E| which make it difficult for our MAV to
autonomously navigate in outdoor complex envi-
ronments. Those challenges may finally cause pose
tracking failure. Among them, the self-similarities
of visual features are related to general vision
systems. Fig. [I5a] shows a view of intermediate
results from our visual SLAM system, which gives
a self-similarity example. Such self-similarities

Fig. 14: Visual features in different image levels
when the SLAM system is initialized in the out-
door environment.

may make the feature matching difficult, espe-
cially when features are in high density, resulting
false map points to be triangulated. As can be
found in Fig. [I5b], most of those map points
with relatively large altitude are false ones. A
more robust feature matching strategies need to
be investigated to tackle this issue. Another way
to achieve better tracking robustness could be to
augment the monocular SLAM system with more
cameras looking at other directions. Thus more
diverse vision features can be matched for localiza-
tion. Illumination change in outdoor environments
is another challenge for vision systems, which
may easily cause cameras to be overexposed or
underexposed, and result in tracking failure. We
did our outdoor experiment in sunny daytime,
since the illumination does not change much in
this case. Thus, to finally go outdoor, we have
to develop vision systems employing techniques
which can efficiently handle illumination changes,
e.g. the method presented in [15].

For an autonomous landing phase at the end of
a long-term mission of a UAV, we propose to fuse
IMU data to get its accurate short-term relative
pose estimates, which can provide a metric scale
constraint to initialize the SLAM system. Thus,
autonomous searching for and landing on an arbi-
trary landing site could be achieved with a similar
strategy as proposed in this paper. Although we
have achieved promising results within relatively
small areas, future work could be fusing IMU



Fig. 12: Visualization of the built map and MAV trajectory during the outdoor searching and landing

task. Map points are marked in green.
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Fig. 13: (a) MAV trajectory projected to x—y plane, and (b) to the y—z plane. The initial and final
position estimates of the landing site and the associated MAV poses are also marked.

data to extend the current monocular visual SLAM
system to fulfill large scale tasks. This could not
only be used to correct the pose estimates resulting
from a SLAM system, but also to improve the
localization and mapping accuracy of the SLAM
system itself.

VII. CoNcLUSIONS

In this paper we have presented a monocular
vision system which enables an MAV to navi-
gate autonomously in unknown environments, and
search for the landing site on which it is designated
to land. Our visual SLAM system can provide
accurate pose estimates for the control of the MAV.
We solve the landing site detection by integrating a
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Fig. 15: (a) An intermediate result of the SLAM system when the MAV fly above a meadow. Those
blue, green and cyan points are features in different image levels, and the red points are built map
points, while those successfully matched map points are marked with yellow circles. (b) A side view

of the final built map in the outdoor scenario.

multi-scale ORB feature matching scheme into the
mapping thread of the SLAM framework. We fur-
ther utilize the map points produced by the SLAM
system to accurately estimate the 3D pose of the
landing site, using a RANSAC-based method. No
absolute scale information of the landing site is
needed for its pose estimation.

By evaluating the pose estimation results of
different landing sites, we show that our method is
flexible and accurate enough for the proposed task
of searching for and landing on an arbitrary land-
ing site. Finally, we demonstrate our claims by the
autonomous navigation and landing flights of our
MAV indoor and in outdoor environment. The suc-
cessful outdoor flight in the challenging scenario
proves that our visual system can be extended to
complex outdoor environments and enable MAVs
to land autonomously. Video demonstration for the
work presented in this paper can be found online
at http://www.youtube.com/channel /UCQd6_
GoqyvGHUmz7NUelDZQ/videos.
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